

1 Dynamic Response of Pile-Slab Retaining Wall Structure

2 under Rockfall Impact

- 3 Peng Zou^{1, 2, 3}, Gang Luo^{1, *}, Yuzhang Bi⁴, Hanhua Xu^{2, 3}
- 4 1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University,
- 5 Chengdu 611756, China
- 6 22. Kunning Prospecting Design Institute of China Nonferrous Metals Industry Co., Ltd, Yunnan
- 7 650051, China
- 8 3. Key Laboratory of Geotechnical Engineering and Geohazards, Yunnan, 650051, China
- 9 4. College of Civil Engineering, Fuzhou University., Fuzhou 350000, China
- 10 *Corresponding author at: Faculty of Geosciences and Environmental Engineering, Southwest
- 11 Jiaotong University, Chengdu 611756, China
- 12 E-mail addresses: luogang@home.swjtu.edu.cn (G. Luo).
- 13

14	Abstract: The numerical experiments investigate the dynamic response of a pile-slab retaining
15	wall under the impact of rockfall. Firstly, a full-scale numerical model of a four-span pile-slab
16	retaining wall satisfying specification requirements is established. Secondly, the numerical
17	experiments investigate the dynamic response of a pile-slab retaining wall under different impact
18	centers and velocities. Finally, the maximum impact energy that the structure can resist is predicted.
19	Results reveal that: (1) During the impact process, the stress, strain, and concrete damage of the
20	structure gradually spread from the impact center to the entire structure and ultimately result in
21	permanent deformation; (2) The lateral displacement of pile at ground surface and the number of
22	damage failure units under the pile as the impact center is greater than those under the slab as impact
23	center. It shows that the impact position has a significant effect on the stability of the structure.(3)
24	The impact force, interaction force, lateral dispalcement of pile at ground surface, and concrete
25	damage is increased with the increase of impact velocity. Under pile as the impact center (slab as
26	the impact center), when the velocity increases from 15m/s to 30m/s, the impact force increases by
27	1.42, 1.91, and 2.41 times (1.41, 1.90, and 2.41 times), the interaction force increases by 1.25, 1.47,
28	and 1.68 times (1.24, 1.47, and 1.68 times), and the maximum lateral displacement of pile at ground
29	surface increases by 1.57, 2.24, and 3 times (1.55, 2.23, and 3 times). (4) Utilizing this relationship
30	btween the impact velocity and the maximum lateral displacement of pile at ground surface, the
31	estimated maximum impact energy that the pile-slab retaining wall can withstand is 905 kJ in this
32	study when the structure top is taken as the impact point. Impact resistance of the structure optimized
33	1.814 times compared to traditional reinforced concrete retaining walls.
34	Keywords: rockfall, pile-slab retaining wall, numerical simulation, dynamic response
35	List of symbols
	<i>P</i> Actual lateral soil resistance (kPa). F_{dm} Peak impact force (kN).

Р	Actual lateral soil resistance (kPa).	F_{dm}	Peak impact force
P_{u}	Ultimate lateral soil resistance (kPa).	F_{im}	Peak interaction f
S_{u_cu}	Consolidated isotropic undrained tri-	α	Ratio of the peak
	axial shear strength of soil (kPa/m).		interaction force (
у	Actual lateral soil deformation (m).	Smpt	Maximum the late
			at the ground surf
В	Pile width (m).	N_d	Number of damag
z	Depth below the soil surface (m).	β	Ratio of damage

force (kN).

- impact force to the peak (%).
- eral displacement of pile face at t = 650 ms (mm).

ge failure units.

Ratio of damage failure units to overall p structure units (%).

- $S_{\rm p}$ Shape correction factor of pile *m* Impactor mass (kg). section.
- E Initial kinetic energy of impactor. v Initial velocity of impactor (m/s).

36 1. Introduction

37 Rockfall disaster are a great threat to roads, railways, buildings and inhabitants in mountainous terrain (Hungr et al., 2014; Crosta and Agliardi, 2004; Shen et al., 2019). It can be described as a 38 39 process that the quick bouncing, rolling and sliding movement of one (or several) boulders down a 40 slope (Peila and Ronco, 2009). The velocity values range from a few metres per second to up to 30 m (Giani, 1992). Muraishi et al. (2005) surveyed 607 rockfall events found that about 68% of 41 42 rockfall events have an impact energy of less than 100 kJ, whereas 90% have less than 1000 kJ. The 43 study of Chau et al. (2002) shows that the rotational kinetic energy of rockfall only accounts for 10% 44 of the total kinetic energy. To prevent such geological hazards, scholars and engineers have proposed different types of technical solutions. Two primary categories of defensive measures are commonly 45 46 employed: active and passive. Active protection measures mainly include: masonry protection, 47 reinforcement protection (grouting, anchor rod, and anchor cable), initiative protective net, etc 48 (Yang et al., 2019). Passive protection measures include: passive flexible protection (Yu et al., 2021), 49 rockfall shed gallery (Zhao et al., 2018), rockfall retaining wall, etc. Considering many factors such 50 as technology and economy, rockfall retaining wall is often used in practical engineerin (Volkwein 51 et al., 2011).

