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Abstract 21 

Global change research demands a convergence among academic disciplines to understand 22 

complex changes in Earth system function. Limitations related to data usability and computing 23 

infrastructure, however, present barriers to effective use of the research tools needed for this cross-24 

disciplinary collaboration. To address these barriers, we created a computational platform that pairs 25 

meteorological data and site-level ecosystem characterizations from the National Ecological Observatory 26 

Network (NEON) with the Community Terrestrial System Model (CTSM) that is developed with university 27 
partners at the National Center for Atmospheric Research (NCAR). This NCAR-NEON system features a 28 

simplified user interface that facilitates access to and use of NEON observations and NCAR models. We 29 

present preliminary results that compare observed NEON fluxes with CTSM simulations and describe 30 

how the collaboration between NCAR and NEON that can be used by the global change research 31 

community improves both the data and model. Beyond datasets and computing, the NCAR-NEON 32 

system includes tutorials and visualization tools that facilitate interaction with observational and model 33 

datasets and further enable opportunities for teaching and research. By expanding access to data, 34 

models, and computing, cyberinfrastructure tools like the NCAR-NEON system will accelerate integration 35 
across ecology and climate science disciplines to advance understanding in Earth system science and 36 

global change.  37 

Short Summary 38 

We present a novel cyberinfrastructure system that uses National Ecological Observatory Network 39 

measurements to run Community Terrestrial System Model point simulations in a containerized system. 40 

The simple interface and tutorials expand access to data and models used in Earth system research by 41 

removing technical barriers and facilitating research, educational opportunities, and community 42 

engagement. The NCAR-NEON system enables convergence of climate and ecological sciences. 43 

1. Introduction  44 

Earth system science aims to deepen understanding of interactions between natural and social 45 

systems and their responses to global change. As such, the collective understanding of changes in Earth 46 

system function in response to global change drivers requires a convergence among scientific disciplines, 47 

including physical and natural sciences (Kyker-Snowman et al. 2022). This research combines a variety 48 
of complex observational data with ever more sophisticated computational models. Notably, Earth System 49 

Models (ESMs) are essential tools for assessing and predicting our changing environment (Bonan and 50 

Doney 2018), but limitations related to data usability and access to computing infrastructure present 51 

barriers to effective use of these research tools (Fer et al. 2021). Addressing these barriers is critical to 52 

engage the broad, cross-disciplinary communities that are required for Earth system science research, 53 
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education, and training (NASEM, 2022). We feel that tractable progress can be made to reduce these 54 

data and technical barriers to better understand and project changes in Earth system function under 55 

global change.  56 

The availability, discoverability, and usability of observational data are essential to running, 57 
calibrating, and validating models. For example, the scientific advancements made in measuring eddy 58 

covariance (EC) fluxes have been critical to the development, evaluation, and improvement of the 59 

representation of terrestrial ecosystems in ESMs. Initially, model-data comparisons were limited to short, 60 

intensive field campaigns extending over a few weeks (Bonan et al. 1997), but this grew to comparison 61 

with flux network datasets extending over several years at multiple sites (Stöckli et al. 2008), and 62 

comparison with globally gridded flux products (Bonan et al. 2011; Jung et al. 2020). Flux tower data sets 63 

continue to provide essential information for land model development and evaluation (Best et al. 2015; 64 

Lawrence et al. 2019). Notably, single-point simulations can use EC measurements to facilitate more 65 
rapid model development and testing of ecological hypotheses (Bonan et al. 2012; Burns et al 2018; 66 

Swenson et al. 2019; Wieder et al. 2017). An explosion of EC measurements and strong network 67 

coordination make these data easier to find (Durden et al. 2020; Pastorello et al. 2020), but the need to 68 

perform additional data processing prior to use presents barriers to integrating ecological observations 69 

into land model development and evaluation. These barriers include gap filling associated meteorological 70 

data, assessing EC flux data quality, and persistent challenges in discovering and harmonizing 71 

complementary data – including information about vegetation and soils at EC tower sites. Our work seeks 72 

to provide a framework to address these data challenges to facilitate the integration of local meteorology, 73 
EC flux measurements, and ecosystem characterizations in the development and evaluation of land 74 

models that are used for Earth system prediction and global change research.  75 

Beyond these data challenges, barriers to accessing and using computing infrastructure also 76 

impede broader community engagement with tools that are central to global change research. This limits 77 

the participation of scientists from environmental science and ecology, which are fundamental 78 

components of the Earth system, in the development and use of ESMs. The Community Earth System 79 

Model (CESM; Hurrell et al. 2013; Danabasoglu et al. 2020) has a long history of being freely and openly 80 
available to users, yet several barriers related to training, cyberinfrastructure, and data integration have 81 

hampered broader adoption and use of this model by a wide range of researchers. Thus, model code 82 

may be publicly available, but access to computing resources and the associated technical expertise 83 

needed to use them presents barriers to engaging a diverse, cross-disciplinary community of model users 84 

who can harness these powerful tools for research and teaching. We contend that broader engagement 85 

across scientific disciplines is critical to improving the representation of Earth system processes and their 86 

likely responses to global change.  87 

This work  overcomes some of the barriers to the use of ESMs in ecology by creating an 88 
integrated ‘NCAR-NEON system’. This system combines meteorological data and site-level ecosystem 89 

characterizations from the National Ecological Observatory Network (NEON) with the Community 90 
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Terrestrial System Model (CTSM), an extension of the Community Land Model (CLM5; Lawrence et al. 91 

2019). CTSM is the terrestrial component of CESM, which is developed with university partners at the 92 

National Center for Atmospheric Research (NCAR; Fig. 1). The NCAR-NEON system also features a 93 

simplified user interface that facilitates access to and use of NEON observations and NCAR models. By 94 
developing this NCAR-NEON system, we aim to enable the convergence of climate and ecological 95 

sciences by providing accessible cyberinfrastructure, quality-controlled datasets from NEON, and tutorials 96 

for analyzing and visualizing observed and simulated data. We describe development of the NCAR-97 

NEON system, present results comparing observed NEON fluxes with simulations from CTSM, and 98 

outline opportunities that the system enables for research and education across scientific disciplines.  99 

 100 

Figure 1. A conceptual diagram illustrating the integration of NEON data and NCAR modeling enabled through the 101 
NCAR-NEON system. NEON meteorological measurements are gap-filled using redundant streams and used as inputs 102 
for single point simulations with the Community Terrestrial Systems Model (CTSM). Additional NEON observations are 103 
used as input data to the model, including surface characteristics of vegetation (e.g., mapping to simulated plant 104 
functional types, PFTs) and the soil properties (soil texture, organic matter content, and depth to bedrock, if < 2m). 105 
Simulations with CTSM are conducted in CESM-Lab, a computing environment that runs in a container or with cloud 106 
computing resources, which includes model code and analysis tools. Simulated data is compared with observed fluxes 107 
using visualization scripts that are provided within CESM-Lab to improve both observed data products, model 108 
parameterization, and model processes representation. 109 
 110 
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2. Methods 111 

2.1 NEON Data 112 

NEON is a research network comprising 81 monitoring sites (47 terrestrial, 34 aquatic) that are 113 

collecting standardized, open data across the major ecosystems of the United States (Table S1). NEON’s 114 

data products are highly complementary to land models, providing high quality and standardized data for 115 

soil, vegetation, and atmosphere states and fluxes across vast spatiotemporal scales with high 116 

throughput instrumented systems data and spatially expansive remote sensing data (Hinckley et al. 2016; 117 

Balch et al. 2020; Durden et al. 2020). Each of the 47 NEON terrestrial sites includes an EC tower to 118 

determine the surface-atmosphere exchange of momentum, heat, water, and CO2, alongside meteorology 119 

