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Abstract 32 
 33 
Systematic, routine, and comprehensive evaluation of Earth System Models (ESMs) facilitates benchmarking 34 
improvement across model generations and identifying the strengths and weaknesses of different model 35 
configurations. By gauging the consistency between models and observations, this endeavor is becoming increasingly 36 
necessary to objectively synthesize thousands of simulations contributed to the Coupled Model Intercomparison 37 
Project (CMIP) to date. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) Metrics Package 38 
(PMP) is an open-source Python software package that provides "quick-look" objective comparisons of ESMs with 39 
one another and with observations. The comparisons include metrics of large- to global-scale climatologies, tropical 40 
inter-annual and intra-seasonal variability modes such as El Niño-Southern Oscillation (ENSO) and Madden-Julian 41 
Oscillation (MJO), extratropical modes of variability, regional monsoons, cloud radiative feedbacks, and high-42 
frequency characteristics of simulated precipitation, including its extremes. The PMP comparison results are produced 43 
using all model simulations contributed to CMIP6 and earlier CMIP phases. An important objective of the PMP is to 44 
document performance of ESMs participating in the recent phases of CMIP, together with providing version-45 
controlled information for all data sets, software packages, and analysis codes being used in the evaluation process. 46 
Among other purposes, this also enables modeling groups to assess performance changes during the ESM development 47 
cycle in the context of the error distribution of the multi-model ensemble. Quantitative model evaluation provided by 48 
the PMP can assist modelers in their development priorities. In this paper, we provide an overview of the PMP 49 
including its latest capabilities, and discuss its future direction.  50 
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1 Introduction  54 
Earth System Models (ESMs) are key tools for projecting climate change and conducting research to enhance 55 

our understanding of the Earth system. With the advancements in computing power and the increasing importance of 56 
climate projections, there has been an exponential growth of diversity of ESM simulations. During the 1990’s, the 57 
Atmospheric Model Intercomparison Project (AMIP; Gates, 1992; Gates et al., 1999) was a centralizing activity within 58 
the modeling community, which led to the creation of the Coupled Model Intercomparison Project (CMIP; Meehl et 59 
al., 1997, 2000, 2007; Covey et al., 2003; Taylor et al., 2012). Since 1989, the Program for Climate Model Diagnosis 60 
and Intercomparison (PCMDI) has worked closely with the World Climate Research Programme’s (WCRP) Working 61 
Group on Coupled Models (WGCM) and Working Group on Numerical Experimentation (WGNE) to design and 62 
implement these projects (Potter et al., 2011). The most recent phase of CMIP (CMIP6; Eyring et al., 2016) provides 63 
a set of well-defined experiments that most climate modeling centers perform, and subsequently makes results 64 
available for a large and diverse community to analyze.  65 

Evaluating ESMs is a complex endeavor, given the vast range of climate characteristics across space and 66 
time scales. A necessary step involves quantifying the consistency between ESMs with available observations. Climate 67 
model performance metrics have been widely used to objectively and quantitatively gauge the agreement between 68 
observations and simulations to summarize model behavior with a wide range of climate characteristics. Simple 69 
examples include either the model bias or the pattern similarity (correlation) between an observed and simulated field 70 
(e.g., Taylor, 2001). With the rapid growth in the number, scale, and complexity of simulations, the metrics have been 71 
used more routinely as exemplified by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports 72 
(e.g., Gates et al., 1995; McAvaney et al., 2001; Randall et al., 2007; Flato et al., 2014; Eyring et al., 2021). A few 73 
studies have been exclusively devoted to objective model performance assessment using summary statistics. Lambert 74 
and Boer (2001) evaluated the first set of CMIP models from CMIP1 using statistics for the large-scale mean climate. 75 
Gleckler et al. (2008) identified a variety of factors relevant to model metrics and demonstrated techniques to quantify 76 
the relative strengths and weaknesses of the simulated mean climate. Reichler and Kim (2008) attempted to gauge 77 
model improvements across the early phases of CMIP. The scope of objective model evaluation has greatly broadened 78 
beyond the mean state in recent years (e.g., Gleckler et al., 2016; Eyring et al., 2019), including attempts to establish 79 
performance metrics for a wide range of climate variability (e.g., Kim et al., 2009; Sperber et al., 2013; Ahn et al., 80 
2017; Fasullo et al., 2020; Lee et al., 2021b; Planton et al., 2021) and extremes (e.g., Sillmann et al., 2013; Srivastava 81 
et al., 2020; Wehner et al., 2020, 2021). Guilyardi et al. (2009) and Reed et al. (2022) emphasized that metrics should 82 
be concise, interpretable, informative, and intuitive. 83 

With the growth of data size and diversity of ESM simulations, there has been a pressing need for the research 84 
community to become more efficient and systematic in evaluating ESMs and documenting their performances. To 85 
respond to the need, PCMDI developed the PCMDI Metrics Package (PMP) and released its first version in 2015 (see 86 
Code and Data Availability section for all versions). A centralizing goal of the PMP then and now is to quantitatively 87 
synthesize results from the archive of CMIP simulations via performance metrics that help characterize the overall 88 
agreement between models and observations (Gleckler et al., 2016). For our purposes, “performance metrics” are 89 
typically (but not exclusively) well-established statistical measures that quantify the consistency between observed 90 
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and simulated characteristics. Common examples include a domain average bias, a root-mean-square error (RMSE), 92 
a spatial pattern correlation, or others, typically selected depending on the application. Another goal of the PMP is to 93 
further diversify the suite of high-level performance tests that help characterize the simulated climate. The results 94 
provided by the PMP are frequently used to address two overarching and recurring questions: 1) What are the relative 95 
strengths and weaknesses between different models? and 2) How are models improving with further development? 96 
Addressing the second question is often referred to as “benchmarking” and this motivates an important emphasis of 97 
the effort described in this paper—striving to advance the documentation of all data and results of the PMP in an open 98 
and ultimately reproducible manner.  99 

In parallel, the current progress towards systematic model evaluation remains dynamic, with evolving 100 
approaches and many independent paths being pursued. This has resulted in the development of diversified model 101 
evaluation software packages. Examples in addition to the PMP include the ESMValTool (Eyring et al., 2016, 2019, 102 
2020; Righi et al., 2020), the Model Diagnostics Task Force (MDTF) Diagnostics package (Maloney et al., 2019; 103 
Neelin et al., 2023), the International Land Model Benchmarking (ILAMB) Software System (Collier et al., 2018) that 104 
focuses on land surface and carbon cycle metrics, and the International Ocean Model Benchmarking (IOMB) Software 105 
System (Fu et al., 2022) that focuses on surface and upper ocean biogeochemical variables. Some tools have been 106 
developed with a more targeted focus on a specific subject area, such as the Climate Variability Diagnostics Package 107 
(CVDP) that diagnoses climate variability modes (Phillips et al., 2014; Fasullo et al., 2020), and the Analyzing Scales 108 
of Precipitation (ASoP) that focuses on analyzing precipitation scales across space and time (Klingaman et al., 2017; 109 
Martin et al., 2017; Ordonez et al., 2021). The regional climate community also has actively developed metrics 110 
packages such as the Regional Climate Model Evaluation System (RCMES; Lee et al., 2018a; Whitehall et al. 2012). 111 
Separately, a few climate modeling centers have developed their own model evaluation packages to assist in their in-112 
house ESM development, e.g., the E3SM Diags (Zhang et al., 2022). There also have been other efforts to enhance 113 
the usability of in-situ and field campaign observations in ESM evaluations, such as Atmospheric Radiation 114 
Measurement (ARM) GCM Diag (Zhang et al., 2018, 2020) and Earth System Model Aerosol–Cloud Diagnostics 115 
(ESMAC Diags; Tang et al., 2022, 2023). While they all have their own scientific priorities and technical approaches, 116 
the uniqueness of the PMP is its focus on the objective characterization of the physical climate system as simulated 117 
by community models. An important prioritization of the PMP is to advance all aspects of its workflow, in an open, 118 
transparent, and reproducible manner, which is critical for benchmarking. The PMP summary statistics characterizing 119 
CMIP simulations are version-controlled and made publicly available as a resource to the community. 120 

In this paper, we describe the latest update of the PMP and its focus on providing a diverse suite of summary 121 
statistics that can be used to construct “quick-look” summaries of ESM performance from simulations made publicly 122 
available to the research community, notably CMIP. The rest of the paper is organized as follows. In Sect. 2, we 123 
provide a technical description of the PMP and its accompanying reference datasets. In Sect. 3, we describe various 124 
sets of simulation metrics that provide an increasingly comprehensive portrayal of physical processes across time 125 
scales ranging from hours to centurial. In Sect. 4, we introduce the usage of PMP for model benchmarking. We discuss 126 
the future direction and the remaining challenges in Sect. 5 and conclude with a summary in Sect. 6. To assist the 127 
reader, the table in Appendix A summarizes the acronyms used in this paper.  128 
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 134 
2 Software package and data description 135 