52 Currently, there are various types of retaining walls employed in engineering projects for the 53 purpose of rockfall interception, including masonry retaining walls, reinforced concrete (RC) 54 retaining walls, reinforced soil retaining walls, and pile-slab retaining walls (PSRW). The cross-55 section of masonry retaining walls resembles that of gravity retaining walls. Due to inherent 56 structural weakness of these walls, their ability to absorb the impact energy from rockfall is limited 57 (Mavrouli et al., 2017). To enhance the impact resistance, the reinforced concrete retaining walls 58 have been utilized (Yong et al., 2020). These structures can intercept rockfall impact energy ranging 59 approximately from 120 to 500 kJ (Maegawa et al., 2011). To prevent concrete from being damaged 60 by the direct impact of rockfall, a buffer layer is generally added in front of the structure for 61 protection, such as reinforced soil and gabion cushion (Perera et al., 2021). Although the impact

62	resistance of the structure has been improved, there is still a problem of limited interception height.
63	When the required interception height is large, the foundation size has to be increased to prevent the
64	structures from overturning. In order to mitigate against rockfall events involving higher energy
65	levels, numerous researchers have proposed the implementation of reinforced soil retaining walls.
66	Extensive studies have been conducted in this regard, demonstrating that the structures can
67	effectively intercept rockfall impact energies exceeding 5000 kJ (Lambert et al., 2009). Moreover,
68	geosynthetic have proven to be efficacious in reducing wall stresses (Lu et al., 2021). This structure
69	is characterized by a substantial spatial footprint and is associated with the risk of overturning during
70	construction in steep terrain (Peila et al., 2007). Additionally, when the topography at the wall site
71	features steep slopes, the available space behind the wall for accommodating rockfalls becomes
72	constrained.

73 In response to the challenges posed by steep terrains, narrow site conditions, and suboptimal 74 foundation conditions in mountainous terrain, Hu et al. (2019) introduced the PSRW structure. The 75 structures are composed of a buffer layer and an anti-slip pile-slab structure. It has found widespread 76 application in southwestern China (Fig. 1). Due to its implementation of pile foundations, this structure possesses characteristics such as a small footprint, high interception height, and ease of 77 78 construction. However, the current PSRW design verification is to treat the structure as an 79 underground continuous wall (Caghp, 2019). And, due to the composite nature of this structure, the 80 dynamical response at various impact points remains ambiguous. The maximum impact energy that 81 the structure can withstand has also not been thoroughly investigated. It can lead to potential 82 underestimation of failure possibilities (Fig. 1d). At the same time, the existing research focuses on 83 the single slab and pile impacted by rockfall (Wu et al., 2021; Yong et al., 2021).

Fig. 1. PSRW in south-western China (a) Kongyu town (b) Jiuzhaigou nature reserve (c) Zhenjiangguan tunnel exit in Chengdu-lanzhou railway (d) Wenchuan-Maerkang expressway.

84 Therefore, analysis of structural dynamic response and concrete damage is crucial to determine 85 its effectiveness in mitigating rockfall hazards. Based on the research status, due to the unique 86 advantages of the finite element method, this study uses the LS-DYNA to simulate the complete process of rockfall impact PSRW. This methodology has been widely adopted by numerous 87 88 researchers and demonstrated as suitable for simulating impact problems of reinforced concrete 89 structure (Zhong et al., 2022; Fan et al., 2022; Bi et al., 2023). In conclusion, a full-scale numerical 90 model of a four-span pile-slab retaining wall satisfying specification requirements is established. 91 The rationality of the selected material constitutive models and a numerical algorithm was validated 92 by reproducing two physical model tests. The structure's dynamic behavior under different impact 93 velocities and impact centers is discussed (Fig. 2). The results provide insights into sturcture dynamic response analysis of the PSRW and serve as a benchmark for further research. 94

Fig. 2 Mind mapping.

95 2. Numerical model and validations

96 2.1. Model configuration

97 2.1.1. Engineering background

The design diagram of the PSRW (Fig. 3) adheres to the Chinese standard Code for the design of rock retaining wall engineering in geological hazards (Caghp, 2019). The anti-slide piles with a concrete protective layer thickness of 0.04 m have a cross-section area of 1.8 m × 1.25 m. The total pile length is 12 m, and the embedded section is 6 m. The HRB 400 longitudinal bar with diameters of 25 mm and 32 mm were arranged in the pile (Fig. 3c). The stirrups are HRB335 with a diameter

- 103 of 16 mm and a spacing of 200 mm. The slabs between the piles are 6 m in length, 3.5 m in width,
- 104 and 0.5 m in thickness. These slabs contain two layers of 16 mm-diameter reinforced bar. The sand
- 105 buffer layer are 1 m and 5 m on top and bottom, respectively. A geogrid is horizontally placed in the
- 106 buffer layer at 0.25 m intervals. Lastly, 1 m³ sphere rock boulder with a diameter of 1.24 m was set
- as an impactor. The impact locations are 2#slab center (CS) and 3# pile center (CP) at 5.25 m over
- 108 the ground.