(precipitation, wind speed, humidity, temperature), atmospheric composition (water vapor and CO2 120 
concentrations and isotopic ratios), and soil sensor assemblies (Metzger et al. 2019). In this preliminary 121 

effort to bring NEON measurements and NCAR modeling together we use NEON data for: 1) 122 

Meteorological inputs that are gap filled and provide local atmospheric boundary condition inputs to 123 

CTSM; 2) Surface characteristics of soil properties and vegetation; and 3) Eddy covariance fluxes to 124 

compare observed and simulated results (Fig. 1, Table 1), with prototype data available through the 125 

NEON data portal (NEON 2023).  126 

 127 
Table 1. NEON data product name, data product use in CTSM, NEON data product ID, and Digital Object 128 
Identifier (DOI). Data products were used for meteorological inputs and surface characterization, which are 129 
inputs needed to run CTSM, and for model evaluation. 130 

Data Product Name Data Product Use Data Product ID  DOI 
Precipitation Meteorological input  DP1.00006.001 https://doi.org/10.48443/6wkc-1p05  

Relative humidity Meteorological input  DP1.00098.001 https://doi.org/10.48443/w9nf-k476  

Shortwave and 
longwave radiation 
(net radiometer) 

Meteorological input  DP1.00023.001 
*DP1.00024.001 
*DP1.00014.001 

https://doi.org/10.48443/stbf-bh38  
https://doi.org/10.48443/8a01-0677  
https://doi.org/10.48443/hv8e-5696  

Barometric pressure Meteorological input  DP1.00004.001 
*DP4.00200.001 

https://doi.org/10.48443/zr37-0238 
https://doi.org/10.48443/7cqp-3j73  

Wind speed Meteorological input  DP4.00200.001 
*DP1.00001.001 

https://doi.org/10.48443/7cqp-3j73  
https://doi.org/10.48443/77n6-eh42  

Air temperature Meteorological input  DP4.00200.001 
*DP1.00003.001 

https://doi.org/10.48443/7cqp-3j73  
https://doi.org/10.48443/q16j-sn13  

Forcing height Meteorological input  DP4.00200.001 https://doi.org/10.48443/7cqp-3j73  
 

Soil physical and 
chemical properties, 
Megapit 

Surface 
characterization 

 DP1.00096.001 https://doi.org/10.48443/10dn-8031  

Dominant vegetation 
type 

Surface 
characterization 

Manually Assigned  

Bundled data pro 
ducts - eddy 
covariance 

Model Evaluation  DP4.00200.001 
*DP1.00023.001 

https://doi.org/10.48443/7cqp-3j73  
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Net radiation Model Evaluation  DP1.00023.001 
*DP1.00014.001 

https://doi.org/10.48443/stbf-bh38  
https://doi.org/10.48443/hv8e-5696  

Photosynthetically 
Active Radiation (PAR) 

Model Evaluation  DP1.00024.001 
*DP1.00023.001 
*DP1.00014.001 

https://doi.org/10.48443/8a01-0677  
https://doi.org/10.48443/stbf-bh38  
https://doi.org/10.48443/hv8e-5696  

Direct and Diffuse 
Radiation 

Model Evaluation  DP1.00014.001 https://doi.org/10.48443/hv8e-5696  

Soil water content and 
water salinity 

Model Evaluation  DP1.00094.001 https://doi.org/10.48443/ghry-qw46  

*Indicates the data product was used in the redundant stream gap-filling to fill primary data product 131 

2.1.1 Meteorological inputs  132 

Generating the gap-filled meteorological data that are required for single-point simulations with 133 

land models can be time consuming and requires expertise in micro-meteorology that land model users 134 

and developers may not have. Thus, the modeling community historically relied on external efforts like 135 

FLUXNET synthesis databases to provide gap-fill meteorological measurements at eddy-flux sites (e.g., 136 

La Thuile or FLUXNET2015; Pastorello et al 2020). Downloading and processing these datasets into a 137 
format that is usable by the model is also time consuming, and often the flux measurements are not 138 

paired with information about local vegetation or soil properties that are easy to discover or digest. 139 

Collectively, these factors create barriers for use and latencies in updating the EC observational data that 140 

are used in single point simulations. The NCAR-NEON system aims to remove some of these barriers.  141 

NEON meteorological input data used to run CTSM are summarized in Table 1, and gap-filled 142 

using publicly available code (Table 2). While NEON is highly standardized, a few differences in 143 

instrumentation exist between NEON Core (representative of the predominant natural ecosystem of each 144 

respective Domain) and gradient sites (representing other endmember conditions in each respective 145 
Domain). For example, core NEON sites measure precipitation with Double-fenced Intercomparison 146 

Reference gauges, while gradient sites all have tipping buckets (Metzger et al. 2019). Accounting for 147 

these site-specific sensor configurations and variation in their associated data streams is the first step in 148 

providing usable meteorological inputs to CTSM. The meteorological inputs to CTSM must be continuous, 149 

therefore, additional gap filling of missing data is required. Additionally, the EC system collects data 150 

necessary to calculate fluxes of energy, water vapor, and CO2. The NEON site design builds in some 151 

redundancy in observations with profiles of incoming radiation, wind, temperature, water vapor, and CO2 152 

concentrations measured at different heights on each NEON tower (Metzger et al. 2019). These data 153 
redundancies allow for a robust initial gap-filling using linear regressions among the primary and 154 

redundant data streams to correct for instrument or location differences. For example, if wind speed or air 155 

pressure measurements from the tower top are missing, we gap-fill with the value from the redundant 156 

data stream (typically measured at a lower tower height) corrected by the linear relationship with the 157 

primary sensor data. If multiple redundant data streams are available, the best fit regression with data 158 

available is used to determine the gap-filled value for each missing data point. 159 
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After gap-filling using related data stream regression, some range thresholds and proper unit 160 

conversions are applied to prepare the meteorological data for processing through the ReddyProc R 161 

package following the gap-filling workflow outlined in Wutzler et al. (2018). After using related data stream 162 

regressions, the meteorological data are checked for additional gaps, and gap-filling is performed using 163 
one of three additional gap-filling methodologies that include look-up table (Falge et al. 2001), mean 164 

diurnal course, and marginal distribution sampling (Moffat et al. 2007; Reichstein et al. 2005). The gap-165 

filling method is tracked and provided as a flag with the data to allow users to assess data with various 166 

methodology restrictions. The meteorological data streams are then converted to units required by CTSM 167 

and output to cloud storage in netCDF format with associated metadata to fully describe data provenance 168 

and formatting. At most sites data coverage spans January 1, 2018, through December 31, 2021, but as 169 

more NEON data are collected these files will also be updated in near-real time, thus removing barriers 170 

associated with processing flux tower data and reducing latencies in using new data as they are 171 
collected. Tables S1 and S2 provides a list of all the sites where input data have been successfully gap-172 

filled and notes any potential data quality issues. 173 

 174 
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Table 2 List of helpful websites created for the NCAR-NEON system, their contents and a url address for each. All sites 175 
were accessed Feb 13, 2023. *Note we intend to provide permanent urls for these sites in the final published 176 
manuscript. 177 

Name contents url 

Project home page Main landing page for users interested in 
learning more about the project 

https://ncar.github.io/NEON-
visualization/ 

Tutorial Tutorial that introduces running CTSM at 
NEON tower sites in the CESM-Lab 
container. 

https://ncar.github.io/ncar-neon-
books/notebooks/NEON_Simulation
_Tutorial.html 

Interactive visualizations Interactive plots that allow users to 
explore data produced by the NCAR-
NEON system without running the model 
or downloading data.  

https://neon.herokuapp.com/neon_d
ashboard 

Processing NEON data Docker image with scripts used for gap 
filling meteorological data, flux 
partitioning, and formatting NEON 
datasets. 

https://quay.io/repository/ddurden/n
car-neon 

DiscussCESM Forum  Discussion forum bulletin boards for 
questions related to CESM including 
CESM-Lab and CTSM. 