The PMP is a Python-based open-source software framework (https://github.com/PCMDI/pcmdi_metrics) 136 
designed to objectively gauge the consistency between ESMs and available observations via well-established statistics 137 
such as those discussed in Sect. 3. The PMP has been mainly used for the evaluation of CMIP-participating models. 138 
A subset of CMIP experiments, those conducted using the observation forcings such as “Historical” and “AMIP” 139 
(Eyring et al., 2016), is particularly well suited for comparing models with observations. The AMIP experiment 140 
protocol constrains the simulation with prescribed sea surface temperature (SST), and the “Historical” experiment is 141 
conducted using coupled model simulations driven by observed varying natural and anthropogenic forcings. Some of 142 
the metrics applicable to these experiments may also be relevant to others (e.g., multi-century coupled control runs 143 
called “PiControl” and idealized “4xCO2” simulations that are designed for estimating climate sensitivity).  144 

The PMP has been applied to multiple generations of CMIP models in a quasi-operational fashion as new 145 
simulations are made available, new analysis methods are incorporated, or new observational data become accessible 146 
(e.g., Gleckler et al. 2016; Planton et al., 2021; Lee et al., 2021b; Ahn et al. 2022). Shortly after simulations from the 147 
most recent phase of the CMIP (i.e., CMIP6) became accessible, PMP quick-look summaries were provided on the 148 
PCMDI’s website (https://pcmdi.llnl.gov/metrics/), offering a resource to scientists involved in CMIP or others 149 
interested in the evaluation of ESMs. To facilitate this, at PCMDI the PMP is technically linked to the Earth System 150 
Grid Federation (ESGF) that is the CMIP data delivery infrastructure (Williams et al., 2016). 151 

The primary deliverable of the PMP is a collection of summary statistics. We strive to make the baseline 152 
results (raw statistics) publicly available and well-documented, and continue to make advances with this objective in 153 
priority. For our purposes, we are referring to model performance “summary statistics” and “metrics” interchangeably, 154 
although in some situations we consider there to be an important distinction. For us, a genuine performance metric 155 
constitutes a well-defined and established statistic that has been used in a very specific way (e.g., a particular variable, 156 
analysis, and domain) for long-term benchmarking (see Sect. 4). The distinction between summary statistics and 157 
metrics is application-dependent and evolving as the community advances efforts to establish quasi-operational 158 
capabilities to gauge ESM performance. Some visualization capabilities described in Sect. 3 are made available 159 
through the PMP. Users can also further explore the model data comparisons using their preferred visualization 160 
methods or incorporate the results into their own studies from the summary statistics from the PMP. Noting the above, 161 
the scope of the PMP is fairly targeted. It is not intended to be “all-purpose”, e.g. by incorporating the vast range of 162 
diagnostics used in model evaluation. 163 

The PMP is designed to readily work with model output that has been processed using the Climate Model 164 
Output Rewriter (CMOR; https://cmor.llnl.gov/), which is a software library developed to prepare model output 165 
following the CF Metadata Conventions (Hassell et al., 2017; Eaton et al., 2022, http://cfconventions.org/) in Network 166 
Common Data Form (NetCDF) format. The CMOR is used by most modeling groups contributing to CMIP, ensuring 167 
all model output adheres to the CMIP data structures that themselves are based on the CF conventions. It is possible 168 
to use the PMP on model output that has not been prepared by CMOR, but this usually requires additional work, e.g., 169 
mapping the data to meet the community standards.  170 
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For reference datasets, the PMP uses observational products processed to be compliant with the Observations 174 
for Model Intercomparison Projects (obs4MIPs; https://pcmdi.github.io/obs4MIPs/). The obs4MIPs effort was 175 
initiated circa 2010 (Gleckler et al., 2011) to advance the use of the observations in model evaluation and research. 176 
Substantial progress has been made in establishing obs4MIPs data standards that technically align with CMIP model 177 
output (e.g., Teixeira et al., 2014; Ferraro et al., 2015), with the data products published on the ESGF (Waliser et al., 178 
2020). Obs4MIPs-compliant data were prepared with CMOR, and the data directly available via obs4MIPs are used 179 
as PMP reference datasets. 180 

The PMP leverages other Python-based open-source tools and libraries such as xarray (Hoyer and Hamman, 181 
2017), eofs (Dawson, 2016), and many others. One of the primary fundamental tools used in the latest PMP version 182 
is the Python package, Xarray Climate Data Analysis Tools (xCDAT; Vo et al., 2023; https://xcdat.readthedocs.io). 183 
The xCDAT is developed to provide a more efficient, robust, and streamlined user experience in climate data analysis 184 
when using xarray (https://docs.xarray.dev/). Portions of the PMP rely on the precursor of the xCDAT, a Python 185 
library called Community Data Analysis Tools (CDAT, Williams et al., 2009; Williams, 2014; Doutriaux et al., 2019), 186 
which has been fundamental since the early development stages of the PMP. The xarray software provides much of 187 
the functionality of CDAT (e.g., I/O, indexing, and subsetting). However, it lacks some key climate domain features 188 
that have been frequently used by scientists and exploited by the PMP (e.g., regridding, utilization of spatial/temporal 189 
bounds for computational operations) which motivated the development of the xCDAT. Completing the transition 190 
from CDAT to xCDAT is a technical priority for the next version of PMP. 191 

To help advance open and reproducible science, the PMP has been maintained with an open-source policy 192 
with accompanying metadata for data reproducibility and reusability. The PMP code is distributed and released with 193 
version control. The installation process of PMP is streamlined and user-friendly, leveraging the Anaconda distribution 194 
and the conda-forge channel. By employing conda and conda-forge, users benefit from a simplified and efficient 195 
installation experience, ensuring seamless integration of PMP's functionality with minimal dependencies. This 196 
approach not only facilitates a straightforward deployment of the package but also enhances reproducibility and 197 
compatibility across different computing environments, thereby facilitating the accessibility and widespread adoption 198 
of PMP within the scientific community. The pointer to the installation instructions can be found in the Code and Data 199 
Availability section. The PMP’s online documentation (http://pcmdi.github.io/pcmdi_metrics/) also includes 200 
installation instructions and user demo Jupyter Notebooks. A database of pre-calculated PMP statistics for all AMIP 201 
and Historical simulations in the CMIP archive are also available online. The archive of these statistics, stored as 202 
JSON files (Crockford, 2006; Crockford and Morningstar, 2017), includes versioning details for all codes, and 203 
dependencies and data that were used for the calculations. These files provide the baseline results of the PMP (see the 204 
Code and Data Availability section for details). Advancements in model evaluation along with the number of models 205 
and complexity of simulations motivate more systematic documentation of performance summaries. With PMP 206 
workflow provenance information being recorded and the model and observational data standards maintained by 207 
PCMDI and colleagues, PMP strives to make all its results reproducible. 208 
 209 
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3 Current PMP capabilities  212 
The capabilities of the PMP have been expanded beyond its traditional large-scale performance summaries 213 

of the mean climate (Gleckler et al., 2008; Taylor, 2001). Various evaluation metrics have been implemented to the 214 
PMP for climate variability such as El Niño-Southern Oscillation (ENSO) (Planton et al., 2021; Lee et al., 2021a), 215 
extratropical modes of variability (Lee et al., 2019, 2021b), intra-seasonal oscillation (Ahn et al., 2017), monsoons 216 
(Sperber and Annamalai, 2014), cloud feedback (Zelinka et al., 2022), and the characteristics of simulated 217 
precipitation (Pendergrass et al., 2020; Ahn et al., 2022, 2023) and extremes (Wehner et al., 2020, 2021). These PMP 218 
capabilities were built upon model performance tests that have resulted from research by PCMDI scientists and their 219 
collaborators. This section will provide an overview of each category of the current PMP evaluation metrics with their 220 
usage demonstrations. 221 

 222 
3.1 Climatology 223 

Mean state metrics quantify how well models simulate observed climatological fields at a large scale, gauged 224 
by a suite of well-established statistics such as RMSE, mean absolute error (MAE), and pattern correlation that have 225 
been used in climate research for decades. The focus is on the coupled “Historical” and atmospheric-only AMIP (Gates 226 
et al., 1999) simulations which are well-suited for comparison with observations. The PMP extracts seasonally and 227 
annually averaged fields of multiple variables from large-scale observationally based datasets and results from model 228 
simulations. Different obs4MIPs-compliant reference datasets are used depending on the variable examined. When 229 
multiple reference datasets are available, one of them is considered as a “default” (e.g., see Table 1) while others are 230 
identified as “alternatives”. The default datasets are typically state-of-the-art products, but in general, we lack 231 
definitive measures as to which is the most accurate, so the PMP metrics are routinely calculated with multiple 232 
products so that it can be determined what difference the selection of alternative observations makes to judgment made 233 
about model fidelity. The suite of mean climate metrics (all area weighted) includes spatial and spatiotemporal RMSE, 234 
centered spatial RMSE, spatial-mean bias, spatial standard deviation, spatial pattern correlation, and spatial and 235 
spatiotemporal MAE of the annual or seasonal climatological time-mean (Gleckler et al., 2008). Often, a space-time 236 
statistic is used that gauges both the consistency of the observed and simulated climatological pattern as well as its 237 
seasonal evolution (see Eq. 1 from Gleckler et al., 2008). By default, results are available for selected large-scale 238 
domains, including: “Global”, “Northern Hemisphere (NH) Extratropics” (30oN-90oN), “Tropics” (30oS-30oN), and 239 
“Southern Hemisphere (SH) Extratropics” (30oS-90oS). For each domain, results can also be computed for the land 240 
and ocean, land only, or ocean only. These commonly used domains highlight the application of the PMP mean climate 241 
statistics at large to global scales, but we note that PMP allows users to define their own domains of interest, including 242 
at regional scales. Detailed instructions can be found on the PMP’s online documentation 243 
(http://pcmdi.github.io/pcmdi_metrics). 244 