Fig. 3. The design diagram of PSRW (a) front view (unit: m) (b) top view (unit: m) (c) cross-sectional profile of pile (unit: mm).

109 2.1.2. Soil-pile interaction

Under the impact, the lateral deformations of the pile are greatly influenced by the plastic behavior of the soil, particularly the soil near the pile. Given their importance and complexity, it isn't easy to thoroughly describe soil-pile interactions. This paper calculates the pile-soil interaction by the lateral resistance-deflection (p-y) curve method. As state by Truong and Lehane (2018), the p-y curves for square cross-section pile are utilized as

115
$$\frac{P}{P_{\rm u}} = \tanh\left[5.45\left(\frac{y}{B}\right)^{0.52}\right]$$
(1)

Fig. 4. Numerical model of the PSRW (a) numerical model (b) reinforced bar of PSRW (unit: mm).

137

Table 1 Material constitutive model and physical-mechanical parameters for various components of PSRW.

			-		-	
Items	Constrained model	Unit types	Integral methods	Density (kg/m ³)	Young's modul (MPa)	Poisson's ratio
Concrete	Continue cap concrete (MAT_159)(Heng et al., 2021)	Solid element	One integration point	2450	30000	0.3
Reinforced bar	Plastic kinematic model (MAT_003)(Heng et al., 2021)	Beam element	2×2 Gauss integration	7850	204000	0.3
Sand buffer layer	Soil-foam model (MAT_063)(Bhatti and Kishi, 2010)	Solid element	One integration point	1720	100	0.3
Impactor	Rigid body (MAT_020)	Solid element	One integration point	2600	20000	0.25
Geogrid	Plastic kinematic model (MAT_003)(Lee et al., 2010)	Shell element	Belytschko-Tsay integration	1030	464	0.3

138

 Table 2 Detailed numerical simulation scheme.

Case	Impact location	Impact height (m)	Impact velocity (m/s)	Impact kinetic energy (kJ)
CP-V10			10	130
CP-V15			15	292.5
CP-V20	3# pile center		20	520
CP-V25			25	812.5
CP-V30		5.05	30	1170
CS-V10		5.25	10	130
CS-V15	2# slab center		15	292.5
CS-V20			20	520
CS-V25			25	812.5
CS-V30			30	1170

Note: CP denotes the 3# pile center as impact location; CP denotes the 2# slab center as impact location; V
 denotes the velocities of rockfall.

141 2.2. Model validation

142 In order to verify the rationality of the selected material constitutive model and the established

143 numerical model. Two physical model tests from previously published papers (Heng et al., 2021;

144 Demartino et al., 2017; Schellenberg, 2008) were selected to reproduce.

145 2.2.1. Failure test of RC cantilever column

146 The physical model test conducted by Demartino et al. (2017) was selected to verify the ability

147 of constitutive model to reflect the accumulative damage for RC structures under impact loads. The

148 model is composed of a cylindrical column with a diameter of 0.3 m and a height of 1.7 m, and a

- 149 square-section concrete foundation with length of 0.9 m and height of 0.5 m. The column was
- 150 reinforced with sixteen 8 mm diameter longitudinal reinforced bar and 6.5 mm diameter stirrups at

151 100 mm spacing. The foundation was firmly connected to the ground using four 50 mm diameter

152 high-strength prestressed reinforced bar. The experiment involved a test truck made of Q235 steel

153 (considered as a rigid body) with 1.55 m in length, 1.35 m in width, and 0.59 m in height. Attached 154 to the truck was an impact hammer measuring 0.58 m in length, 0.2 m in width, and 0.08 m in 155 thickness (Fig. 5a). The impactor was positioned 0.4 m above the bottom of the column and was released at a velocity of 3.02 m/s (impact energy of 7.21 kJ). Fig. 5b shows the numerical model 156 157 with hexahedral mesh. The material constitutive models for components are shown in Table 1. For 158 the boundary conditions, the model was fixed with four high-strength bolts. 159 The trend and amplitude of the impact forces by numerical simulations closely matched the 160 experimental results (Fig. 6). Similarly, Table 3 indicates consistency between the degrees of the 161 experimental and numerical damage of concrete. The deviations of peak impact forces between the 162 numerical simulations and the experiments were below 10% (Table 4). These results suggest that 163 the numerical model and its controlling parameters can reliably simulate the accumulative damage 164 to RC structures under impact loads. According to the accuracy and computational time, a mesh size 165 model of 50 mm was adopted for the numerical simulations in this study. Reaction wall

Fig. 6. Dynamic curve of impact force with different mesh size.