https://bb.cgd.ucar.edu/cesm/ 
 

CTSM repository Code base, technical documentation and 
information related to CTSM 

https://github.com/ESCOMP/CTSM 

NEON Prototype Data  NEON prototype datasets, which include 
the gap filled meteorological data for flux 
partitioned data used for model input and 
evaluations  

https://data.neonscience.org/prototy
pe-datasets/0a56e076-401e-2e0b-
97d2-f986e9264a30  

 178 

  179 
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2.1.2. Surface characteristics of soil properties and vegetation  180 

Basic information on edaphic properties is needed in the pedotransfer functions that describe soil 181 

thermal and hydraulic properties in CTSM. Although NEON has several soil sampling datasets, we used 182 

information from the Megapit characterization of soil physical and chemical properties in CTSM because it 183 
contains more information about deep soil horizons (> 1 m depth; Table 1) from a single soil pit at each 184 

site. Megapit samples were collected by pedogenic soil horizon down to 2 m or restrictive feature and 185 

analyzed for several properties including total soil carbon concentration, calcium carbonate concentration, 186 

bulk density, coarse fragments, soil pH, and texture. Soil organic carbon stocks used in CTSM were 187 

estimated for each soil horizon by calculating organic carbon concentrations (after subtracting carbonates 188 

from total carbon measurements) and multiplying by bulk density.  189 

Currently, the CTSM simulations are run with a single plant functional type (PFT) at each NEON 190 

site (Table S1). We acknowledge that this belies the diversity in vegetation that is present at NEON sites, 191 
but it provides a tractable starting point for further investigation into developing more sophisticated site- to 192 

regional-scale parameterizations and representations of biotic diversity with CTSM. The dominant PFT at 193 

each NEON site was assigned at the location of each EC tower using expert assessment that was 194 

informed by NEON vegetation surveys. Information on soil properties and dominant vegetation types are 195 

output as .csv files to public-access cloud storage buckets for use by CTSM (Figs. 1; Sect. 2.3). 196 

2.1.3 Independent model evaluation 197 

The EC flux data (energy, water vapor, and CO2) are time regularized and quality assurance and 198 

control (QA/QC) are applied. The QA/QC applied includes removing data when quality flags are raised, 199 
removing CO2 data when the field calibration algorithm cannot be applied, applying range thresholds, and 200 

applying a despiking routine to remove outliers (Brock, 1986; Starkenburg et al. 2016. The data are gap-201 

filled using the ReddyProc methodology outlined in Sect. 2.1.1. The vapor pressure deficit (VPD) is 202 

derived from the difference between actual and saturated vapor pressure, while gross primary production 203 

(GPP) is calculated from net ecosystem exchange (NEE) using the nighttime flux partitioning method of 204 

Reichstein et al. (2005). The data, quality flags, and metadata are formatted and provided at 30-minute 205 

intervals as netCDF files for comparison with modeled fluxes. Finally, NEON continuous soil moisture 206 
data were compared with model simulations for two sites. Since the soil moisture sensors were 207 

reconfigured with different calibration coefficients during the 2018-2021 validation period, which 208 

introduced step changes in NEON’s soil moisture data product (Table 1), the raw sensor measurements 209 

were back-calculated and consistent soil-specific calibration coefficients were subsequently applied over 210 

the entire measurement period (Ayres et al. 2021) prior to comparison with CTSM data. Only values that 211 

passed quality tests were used. In future work we aim to provide standardized soil moisture data for more 212 

sites across the Observatory. 213 
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2.2. NCAR modeling 214 

Numerical models of weather and climate have long been recognized as essential research tools 215 

to advance atmospheric science. Land surface fluxes of energy, moisture, and momentum, required to 216 

solve the equations of atmospheric physics and dynamics, are controlled by heat and water storage in 217 
soil, as well as the physiology of plants and their organization into canopies of leaves. Consequently, 218 

models of soil-plant-atmosphere processes are required to provide the necessary surface fluxes. Indeed, 219 

the first numerical weather prediction model included mathematical equations for soil temperature, soil 220 

moisture, the stomata on leaves, and envisioned canopies as a film of leaves covering the surface 221 

(Richardson 1922). As science progressed from models of atmospheric general circulation to climate 222 

models and now, Earth system models, the role of terrestrial ecosystems in climate processes has come 223 

to the forefront. The terrestrial components of ESMs, such as CTSM, have improved ecological processes 224 

representation and now include biogeochemical cycles, wildfires, and land use and land cover change 225 
(Bonan 2015, 2019; Lawrence et al. 2019). This evolution in the Earth system sciences is evident in 40+ 226 

years of scientific research linking weather, climate, and land modeling at NCAR, from pioneering initial 227 

model implementations (Deardorff 1978; Dickinson et al. 1986, 1993; Bonan 1996) to community-based 228 

model development (Oleson et al. 2004, 2010, 2013; Levis et al. 2004; Lawrence et al. 2019) that 229 

continues to engage ecological and environmental sciences communities in CTSM development and 230 

application. As more ecology and biogeochemistry are added to the models (Fisher and Koven, 2020), 231 

the notion of climate prediction is expanding to Earth system prediction, including terrestrial ecosystems 232 

and biotic resources (Bonan and Doney 2018). These models have also become important tools for 233 
scientific discovery by identifying the ecological processes that affect climate (e.g., photosynthetic 234 

temperature acclimation; Lombardozzi et al. 2015) and to advance theory at the macroscale (e.g., 235 

developing a theory of ecoclimatic teleconnections; Swann et al. 2018). With the new NCAR-NEON 236 

system tools described here, we aim to expand engagement and accessibility with the ecological and 237 

environmental sciences communities to continue testing, evaluating, and improving terrestrial process 238 

representation within CTSM. This will improve our understand of how ecosystems function within the 239 

Earth system, including the regulation of carbon, water, and energy fluxes that affect climate.  240 

2.2.1 Containerized version of CESM-Lab  241 

CESM has a long history of being freely and openly available to users (Hurrell et al. 2013; 242 

Danabasoglu et al. 2020), yet several barriers related to training, cyberinfrastructure, and data integration 243 

have hampered its adoption by a wide range of researchers. Even with open-source software, porting 244 

CESM to a new computer also requires the new computing system can compile model source code and 245 

has all the necessary input data and library dependencies. To address these computing challenges, 246 

NCAR recently developed CESM-Lab, which is a pre-configured and standardized environment that 247 

contains CESM and Jupyter-Lab. CESM-Lab is available via a Docker container and distributed via 248 
DockerHub (Table 2). The containerized version of CESM-Lab, and containers in general, give 249 
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researchers the capability to package and distribute source code, libraries, dependencies, and system 250 

settings as one unit – thereby ensuring reproducibility. Using the containerized system, CESM-Lab can 251 

be used on any computing system, even a laptop or a cloud platform, to allow researchers to easily run 252 

CESM and its component models. The NCAR-NEON system uses CESM-Lab capabilities to run single 253 
point CTSM simulations at NEON sites.  254 

2.2.2 Single point CTSM simulations 255 

The workflow for running single-point CTSM simulations requires several steps that can be error-256 

prone and time-consuming, particularly when using EC tower or other site-level data to drive simulations. 257 