Although the primary deliverable of the PMP is the metrics, the PMP results can be visualized in various 245 
ways. For individual fields, we often first plot Taylor Diagrams, a polar plot leveraging the relationship between the 246 
centered RMSE, the pattern correlation, and the observed and simulated standard deviation (Taylor, 2001). The Taylor 247 
Diagram has become a standard plot in the model evaluation workflow across modeling centers and research 248 
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communities (see Sect. 5). To interpret results across CMIP models for many variables, we routinely construct 250 
normalized Portrait Plots or Gleckler Plots (Gleckler et al., 2008) that provide a quick-look examination of the 251 
strengths and weaknesses of different models. For example, in Figure 1, the PMP results display quantitative 252 
information of simulated seasonal climatologies of various meteorological model variables via a normalized global 253 
spatial RMSE (Gleckler et al., 2008). Variants of this plot have been widely used for presenting model evaluation 254 
results, for example, in the IPCC Fifth (Flato et al., 2014, Figures 9.7, 9.12, and 9.37) and Sixth Assessment Reports 255 
(Eyring et al., 2021, Chapter 3, Figure 3.42). Because the error distribution across models is variable dependent, the 256 
statistics are often normalized to help reveal differences, in this case via the median RMSE across all models (see 257 
Gleckler et al. 2008 for more details). This normalization enables a common color scale to be used for all statistics on 258 
the Portrait Plot, highlighting the relative strengths and weaknesses of different models. In this example (Fig. 1), an 259 
error of -0.5 indicates that a model’s error is 50% smaller than the typical (median) error across all models, whereas 260 
an error of 0.5 is 50% larger than the typical error in the multi-model ensemble. In many cases, the horizontal bands 261 
in the Gleckler plots show that simulations from a given modeling center have similar error structures relative to the 262 
multi-model ensemble. 263 

The Parallel Coordinate Plot (Inselberg, 1997, 2008, 2016; Johansson and Forsell, 2016) that retains the 264 
absolute value of the error statistics is used to complement the Portrait plot. Some previous studies have utilized 265 
Parallel Coordinate Plots for analyzing climate model simulations (e.g., Steed et al., 2012; Wong et al., 2014; Wang 266 
et al., 2017), but to date, only a few studies have applied it to collective multi-ESM evaluations (e.g., see Fig. 7 of 267 
Boucher et al., 2020). In the PMP, we generally construct Parallel Coordinate Plots using the same data as in a portrait 268 
plot. However, a fundamental difference is that metrics values can be more easily scaled to highlight absolute values 269 
rather than the normalized relative results of the portrait plot. In this way, the Portrait and Parallel Coordinate plots 270 
complement one another, and in some applications, it can be instructive to display both. Figure 2 shows the 271 
spatiotemporal RMSE, defined as the temporal average of spatial RMSE calculated in each month of the annual cycle, 272 
of CMIP5 and CMIP6 models in the format of Parallel Coordinate Plot. Each vertical axis represents a different scalar 273 
measure gauging a distinct aspect of model fidelity. While polylines are frequently used to connect data points from 274 
the same source (i.e., metric values from the same model, in our case) in Parallel Coordinate Plots, we display results 275 
from each model using an identification symbol to reduce visual clutter on the plot and help identify outlier models. 276 
In the example of Fig. 2, each vertical axis is aligned with the median value midway through its max/min range scale. 277 
Thus, for each axis, the models in the lower half of the plot perform better than the CMIP5-CMIP6 multi-model 278 
median, while in the upper half, the opposite is true. For each vertical axis that is for a different model variable, we 279 
have added violin plots (Hintze and Nelson, 1998) to show probability density functions representing the distributions 280 
of model performance obtained from CMIP5 (shaded in blue, left side of the axis) and CMIP6 (shaded in orange, right 281 
side of the axis). Medians of each CMIP5 and CMIP6 group are highlighted using polylines, which indicates that the 282 
RMSE is reduced in CMIP6 relative to CMIP5 in general for the majority of the subset of model variables. 283 
 284 
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3.2 El Niño-Southern Oscillation 286 
The El Niño-Southern Oscillation (ENSO) is Earth’s dominant interannual mode of climate variability, which 287 

impacts global climate via both regional oceanic effects and far-reaching atmospheric teleconnections (McPhaden et 288 
al., 2006, 2020). In response to increasing interest in a community approach to ENSO evaluation in models (Bellenger 289 
et al., 2014), the International Climate and Ocean Variability, Predictability and Change (CLIVAR) Research Focus 290 
on ENSO in a Changing Climate, together with the CLIVAR Pacific Region Panel, developed the CLIVAR ENSO 291 
Metrics Package (Planton et al., 2021) which is now utilized within the PMP. The ENSO metrics used to 292 
assess/evaluate the models are grouped into three categories: Performance (i.e., background climatology and basic 293 
ENSO characteristics), Teleconnections (ENSO's worldwide teleconnections), and Processes (ENSO's internal 294 
processes and feedback). Planton et al. (2021) found that CMIP6 models generally outperform CMIP5 models in 295 
several ENSO metrics in particular for those related to tropical Pacific seasonal cycles and ENSO teleconnections. 296 
This effort is discussed in more detail in Planton et al. (2021), and detailed descriptions of each metric in the package 297 
are available in the ENSO Package online open-source code repository on its GitHub Wiki pages (see 298 
https://github.com/CLIVAR-PRP/ENSO_metrics/wiki).  299 

Figure 3 demonstrates the application of the ENSO metrics to CMIP6, showing the magnitudes of inter-300 
model and inter-ensemble spreads, along with observational uncertainty varying across metrics. For a majority of the 301 
ENSO Performance metrics model error and inter-model spread are substantially larger than observational uncertainty 302 
(Figs. 3a-n). This highlights the systematic biases like the double intertropical convergence zone (ITCZ) (Fig. 3a) that 303 
are persisting through CMIP phases (Tian and Dong, 2020). Similarly, ENSO Processes metrics (Figs. 3t-w) indicate 304 
large errors in the feedback loops generating SST anomalies, indicating a different balance of processes in the model 305 
and in the reference and possibly compensating errors (Bayr et al., 2019, Guilyardi et al. 2020). In contrast, for ENSO 306 
Teleconnection metrics, the observational uncertainty is substantially larger, thus challenging validation of model 307 
error (Figs. 3o-r). For some metrics, such as the ENSO duration (Fig. 3f), the ENSO Asymmetry metric (Fig. 3i), and 308 
the Ocean driven SST metric (Fig. 3s), there are larger inter-ensemble spreads than the inter-model spreads. From 309 
such results, Lee et al. (2021a) examined the inter-model and inter-member spread of these metrics from the large 310 
ensembles available from CMIP6 and the US CLIVAR Large Ensemble Working Group. They argued that to robustly 311 
characterize baseline ENSO characteristics and physical processes, larger ensemble sizes are needed, compared to 312 
existing state-of-the-art ensemble projects. By applying the ENSO metrics to historical and piControl simulations of 313 
CMIP6 via the PMP, Planton et al. (2023) developed equations based on statistical theory to estimate the required 314 
ensemble size for a user-defined uncertainty range. 315 
 316 
3.3 Extratropical Modes of Variability 317 

The PMP includes objective measures of the pattern and amplitude of extratropical modes of variability from 318 
PCMDI’s research, which has expanded beyond its traditional large-scale performance summaries to include 319 
interannual variability, considering increasing interest in setting an objective approach for the collective evaluation of 320 
multiple modes. Extratropical modes of variability (ETMoV) metrics in the PMP were developed by Lee et al. (2019a) 321 
that stem from earlier works (e.g., Stoner et al., 2009; Phillips et al., 2014). Lee et al. (2019a) illustrated a challenge 322 
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when evaluating modes of variability using the traditional empirical orthogonal functions (EOF). In particular, when 323 
a higher-order EOF of a model more closely corresponds to a lower-order observationally based EOF (or vice versa), 324 
it can significantly affect conclusions drawn about model performance. To circumvent this issue in evaluating the 325 
interannual variability modes, Lee et al. (2019a) used the Common Basis Function (CBF) approach that projects the 326 
observed EOF pattern onto model anomalies. This approach has been previously applied for the evaluation of 327 
intraseasonal variability modes (Sperber, 2004; Sperber et al., 2005). In the PMP, the CBF approach is taken as a 328 
default method, and the traditional EOF approach is also enabled as an option for the ETMoV metrics calculations.  329 