Items Impact force Dis (KN) a		Displacement of column at 1.2m height (mm)	Number of the element	Computational time (hour)
Physical model test	999.52	22.3	/	/
25 mm mesh size	966.72	23.1	5462900	24
50 mm mesh size	978.1	22	807534	4.2
100 mm mesh size	1009.35	21.3	172268	1.2

169 2.2.2. Failure test of RC slab with a buffer layer

170 The physical model test conducted by Schellenberg (2008) was selected to verify the function of the constitutive model to reflect the interaction between the boulder, sand buffer layer, and RC 171 172 structure. The specimen comprises a RC slab measuring $1.5 \text{ m} \times 1.5 \text{ m} \times 0.23 \text{ m}$ and a sand buffer 173 layer with 0.5 m in radius and 0.45m in thickness (Fig. 7). The slab is reinforced with one layer of 174 reinforced bar with 12 mm diameter and a spacing of 95/45 mm for the lower layer. Boulder 175 diameter and density (considered a rigid body) is 0.8 m and 3110 kg/m³. The impact position is at 176 the center of the buffer layer, with an impactor velocity of 5.5 m/s (impact energy of 14.4kJ). The 177 material constitutive models for concrete, reinforced bar, and sand buffer layer are shown in Table 178 1. For the Boundary conditions, the bottom of the supports was fixed. 179 Fig. 8 presents the dynamic curve of impact force, slab center displacement, and center

Fig. 8 presents the dynamic curve of impact force, slab center displacement, and center
reinforced bar axial strain. The results demonstrate that the deviations of the peak impact force, the
maximum strain of the reinforced bar, and the slab center displacement are less than 10%. Therefore,

- 182 the numerical model and its controlling parameters can reliably simulate sand cushion layer, and
- 183 RC structure under impact loads.

Fig. 8. Comparisons between experimental and simulation results (a) impact force (b) displacement of slab center (c) axial strain of reinforced bar.

184 **3.** Numerical results

In this section, the dynamic response of PSRW under different impact centers and different impact velocities are compared and analyzed. The main evaluation xxes are as follows: impact force (the contact force between the impactor and the buffer layer), interaction force (the contact force between the buffer layer and the RC structure), stress of concrete and reinforced bar, concrete damage, lateral displacement at the crown of different components (piles and slabs), and lateral displacement of all piles at the ground surface.

- 191 3.1. Influence of different impact centers
- 192To analyze the influence of dynamic behaviors of PSRW under different impact centers, two193group simulations under maximum impact energy (CP-V30 and CS-V30) are selected for194comparison.
- 195 *3.1.1.* Impact force and interaction force
- 196 Fig. 9a and b show the dynamic curves of the impact force and interaction force, respectively. 197 Both force curves exhibit a distinct single-peaked pattern. The impact force rapidly reduces to zero 198 due to the energy-dissipating properties of the sand buffer layer (Fig. 9a). In contrast, the interaction 199 force remains at a non-zero value (475 kN) (Fig. 9b). Due to the permanent deformation of the 200 structure, and the gravity component of the sand buffer acts on the surface of the structure. 201 Furthermore, Fig. 9a illustrates the close overlap of the impact forces for various impact centers, 202 depending on the buffer and impactor characteristics, and minimally affected by the impact center. 203 The slight differences observed in the dynamic curve of interaction force under CP-V30 and CS-204 V30 may be attributed to the flexural stiffness of the slab and pile .

The minimum principal stress of concrete and the effective stress of reinforced bar are important indexes to evaluate the dynamic response of RC structures (Zhong et al., 2021; Zhong et al., 2022). Fig. 10 shows the minimum principal stress nephogram of concrete under CP-V30 from 1 to 650 ms. When t = 1 ms (Fig. 10a), the maximum stress focus on the bottom of the piles. When t = 14.7 ms (Fig. 10b), the minimum principal stress of concrete around the impact point increased rapidly to 7.421 MPa. When t= 22.8 ms (Fig. 10c), the concrete elements at the joints of the 3# pile and slabs achieve compressive strengt, leading to concrete damage. When t= 650 ms (Fig. 10d), the

- 213 total volume of damaged elements reaches 0.63 m^3 , which occupies a proportion of 0.35%. The 214 concrete damage nephogram (Fig. 10a) shows that the concrete damage is mainly concentrated at the joints of pile and slab under CP-V30. 215 216 Fig. 12 shows the minimum principal stress nephogram of concrete under CP-V30 from 1 to 217 650 ms. When t = 1 ms, the maximum stress focus on the bottom of the piles (Fig. 12a). When t =218 14.7 ms, the minimum principal stress around the impact point increased rapidly to 12.117 MPa 219 (Fig. 12b). When t = 22.4 ms, the elements of the concrete at the impact point of the 2# slab achieve ultimate compressive strengt, leading to the concrete damage (Fig. 12c). When t = 650 ms, the total 220 221 volume of damage elements reaches 0.61 m³ (Fig. 12d), which occupies a proportion of 0.34 %. 222 Notably, the concrete damage is mainly concentrated at the 2# slab and the joints of piles and slabs 223 under CS-V30 (Fig. 11b).
- The dynamic impact process of PSRW includes: the impact force was transmitted to the overall RC structure through the buffer layer after the impact. Simultaneously, stress spread around and covered the entire RC structure at the corresponding impact height point, leading to deformation and damage of the structure.