To facilitate using NEON data in CTSM simulations we made several modifications to simplify this 258 

workflow. When users create a new simulation, the system queries NEON public-access cloud storage 259 

buckets and downloads available data into a designated directory (Sect. 2.3). For each NEON site, this 260 

includes a surface dataset that reflects soil properties and the dominant vegetation (Table 1), 261 
meteorological data used to drive the atmospheric conditions, and an initial conditions file with 262 

equilibrated carbon, water, energy, and nitrogen states and fluxes. Initial conditions at each NEON site 263 

were generated by cycling over the meteorological data at each site for 200 years in accelerated 264 

decomposition (AD) mode and another 100 years in normal, or post-AD mode, or until biogeochemical 265 

states reached steady state (when ecosystem C pools change by < 1g C m-2 y-1; this is standard protocol 266 

for equilibrating the model state, Lawrence et al. 2019). Colder sites, especially those in Alaska, took 267 

longer to reach these steady state conditions.  268 

The NCAR-NEON system uses a top-level Python code called ‘run_neon’ that simplifies 269 
downloading the preconfigured datasets and automatically creates, builds, and runs cases for individual 270 

and multiple NEON sites. The Python script, which also resides in the CTSM repository (Table 2), 271 

includes several command-line arguments and options for automatically running spin-up and transient 272 

simulations. Collectively, these features dramatically improve CTSM site simulation accessibility, facilitate 273 

the use of new NEON data, reduce potential errors in configuring the CTSM case at NEON tower sites, 274 

and enable users to run simulations at multiple NEON sites. While users of the system can now easily 275 

generate their own data, NCAR provides model simulation data at each of the tower sites that are 276 
available on the NEON public-access cloud storage bucket (Sect. 2.3). Simulation data are generated at 277 

a 30-minute time step and are aggregated into daily netCDF files.  278 

2.2.3 Tutorials, analysis, and visualization 279 

 Three interactive tutorials are available to guide users through the new NCAR-NEON system 280 

(Table 2). The first tutorial helps system users to access CESM-Lab using Docker, which will ultimately 281 

allow the user to run CTSM simulations at NEON sites on their local computing system. The first step 282 

requires that users download Docker from the company website. This step is potentially challenging, as 283 

Docker is an externally controlled application and some recent Docker updates do not work with older 284 
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computing systems. We provide links to additional resources to help the user navigate these potential 285 

problems and offer a resource for asking questions about containers through the CESM discussion forum 286 

(Table 2). After downloading and installing Docker, users are guided through downloading, running, and 287 

connecting to the CESM-Lab container and accessing the NEON tower simulation and visualization 288 
tutorials.  289 

 The second tutorial is a Jupyter Notebook that guides users through running CTSM simulations 290 

for NEON flux tower sites. The beginning of this tutorial provides a short description about CTSM and its 291 

component models, as well as resources for finding additional information. The process of running a 292 

simulation at NEON tower sites has been streamlined into the ‘run_neon’ script (see Sect. 2.2.2) that can 293 

be called with a single line of code after the user defines a NEON tower site. The simulation itself 294 

downloads approximately 2.5 GB of input data and takes several minutes or more to complete, depending 295 

on the speed of the internet connection and computing system being used. After the simulation 296 
completes, the user is pointed to where the model data are stored and has the option to generate plots of 297 

soil temperature and moisture profiles for one year of the simulation.  298 

 The third tutorial guides users through analyzing and evaluating model simulations against 299 

observed NEON flux tower measurements. This tutorial requires a successfully completed NEON tower 300 

simulation from the previous simulation tutorial. The user selects their site and the year of interest and is 301 

guided through loading and opening the model data files, as well as downloading EC data for evaluation 302 

from the NEON server and loading and opening the files. Next, the tutorial guides users through 303 

formatting, processing, and plotting simulation and flux tower data. Users generate plots of mean annual 304 
and diel cycles of latent heat flux. Additional plots illustrate how CTSM partitions latent heat flux into 305 

ground evaporation, canopy evaporation, and transpiration, as component fluxes are not available from 306 

the observed data. Scatter plots are also created using simulated fluxes to illustrate the relationship 307 

between component evaporation and transpiration fluxes and total latent heat flux on seasonal and 308 

annual timescales. The tutorial explains the python tools used to process and plot the data and asks 309 

probing questions about the results that tutorial users are exploring to help guide the user in thinking 310 

about patterns in the data and consider how to compare model and flux tower data. Users are 311 
encouraged to use the code available in this tutorial to explore other sites, years, and variables. 312 

2.3 Cyberinfrastructure to Facilitate Data Exchange and Interactive Visualizations  313 

Cyberinfrastructure for scientific data provides data handling and management functionality 314 
including data storage, processing, transfer, security, and access. Cyberinfrastructure components 315 

developed for the NCAR-NEON system include access-managed cloud storage for project data, 316 

standards-based metadata generation enabling dataset search and discovery, and data exploration tools 317 

for the user community. Datasets for the NCAR-NEON system are hosted in cloud object storage 318 

providing secure web-enabled access to the data files (Fig. 2). Data files are grouped in the cloud storage 319 

system into logical storage containers called buckets. Buckets that are granted public access allow 320 
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anyone on the Internet to download the data 321 

stored in them. Buckets protected with 322 

authentication mechanisms require users to 323 

have either individual account permissions on 324 
the bucket or an access key for the bucket 325 

and are meant for internal dataset sharing or 326 

staging data prior to public release. 327 

Data exchange between NCAR and 328 

NEON within this system enables automated 329 

generation of datasets as well as collation of 330 

NCAR model outputs and NEON data. The 331 

initial data collation for NEON data products 332 
uses a container that sources all atmospheric 333 

forcing and model evaluation data from the 334 

NEON API, performs gap-filling, and formats 335 

the data for model ingestion with 336 

standardized metadata (Sect. 2.1). Simulation 337 

datasets from NCAR (Sect. 2.2) are 338 

automatically synced to NEON object storage in the cloud at scheduled intervals (Fig. 2). To facilitate 339 

automated transfer of datasets between NCAR and NEON, a staging bucket is configured that allows file 340 
uploads from authenticated users. An automated process moves files from the staging bucket to the 341 

publicly available target bucket at scheduled intervals. Metadata describing scientific datasets using 342 

standard vocabularies and formatting can be used by Internet search engines to facilitate dataset 343 

discovery. JavaScript Object Notation for Linked Data (JSON-LD; https://www.w3.org/TR/json-ld) is a 344 

human- and machine-readable open metadata standard. Schema.org defines a vocabulary of standard 345 

HTML tags compatible with JSON-LD markup (Shepherd et al. 2022). A metadata generation component 346 

for NCAR-NEON datasets is implemented in Python and uses the Binary Array Linked Data library 347 
(binary-array-ld 2016) to generate JSON-LD metadata for NCAR-NEON netCDF files with the 348 

Schema.org vocabulary. 349 

Beyond these automated data exchanges, we also developed a Python-based interactive 350 

visualization dashboard (Table 2) as a Graphical User Interface (GUI) that enables users to explore and 351 

interact with model outputs and observations on-the-fly. This tool allows users to generate graphs and 352 

statistical summaries comparing CTSM simulations and observational data for NEON sites without 353 

downloading the observational data or running the model. This dashboard was developed using a 354 

scientific Python stack, including Xarray, Bokeh, and Holoviews, which allows a developer to create a 355 
user interface with widgets and visualization components inside a Jupyter Notebook. Users access a GUI 356 

to select individual NEON sites, variables, and output frequencies to visualize. The tool offers different 357 

Figure 2. A schematic representation of the cloud-based data 
management for the NCAR-NEON system. Internal data may 
include preliminary results, data shared for review within the 
project, or data staged for release. Released data files are 
available for public access to the user community and anyone 
on the Internet and include NEON meteorological inputs, NEON 
surface characterization data, CTSM surface datasets and 
initial condition files, NEON measurements used for model 
evaluation, and data from CTSM simulations that are used for 
interactive visualizations. Access-restricted cloud buckets 
require authentication to access files stored in them. Public-
access cloud storage buckets provide open access to the files 
stored in them.  
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types of interactive visualizations and statistical summaries based on users’ selections. This interactive 358 

visualization dashboard does not require specialist knowledge to operate; therefore, it can be used for 359 

educational outreach activities and in classrooms. Moreover, users can interact with the dashboard using 360 

a browser, so it is possible to interact with the plots via tablet or smartphone.  361 
Data I/O and manipulation, particularly at the 30-minute frequency available in the NCAR-NEON 362 

system, are typically computationally resource-intensive aspects of data access. I/O and calculations can 363 

both benefit from parallel computing, which can process multiple subsets of a dataset simultaneously and 364 

thereby enable efficient dataset access and operations. The back end for the visualization dashboard 365 

uses dataset chunking for efficient access to netCDF file content. The Zarr format and library enable 366 

generation of metadata providing chunked access to netCDF files (Miles et al. 2022). Zarr metadata for 367 

daily files is combined into monthly files, reducing the number of files accessed for time intervals 368 

spanning multiple days and thereby improving access efficiency. The Python Xarray library, which is used 369 
to read the datasets, integrates with the Python Dask library for parallel computing and thus enables 370 

loading and processing netCDF data chunks in parallel as Dask arrays. The Dask components that 371 

