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Supplementary information 
 

S1) Additional method explanation 

 
S1.1) Cell-wise runoff using the curve number method 5 

 
The cell-wise runoff depth (𝑅𝐶𝑁) of eq. (5) in the main manuscript text was calculated using the Soil Conservation 

Service Curve Number method (SCS-CN) method. An in-depth overview of the theory behind the curve number 

example can be found in (Hawkins et al., 2008), and several examples of its integration with RUSLE to predict 

gross and/or net erosion are available (e.g. Gao et al., 2012; Mishra et al., 2006). Runoff (𝑅𝐶𝑁) is calculated via: 10 

 

𝑅𝐶𝑁 =  
(𝑃− 𝐼𝑎)2

𝑃−𝐼𝑎+𝑆
 ,                                                                                                                                                                  (S.1) 

 
Where 𝑃 is the event precipitation (mm) of each RUSLE event, 𝐼𝑎 is the initial abstraction (mm), and S is the 

potential maximum retention (mm), given by: 15 

 

𝑆 =  
(𝑃− 𝐼𝑎)2

𝑃−𝐼𝑎+𝑆
 ,                                                                                                                                                                       (S.2) 

𝐼𝑎 was set to 0 for the simulation cases since water discharge and sediment yield were known to have been 

produced at the catchment outlet. The curve number (CN) is a dimensionless variable assigned to each land use 

depending on the hydrological soil group, soil hydrological condition and antecedent moisture condition. The CN 20 

numbers were assigned according to the tabular values presented in Hawkins et al., (2008) for the different land 

use types (Table. S1).  
 

Table S1: The applied initial curve number used for the different land use classes utlised in the study. The 

‘WorldCover classification’ column gives the landcover classification according to the ESA WorldCover layer 25 

(Zanaga et al., 2022) and ‘CN table land use’ gives the corresponding assigned names from the CN lookup table 

(Hawkins et al., 2008). 

WorldCover 

classification 

CN table land use Treatment or 

practice 

Physical 

intervention 

Hydrological 

condition 

CN 

(AMC 

2) 

Cropland Fallow Straight row 0 
 

86 

Cropland Row Crops Straight row 0 Poor 81 

Cropland Row Crops Straight row 0 Good 78 

Cropland Small grain Straight row 0 Poor 76 
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Cropland Small grain Straight row 0 Good 75 

Grassland/Shrubland Pasture or range 
 

0 Good 61 

Grassland/Shrubland Pasture or range 
 

0 Poor 67 

Tree cover Meadow Woods 
 

0 Poor 66 

Tree cover Meadow Woods 
 

0 Good 55 

Path Dirt roads 
 

0 
 

82 

Built-up Asphalt roads 
 

0 
 

84 

River Water body 
 

0 
 

100 

 
At each pixel, a ‘poor’ vs ‘good’ hydrological condition based on a soil loss ratio above or below 0.4 

respectively. Cropland areas with an soil loss ratio (SLR) > 0.7 during an event were attributed the CN class of 30 

‘Fallow’. Furthermore, the antecedent moisture condition (AMC) values are known to be a key factor 

determining the event specific runoff response to a rainfall event. To scale between three AMC classes for each 

land use category, the normalised antecedent precipitation index (NAPI) was used: 

 

𝑁𝐴𝑃𝐼 =  
∑ 𝑃𝑡𝑘−𝑡−𝑇

𝑡=−1

𝑃̅  ∑ 𝑘−𝑡−𝑇
𝑡=−1

 ,                                                                                                                                                                       (S.3) 35 

 
As applied in Hong et al., (2007). Where 𝑇 = 5 days, 𝑃 is the daily precipitation, 𝑃̅ is the average daily 

precipitation, and k is a decay constant with the value of 0.85. Daily precipitation was taken from the gridded 

European Meterological Observations (EMO) dataset at roughly 1 km grid resolution to ensure a representative 

average (Thiemig et al., 2022). NAPI thresholds of < 0.33 and > 3 represent the ‘dry’ and ‘wet’ AMC conditions 40 

respectively, while intermediate values define the ‘fair’ condition and given the CN2 value (Table. S1). For dry 

and wet AMC conditions, the scaling equations formulae, as described by Hawkins et al., (2008) and applied in 

Hong et al., (2007) were used: 

 

𝐶𝑁1 =  
𝐶𝑁2

2.281−0.01281 𝐶𝑁2
 ,                                                                                                                                                        (S.4) 45 

𝐶𝑁3 =  
𝐶𝑁2

0.427−0.00573 𝐶𝑁2
 ,                                                                                                                                                        (S.5) 

 
S1.2) Calculating the event-scale EI30 index 

Gauge measurements for each catchment time series data was processed into discrete EI30 events based on the 