229

Fig. 13 shows the effective stress nephogram of the reinforced bar from 1 to 650 ms under the condition of CP-V30. It can be observed that: (i) when t = 1 ms, the greatest stress concentrated at the bottom of the pile (Fig. 13a); (ii) when t = 14.7 ms (the moment of attaining the maximum interaction force), the maximum stress concentrated at the vicinity of the impact point and the joints of piles and slabs (Fig. 13c); (iii) when t = 650 ms, the maximum stress concentrated at the longitudinal bar of 2#, 3#, and 4# pile (Fig. 13d). Moreover, the effective stress of reinforced bar

- 237 did not exceed the ultimate yield stress.
- 238 Fig. 14 shows the effective stress nephogram of reinforced bar from 1 to 650 ms under CS-
- 239 V30. It can be observed that: (i) when t = 1 ms, the greatest stress concentrated at the bottom of the
- pile (Fig. 14a); (ii) when t = 14.7 ms, the effective stress of reinforced bar around the impact point 240
- 241 increased rapidly to 137.2 MPa. (Fig. 14c); (iii) when t = 650 ms, the maximum stress concentrated
- 242 at the longitudinal bar of 2#, 3#, and 4# pile (Fig. 14d). Moreover, the effective stress of reinforced
 - bar did not exceed the ultimate yield stress. Effective stress (v-m) (MPa) Effective stress (v-m) (MPa) 4.421e-01 7.987e-00 3.979e-01 7.188e-00 6.390e-00 3.537e-01 5.591e-00 3.095e-01 2.652e-01 4.793e-00 2.210e-01 3.994e-00 1.768e-01 3.195e-00 1.326e-01 2.397e-00 8 842e-02 1.598e-00 4.421e-02 7.998e-01 (a) t = 1 ms1.218e-09 (b) t = 6 ms1.201e-02 Effective stress (v-m) (MPa) 5.548e+01_ 4.993e+01_ 4.438e+01_ 3.883e+01_ 3.329e+01 2.774e+01 2.219e+01 1.664e+01 1.110e+01 5.550e+00 (c) t = 14.7 ms 2.987e-03 Effective stress (v-m) (MPa) 2.321e+02 2.089e+02_ 1.856e+02 1.624e+02 1.392e+02 1.160e+02 9.283e+01 6.962e+01 4.641e+01 2.321e+01 (d) t = 650 ms 1.820e+03
- 243

Fig. 14. Reinforced bar effective stress nephogram under CS-V30.

245 3.1.4. Lateral displacement at the crown of different components

Fig. 15a presents a scatter plot illustrating the temporal variation of lateral displacements at the crown of different components under CP-V30 and CS-V30. The lateral displacement rapidly increased till t = 177 ms and gradually decreased until t = 650 ms. The final displacement does not reach 0, indicating plastic deformation of both the pile and the slab. Comparing the displacement under CS-V30 and CP-V30 (Fig. 15), the trends are consistent, but the magnitude differs. This discrepancy can be attributed to the greater deformation capacity of slab rather than pile under the same impact energy.

Fig. 16a and b show the dynamic curve of lateral displacement of all piles at the ground surface under CP-V30 and CS-V30, respectively. Under CP-V30, the 3# pile exhibited the maximum lateral displacement, whereas the 2# pile exhibited the maximum lateral displacement under CS-V30. This is because under the CS-V30, the structural asymmetry on both sides of the impact center grants

- 258 one side of 2# pile greater freedom, leading to the greater lateral displacement. By comparing the
- 259 lateral displacement of 2# pile under CS-V30 and 3# pile under CP-V30 (Fig. 16c), it indicates that
- 260 the maximum lateral displacement of pile at the ground surface is greater under CP conditions with
- 261 the same impact velocity. The characteristics of the lateral displacements is attributed to that the
- 262 concrete slab can deform large and absorb more energy.

263 3.2. Influence of different impact velocities

Fig. 17 shows the impact force, interaction force, and lateral displacement of 3# pile at the ground surface enlarge as the impact velocity increases under CP. When the velocity increases from 15 m/s to 30 m/s, the impact force increases by 1.42, 1.91, and 2.41 times, the interaction force increases by 1.25, 1.47, and 1.68 times, and the lateral displacement of 3# pile at ground surface increases by 1.57, 2.24, and 3 times at t = 650 ms.