The ETMoV metrics in the PMP measure simulated patterns and amplitudes of ETMoV, and quantify their 330 
agreement with observations (e.g., Lee et al., 2019a, 2021b). The PMP’s ETMoV metrics evaluate 5 atmospheric 331 
modes – the Northern Annular Mode (NAM), North Atlantic Oscillation (NAO), Pacific North America pattern 332 
(PNA), North Pacific Oscillation (NPO), and Southern Annular Mode (SAM), and 3 ocean modes diagnosed by the 333 
variance of sea-surface temperature – Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), 334 
and Atlantic Multi-decadal Oscillation (AMO). The AMO is included for experimental purposes, considering the 335 
significant uncertainty in detecting the AMO (Deser and Philips 2021; Zhao et al., 2022). The amplitude metric, 336 
defined as the ratio of standard deviations of the model and observed principal components, has been used to examine 337 
the evolution of the performance of models across different CMIP generations (Fig. 4). Green shading predominates, 338 
indicating where the simulated amplitude of variability is similar to observations. In some cases, such as for SAM in 339 
September-October-November (SON), the models overestimate the observed amplitude.  340 

The PMP’s ETMoV metrics have been used in several model evaluation studies. For example, Orbe et al. 341 
(2020) analyzed models from U.S. climate modeling groups including the U.S. Department of Energy (DOE), National 342 
Aeronautics and Space Administration (NASA), National Center for Atmospheric Research (NCAR), and National 343 
Oceanic and Atmospheric Administration (NOAA), where they found that the improvement in the ETMoV 344 
performance is highly dependent on mode and season, when comparing across different generations of those models. 345 
Sung et al. (2021) examined the performance of models run at the Korea Meteorological Administration (K-ACE and 346 
UKESM1) in reproducing ETMoVs from their Historical simulations, and concluded that these models reasonably 347 
capture most ETMoVs. Lee et al. (2021b) collectively evaluated ~130 models from CMIP3, 5, and 6 archive databases 348 
using their ~850 Historical and ~300 AMIP simulations, where they found the spatial pattern skill improved in CMIP6 349 
compared to CMIP5 or CMIP3 for most modes and seasons, while the improvement in amplitude skill is not clear. 350 
Arcodia et al. (2023) used the PMP to derive PDO and AMO to investigate their role in decadal variability of 351 
subseasonal predictability of precipitation over the western coast of North America and concluded that no significant 352 
relationship was found. 353 
 354 
3.4 Intraseasonal Oscillation 355 

The PMP has implemented metrics for the Madden-Julian Oscillation (MJO; Madden and Julian, 1971, 1972, 356 
1994). The MJO is the dominant mode of tropical intraseasonal variability, characterized by a pronounced eastward 357 
propagation of large-scale atmospheric circulation coupled with convection with a typical periodicity of 30-60 days. 358 
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Selected metrics from the MJO diagnostics package, developed by the CLIVAR MJO Working Group (Waliser et al., 360 
2009), have been implemented in the PMP following Ahn et al. (2017).  361 

We have particularly focused on metrics for the MJO propagation: East/West power Ratio (EWR) and East 362 
power normalized by Observation (EOR). The EWR is proposed by Zhang and Hendon (1997) which is defined as 363 
the ratio of the total spectral power over the MJO band (eastward propagating, wavenumber 1-3 and period of 30-60 364 
days) to that of its westward propagating counterpart in the wavenumber-frequency power spectra. The EWR metric 365 
has been widely used in the community, to examine the robustness of the eastward propagating feature of the MJO 366 
(e.g., Hendon et al., 1999; Lin et al., 2006; Kim et al., 2009; Ahn et al., 2017). The EOR is formulated by normalizing 367 
a model’s spectral power within the MJO band by the corresponding observed value. Ahn et al. (2017) showed EWRs 368 
and EORs of the CMIP5 models. Using daily precipitation, the PMP calculates EWR and EOR separately for boreal 369 
winter (November to April) and boreal summer (March to October). We apply the frequency-wavenumber 370 
decomposition method to precipitation from observations (GPCP-based; 1997-2010) and the CMIP5 and CMIP6 371 
Historical simulations for 1985-2004. For disturbances with wavenumbers 1-3 and frequencies corresponding to 30-372 
60 days, it is clear in observations that the eastward propagating signal dominates over its westward propagating 373 
counterpart with an EWR value of about 2.49 (Fig. 5a). Figure 5b shows the wavenumber-frequency power spectrum 374 
from CMIP5 IPSL-CM5B-LR as an example, which has an EWR value that is comparable to the observed value. 375 

Figure 6 shows the EWR from individual models’ multiple ensemble members and their average. The average 376 
EWR of the CMIP6 model simulations is more realistic than that of the CMIP5 models. Interestingly, a substantial 377 
spread exists across models and also among ensemble members of a single model. For example, while the average 378 
EWR value for the CESM2 ensemble is 2.47 (close to 2.49 from the GPCP observations), the EWR values of the 379 
individual ensemble members range from 1.87 to 3.23. Kang et al. (2020) suggested that the ensemble spread in the 380 
propagation characteristics of the MJO can be attributed to the differences in the moisture mean state, especially its 381 
meridional moisture gradient. A cautionary note should be given to the fact that the MJO frequency and wavenumber 382 
windows are chosen to capture the spectral peak in observations. Thus, while the EWR provides an initial evaluation 383 
of the propagation characteristics of the observed and simulated MJO, it is instructive to look at the frequency-384 
wavenumber spectra, as in some cases the dominant periodicity and wavenumber in a model may be different than in 385 
observations. It is worthwhile to note that the PMP can be used to obtain EWR and EOR of other daily variables for 386 
MJO analysis, such as outgoing longwave radiation (OLR) or zonal wind at 850 hPa (U-850) or 250 hPa (U-250), as 387 
shown in Ahn et al. (2017). 388 
 389 
3.5 Monsoons 390 

Based on the work of Sperber and Annamalai (2014), skill metrics in the PMP quantify how well models 391 
represent the onset, decay, and duration of regional monsoons. From observations and Historical simulations, the 392 
climatological pentad data of precipitation are area-averaged for six monsoon domains: All-India Rainfall, Sahel, Gulf 393 
of Guinea, North American Monsoon, South American Monsoon, and Northern Australia (Fig. 7). For the domains in 394 
the Northern Hemisphere, the 73 climatological pentads run from January to December, while for the domains in the 395 
Southern Hemisphere, the pentads run from July to June. For each domain, the precipitation is accumulated at each 396 
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subsequent pentad and then divided by the total precipitation to give the fractional accumulation of precipitation as a 400 
function of pentad. Thus, the annual cycle behavior is evaluated irrespective of whether a model has a dry or wet bias. 401 
Except for the Gulf of Guinea, the onset and decay of monsoon occur for a fractional accumulation of 0.2 and 0.8, 402 
respectively. Between these fractional accumulations, the accumulation of precipitation is nearly linear as the monsoon 403 
season progresses. Comparison of the simulated and observed onset, duration, and decay are presented in terms of the 404 
difference in the pentad index obtained from the model and observations (i.e., model minus observations). Therefore, 405 
negative values indicate that the onset or decay in the model occurs earlier than in observations, while positive values 406 
indicate the opposite. For duration, negative values indicate that for the model it takes fewer pentads to progress from 407 
onset to decay compared to observations (i.e., the simulated monsoon period is too short), while positive values 408 
indicate the opposite.  409 

For CMIP5, we find systematic errors in the phase of the annual cycle of rainfall. The models are delayed in 410 
the onset of summer rainfall over India, the Gulf of Guinea, and the South American Monsoon, with early onset 411 
prevalent for the Sahel and the North American Monsoon. The lack of consistency in the phase error across all domains 412 
suggests that a ‘‘global’’ approach to the study of monsoons may not be sufficient to rectify the regional differences. 413 
Rather, regional process studies are necessary for diagnosing the underlying causes of the regionally specific 414 
systematic model biases over the different monsoon domains. Assessment of the monsoon fidelity in CMIP6 models 415 
using the PMP is in progress.  416 
 417 
3.6 Cloud feedback and mean-state 418 

Uncertainties in cloud feedback are the primary driver of model-to-model differences in climate sensitivity 419 
– the global temperature response to a doubling of atmospheric CO2. Recently, an expert synthesis of several lines of 420 
evidence spanning theory, high-resolution models, and observations was conducted to establish quantitative 421 
benchmark values (and uncertainty ranges) for several key cloud feedback mechanisms. The assessed feedbacks are 422 
those due to changes in high-cloud altitude, tropical marine low-cloud amount, tropical anvil cloud area, land cloud 423 
amount, middle latitude marine low-cloud amount, and high latitude low-cloud optical depth. The sum of these six 424 
components yields the total assessed cloud feedback, which is part of the overall radiative feedback that fed into the 425 
Bayesian calculation of climate sensitivity in Sherwood et al. (2020). Zelinka et al. (2022) estimated these same 426 
feedback components in climate models and evaluated them against the expert-judgment values determined in 427 
Sherwood et al. (2020), ultimately deriving a root mean square error metric that quantifies the overall match between 428 
each model’s cloud feedback and those determined through expert judgment.  429 