Xarray uses use a local thread pool by default, and local threads incur minimal task overhead associated 372 

with the parallel processing. Operations on the Dask arrays use the Python NumPy library for array 373 

operations, and the NumPy implementation takes advantage of thread pool parallelism, enabling 374 

efficiency improvements in dataset operations even on small (~100-200 KB) files. 375 

3. Results  376 

We illustrate features of the NCAR-NEON system with comparisons of observed and simulated 377 

fluxes across diverse ecosystems that the Observatory spans. A subset of the sites highlighted in our 378 

analysis are described in Table 3. The comparisons are intended to summarize the status of the project, 379 

illustrate the data produced through this project, and highlight potential insights the data affords. We 380 

recognize that there are rich opportunities to expand on these analyses, integrate additional 381 

measurements, and improve modeled parameterization and representations of specific sites and 382 
processes. Indeed, such contributions are encouraged from the community.  383 
  384 

https://doi.org/10.5194/egusphere-2023-271
Preprint. Discussion started: 25 April 2023
c© Author(s) 2023. CC BY 4.0 License.



 

15 

Table 3 Summary of site name, location, mean annual temperature (MAT), mean annual precipitation (MAP), and gross 385 
primary production (GPP) at a subset of NEON sites. Due to gaps in the observational estimates, mean annual GPP is 386 
for the full time series simulated by CTSM at each NEON site. All results are for 2018-2021 unless noted otherwise. 387 
The full list of results is shown in Tables S1, S2.  388 

NEON 
Site ID   Site Name Lat Lon MAT 

(°C) 
MAP 

(mm y-1) 
GPP      

(gC m-2y-1) 

BART Bartlett Experimental Forest 44.06516 -71.28834 7.7 1213 1127 

HARV Harvard Forest 42.53562 -72.17562 8.5 1405 1153 

STEI Steigerwaldt-Chequamegon 45.5076 -89.5888 5.7 660 1109 

KONZ Konza Prairie Biological Station 39.1007 -96.56227 12.9 617 1158 

SRER Santa Rita Experimental Range 31.91068 -110.83549 20.4 329 360 

ABBY Abby Road 45.762378 -122.329672 10.1 2043 1906 
 389 

Annual climatologies of site level data provide comparisons of measured and simulated fluxes. 390 

Site level simulations with CTSM received inputs of incoming shortwave and longwave radiation 391 

measured at NEON EC towers (Table 1), but the model calculates reflected shortwave radiation and 392 

outgoing longwave radiation based on albedo and surface temperature. Accordingly, net radiation is a 393 

useful metric by which to compare observed and simulated fluxes. Since net radiation is a driver of 394 

numerous ecosystem fluxes, identifying biases can help to explain biases in other fluxes. We look at a 395 
climatology of daily mean net radiation that is simulated over the NEON record. Results shown here for 396 

Bartlett Experimental Forest (BART; Fig. 3a) suggest that the model adequately captures the seasonal 397 

cycle of net radiation at this temperate deciduous forest site. (Fig. S1 shows a similar climatology for a 398 

boreal forest site at DEJU).  399 
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 400 
Figure 3 Climatology of daily mean NEON measurements (orange) and CTSM simulations (blue) at the Bartlett 401 
Experimental Forest in New Hampshire (BART). Points show the daily mean (a) net radiation; (b) sensible heat flux; 402 
(c) latent heat flux; (d) gross primary production (GPP); and (e) net ecosystem exchange (NEE). Shading shows the 403 
standard deviation of daily average data for 2018-2021.  404 

 405 

Users can also compare latent and sensible heat fluxes that are simulated by the model and 406 

observed at EC towers. At BART we see that CTSM tends to underestimate sensible heat fluxes, while 407 
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overestimating latent heat fluxes, especially during the summer months (Fig. 3b-c). Such biases in the 408 

evaporative fraction (the ratio of latent heat flux to the sum of latent and sensible heat fluxes) of turbulent 409 

fluxes are common in land models, including CTSM (Best et al. 2015; Wieder et al. 2017) and the NCAR-410 

NEON system. The inconsistencies at BART could reflect model biases in stomatal conductance or leaf 411 
area index (LAI) and deserves further investigation. Future work can leverage data from PhenoCam data 412 

(Richardson et al. 2018) and stable isotope measurements at NEON towers (Finkenbiner et al. 2022; 413 

Moon et al. 2022) to better understand LAI and stomatal conductance, respectively. 414 

Comparing measured and simulated carbon fluxes provides insights into model parameterizations 415 

and can be used to estimate missing observational data. Carbon fluxes from CTSM simulations can be 416 

compared to data from NEON EC towers: Net ecosystem exchange (NEE) data are measured at the 417 

NEON EC towers while GPP is a modeled product that is derived from statistical relationships, here using 418 

the nighttime flux partitioning method of Reichstein et al. (2005). By contrast, models like CTSM first 419 
simulate GPP based on leaf level photosynthetic rates that are scaled to the canopy with simulated LAI. 420 

Subsequently, NEE is calculated after subtracting ecosystem respiration fluxes from GPP. Results at 421 

BART suggest that CTSM generally captures the timing and magnitude of GPP fluxes at the site (Fig. 3d); 422 

although attention to phenology, especially environmental controls and interannual variability of leaf out 423 

and senescence are likely warranted (Birch et al. 2021; Li et al. 2022). The climatology of NEE fluxes 424 

simulated by CTSM shows biases during the spring and autumn when the model simulated a land source 425 

of CO2 to the atmosphere (Fig. 3e) due to high ecosystem respiration fluxes. Moreover, the land sink of 426 

CO2 in the summer appears to be weaker in CTSM simulations than the NEON observations at the BART 427 
tower (Fig. 3e). Since the magnitude of GPP is similar in the model and observations, the underestimated 428 

summer NEE is possibly due related to high biases in simulated ecosystem respiration fluxes. Diagnosing 429 

the source of this model biases is challenging, in part due to the interconnectivity of simulated processes 430 

and the limited capacity to measure such processes. Deeper insights may be afforded by taking a closer 431 

look at results with higher temporal frequencies.  432 

NEON tower data are simulated in near-real time within the NCAR-NEON system, with data 433 

available to simulate most towers starting in 2018 through the most recent full year, here 2021. Figure 4 434 
shows daily mean carbon fluxes, NEE, that are measured and simulated for the Konza Prairie Biological 435 

Station (KONZ), where the NEON tower is in an unplowed tallgrass prairie in Kansas, and Steigerwaldt 436 

Land Services (STEI) site, where the NEON tower is located in an early successional aspen stand in 437 

Wisconsin. Positive NEE fluxes show net carbon release from land to the atmosphere, while negative 438 

fluxes indicate carbon gain into ecosystems. Looking at the full data record shows several notable 439 

features of NEON measurements and CTSM simulations. Data gaps in NEON measurements are most 440 

common during the early operation of the observatory (Aug-Oct of 2018 at STEI) and in the early months 441 

of the COVID-19 pandemic, when field crews could not travel to field sites to maintain equipment (Apr–442 
June of 2020 at STEI). Across the observatory the NEON EC measurements have greater than 70% data 443 

coverage, up from less than 40% data coverage at the start of observatory operations. The current NEON 444 
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EC data coverage aligns with that of the FLUXNET2015 dataset (van der Horst 2019).  Second, although 445 