CP-V15 CP-V20 CP-V25

- CP-V30

60

(a) impact force (b) interactional force (c) lateral displacement at the ground surface of 3# pile.

274 **4. Discussions**

Table 5 lists the initial kinetic energy of impactor (*E*), the peak impact force (F_{dm}), the peak interaction force (F_{im}), the ratio of the peak impact force to the peak interaction force (α), the maximum the lateral displacement of pile at the ground surface at t = 650 ms (S_{mpl}), the number of damage failure units (N_d), and the ratio of damage failure units to overall RC structure units (β).

279

Table 5 Simulation results for various impact cases.

Case	E (kJ)	F _{dm} (kN)	F _{im} (kN)	α (%)	S _{mpt} (mm)	Nd	β (%)
CP-V10	130	1420	2170	65.4	2.25	83	0.0059
CP-V15	292.5	2188	3008	72.7	3.91	817	0.0577
CP-V20	520	3100	3747	82.7	6.17	2179	0.1539
CP-V25	812.5	4175	4422	94.4	8.8	3088	0.2181
CP-V30	1170	5283	5069	104.2	12.03	5040	0.3559
CS-V10	130	1426	2182	65.4	1.76	52	0.0037
CS-V15	292.5	2196	3015	72.7	3.72	321	0.0227
CS-V20	520	3112	3756	82.7	5.77	1062	0.0750
CS-V25	812.5	4182	4433	94.4	8.7	2728	0.1927
CS-V30	1170	5299	5075	104.2	11.2	4880	0.3446

Under the premise of known impact energy, estimating impact force, interaction force, and displacement for the structural design is very important. As shown in Table 5, the difference of peak impact force (F_{dm}) with different impact centers is minimal, so that CP simulation results were selected to analyze. The dependence of the peak impact force on the impact energy is shown in Fig. 19a, with a correlation coefficient $R^2 = 0.99$, i.e.,

285
$$F_{dm} = 3.69(E + 290.33) = 1845(mv^2 + 0.58)$$
 (1)

286 where *m* is the impactor mass, t (m= 2.6 therein), *v* is the initial impact velocity, m/s (10 m/s

287 $\leq v \leq 30$ m/s herein).

The dependence of the ratio of peak impact force to peak interaction force on the impact energyis shown in Fig. 19b, with a correlation coefficient of 0.99, i.e.,

290

Fig. 19. Dependence of various indexes on impactor energy (a) peak impact force (b) the ratio of peak impact force and peak interaction force.

The lateral displacement of pile at the ground surface is an important index to judge the failure of pile foundation under lateral load. As shown in Table 5, the maximum lateral displacement of pile at the ground surface under pile as impact center is greater than that under slab as impact center. Therefore, the situation where the pile is the center of impact is the more dangerous. As shown in Fig. 20, with the increase of impact energy, the displacement value and number of damage failure

- units enlarges, which means the structure suffers more damage under CP. Furthermore, the
 maximum lateral displacement of pile at the ground surface when t = 650 ms, can be calculated by
 the following aquation:
- 299

 $S_{mpt} = 0.00934 (E + 164.88) = 4.67 (mv^2 + 0.33)$ (3)

Fig. 20. Dependence of the lateral displacement of 3# pile at the ground surface on impactor energy

300 According to the Chinese standard Code for the Design of Rock Retaining Wall Engineering 301 in Geological Hazards (Caghp, 2019), the lateral displacement of the resistant sliding pile at the 302 ground surface must not exceed 10 mm. Substituting this value into Formula 3, the maximum impact 303 energy that the PSRW can withstand in this study is 905 kJ. The maximum impact energy of the 304 structure established in this paper is much higher than that of the traditional RC retaining walls (500 305 kJ)(Maegawa et al., 2011). Notably, if the impact position is at the lower sections of the pile and 306 slab, the PSRW can withstand more impact energy. Due to the advantage of pile foundation, the 307 structure occupies a smaller area than traditional RC rock retaining walls and can be arranged in the 308 steep slopes. According to the numerical results, under a higher-energy impact of rockfall, the joints 309 of pile and slab, slab thickness and buffer thickness should be optimized to avoid damages and 310 reduce lateral displacements.

311 **5.** Conclusion

Numerical experiments of PSRW under impact were performed to comprehensively analyze
 the impact force, interaction force, stress of concrete and reinforced bar, concrete damage, and the
 lateral displacements. The main conclusions drawn are as follows:

315 (1) Concrete damage mainly concentrates at the joints between piles and slabs, the impact 316 position, and the section of piles at the ground surface. Therefore, in order to reduce structural 317 concrete damage, these focal sections should be initially considered for structural optimization.