Figure 8 shows the model-simulated values for each individual feedback computed in amip-p4K simulations 430 
as part of CMIP5 and CMIP6 alongside the expert judgment values. Each model is color-coded by its equilibrium 431 
climate sensitivity (determined using abrupt-4xCO2 simulations as described in Zelinka et al., 2020), and the values 432 
from an illustrative model (GFDL-CM4) are highlighted. Among the key results apparent from this figure is that 433 
models typically underestimate the strength of both positive tropical marine low-cloud feedback and the negative anvil 434 
cloud feedback relative to the central expert assessed value. The sum of all six assessed feedback components is 435 
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positive in all but two models, with a multimodel mean value that is close to the expert-assessed value, but exhibits 436 
substantial intermodel spread.  437 

In addition to evaluating the ability of models to match the assessed cloud feedback components, Zelinka et 438 
al. (2022) investigated whether models with less erroneous mean-state clouds tend to have smaller errors in their 439 
overall cloud feedback RMSE. This involved computing the mean-state cloud property error metric developed by 440 
Klein et al. (2013). This error metric quantifies the spatiotemporal error in climatological cloud properties for clouds 441 
with optical depths greater than 3.6, weighted by their net top-of-atmosphere (TOA) radiative impact. The 442 
observational baseline against which the models are compared comes from the International Satellite Cloud 443 
Climatology Project H-series Gridded Global (ISCCP HGG) dataset (Young et al., 2018). Zelinka et al. (2022) showed 444 
that models with smaller mean-state cloud errors tend to have stronger but not necessarily better (less erroneous) cloud 445 
feedback, which suggests that improving mean-state cloud properties does not guarantee improvement in the cloud 446 
response to warming. However, the models with the smallest errors in cloud feedback tend also to have less erroneous 447 
mean-state cloud properties, and no models with poor mean-state cloud properties have feedback in good agreement 448 
with expert judgment. 449 

The PMP implementation of this code computes cloud feedback by differencing fields from amip-p4K and 450 
amip experiments and normalizing by the corresponding global mean surface temperature change rather than from 451 
differencing abrupt-4xCO2 and piControl experiments and computing feedback via regression (as was done in Zelinka 452 
et al., 2022). This choice is made to reduce the computational burden and also because cloud feedbacks derived from 453 
these simpler atmosphere-only simulations have been shown to closely match those derived from fully coupled 454 
quadrupled CO2 simulations (Qin et al., 2022). The code produces figures in which the user-specified model results 455 
are highlighted and placed in the context of the CMIP5 and CMIP6 multi-model results (e.g., Fig. 8). 456 
 457 
3.7 Precipitation  458 

Recognizing the importance of accurately simulating precipitation in ESMs and a lack of objective and 459 
systematic benchmarking for it, and motivated by discussions with WGNE and WGCM working groups of WCRP, 460 
the DOE has initiated an effort to establish a pathway to help modelers gauge improvement (U.S. DOE, 2020). The 461 
2019 DOE workshop “Benchmarking Simulated Precipitation in Earth System Models” generated two sets of 462 
precipitation metrics: baseline and exploratory metrics (Pendergrass et al., 2020). In the PMP, we have focused on 463 
implementing the baseline metrics for benchmarking simulated precipitation. In parallel, a set of exploratory metrics 464 
that could be added to metrics suites including PMP in the future was illustrated by Leung et al. (2022) to extend the 465 
evaluation scope to include process-oriented and phenomena-based diagnostics and metrics.  466 

The baseline metrics gauge the consistency between ESMs and observations, focusing on the holistic set of 467 
observed rainfall characteristics (Fig. 9). For example, the spatial distribution of mean state precipitation and seasonal 468 
cycle are outcomes of the PMP’s Climatology metrics (described in Sect. 3.1), which provides collective evaluation 469 
statistics such as RMSE, standard deviation, and pattern correlation over various domains (e.g., global, NH and SH 470 
extratropics, and tropics, with each domain as a whole, and over land and ocean, in separate). Evaluation of 471 
precipitation variability across many timescales with PMP is documented in Ahn et al. (2022); we summarize some 472 
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of the findings here. The precipitation variability metric measures forced (diurnal and annual cycles) and internal 476 
variability across timescales (subdaily, synoptic, subseasonal, seasonal, and interannual) in a framework based on 477 
power spectra of 3-hourly total and anomaly precipitation. Overall, CMIP5 and CMIP6 models underestimate the 478 
internal variability, which is more pronounced in the higher frequency variability, while they overestimate the forced 479 
variability (Fig. 10). For the diurnal cycle, PMP includes metrics from Covey et al. (2016). Additionally, the intensity 480 
and distribution of precipitation are assessed following Ahn et al. (2023). Extreme daily precipitation indices and their 481 
20-year return values are calculated using a non-stationary Generalized Extreme Value statistical method. From the 482 
CMIP5 and CMIP6 historical simulations we evaluate model performance of these indices and their return values in 483 
comparison with gridded land-based daily observations. Using this approach, Wehner et al. (2020) found that at 484 
models’ standard resolutions, no meaningful differences were found between the two generations of CMIP models. 485 
Wehner et al. (2021) extended the evaluation of simulated extreme precipitation to seasonal 3-hourly precipitation 486 
extremes produced by available HighResMIP models and concluded that the improvement is minimal with the models’ 487 
increased spatial resolutions. They also noted that the order of operations of regridding and calculating extremes 488 
affects the ability of models to reproduce observations. Drought metrics developed by Xue and Ullrich (2021) are not 489 
implemented in PMP directly, but are wrapped by the Coordinated Model Evaluation Capabilities (CMEC; Ordonez 490 
et al. 2021), which is a parallel framework for supporting community-developed evaluation packages. Together, these 491 
metrics provide a streamlined workflow for running the entire baseline metrics via the PMP and CMEC that is ready 492 
for use by operational centers and in the CMIP7. 493 
 494 
3.8 Relating metrics to underlying diagnostics 495 

Considering the extensive collection of information generated from the PMP, efforts have supported 496 
improved visualizations of metrics using interactive graphic user interfaces. These capabilities can facilitate the 497 
interpretation and synthesis of vast amounts of information associated with the diverse metrics and the underlying 498 
diagnostics from which they were derived. Via the interactive navigation interface, we can explore the underlying 499 
diagnostics behind the PMP’s summary plots. On the PCMDI website, we provide interactive graphical interfaces to 500 
enable navigating the supporting plots to the underlying diagnostics of each model’s ensemble members and their 501 
average. For example, on the interactive mean climate plots (https://pcmdi.llnl.gov/metrics/mean_clim/), hovering the 502 
mouse cursor over a square or triangle in the Portrait Plot, or over the markers or lines in the Parallel Coordinate Plot, 503 
reveals the diagnostic plot from which the metrics were generated. It allows the user to toggle between several metrics 504 
(e.g., RMSE, bias, and correlation) and regions (e.g., global, Northern/Southern Hemisphere, and Tropics), along with 505 
relevant provenance information. Users can click on the interactive plots to get dive-down diagnostics information for 506 
the model of interest which provides detailed analysis to better understand how the metric was calculated. As with the 507 
PMP’s mean climate metrics output, we currently provide interactive summary graphics for ENSO 508 
(https://pcmdi.llnl.gov/metrics/enso/), extratropical modes of variability 509 
(https://pcmdi.llnl.gov/metrics/variability_modes/), monsoon (https://pcmdi.llnl.gov/metrics/monsoon/), MJO 510 
(https://pcmdi.llnl.gov/metrics/mjo/), and precipitation benchmarking (https://pcmdi.llnl.gov/metrics/precip/). We 511 
plan to expand this capability to other metrics in the PMP, such as the cloud feedback analysis. The majority of the 512 
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PMP’s interactive plots have been developed using Bokeh (https://bokeh.org/), a Python data visualization library that 514 
enables the creation of interactive plots and applications for web browsers.  515 
 516 
4 Model Benchmarking 517 

While the PMP originally focused on evaluating multiple models (e.g., Gleckler et al., 2008), in parallel there 518 
has been increasing interest from model developers and modeling centers to leverage the PMP to track performance 519 
evolution in the model development cycle, as discussed in Gleckler et al. (2016). For example, metrics from the PMP 520 
have been used to document performance of ESMs developed in the U.S. DOE Exascale Earth System Model (E3SM; 521 
Caldwell et al., 2019; Golaz et al., 2019; Rasch et al., 2019; Hannah et al., 2021; Tang et al., 2021), NOAA 522 
Geophysical Fluid Dynamics Laboratory (GFDL; Zhao et al., 2018), Institut Pierre-Simon Laplace (IPSL; Boucher et 523 
al., 2020; Planton et al., 2021), National Institute of Meteorological Sciences-Korea Meteorological Administration 524 
(NIMS-KMA; Sung et al., 2021), University of California, Los Angeles (Lee et al., 2019b), and the Community 525 
Integrated Earth System Model (CIESM) project (Lin et al., 2020). 526 

To make the PMP more accessible and useful for modeling groups, efforts are underway to broaden workflow 527 
options. Currently, a typical application involves computing a particular class of performance metrics (e.g., mean 528 
climate) for all CMIP simulations available via ESGF. To facilitate the ability of modeling groups to routinely use the 529 
PMP during their development process, we are working to provide a customized workflow option to run all the PMP 530 
metrics more seamlessly on a single model, and to compare these results with a database of PMP results obtained from 531 
CMIP simulations (see Code and Data Availability section). Via the PMP-documented and pre-calculated metrics 532 
from simulations in the CMIP archive, it is possible to readily incorporate CMIP results into the assessment of new 533 
simulations, without retrieving all CMIP simulations and recomputing the results. The resulting quick-look feedback 534 
can highlight model improvement (or deterioration) and can assist in determining development priorities or in the 535 
selection of a new model version.  536 