EC is directly measuring NEE, mean daily NEON observations show high variability at both sites. Finally, 446 

NEON EC towers measure both storage and turbulent fluxes, but results shown here omit the storage 447 

component. Storage fluxes contribute to uncertainty in measured NEE fluxes, which may (or not) be large 448 
for individual sites at different times of year. 449 

 450 

 451 
Figure 4 Full time series of daily mean net ecosystem exchange (NEE) from NEON measurements (orange) and CTSM 452 
simulations (blue) at the (a) Konza Prairie Biological Station in Kansas (KONZ) and (b) Steigerwaldt Land Services site 453 
in Wisconsin (STEI). Positive NEE fluxes show net carbon release from land to the atmosphere, while negative fluxes 454 
indicate carbon gain into ecosystems.  455 

 456 

The NEE fluxes that are simulated by CTSM are calculated as the differences in GPP and 457 
ecosystem respiration fluxes, which includes both autotrophic and heterotrophic respiration. These 458 

component fluxes are much larger, depend on simulated ecosystem states (LAI, vegetation biomass, and 459 

soil organic carbon stocks) and have associated environmental sensitivities (e.g., temperature, 460 

precipitation, etc.). Thus, biases in these component fluxes can potentially transmit biases to simulated 461 

NEE fluxes (Figs. 3-4). For example, CTSM simulations show periods of positive NEE during the spring 462 

and fall that are not evident in NEON observations. The seasonal biases in NEE could result from an 463 

underestimation of GPP during the shoulder season caused by phenological mismatches in simulated 464 

and observed LAI, or result from only simulating a single plant functional type in CTSM. Alternatively, 465 
NEE biases could result from higher than observed soil respiration rates in the model that reflect potential 466 

biases in total soil C stocks or the temperature sensitivity of heterotrophic respiration. Finally, the CTSM 467 

simulations were equilibrated to steady state conditions, meaning that annual NEE averaged over the 468 

simulation period will be zero. The real ecosystems being measured at NEON sites, however, have 469 

https://doi.org/10.5194/egusphere-2023-271
Preprint. Discussion started: 25 April 2023
c© Author(s) 2023. CC BY 4.0 License.



 

19 

historical legacies – KONZ is burned periodically and STEI is an aggrading forest site – and do not 470 

necessarily meet these same steady state assumptions. Collectively, this points to rich opportunities to 471 

learn about the ecosystems being measured by NEON observations and the processes that are important 472 

to represent in models like CTSM. 473 
 We calculated summary statistics of CTSM simulated bias (Fig. 5) and root mean square error 474 

(RMSE; Fig. S2) in ecosystem fluxes, compared to NEON observations. Biases in GPP and NEE are 475 

relatively low in the Great Plains and Intermountain West but are larger in the Eastern US. Specifically, 476 

NEE is biased high east of the Mississippi, while GPP biases are largest in the Southeastern US. CTSM 477 

typically has high biases in sensible heat fluxes and concurrent low biases in latent heat flux. Some sites, 478 

particularly grasslands (e.g., CPER, OAES, and SJER), do not follow this general pattern. We therefore 479 

probed precipitation data from NEON, which appear to have significant biases at some grassland sites 480 

(discussed in Sect. 4.1) and contribute to artificially high biases in CTSM simulations at these sites.  481 
 482 

 483 
Figure 5 Maps showing location of NEON site in the conterminous United States and annual biases in fluxes that are 484 
simulated by CTSM for: (a) sensible heat flux (W m-2); (b) latent heat flux (W m-2); (c) gross primary production (GPP, 485 
gC m-2 day-1); and net ecosystem exchange (NEE, gC m-2 day-1) over the observational record (2018-2021), unless 486 
otherwise noted in Table S2. 487 

 488 

Additional insights into potential sources of biases in data-model comparisons can be provided by 489 

looking deeper into component fluxes of latent heat at higher temporal frequencies. The NEON EC towers 490 

provide 30-minute measurements of total latent heat fluxes, but latent heat fluxes in CTSM can be 491 
partitioned into contributions from canopy transpiration, canopy evaporation, and soil evaporation. For  492 
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 493 
Figure 6 Diel cycle of summertime (June, July, and August, or JJA) latent heat flux at the Abby Road site in Washington 494 
(ABBY). Panels show: (a) mean half hourly fluxes (2018-2021 mean ± 1!) for NEON measurements and CTSM 495 
simulations (orange and blue lines, respectively); (b) CTSM model bias relative to the observations (W m-2); and (c) 496 
partitioning of latent heat into fluxes that are simulated by CTSM, which includes canopy evaporation, canopy 497 
transpiration, and ground evaporation (blue, green, and orange bars, respectively). Additional visualizations showing 498 
all sites and seasons are available on the interactive visualizations web site (Table 2). 499 

 500 

example, the CTSM simulations show temporal biases in both the timing and magnitude of mean diel 501 

cycle of summertime (June, July, and August, or JJA) latent heat fluxes at the NEON Abby Road site 502 

(ABBY; Fig. 6). The bulk of daytime latent heat fluxes simulated by the model are coming from canopy 503 
transpiration fluxes, suggesting that the representation of stomatal conductance does not respond 504 

correctly to atmospheric conditions or plant water availability. We also note that this site experienced two 505 

very strong heatwaves in the summers of 2020 and 2021. Additional measurements of soil moisture, LAI, 506 

or sap flux could help test, evaluate, and improve various model parameter values and parameterizations 507 

to produce results that are most consistent with observed fluxes.  508 
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Light response curves (Fig. 7) illustrate how canopy photosynthesis responds to changes in the 509 

radiation environment. At forested sites, CTSM tends to overestimate GPP at low light levels, 510 

underestimate GPP under full irradiance and simulate lower variance in GPP across a range of high 511 

incident radiation; this pattern is illustrated in Fig. 7a for Harvard Forest. At the Santa Rita grassland site, 512 
GPP is biased high in most irradiance bins, although is comparable to observed estimates of GPP at full 513 

irradiance (Fig. 7b). As GPP is the driver for carbon fluxes and plant-mediated water fluxes in CTSM, 514 

inaccurate responses to light environment affects several processes, including NEE and transpiration, 515 

which is a primary driver of mid-day (Fig. 6c) and summertime latent heat flux.  516 

 517 

 518 
Figure 7 Box-whisker plots showing light response curves, the relationship between gross primary production (GPP) 519 
and incident shortwave radiation, that are derived from NEON measurements and CTSM simulations (orange and blue, 520 
respectively) at (a) Harvard Forest (HARV) and the (b) Santa Rita Experimental Range (SRER). Data represent 30-521 
minute measurements that are binned by incident shortwave radiation levels observed at NEON sites over the 522 
observational record in July (2018-2021). Boxes show the mean (dots), median (line), interquartile range (boxes). The 523 
whiskers extend from the boxes (showing first and third quartiles) by 1.5 times the interquartile range (Q3-Q1). Note 524 
differences in the scale of the y-axis. 525 

 526 

Finally, there are opportunities to use data from CTSM simulations to augment NEON 527 

measurements. For example, measurements of soil moisture are important for calculating soil CO2 fluxes 528 

Harvard Forest (HARV)