318 (2) Under various impact center conditions, the difference of impact force and interaction force 319 is very small. However, when the pile serves as the impact center, lateral displacement of pile at the ground surface and concrete damage are greater, which illustrates that the pile as the impact center 320 321 is a more dangerous impact situation. 322 (3) Structural evaluation indexes, including the impact force, the ratio of peak impact force to 323 peak interaction force, and maximum lateral displacement of pile at the ground surface, increase 324 with the growth of impact energy. These relationships can provide assessments for impact forces, 325 interaction force, and lateral displacement of pile at the ground surface in PRSW structural design. 326 According to the relationship between the impact energy and lateral displacement of pile at the 327 ground surface, the maximum impact energy that the PSRW can withstand in this study is 905 kJ 328 when the structure top is taken as the impact point.

329 CRediT authorship contribution statement

330 Peng Zou: Methodology, Simulation, Visualization, Writing - original draft. Gang Luo: Tests

331 design, editing, funding acquisition, writing - review. Yuzhang Bi: Visualization, Writing - review,

332 editing. Hanhua Xu: Writing - review, editing.

333 Declaration of Competing Interest

334 The authors declare that they have no known competing financial interests or personal

335 relationships that could have appeared to influence the work reported in this paper.

336 Acknowledgments

- 337 This research was funded by the National Natural Science Foundation of China (42277143),
- 338 the National Key R&D Program of China (2022YFC3005704), and the Science and the research

339 project of the Department of Natural Resources of Sichuan Province (KJ-2023-004, KJ-2023-029).

341 References

342	Bhatti, A. Q. and Kishi, N.: Impact response of RC rock-shed girder with sand cushion under falling load,
343	Nuclear Engineering and Design, 240, 2626-2632, https://doi.org/10.1016/j.nucengdes.2010.07.029,
344	2010.
345	Bi, Y., Li, M., Wang, D., Zheng, L., Yan, S., and He, S.: A numerical study of viscous granular flow in
346	artificial step-pool systems: flow characteristics and structure optimization, Acta Geotechnica,
347	https://doi.org/10.1007/s11440-023-01933-1, 2023.
348	CAGHP: Code for design of rock retaining wall engineering in geological hazards (T/CAGHP060-2019),
349	China University of Geosciences Press, Wuhan2019. (in Chinese)
350	Chau, K. T., Wong, R., and Wu, J.: Coefficient of restitution and rotational motions of rockfall impacts,
351	International Journal of Rock Mechanics and Mining Sciences, 39, 69-77,
352	https://doi.org/10.1016/S1365-1609(02)00016-3, 2002.
353	Crosta, G. and Agliardi, F.: Parametric evaluation of 3D dispersion of rockfall trajectories, Natural
354	Hazards and Earth System Sciences, 4, 583-598, https://doi.org/10.5194/nhess-4-583-2004, 2004.
355	Demartino, C., Wu, J. G., and Xiao, Y.: Response of shear-deficient reinforced circular RC columns under
356	lateral impact loading, International Journal of Impact Engineering, 109, 196-213,
357	https://doi.org/10.1016/j.ijimpeng.2017.06.011, 2017.
358	Fan, W., Zhong, Z., Huang, X., Sun, W., and Mao, W.: Multi-platform simulation of reinforced concrete
359	structures under impact loading, Engineering Structures, 266, 114523,
360	https://doi.org/10.1016/j.engstruct.2022.114523, 2022.
361	Giani, G. P.: Rock slope stability analysis, CRC Press1992.
362	Heng, K., Li, R., Li, Z., and Wu, H.: Dynamic responses of highway bridge subjected to heavy truck
363	impact, Engineering Structures, 232, 11828-11850, https://doi.org/10.1016/j.engstruct.2020.111828,
364	2021.
365	Hu, X., Mei, X., Yang, Y., and Luo, G.: Dynamic Response of Pile-plate Rock Retaining Wall under
366	Impact of Rockfall, Journal of Engineering Geology, 27, 123-133, 2019. (in Chinese)
367	Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of landslide types, an update,
368	Landslides, 11, 167-194, https://doi.org/10.1007/s10346-013-0436-y, 2014.
369	Lambert, S., Gotteland, P., and Nicot, F.: Experimental study of the impact response of geocells as
370	components of rockfall protection embankments, Natural Hazards and Earth System Sciences, 9,
371	459-467, https://doi.org/10.5194/nhess-9-459-2009, 2009.
372	Lee, K., Chang, N., and Ko, H.: Numerical simulation of geosynthetic-reinforced soil walls under seismic
373	shaking, Geotextiles and Geomembranes, 28, 317-334,
374	https://doi.org/10.1016/j.geotexmem.2009.09.008, 2010.
375	Lu, L., Lin, H., Wang, Z., Xiao, L., Ma, S., and Arai, K.: Experimental and numerical investigations of
376	reinforced soil wall subjected to impact loading, Rock Mechanics and Rock Engineering, 54, 5651-
377	5666, https://doi.org/10.1007/s00603-021-02579-9, 2021.
378	Maegawa, K., Yokota, T., and Van, P. T.: Experiments on rockfall protection embankments with geogrids
379	and cushions, GEOMATE Journal, 1, 19-24, 2011.
380	Mavrouli, O., Giannopoulos, P., Carbonell, J. M., and Syrmakezis, C.: Damage analysis of masonry
381	structures subjected to rockfalls, Landslides, 14, 891-904, https://doi.org/10.1007/s10346-016-
382	0765-8, 2017.
383	Muraishi, H., Samizo, M., and Sugiyama, T.: Development of a flexible low-energy rockfall protection