As an example, here, we show PMP results obtained from GFDL-CM3 from CMIP5 and GFDL-CM4 from 537 
CMIP6, for a demonstration of using the Taylor Diagram to compare versions of a given model (Fig. 11). One 538 
advantage of the Taylor Diagram is that it collectively represents three statistics (i.e., centered RMSE, standard 539 
deviation, and correlation) in a single plot (Taylor, 2001), which synthesizes the performance intercomparison of 540 
multiple models (or different versions of a model). In this example, four variables were selected to summarize 541 
performance evolution (shown by arrows) in multiple seasons. Except for boreal winter, both model versions are 542 
nearly identical in terms of net TOA radiation, however in all seasons the longwave cloud radiative effect is clearly 543 
improved in the newer model version. The TOA flux improvements likely contributed to the precipitation 544 
improvements, by improving the balances of radiative cooling and latent heating. The improvement in the newer 545 
model version is consistent with that documented by Held et al., (2019) and evident via the arrow directions pointing 546 
to the observational reference point. 547 

Parallel Coordinate Plots can also be used to summarize the comparison of two simulations for their 548 
performance. In Fig 12, we demonstrate the comparison of selected metrics: the mean climate (see Sect. 3.1), ENSO 549 
(Sect. 3.2), and ETMoV (Sect. 3.3). To facilitate comparison of a subset of models, a few models can be selected and 550 
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highlighted as connected lines across individual vertical axes on the plot. A proposed application of it from PMP is to 554 
select two models or two versions of a model to contrast their performance (solid lines) against the backdrop of results 555 
from other models, shown as violin plots for the distribution of statistics from other models on each vertical axis. In 556 
this example, we contrast the performance of two GFDL models: GFDL-CM3 and GFDL-CM4. Fig 12a is a modified 557 
version of Figure 2 that is designed to highlight the difference in performance more efficiently. Each vertical axis 558 
indicates performance for each metric defined for climatology of variables (i.e., temporally averaged spatial RMSE 559 
of annual cycle climatology patterns, Fig. 12a), ENSO characteristics (Fig. 12b), or interannual variability mode 560 
obtained from seasonal or monthly averaged time series (Fig. 12c). It is shown that GFDL-CM4 is superior to GFDL-561 
CM3 for most cases across selected metrics (downward arrows in green) while inferior for a few cases (upward arrows 562 
in red), which is consistent with previous findings (Held et al., 2019; Planton et al., 2021; Chen et al., 2021). Such 563 
applications of the Parallel Coordinate Plot can enable quick overall assessment and tracking of the ESM performance 564 
evolution during its development cycle. More examples showing other models are available in the Supplementary 565 
material (Figs. S1 to S3).  566 

It is worth noting that there have been efforts to coalesce objective model evaluation concepts used in the 567 
research community (e.g., Knutti et al., 2010). However, the field continues to evolve rapidly with definitions still 568 
being debated and finessed. Via the PMP, we produce hundreds of summary statistics, enabling a broad net to be cast 569 
in the objective characterization of a simulation, at times helping modelers identify previously unknown deficiencies. 570 
For benchmarking, efforts are underway to establish a more targeted path which likely involves a consolidated set of 571 
carefully selected metrics.  572 
 573 
5 Discussion 574 

Efforts are underway to include new metrics into the PMP to advance the systematic objective evaluation of 575 
ESMs. For example, in coordination with the World Meteorological Organization (WMO)’s WGNE MJO Task Force, 576 
additional candidate MJO metrics for PMP inclusion have been identified to facilitate more comprehensive 577 
assessments of the MJO. Implementation of metrics for MJO amplitude, periodicity, and structure into the PMP is 578 
planned. An ongoing collaboration with NCAR aims to incorporate metrics related to the upper atmosphere, 579 
specifically the Quasi-Biennial Oscillation (QBO) and QBO-MJO metrics (e.g. Kim et al., 2020). We also have plans 580 
to grow the scope of PMP beyond its traditional atmospheric realm, for example including the ocean and polar regions 581 
through collaboration with the U.S. DOE’s project entitled High Latitude Application and Testing of ESMs (HiLAT, 582 
https://www.hilat.org/). In addition, the PMP framework is also well poised to contribute to high-resolution climate 583 
modeling activities, such as the High-Resolution Model Intercomparison Project (HighResMIP; Haarsma et al., 2016) 584 
and the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND; 585 
Stevens et al., 2019). This motivates the development of specialized metrics for high-resolution models, targeting the 586 
simulation features enabled by high-resolution models. Another potential avenue for the PMP involves leveraging 587 
Machine Learning (ML) techniques, and other state-of-the-art data science techniques being used for process-oriented 588 
ESM evaluation works (e.g., Nowack et al., 2020; Labe and Barnes, 2022; Dalelane et al., 2023). Applications of ML 589 
detection, such as for storms using TempestExtremes (Ullrich and Zarzycki 2017; Ullrich et al., 2021) and fronts (e.g, 590 
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Biard and Kunkel, 2019), can enable additional specialized storm metrics for high-resolution simulations. For 591 
convection-permitting models, yet more storm metrics can be applied such as Mesoscale convective systems. 592 
Atmospheric blocking metrics and atmospheric river evaluation metrics using the ML pattern detection capabilities in 593 
the latest TempestExtremes (Ullrich et al., 2021) are currently under development to be implemented into the PMP. 594 
These example enhancements of the PMP are indicative of an increasing priority to target regional simulation 595 
characteristics. With a deliberate emphasis on processes intrinsic to specific regions, this may lead to enabling 596 
potential applications of the PMP within the regional climate modeling activities such as the Coordinated Regional 597 
Downscaling Experiment (CORDEX; Gutowski Jr. et al., 2016). 598 

The comprehensive database of PMP results offers a resource for exploring the range of structural errors in 599 
CMIP class models and their interrelationships. For example, examination of cross-metric relationships between 600 
mean-state and variability biases can shed additional light on the propagation of errors (e.g., Kang et al., 2020; Lee et 601 
al., 2021b). There continues to be interest in ranking models for specific applications (e.g., Ashfaq et al., 2022; 602 
Goldenson et al., 2023; Longmate et al., 2023; Papalexiou et al., 2020; Singh and AchutaRao, 2020) or to “move 603 
beyond one model one vote” in multi-model analysis to reduce uncertainties in the spread of multi-model projections 604 
(e.g., Knutti, 2010; Knutti et al., 2017; Sanderson et al., 2017; Herger et al., 2018; Hausfather et al., 2022; Merrifield 605 
et al., 2023). While we acknowledge potential interests in using the results of the PMP or equivalent to rank models 606 
or identify performance outliers (e.g., Sanderson and Wehner, 2017), we believe the many challenges associated with 607 
model weighting are application dependent, and thus leave it up to users of the PMP to make those judgments. 608 

In addition to the scientific challenges associated with diversifying objective summaries of model 609 
performance, there is potential to leverage rapidly evolving technologies, including new open-source tools and 610 
methods available to scientists. We expect that the ongoing PMP code modernization effort to fully adapt the xCDAT 611 
and xarray will facilitate greater community involvement. As the PMP evolves with these technologies we will 612 
continue to maintain rigor in the calculation of statistics for the PMP metrics, for example by incorporating the latest 613 
advancements in the field. A prominent example in the objective comparison of models and observations involves the 614 
methodology of horizontal interpolation, and in future versions of the PMP we are planning a more stringent 615 
conservation method (Taylor, 2024). To improve the clarity of key messages from multivariate PMP metrics data, we 616 
will consider implementing the advances in high-dimensional data visualization, e.g., the circular plot discussed in 617 
Lee et al. (2018b) and variations of Parallel Coordinate Plots proposed in this paper and by Hassan et al. (2019) and 618 
Lu et al. (2020). 619 

Current progress towards systematic model evaluation is exemplified by the diversity of tools being 620 
developed (e.g., the PMP, ESMValTool, MDTF, ILAMB, IOMB, and other packages). Each of these tools has its own 621 
scientific priorities and technical approaches. We believe that this diversity has made, and will continue to make, the 622 
model evaluation process even more comprehensive and successful. The fact that there is some overlap in a few cases 623 
is advantageous because it enables the cross-verification of results, which is particularly useful in more complex 624 
analyses. Despite possible advantages, having no single best or widely accepted approach for the community to follow, 625 
does introduce complexity to the coordination of model evaluation. To facilitate the collective usage of individual 626 
evaluation tools, the CMEC has initiated the development of a unified code base that technically coordinates the 627 
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operation of distinct but complementary tools (Ordonez et al. 2021). Currently, the PMP, ILAMB, MDTF, and ASoP 629 
have become CMEC-compliant by adopting common interface standards that define how evaluation tools interact 630 
with observational data and climate model output. We expect that CMEC can also help the model evaluation 631 
community to establish standards for archiving the metrics output, much as the community did for the conventions to 632 
describe climate model data (e.g., CMIP application of CF Metadata Conventions (http://cfconventions.org/); Hassell 633 
et al., 2017; Eaton et al., 2022). 634 

