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1 Ensemble modulation results in non-Gaussian
expanded ensemble statistics

Ensemble modulation constructs an expanded ensemble by
combining a localization matrix with forecast ensemble per-
turbations (Bishop and Hodyss, 2009, 2011; Bishop et al.,5

2017). This is done by taking Schur products (i.e., element-
wise products) between 1) forecast ensemble perturbations
and 2) the columns of a square-root of the localization ma-
trix. In this appendix, it will be shown that if the forecast
ensemble has Gaussian statistics, the expanded ensemble10

(henceforth, the modulated ensemble) is likely to possess
non-Gaussian statistics.

Suppose the localization matrix Φ is an Nx ×Nx posi-
tive semi-definite symmetric matrix with rank NL, L is an
Nx ×NL matrix square root of the localization matrix (i.e.,15

Φ=LL⊤), Nx ≫NE and Nx ≥NL. Supposing ℓm is the
m-th column of L and x′

n is the n-th forecast ensemble per-
turbation, a modulated ensemble perturbation v′

k (k ≡mn)
can be created from ℓm and x′

n by (Bishop et al., 2017)

v′
k ≡

√
NENL

NE − 1
ℓm ◦x′

n ∀k = 1,2, . . . ,NENL (1)20

where ◦ represents the element-wise product. For simplicity,
suppose NE ≫ 1. Then,

v′
k ≈

√
NLℓm ◦x′

n ∀k = 1,2, . . . ,NENL (2)

To show that v′
k has non-Gaussian statistics, consider the

moments of some g-th element in the modulated ensemble25

perturbation vector. Supposing v′k,g is the g-th element of v′
k,

the p-th central moment of v′k,g can be written as

〈(
v′g
)p〉≡ 1

NENL

NL∑
m=1

NE∑
n=1

v′k,g (3)

For simplicity, assume NE is sufficiently large such that the
above expression is an approximately unbiased estimator for 30〈(
v′g
)p〉

. Substituting Eq. (2) into Eq. (3) gives

〈(
v′g
)p〉≈ 1

NENL

NL∑
m=1

NE∑
n=1

(
ℓm,gx

′
n,g

√
NL

)p

=N−1
E N

p/2−1
L

NL∑
m=1

NE∑
n=1

(
ℓm,gx

′
n,g

)p
(4)

where ℓm,g is the g-th element of ℓm and x′
n,g is the g-th

element of x′
n. Applying some algebraic manipulation yields 35

〈(
v′g
)p〉≈N

p/2−1
L

[
NL∑
m=1

(ℓm,g)
p

][
1

NE

NE∑
n=1

(
x′
n,g

)p]

=N
p/2−1
L

[
NL∑
m=1

(ℓm,g)
p

]〈(
x′
g

)p〉
(5)

where
〈(
x′
g

)p〉
is the p-th central moment of state vector el-

ement g in the forecast ensemble.
The non-Gaussian characteristics of the modulated en- 40

semble perturbations can be inferred from kurtosis (Kurt),
which is

Kurt
(
v′g
)
≡

〈(
v′g
)4〉〈(

v′g
)2〉2 ≈

NL

[∑NL

m=1 (ℓm,g)
4
]〈(

x′
g

)4〉〈(
v′g
)2〉2 .

(6)

Since the modulated ensemble’s variance is identical to the
original ensemble’s variance, 45

Kurt
(
v′g
)
≈NL

[
NL∑
m=1

(ℓm,g)
4

] 〈(
x′
g

)4〉〈(
x′
g

)2〉2 . (7)
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Figure S1. A plot of the modulated ensemble’s kurtosis as a func-
tion of normalized localization length scale (solid red curve). The
kurtosis of the modulated ensemble for infinite normalized localiza-
tion length scale is indicated by the dashed red line.

The fraction is simply the kurtosis of the original ensemble.
Thus,

Kurt
(
v′g
)
≈NL

[
NL∑
m=1

(ℓm,g)
4

]
Kurt

(
x′
g

)
. (8)

If the forecast ensemble is drawn from a Gaussian
distribution (the kurtosis is always 3), for NE ≫ 1,5

Kurt
(
x′
g

)
≈ 3. However, Eq. (8) states that Kurt

(
v′g
)

is

NL

[∑NL

m=1 (ℓm,g)
4
]

times of the forecast ensemble’s kur-
tosis (≈ 3). This implies the modulated ensemble is likely
non-Gaussian.

To illustrate, suppose the localization matrix is simply10

an Nx ×Nx identity matrix. This means NL =Nx and L
is also an Nx ×Nx identity matrix. Supposing δm,g is the
Kronecker-delta, the kurtosis of the modulated ensemble is

Kurt
(
v′g
)
≈Nx

[
Nx∑
m=1

δm,g

]
Kurt

(
x′
g

)
=NxKurt

(
x′
g

)
= 3Nx. (9)15

In other words,

Kurt
(
v′g
)
≫ 3. (10)

Since the kurtosis of a Gaussian distribution is 3, the modu-
lated ensemble has non-Gaussian statistics.

The ensemble modulation method is also explored numer-20

ically using a periodic domain with Nx = 1000, NE = 100,
and a variety of localization matrices (with Gaussian lo-
calization functions). The original ensemble members are
drawn from a Nx-dimensional Gaussian distribution with
zero mean and identity covariance. Every localization ma-25

trix has a unique localization length scale (i.e., the "standard
deviation" in the Gaussian localization function). In general,
Kurt

(
v′g
)

decreases from 3Nx (≈ 3000) towards a value of

3 (i.e., the Gaussian value) as the localization length scale
increases (see Fig. S1). These tests demonstrate that for a 30

large range of (commonly used) localization length scales,
ensemble modulation turns Gaussian-distributed ensembles
into ensembles with non-Gaussian statistics.
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