Santa Rita Experimental Range (SRER)
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from NEON sites, but the soil moisture probes currently deployed at NEON sites do not always provide 529 

reliable measurements. For example, at the Abby Road site soil moisture observations have phases of 530 

erratic measurements, are missing at depth throughout much of 2020 and 2021, and have large offsets 531 

when instruments were calibrated (Fig. 8, Fig. S3). By contrast, CTSM provides continuous datasets that 532 
could be used to gap fill or augment ongoing NEON soil moisture measurements, although simulated 533 

data may need to be bias corrected. Similarly, soil moisture controls aspects of plant phenology in CLM, 534 

meaning that soil moisture measurements could help constrain or explain potential biases in simulated 535 

LAI and ecosystem fluxes. At ABBY, both CTSM simulations and NEON observations show similar 536 

temporal patterns – a dry-down of soil moisture during the dry summer months and followed by wetter fall 537 

winter and spring months (Fig. 8; Fig. S3), although CTSM simulates wetter soils than observed at the 538 

NEON site.  539 

 540 

 541 
Figure 8 Time series of volumetric soil moisture profiles that are simulated by CTSM simulations (blue) and 542 
measured by NEON (orange) at different depths in soil plot 3 at the Abby Road site in Washington (ABBY) from 543 
2018-2021. 544 
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4. Discussion 545 

The NCAR-NEON system links models and measurements to provide a powerful suite of tools to 546 

understand ecosystem properties and processes through space and time. In addition to facilitating the 547 

integration of measurements and modeling, a major focus of this work is to enable new opportunities for 548 

research and education by expanding access to and interaction with NCAR models and NEON data. The 549 

user community can access quality-controlled and gap-filled NEON meteorological and EC flux data as 550 

prototype datasets through the public-access cloud storage buckets that supports the NCAR-NEON 551 
system or the Prototype Data section of the NEON Data Portal (Table 2). Additionally, the NCAR-NEON 552 

system streamlines running NCAR’s CTSM model and simplifies access through the containerized 553 

CESM-Lab platform, bypassing the logistical challenges of porting CTSM to different computing systems. 554 

It also creates customized model input data that include local site characterizations of soil and vegetation 555 

using NEON data products. These capabilities allow researchers to focus their time on customizing CTSM 556 

and integrating additional NEON datasets to address research questions. Combined with the visualization 557 

software provided in the tutorials, the NCAR-NEON system also facilitates opportunities for teaching 558 

about land-atmosphere interactions, ecology, and land modeling. Below we discuss some of the 559 
synergistic enhancements this collaboration makes for NEON measurements and NCAR models as well 560 

as opportunities that the NCAR-NEON system enables for research and teaching. 561 

4.1 Synergistic enhancements of NEON measurements and NCAR models  562 

The NCAR-NEON system is a collaborative partnership between observationalists and modelers 563 

that enhances both NEON’s measurements and NCAR’s models. One typically thinks of observations as 564 

improving models, but the reverse can also happen in which models inform and augment the collection of 565 

measurements. For example, models require continuous meteorological input data, so gap filling the 566 

missing meteorological data required to run CTSM was paramount to the success of the project. A new 567 

prototype data product provided by the project is a continuous time series of meteorological data at each 568 

NEON location. Comparison of modeled and measured EC fluxes identified QA/QC improvements to the 569 
meteorological data needed for the model simulations, and similarly improvements to the processing of 570 

the raw EC fluxes to compare with model results.  571 

One issue raised in the simulations is the estimation of precipitation at grassland sites. NEON has 572 

experienced issues where small amounts of noise in the raw data cause spurious trace precipitation to be 573 

recorded at all primary precipitation sensors. Because secondary and throughfall precipitation buckets are 574 

unaffected, there is a redundant data stream at forested sites, but these are unavailable for grassland 575 

sites. An updated algorithm is expected to resolve the spurious trace precipitation issue in late 2022 with 576 

back processed data available in the NEON 2024 data release. In the meantime, we manually evaluated 577 
the mean annual precipitation recorded at each NEON site against other observational data networks and 578 

noted locations where this issue is generating unexpectedly high or low precipitation values (Table S2).  579 
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Another example of how NCAR modeling improved NEON data quality comes from unusual soil 580 

moisture profiles that were initially generated in preliminary simulations at the ABBY site (data not 581 

shown). Upon closer inspection these patterns were found to be caused by an unusual relationship 582 

between soil organic carbon content and depth at this site, which did not match related data gathered 583 
during sample collection or subsequent analyses. Further investigation confirmed that the labels for the 584 

soil carbon analysis subsamples had been switched for two ABBY soil horizons. The NEON soil data 585 

have since been corrected and the modeled soil moisture profiles for ABBY now follow a more typical 586 

pattern with surface soils drying out during the summer and less variation in soil moisture in deeper soil 587 

horizons (Figs. 8, S3). There are also important differences in vertical profiles of simulated and measured 588 

soil moisture, with soil moisture simulated by CTSM typically decreasing with depth while NEON soil 589 

moisture observations generally increase with depth. Additional investigation is needed to determine if 590 

these discrepancies extend to other sites and indicate issues with CTSM simulations or NEON data 591 
products, but it does underscore a synergy in NCAR modeling and NEON measurements that deserves 592 

more attention moving forward.  593 

We see clear opportunities for NEON observations to help guide future model improvements, 594 
especially related to potential biases in phenology (discussed above), photosynthesis (Fig. 7), and other 595 
processes. Some biases in modeled processes are already documented; for example, Wozniak (2020) 596 
found that CTSM underestimates maximum rates of simulated GPP compared to EC observations in 597 
deciduous forest sites. This suggests that implementation of the photosynthesis scheme in CTSM has 598 
parametric or structural issues that prevent high rates of GPP from occurring in the model. Auxiliary data 599 
from NEON that are not always available from other EC flux towers, for example foliar chemistry, can be 600 
used to update parameter values and to evaluate correlated model variables and processes. The 601 
opportunities afforded by NEON’s EC and auxiliary data to improve the representation of ecological 602 
processes in CTSM will improve modeled carbon fluxes at NEON towers and may also ameliorate biases 603 
in global simulations. 604 

Finally, the NCAR-NEON system can also facilitate model-informed prioritization of future data 605 
collection efforts. Models can quantify the dominant drivers of uncertainty in model parameters as well as 606 
in response to environmental drivers using ensemble-based methods of parameter uncertainty 607 
propagation and variance decomposition (LeBauer et al. 2013). Site-level CTSM simulations could 608 
therefore help future NEON data collection campaigns to target variables that contribute the most to 609 
uncertainty in modeled ecosystem fluxes and ecosystem responses to global change. 610 

4.2 Opportunities enabled for research  611 

The NCAR-NEON system enables research opportunities in the ecology, global change, and 612 

Earth system science communities by: (1) Democratizing access to NCAR models that can be 613 
customized to meet researchers’ needs; (2) Providing a platform that leverages NEON observational 614 

datasets for site-level model configuration and evaluation across the diverse range of ecosystems 615 
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captured in the NEON design; (3) Facilitating reproducible research workflows; and (4) Providing gap-616 

filled meteorological data and partitioned EC flux data products. 617 

Through CESM-Lab, the NCAR-NEON system provides access to the full model code and 618 

datasets used to run CTSM on any computing system. This means that researchers are not limited to 619 
NEON locations or to the default configuration of CTSM, nor do they need access to large-scale 620 

computing resources. The CTSM code can be modified and compiled within the container, so researchers 621 

who wish to run simulations with new model parameterizations or with additional model features may now 622 

do so from any computer. Most personal laptop computers are more than sufficient for running site level 623 

simulations, even when using more computationally complex versions of the land model that include, for 624 

example, ecological dynamics (using the Functionally Assembled Terrestrial Ecosystem Simulator, 625 