 635 
6 Summary and Conclusion 636 

The PCMDI has actively developed the PMP with support from the U.S. DOE to improve the understanding 637 
of ESMs and to provide systematic and objective ESM evaluation capabilities. With its focus on physical climate, the 638 
current evaluation categories enabled in the PMP include seasonal and annual climatology of multiple variables, 639 
ENSO, various variability modes in the climate system, MJO, monsoon, cloud feedback and mean state, and simulated 640 
precipitation characteristics. The PMP provides quasi-operational ESM evaluation capabilities that can be rapidly 641 
deployed to objectively summarize a diverse suite of model behavior with results made publicly available. This can 642 
be of value in the assessment of community intercomparisons like CMIP, the evaluation of large ensembles, or the 643 
model development process. By documenting objective performance summaries produced by the PMP and making 644 
them available via detailed version control, additional research is made possible beyond the baseline model evaluation, 645 
model intercomparison, and benchmarking. The outcomes of PMP's calculations applied to the CMIP archive 646 
culminate in the PCMDI Simulation Summary (https://pcmdi.llnl.gov/metrics/) that has served as a comprehensive 647 
data portal for objective model-to-observation comparisons and model-to-model benchmarking and intercomparisons. 648 
Special attention is dedicated to the most recent ensemble of models contributing to CMIP6. By offering a diverse and 649 
comprehensive suite of evaluation capabilities, the PMP framework equips model developers with quantifiable 650 
benchmarks to validate and enhance model performance. 651 

We expect that the PMP will continue to play a crucial role in benchmarking ESMs. Improvements in the 652 
PMP, along with progress in interconnected MIP community projects, will greatly contribute to advancing the 653 
evaluation of ESMs including in connection to the community efforts (e.g., the CMIP Benchmarking Task Team). 654 
Enhancements in version control and transparency within obs4MIPs are set to enhance the provenance and 655 
reproducibility of PMP results, thereby strengthening the foundation for rigorous and repeatable performance 656 
benchmarking. The PMP's collaboration with the CMIP Forcing Task Team, through the Input4MIPs (Durack et al., 657 
2018) and the CMIP6Plus projects, will further expand the utility of performance metrics in identifying problems 658 
associated with the forcing dataset and their application and use in reproducing the observed record of historical 659 
climate. Furthermore, as ESMs advance towards more operationalized configurations to meet the demands of decision-660 
making processes (Jakob et al., 2023), the PMP holds significant potential to provide interoperable ESM evaluation 661 
and benchmarking capabilities to the community.  662 
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Appendix A: Table of acronyms 663 
 664 

Acronym Description 

AMIP Atmospheric Model Intercomparison Project 

AMO Atlantic Multi-decadal Oscillation 

ARM Atmospheric Radiation Measurement 

ASoP Analyzing Scales of Precipitation 

CBF Common Basis Function 

CDAT Community Data Analysis Tools 

CIESM Community Integrated Earth System Model 

CLIVAR Climate and Ocean Variability, Predictability and Change 

CMEC Coordinated Model Evaluation Capabilities 

CMIP Coupled Model Intercomparison Project 

CMOR Climate Model Output Rewriter 

CVDP Climate Variability Diagnostics Package 

DOE U.S. Department of Energy 

ENSO El Niño-Southern Oscillation 

EOF Empirical Orthogonal Functions 

EOR East power normalized by Observation 
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ESGF Earth System Grid Federation 

ESM Earth System Model 

ESMAC Diags Earth System Model Aerosol–Cloud Diagnostics 

ETMoV Extratropical modes of variability 

EWR East/West power Ratio 

GFDL Geophysical Fluid Dynamics Laboratory 

ILAMB International Land Model Benchmarking 

IOMB International Ocean Model Benchmarking 

IPCC Intergovernmental Panel on Climate Change 

IPSL Institut Pierre-Simon Laplace 

ISCCP HGG International Satellite Cloud Climatology Project H-series Gridded Global 

ITCZ Intertropical Convergence Zone 

JSON JavaScript Object Notation 

MAE Mean Absolute Error 

MDTF Model Diagnostics Task Force 

MIPs Model Intercomparison Projects 

MJO Madden-Julian Oscillation 

NAM Northern Annular Mode 
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NAO North Atlantic Oscillation 

NASA National Aeronautics and Space Administration 

NCAR National Center for Atmospheric Research 

NetCDF Network Common Data Form 

NH Northern Hemisphere  

NIMS-KMA National Institute of Meteorological Sciences-Korea Meteorological Administration 

NOAA National Oceanic and Atmospheric Administration 

NPGO North Pacific Gyre Oscillation 

NPO North Pacific Oscillation 

PCMDI Program for Climate Model Diagnosis and Intercomparison 

PDO Pacific Decadal Oscillation 

PMP PCMDI Metrics Package 

PNA Pacific North America pattern 

RCMES Regional Climate Model Evaluation System 

RMSE Root-Mean-Square Error 

SAM Southern Annular Mode 

SH Southern Hemisphere 

SST Sea Surface Temperature 
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TOA Top of Atmosphere 

WCRP World Climate Research Programme 

WGCM Working Group on Coupled Models 

WGNE Working Group on Numerical Experimentation 

xCDAT Xarray Climate Data Analysis Tools 

  665 
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Code and Data Availability 666 
The source code of the PMP (Lee et al., 2023b) is available as an open-source Python package: 667 
https://github.com/PCMDI/pcmdi_metrics (last access: 21 February 2024) with all released versions archived on 668 
Zenodo DOI: https://doi.org/10.5281/zenodo.592790 (last access: 21 February 2024). The online documentation is 669 
available at http://pcmdi.github.io/pcmdi_metrics (last access: 21 February 2024). The PMP results database (Lee et 670 
al., 2023a) that includes calculated metrics is available on the GitHub repository at 671 
https://github.com/PCMDI/pcmdi_metrics_results_archive (last access: 21 February 2024) with versions archived on 672 
Zenodo DOI: https://doi.org/10.5281/zenodo.10181201. PMP’s installation process is streamlined using the Anaconda 673 
distribution and the conda-forge channel (https://anaconda.org/conda-forge/pcmdi_metrics, last access: 21 February 674 
2024). The installation instructions are available at http://pcmdi.github.io/pcmdi_metrics/install.html (last access: 21 675 
February 2024). The interactive visualizations of the PMP results are available on the PCMDI website at 676 
https://pcmdi.llnl.gov/metrics (last access: 21 November 2023). The CMIP5 and CMIP6 model outputs and obs4MIPs 677 
datasets used in this paper are available via the Earth System Grid Federation at https://esgf-node.llnl.gov/ (last access: 678 
21 February 2024). 679 
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Table 1. List of variables and observation datasets used as reference datasets for the PMP’s 1366 
mean climate evaluation in this paper (Sect. 3.1 and Figs. 1-2). A ditto mark (“) indicates the 1367 
same as above. 1368 
 1369 
Variable Variable full name Product Reference 

ps Precipitation GPCP-2-3 Adler et al. (2018) 

psl Sea level pressure ERA-5 Hersbach et al. 
(2020) 

rlds Surface Downwelling Longwave Radiation CERES-EBAF-4-
1 

Loeb et al. (2018) 

rltcre Longwave cloud radiative effect "   

rlus Surface Upwelling Longwave Radiation "   

rlut Upwelling longwave at the top of 
atmosphere 

"   

rsds Surface Downwelling Shortwave Radiation "   

rsdt TOA Incident Shortwave Radiation "   

rstcre Shortwave cloud radiative effect "   

rsut Upwelling shortwave at the top of 
atmosphere 

"   

rt Net radiative flux "   

ta-200, ta-850 Air temperature at 850 and 200 hPa ERA-5 Hersbach et al. 
(2020) 

tas 2-m air temperature "   

tauu Surface zonal wind stress ERA-INT Dee et al. (2011) 

ts Surface temperature ERA-5 Hersbach et al. 
(2020) 

ua-200, ua-
850 

Zonal wind component at 850 and 200 hPa "   

va-200, va-
850 

Meridional wind component at 850 and 200 
hPa 

"   