384	fence, Quarterly Report of RTRI, 46, 161-166, https://doi.org/10.2219/rtriqr.46.161, 2005.
385	Peila, D. and Ronco, C.: Design of rockfall net fences and the new ETAG 027 European guideline,
386	Natural Hazards and Earth System Sciences, 9, 1291-1298, https://doi.org/10.5194/nhess-9-1291-
387	2009, 2009.
388	Peila, D., Oggeri, C., and Castiglia, C.: Ground reinforced embankments for rockfall protection: design
389	and evaluation of full scale tests, Landslides, 4, 255-265, https://doi.org/10.1007/s10346-007-0081-
390	4, 2007.
391	Perera, J. S., Lam, N., Disfani, M. M., and Gad, E.: Experimental and analytical investigation of a RC
392	wall with a gabion cushion subjected to boulder impact, International Journal of Impact Engineering,
393	151, 103823-103839, https://doi.org/10.1016/j.ijimpeng.2021.103823, 2021.
394	Schellenberg, K.: On the design of rockfall protection galleries, ETH Zurich, 2008.
395	Shen, W., Zhao, T., Dai, F., Jiang, M., and Zhou, G. G.: DEM analyses of rock block shape effect on the
396	response of rockfall impact against a soil buffering layer, Engineering Geology, 249, 60-70,
397	https://doi.org/10.1016/j.enggeo.2018.12.011, 2019.
398	Truong, P. and Lehane, B.: Effects of pile shape and pile end condition on the lateral response of
399	displacement piles in soft clay, Géotechnique, 68, 794-804, https://doi.org/10.1680/jgeot.16.P.291,
400	2018.
401	Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L. K., Gerber,
402	W., and Jaboyedoff, M.: Rockfall characterisation and structural protection-a review, Natural
403	Hazards and Earth System Sciences, 11, 2617-2651, https://doi.org/10.5194/nhess-11-2617-2011,
404	2011.
405	Wu, J., Ma, G., Zhou, Z., Mei, X., and Hu, X.: Experimental Investigation of Impact Response of RC
406	Slabs with a Sandy Soil Cushion Layer, Advances in Civil Engineering, 2021, 1-18,
407	https://doi.org/10.1155/2021/1562158, 2021.
408	Yang, J., Duan, S., Li, Q., and Liu, C.: A review of flexible protection in rockfall protection, Natural
409	Hazards, 99, 71-89, https://doi.org/10.1007/s11069-019-03709-x, 2019.
410	Yong, A. C., Lam, N. T., and Menegon, S. J.: Closed-form expressions for improved impact resistant
411	design of reinforced concrete beams, Structures, 29, 1828-1836,
412	https://doi.org/10.1016/j.istruc.2020.12.041, 2021.
413	Yong, A. C., Lam, N. T., Menegon, S. J., and Gad, E. F.: Experimental and analytical assessment of
414	flexural behavior of cantilevered RC walls subjected to impact actions, Journal of Structural
415	Engineering, 146, 04020034, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002578, 2020.
416	Yu, Z., Luo, L., Liu, C., Guo, L., Qi, X., and Zhao, L.: Dynamic response of flexible rockfall barriers
417	with different block shapes, Landslides, 18, 2621-2637, https://doi.org/10.1007/s10346-021-01658-
418	w, 2021.
419	Zhao, P., Xie, L., Li, L., Liu, Q., and Yuan, S.: Large-scale rockfall impact experiments on a RC rock-
420	shed with a newly proposed cushion layer composed of sand and EPE, Engineering Structures, 175,
421	386-398, https://doi.org/10.1016/j.engstruct.2018.08.046, 2018.
422	Zhong, H., Lyu, L., Yu, Z., and Liu, C.: Study on mechanical behavior of rockfall impacts on a shed slab
423	based on experiment and SPH-FEM coupled method, Structures, 33, 1283-1298,
424	https://doi.org/10.1016/j.istruc.2021.05.021, 2021.
425	Zhong, H., Yu, Z., Zhang, C., Lyu, L., and Zhao, L.: Dynamic mechanical responses of reinforced
426	concrete pier to debris avalanche impact based on the DEM-FEM coupled method, International
427	Journal of Impact Engineering, 167, 104282-104301,

428 https://doi.org/10.1016/j.ijimpeng.2022.104282, 2022.