RUSLE definition (Wischmeier & Smith, 1978): 50 

𝐸𝐼30 = (∑ 𝑒𝑟𝑣𝑟
0
𝑟=1 ) 𝐼30,                                                                                                                                                        (S.6) 
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In which vr is the rainfall depth per event (mm), I30 is the maximum 30-minute rainfall intensity during the event 

(mm h-1), and 𝑒𝑟 is the unit rainfall energy (MJha-1mm-1) calculated via the equation utilised by (Verstraeten et al., 

2006) for Central Belgium: 

𝑒𝑟 =  11.12𝑖𝑟
1.31 ,                                                                                                                                                                   (S.7) 55 

 

Where 𝑖𝑟 is the rainfall intensity of the event (mm h-1). Typically a minimum threshold for the event rainfall depth 

is set at 12.7 mm, or 6.35 mm during a period of 15 minutes or less. Although considered to have a minor overall 

difference on the total erosivity (Lu & Yu, 2002). Accordingly, all events exceeding 1.27 mm were considered as 

potentially erosive, and thereafter periods of erosive rainfall were matched with periods of runoff and sediment 60 

transport in the monitored channel network.  

The rainfall records in all catchments were resampled to 10 minute resolution before the calculating the discrete 

EI30 events. An open source Python implementation of the Verstraeten et al., (2006) algorithm was used for all 

catchments (https://pypi.org/project/rfactor/).  

 65 

S1.3) A further description of temporally-static input parameters 
 
A selection of parameter layers necessary for the model run were considered temporally static and processed 

using an automated Python procedure for the catchment boundaries. These parameters include: The K-factor, the 

topographic grid, land cover, field parcel delineations, and road and path elements. For each simulated catchment 70 

in EUSEDcollab, a digital elevation model (DEM) was first extracted from the 25-metre resolution Copernicus 

EU-DEM for a bounding box exceeding the catchment extent. A flow direction algorithm was thereafter 

implemented on the grid to delineate the catchment upstream area from the registered catchment stream outlet 

coordinates for each catchment.  

A geospatial alignment, overlaying and value reclassification process was implemented to prepare the model 75 

input layers within the model bounds. The land cover layer was generated by overlaying IACS field parcel data 

onto the 10-meter resolution WorldCover layer (Zanaga et al., 2022). WorldCover has the advantage of resolving 

spatial features at high resolution in comparison to the 100-meter resolution CORINE landcover layer for Europe. 

Additionally, roads and paths were added to the land cover grid from the Open Street Map (OpenStreetMap, 2023) 

portal and parameterised in the standard way (i.e. connecting elements in the landscape). The K-factor surface 80 

was taken from the European layer based on harmonised soil sampling through the LUCAS campaign (Orgiazzi 

et al., 2018; Panagos et al., 2014). 

S1.4) Further processing of the multitemporal soil loss ratio (SLR) 

Field parcel polygons from the Integrated Administrative Control System (IACS) were used to parameterise the 

landscape spatial elements in an object oriented manner (Borrelli et al., 2018; Efthimiou et al., 2022; Schneider et 85 

al., 2023). These elements comprise both the units for the SLR parameterisation and for defining the parcel 

connectivity elements in W/S. However, IACS data are modern compared to the time extent of some catchment 

data, therefore a buffered polygon of 30 m was first created around the parcel centroid point to mitigate the 

effects of changing field parcel structures over multiple years. Thereafter, the median NDVI pixel value within 

each centroid polygon was acquired for each Landsat image within the catchment measuring period plus an 90 

additional 2-year window buffer.  

https://pypi.org/project/rfactor/
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The original method of Matthews et al., (2022) considered a binary assessment of conventional vs conservation 

tillage to include the effect of crop residues on the SLR through time. However, given the relatively low 

recurrence frequency of Landsat, only the green canopy cover component of the C-factor was considered. In 

addition, the exact crop cultivation succession for each parcel across the analysis years is unknown, meaning that 95 

a unique crop-wise relationship between the NDVI and crop canopy cover could not be applied. We instead apply 

the general linear regression equation established by Tenreiro et al., (2021) for all compiled crop species.  