zg-500 Geopotential height at 500 hPa "   
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 1371 
Figure 1. Portrait plot for spatial RMSE (uncentered) of global seasonal climatologies for (a) 1372 
CMIP5 (models ACCESS1-0 to NorESM1-ME on the ordinate) and (b) CMIP6 (models 1373 
ACCESS-CM2 to UKESM1-1-LL on the ordinate) for 1981-2005 epoch. The RMSE is calculated 1374 
for each season (shown as triangles in each box) over the globe including both land and ocean, 1375 
and model and reference data were interpolated to a common 2.5x2.5 degree grid. The RMSE 1376 
of each variable is normalized by the median RMSE of all CMIP5 and 6 models. A result of 0.2 1377 
(-0.2) is indicative of an error that is 20% greater (lesser) than the median RMSE across all 1378 
models. Models in each group are sorted in alphabetical order. Full names of variable names on 1379 
the abscissa and their reference datasets can be found in Table 1. Detailed information for 1380 
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models can be found at the Earth System Documentation (ES-DOC, https://search.es-doc.org/; 1381 
Pascoe et al., 2020). The interactive version of the Portrait plot in this figure is available on the 1382 
PMP result pages on the PCMDI website (https://pcmdi.llnl.gov/metrics/mean_clim/).  1383 
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 1384 
 1385 
Figure 2. Parallel Coordinate Plot for spatio-temporal RMSE (Gleckler et al., 2008) from mean 1386 
climate evaluation. Each vertical axis represents a different variable. Results from each model 1387 
are displayed as symbols. Middle of each vertical axis is aligned with the median statistic of all 1388 
CMIP5 and CMIP6 models. The cross-generation model distributions of model performance are 1389 
shaded on the left (CMIP5, blue) and right (CMIP6, orange) sides of each axis. Also, medians 1390 
from CMIP5 (blue) and CMIP6 (orange) model groups are highlighted as lines. Full names for 1391 
model variables on the abscissa and their reference datasets can be found in Table 1. Time 1392 
epoch used for this analysis is 1981-2005. Detailed information for models can be found at the 1393 
Earth System Documentation (ES-DOC, https://search.es-doc.org/; Pascoe et al., 2020). The 1394 
interactive version of the Portrait plot in this figure is available on the PMP result pages on the 1395 
PCMDI website (https://pcmdi.llnl.gov/metrics/mean_clim/).  1396 
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 1397 
Figure 3. Application of ENSO metrics to CMIP6 models. Model names with an asterisk (*) 1398 
indicate that 10 or more ensemble members were used in this analysis. Dots indicate metric 1399 
values from individual ensemble members while bars indicate the average of metric values 1400 
across the ensemble members. Bars colored for easier identification of model names at the 1401 
bottom of the figure. Metrics were grouped into three Metrics Collections: (a-n) ENSO 1402 
Performance, (o-r) ENSO Teleconnections, and (s-w) ENSO processes. Names of individual 1403 
metrics and default reference datasets being used are noted on top of each panel, and 1404 
observational uncertainty by applying the metrics for alternative reference datasets noted on the 1405 
upper right of each panel is shown as gray-shaded. Detailed descriptions for each metric can be 1406 
found at https://github.com/CLIVAR-PRP/ENSO_metrics/wiki.  1407 
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 Figure 4. Portrait plots of the amplitude 1408 
of extratropical modes of variability 1409 
simulated by CMIP3, 5, and 6 models in 1410 
their historical or equivalent simulations, 1411 
as gauged by the ratio of spatiotemporal 1412 
standard deviations of the model and 1413 
observed PCs, obtained using the CBF 1414 
method in the PMP. Columns (horizontal 1415 
axis) are for mode and season, and 1416 
rows (vertical axis) are for models from 1417 
CMIP3 (top), CMIP5 (middle), and 1418 
CMIP6 (bottom), separated by thick 1419 
black horizontal lines. For sea level 1420 
pressure–based modes (SAM, NAM, 1421 
NAO, NPO, and PNA) in the upper-left 1422 
hand triangle the model results are 1423 
shown relative to NOAA-20CR. For 1424 
SST-based modes (NPGO and PDO), 1425 
results are shown relative to 1426 
HadISSTv1.1. Numbers in parentheses 1427 
following model names indicate the 1428 
number of ensemble members for the 1429 
model. Metrics for individual ensemble 1430 
members were averaged for each 1431 
model. White boxes indicate missing 1432 
value.  1433 
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 1434 
(a) Observation 1435 

 1436 
(b) Model 1437 

 1438 
 1439 
Figure 5. MJO EWR diagnostics – wavenumber-frequency power spectra – from (a) GPCP v1.3 1440 
(Huffman et al., 2001) and (b) IPSL-CM5B-LR model of CMIP5. The EWR is defined as the ratio 1441 
of eastward power (averaged in the box on the right) to westward power (averaged in the box 1442 
on the left) from the 2-dimensional wavenumber-frequency power spectra of daily 10°S–10°N 1443 
averaged precipitation in November to April (shaded, mm2 day-2). Power spectra are calculated 1444 
for each year and then averaged over all years of data. The units of power spectra for the 1445 
precipitation is 𝑚𝑚2 𝑑𝑎𝑦−2 per frequency interval per wavenumber interval.  1446 
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 1447 
 1448 
Figure 6. MJO East-West Power Ratio (EWR, unitless) from CMIP5 and CMIP6 models, 1449 
models in two different groups (CMIP5: blue, CMIP6: orange) are sorted by the value of the 1450 
metric and compared to two observation datasets (purple, GPCP v1.2 and v1.3; Huffman et al., 1451 
2001). Horizontal dashed lines indicate EWR from the default primary reference observation 1452 
(i.e., GPCP v1.3, black), averages of CMIP5 and CMIP6 models. The interactive plot is 1453 
available at https://pcmdi.llnl.gov/research/metrics/mjo/ where the horizontal axis can be 1454 
resorted by CMIP group or model names as well. Hover mouse over boxes will show tooltips for 1455 
metric values and a preview of dive-down plots that are shown in Figure 5.  1456 
 1457 
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 1458 
Figure 7. Demonstration of the monsoon metrics obtained from observation datasets (GPCP 1459 
v1.3 and CMORPH v1.0 (Joyce et al., 2004; Xie et al., 2017)) and a CMIP6 model’s Historical 1460 
simulation conducted using CNRM-CM6-1. The results are obtained for monsoon regions: All-1461 
India Rainfall (AIR), Sahel, Gulf of Guinea (GoG), North American Monsoon (NAM), South 1462 
American Monsoon (SAM), and Northern Australia (AUS). The regions are defined in Sperber 1463 
and Annamalai (2014). Metrics for onset (On), Duration (Du), and Decay (De) derived as 1464 
differences to the default observation (GPCP v1.3) in pentad indices (observation minus model) 1465 
are shown at lower right of each panel. Pentad indices for onset and decay of each region are 1466 
also shown as vertical lines.  1467 
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 1468 

 1469 
Figure 8. Cloud feedback components estimated in amip-p4K simulations from CMIP5 and 1470 
CMIP6 models. Symbols indicate individual model values, while horizontal bars indicate multi-1471 
model means. Each model is color-coded by its ECS, with color boundaries corresponding to the 1472 
likely and very likely ranges of ECS as determined in Sherwood et al (2020). Each component's 1473 
expert-assessed likely and very likely confidence intervals are indicated with black error bars. An 1474 
illustrative model (GFDL-CM4) is highlighted.   1475 
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 1476 

 1477 
 1478 
 1479 
Figure 9. Proposed suite of baseline metrics for simulated precipitation benchmarking (figure 1480 
reprinted from workshop report; US DOE, 2020). 1481 
 1482 
  1483 



 

50 

 1484 
 1485 
Figure 10. Example (a) an underlying diagnostic and (b) its resulting metrics for precipitation 1486 
variability across timescales. (a) Power spectra of 3-hourly total (left) and anomaly (right) 1487 
precipitation from IMERG (black), TRMM (gray), CMORPH (silver), CMIP5 (blue), and CMIP6 1488 
(red) averaged over the tropics (30°S-30°N). The colored shading indicates the 95% confidence 1489 
interval for each observational product and for the CMIP5 and CMIP6 means. (b) Metrics for 1490 
forced and internal precipitation variability based on power spectra. The reference observational 1491 
product displayed is GPM IMERG (Huffman et al., 2015). The gray boxes represent the spread 1492 
of the three observational products (“X” for IMERG, “-” for TRMM, and “+” for CMORPH) from 1493 
the minimum to maximum values. Blue and red boxes indicate the 25th to the 75th percentile of 1494 
CMIP models as a measure of spread. Individual models are shown as thin dashes, the 1495 
multimodel mean as a thick dash, and the multimodel median as an open circle. Details for the 1496 
diagnostics and metrics are described in Ahn et al. (2022). 1497 
  1498 
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 1499 
Figure 11. Taylor Diagram contrasting performance of an ESM in their two different versions 1500 
(i.e., GFDL-CM3 from CMIP5 and GFDL-CM4 from CMIP6) in its Historical simulation for 1501 

multiple variables (precipitation [pr], longwave cloud radiative effect [rltcre], shortwave cloud 1502 

radiative effect [rstcre], and total radiation flux [rt]) in their climatology over the globe for (a) DJF, 1503 

(b) MAM, (c) JJA and (d) SON seasons. The arrow is directed toward the newer version of the 1504 

model from the older version (i.e., GFDL-CM3 → GFDL-CM4).  1505 
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 1506 

 1507 

 1508 
Figure 12. Parallel Coordinate Plot contrasting performance of two different versions of the 1509 
GFDL model (i.e., GFDL-CM3 from CMIP5 and GFDL-CM4 from CMIP6) in their Historical 1510 
experiment for errors from (a) mean climate, (b) ENSO, and (c) extratropical modes of 1511 
variability. Improvement (degradation) in the later version of the model is highlighted as a 1512 
downward green (upward red) arrow between lines. Middle of each vertical axis is set to the 1513 
median of the group of benchmarking models (i.e., CMIP5 and CMIP6), with the axis range 1514 
stretched to maximum distance to either minimum or maximum from the median for visual 1515 
consistency. The inter-model distributions of model performance are shown as shaded violin 1516 
plots along each vertical axis. 1517 