FATES; Koven et al. 2020) or representative hillslope hydrology (Swenson et al. 2019). Advanced users 626 

can run CTSM at any single point site by making their own input files. Additionally, researchers can 627 
quantify the impact of adjusting model parameters and processes on terrestrial ecosystems under 628 

historical and future climate scenarios. This flexibility is useful for calibrating the model to improve model 629 

performance at a given site, as well as for gaining mechanistic insights into how different processes and 630 

uncertainties affect ecosystem functioning. Broadening access to CTSM also allows researchers to 631 

rapidly compare model output to their own observational datasets, or to existing NEON observational 632 

datasets that are not yet integrated into the NCAR-NEON system. 633 

Moving forward, we see additional NEON data products as providing valuable insights to the 634 

NCAR-NEON system. These could include NEON measurements that are used both as model inputs 635 
(foliar chemistry, phenology and LAI, and historical land use legacies) and as model validation datasets 636 

(including snow depth, vertical profiles of canopy temperature, leaf water potential, litterfall rates, biomass 637 

and vegetation structure, and depth profiles of soil moisture, temperature, carbon and nitrogen). Although 638 

these data have not yet been integrated into the NCAR-NEON system, we are optimistic that existing 639 

tools can help facilitate their integration into research opportunities. We see powerful opportunities to 640 

expand on this approach to integrate information from NEON’s Airborne Observation Platform (AOP) into 641 

workflows that extend model capabilities beyond the relatively small footprint of the EC towers. For 642 
example, the AOP light detection and ranging (LiDAR) data would provide information to initialize stand 643 

structure that would be helpful for calibrating reduced complexity configurations of the CTSM-FATES 644 

model (Fisher and Koven, 2020). 645 

The NCAR-NEON system also promotes reproducibility of research in alignment with the FAIR 646 

data principles (Wilkinson et al. 2016), addressing an ongoing challenge facing both ecology and 647 

geosciences (Powers and Hampton 2019; Culina et al. 2020; Kinkade and Shepherd 2021). The NCAR-648 

NEON system makes it easy for researchers to share their research workflow as part of their publications, 649 

including accompanying code and data. The containerized system also reduces the time required to 650 

configure and run other researchers’ workflows, thereby facilitating the process of reproducing previous 651 

studies and expanding existing workflows to answer new research questions. 652 

https://doi.org/10.5194/egusphere-2023-271
Preprint. Discussion started: 25 April 2023
c© Author(s) 2023. CC BY 4.0 License.



 

26 

In addition to enabling opportunities for research with NCAR models, the NCAR-NEON system 653 

also facilitates access to NEON data which can be used for observationally based research or research 654 

using other models. For example, the gap-filled micrometeorological data and partitioned flux data 655 

products provided in the NCAR-NEON system could be used in other projects related to ecological 656 
forecasting and model evaluation that focuses on ecological processes and land model simulations (Best 657 

et al. 2015; Collier et al. 2018; Eyring et al. 2019; Lewis et al. 2022). As latencies in publishing NEON 658 

data are reduced, we intend to provide updated input and evaluation data to the NCAR-NEON system to 659 

enable near-real time hindcasts of ecosystem states and fluxes. In short, we see the information that is 660 

being generated through this activity as a resource to meet data-requirements of the broader Earth 661 

system science community. 662 

4.3 Opportunities enabled for teaching 663 

The NCAR-NEON system makes it easy to run and visualize site-level simulations that can be 664 

integrated into classroom settings. The NEON Observatory design provides a unique opportunity for 665 

students to access data from world class field research sites and instrumentation in a variety of 666 
ecosystems. Here we highlight two capacities in which this tool can be integrated into classroom 667 

activities. The first is an interactive web-based visualization tool (Table 2). This tool does not require any 668 

software or data downloads, allowing students to access and explore NEON and CTSM data without 669 

running any simulations. Students can explore and compare observational and simulated data for 670 

numerous fluxes at different temporal scales from 45 terrestrial NEON sites (Table S1). Classroom 671 

modules can be developed to probe various ecological questions, including comparisons across sites, 672 

how fluxes change seasonally, and quantification of interannual variability. Instructors can also use this 673 

tool to highlight differences between models and observations, helping students to better understand how 674 
we measure, simulate, and predict ecosystem processes. 675 

A second opportunity for classroom activities is to run simulations using the NCAR-NEON system 676 

within the CESM-Lab container. The flexible cyberinfrastructure, short simulation run times (typically less 677 

than 10 minutes), and simplified coding requirements facilitate running simulations for classroom 678 

applications. Technical challenges are minimal and can be reduced by using a computer lab with Docker 679 

pre-installed and computers that have sufficient memory and space requirements for data downloads, or 680 

by using larger-scale computing resources like university clusters or cloud computing resources. Once 681 

access to the containerized computing environment is established, students can use the available 682 
tutorials to run NEON tower simulations at the site of their choice and evaluate simulated fluxes against 683 

observations (Table 2).  684 

The NCAR-NEON system is flexible, allowing instructors to easily make additional customizations 685 

for their classes. As an example, this cyberinfrastructure tool was used in a graduate level Land-Climate 686 

Interactions Course at Auburn University in the 2021-2022 academic year. First, students performed 687 

CTSM simulations for the Talladega National Forest site (TALL), the NEON site closest to Auburn 688 
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University, and compared latent heat flux simulated by CTSM with the NEON measurements using 689 

system tutorials. Next, students were divided into two project groups focusing on either TALL or Ordway-690 

Swisher Biological Station (OSBS) sites to conduct parameter perturbation experiments using a tutorial 691 

developed by the instructor. Students collected the relevant parameter values from the literature, updated 692 
model parameter files, and performed ten CTSM simulations at each site, finding that GPP was more 693 

sensitive to the selected parameters than latent heat fluxes. These classroom exercises were paired with 694 

a visit to the TALL site to enrich student’s experiences and motivate them to design their own 695 

investigation and experiments. Exposure to the NCAR-NEON system has motivated graduate students to 696 

contribute analyses, tutorials, and additional resources to the broader community. For example, one 697 

graduate student compared NEON precipitation measurements with nearby NOAA sites, helping to 698 

identify potentially problematic NEON sensors (Section 4.1), while another is developing a model for 699 

estimating aboveground biomass using ground-based NEON data and remote sensing measurements 700 
(Narine et al. 2020). These examples highlight how the NCAR-NEON system is inspiring the next 701 

generation of scientists.  702 

Conclusion 703 

Deeper engagement of diverse scientific communities, removing technical barriers, and 704 

increasing access to research data and tools is critical to advance Earth system science, prediction, and 705 
understanding of ecosystem responses to global change. By developing cyberinfrastructure tools that 706 

facilitate the easy and rapid use of measurements, models, and computing tools, the NCAR-NEON 707 

system aims to enable this convergence of climate and ecological sciences and facilitates the 708 

development and testing of data-driven and model-enabled scientific hypotheses. The system provides a 709 

computationally simplified platform for scientific discovery and for rigorous evaluation and improvement of 710 

model simulations and observational data at NEON tower sites. A particular strength of this system is the 711 

auxiliary data collected by the NEON network that is used to inform site-specific model inputs and model 712 

evaluation. With some effort, users can adapt this system to incorporate and simulate flux towers at other 713 
research sites using the ‘Processing NEON data’ tools linked in Table 2 to guide data formatting. Thus, 714 

future work could expand this system to include gap-filled flux data from other regional and global 715 

networks like AmeriFlux and FLUXNET, allowing for broader spatial coverage. By facilitating community 716 

engagement in modeling and observing terrestrial ecosystems, cyberinfrastructure tools like this are a key 717 

component for building a more intellectually diverse workforce for global change research and Earth 718 

system science.  719 

Code and Data availability 720 

Datasets created as part of this project are available as a NEON prototype dataset and archived at 721 

NCAR’s Geoscience Data Exchange (GDEX) https://doi.org/10.5065/tmmj-sj66. CTSM code is available 722 
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through the CTSM github page and archived at https://doi.org/10.5281/zenodo.7342803. Post processing 723 

scripts that used to make figures in this manuscript are available at: 724 

https://github.com/NCAR/neon_scripts. 725 
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