S1.5) Multiple model simulation scenarios 

Multiple model scenarios were run for two purposes: 1) to obtain the best performing connectivity parameters for 

each catchment in a systematic way, and 2) the determine the best transport capacity based on the presence of 100 

systematic changes in model performance across sediment delivery ratio limits. W/S has several additional 

parameters describing the cellular connectivity of sediment transport in the model. These include land-use 

interconnectivity (forest connectivity (FC), cropland connectivity (CC)), trapping efficiency (forest trapping 

efficiency (FTE), pasture trapping efficiency (PTE), cropland trapping efficiency (CTE)) and the stream network 

position. In most model applications these parameters are considered fixed, given that otherwise a higher 105 

parameter dimensionality is introduced into the calibration scheme. Yet several studies highlight the varying 

importance of these parameters in modifying the connectivity of sediment to stream channels (Batista et al., 

2022). Moreover, parameters induce a high sensitivity in the model response which could impact W/S in a multi-

temporal simulation mode. In determining the best possible parameter set for the dynamic model implementation, 

we therefore ran the model simulation routine 100 times for each catchment. In each case, a parameter set was 110 

selected by random sampling across a parameter space of potential values before determining an ‘optimum’ 

parameter set. The multiple sub-parameters were thereafter compiled into a singular connectivity index: 

CI = CCR + FCR + CTER + FTER + PTER + CITR,                                                                                                   (S.8) 

In which each sub-parameter is the rank (R) between 0 and 1 of the sampled parameter from its prior range Table. 

(S2). Thereafter, the optimal ktchigh and ktclow values were determined for each connectivity scenario in the 115 

model calibration process. 

Table. S2: The parameter limits used to define the extents of the multi-scenario model runs. Each model input 

value was randomly generated from an array of 10 values generated between the pre-defined parameter bounds. 

The Sediment Delivery Ratio (SDR) is defined as an intermediate parameter calculated before running the 

sediment delivery routine, representing the ratio of the measured suspended sediment yield (SSY) to the RUSLE 120 

gross erosion (ER) prediction.  

Parameter name Low value High value 

Cropland connectivity 80 100 
Forest connectivity 10 50 

Cropland trapping efficiency  0 20 

Forest trapping efficiency 50 90 

Pasture trapping efficiency 50 90 

Channel initiation threshold Initial value * 0.5 Initial value * 1.2 
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Sediment delivery ratio (SSY:ER) Mean value Maximum value 

 
We secondly investigated changes in model efficiency as events exceeding a given sediment delivery ratio (SDR) 

threshold are removed. Per event, the SDR is calculated as: 

𝑆𝐷𝑅 =  
𝑆𝑆𝑌

∑ 𝐸𝑅𝑐𝑒𝑙𝑙
,                                                                                                                                                     (S.9) 125 

Which is calculated by dividing the 15-day catchment sediment yield by the sum of the cell-wise gross erosion 

across the catchment. Based on this ratio between the RUSLE grid and measured sediment yield, a necessary 

sediment delivery ratio can be calculated prior to running the sediment delivery module (de Vente et al., 2008). 

High SDR values can represent events in which a large error is not caused by model error, but other phenomena 

such as: 1) a large error in their parameterisation (e.g. precipitation under-catch or an unrepresentative catchment 130 

SLR value), or 2) events in which erosion processes not simulated in W/S (e.g. gully incision or bank erosion) 

were dominant. To investigate the model response to varying event compositions, we then investigate the model 

performance as the upper SDR threshold is varied incrementally between the mean and maximum.  

 
S2) Additional results  135 

The rate of loss in model performance as the SDR limit was increased showed differences across the different TC 

formulae, indicating varying abilities to simulate the full spectrum of events. For this reason, slightly better 

model performances occurred when events exceeding a certain SDR were omitted from the record : Ganspoel 

(NSE = 0.34, SDRlimit = 0.3) > Kinderveld (NSE = 0.13, SDRlimit = 0.07) > FDTL (NSE = 0.06, SDRlimit = 0.07) > 

BRVL (NSE = 0.04, SDRlimit = 0.02). Of the three tested transport capacity equations, only the S-A transport 140 

capacity produced a relatively consistent model performance across the full spectrum of SDR values (Fig. S1). 

The standard W/S transport capacity formulation tended to produce poorer model performances when the 

maximum SDR bound was increased, a case particularly evident in the Kinderveld catchment.  
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 145 

Figure S1: Plots per catchment showing the variation in the model performance (NSE) for different model 

parameter combinations and structural changes in the transport capacity equation (point colour). Upper panel in 

each plot: the NSE response to changes in the maximum permitted event sediment delivery ratio (SDR). The far 

right extent of each plot considers the entire aggregated sediment yield in each catchment (i.e. no limitation in the 

maximum SDR). Vertical spread derives from variation in the constituent sub-parameters within the ‘connectivity 150 

index’. Lower panel in each plot: the NSE response to changes in the connectivity index. Vertical spread 

attributes to the sub-parameters in each ‘connectivity index’ value as well as the varying SDR thresholds in each 

model run. 

 

 155 

Figure S2: Cumulative sediment load plots comparing the 15-day sediment delivery for the temporally static and 

dynamic WaTEM/SEDEM implementations. A comparison is given for the Ganspoel (BE), Kinderveld (BE), 

BRVL (FR) and FDTL (BE) catchments respectively. 
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