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Abstract. We present a physical description of the ice-sheet model Nix v1.0, an open-source project intended for collaborative

development. Nix is a 2D thermomechanical model written in C/C++ that simultaneously solves for the momentum balance

equations, mass conservation and temperature evolution. Nix’s velocity solver includes a hierarchy of Stokes approximations:

Blatter-Pattyn, depth-integrated higher order, shallow-shelf and shallow-ice. The grounding-line position is explicitly solved

by a moving coordinate system that avoids further interpolations. The model can be easily forced with any external boundary5

conditions, including those of stochastic nature. Nix has been verified for standard test problems. Here we show results for a

number of benchmark tests from standard intercomparison projects and assess grounding-line migration with an overdeepened

bed geometry. Lastly, we further exploit the thermomechanical coupling by designing a suite of experiments where the forcing

is a physical variable, unlike previously idealised forcing scenarios where ice temperatures are implicitly fixed via an ice rate

factor. Namely, we use atmospheric temperatures and oceanic temperature anomalies to assess model hysteresis behaviour10

with active thermodynamics. Our results show that hysteresis in an overdeepened bed geometry is similar for atmospheric and

oceanic forcings. We find that not only the particular sub-shelf melting parametrisation determines the temperature anomaly

at which the ice sheet retreats, but also the particular value of calibrated heat exchange velocities. Notably, the classical

hysteresis loop is narrowed for both forcing scenarios (i.e., atmospheric and oceanic) if the ice sheet is thermomechanically

active as a results of the internal feedback among ice temperature, stress balance and viscosity. In summary, Nix combines rapid15

computational capabilities with a Blatter-Pattyn stress balance fully coupled to a thermomechanical solver, not only validating

against established benchmarks but also offering a powerful tool for advancing our insight on ice dynamics and grounding line

stability.

1 Introduction20

Marine ice sheets, such as the present-day West Antarctic Ice Sheet (WAIS), are of particular interest for the glaciological

community and have been fundamental objects of study in the last decades (Shepherd et al., 2018; Rignot et al., 2019; Robel
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et al., 2019; Pattyn and Morlighem, 2020). Since their bedrock lies mostly below sea level, they are subjected to rapid changes

(Bentley, 1998), leading a number of authors to question their stability. A complete WAIS collapse would imply 5 to 6 metres

of level rise (Bentley, 1998; Fretwell et al., 2013), leaving the future of the WAIS as a key uncertainty for sea-level projections.25

An accurate numerical description of the grounding line is thus fundamental for the reliability of such predictions. A number

of attempts have been made in the past to simulate grounding-line migration within marine ice-sheet models. Weertman (1974)

and Thomas and Bentley (1978) showed that no stable steady states of the grounding line could be found on inland-sloping or

retrograde beds. Hindmarsh (1993) later introduced the possibility of neutral equilibrium under the premise that the equilibir-

ium position is continuous and hence there exists an infinite number of equilibrium configurations. More recently, Vieli and30

Payne (2005) assessed the influence of numerical details and discretization on the dynamics of the grounding line, concluding

that a reliable method of treating grounding-line migration within numerical ice-sheet models was unknown. Later studies

confirmed the possibility of numerical artefacts (Pattyn et al., 2006; Hindmarsh, 2006; Schoof, 2006a, b, 2011), in agreement

with the early works of Weertman (1974) and Thomas and Bentley (1978). Even so, Vieli and Payne (2005) and Pattyn et al.

(2006) hypothesised the possibility of "neutral equilibrium", first introduced by Hindmarsh (1993). The analytical approach35

of Schoof (2007) based on assymptotic expansions eventually concluded that these results were numerical issues for certain

parameter regimes. Only in the absence of basal sliding the possibility of non-unique steady states has been raised (Nowicki

and Wingham, 2008).

Amidst the lack of a reliable model of grounding-line migration, the first Marine Ice Sheet Intercomparison Project (MISMIP,

Pattyn et al., 2012) shed light on the agreement of modelling efforts to describe the grounding line motion and assessed the40

appropriateness of numerical schemes. The authors proposed a set of benchmark experiments on an idealised two dimensional

bed geometry, concluding that moving grid models are the most reliable choice from a numerical perspective as the grounding

line is part of the solution and no interpolations are required.

MacAyeal and Barcilon (1988) notably showed that a two-dimensional free-floating shelf has no effect on the dynamics of

he grounded ice upstream of it (later underlined by Schoof, 2007). As a result, a boundary condition can be directly imposed at45

the grounding line that is solely dependent on the ice thickness therein, irrespective of the particular shape or the dynamics of

the shelf. A correct description of a 2D marine ice sheet thus relies on an appropriate formulation of the grounded ice dynamics,

specially near the terminus position where ice streaming is generally found.

For a comparison with the semi-analytical solutions of Schoof (2007), ice streaming (i.e., fast flowing ice due to basal

sliding) becomes a necessary condition given that the boundary layer theory assumes rapid sliding near the grounding line.50

Ice streams are in fact a distinct feature of ice sheets with no counterpart in other geophysical thin-film flows. These regions

of rapidly flowing ice exhibit velocities even three orders of magnitude faster than the usual glacial ice, yet they only account

for a small fraction of the total ice sheet area (e.g., less than 5% of the Antarctic ice sheet Bamber et al., 2000). Even so, it is

important to represent them correctly to fairly evaluate ice outflow discharge, ice-sheet sensitivity and overall stability.

The rapid flow of ice streams fails to be explained by vertical shearing of ice. In other words, the friction at the bed is55

typically less than the driving stress predicted by a lubrication approximation (Whillans and van der Veen, 1997; Joughin et al.,

2004). Rather, high ice stream velocities are caused by the deformation of meltwater-saturated, weak subglacial till (Alley
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et al., 1986; Blankenship et al., 1986; Engelhardt et al., 1990). Thus consistent with geophysical studies showing that basal

sliding is fundamentally a sort of Coulomb slip connected with the mechanical failure of plastic till (e.g., Tulaczyk, 1999).

Schoof (2006b) later extended the work to depth-integrated viscous flows used in three-dimensional ice-sheet models.60

Namely, a variational formulation of the two-dimensional Shallow Shelf Approximation (SSA) equations is given without

assumptions on the extension of the sliding domain. In fact, as noted by the author, sliding regions must be determined as part

of the solution and are consequently not known a priori. Notably, a solvability condition was also derived (as in Schoof, 2006b)

to guarantee the existence of physical solutions. Strictly speaking, if the till is too weak so that the total momentum of applied

forces is greater than the maximum momentum of frictional force about a given point, then no solutions are expected to exist.65

A variational formulation entails strong consequences both from a physical and a mathematical point of view. Particularly,

it eludes explicit manipulation of the unknown sliding domain extension, additionally provides a numerical method for solving

the ice flow problem and it ensures well-posedness of the SSA non-linear elliptic equations since they can be derived from a

convex and bounded below functional (Schoof, 2006b). However, the time-evolving system of the SSA stress balance coupled

to the advection equation is not yet known to be mathematically well posed (Bueler and Brown, 2009).70

More recently, Goldberg (2011) derived a higher-order stress approximation using variational methods with similar accuracy

to the Blatter-Pattyn momentum equations (Blatter, 1995; Pattyn, 2003). The velocity solver was first adapted for multimillenial

3D ice-sheet models by CISM (Lipscomb et al., 2019), where this depth-integrated velocity approximation was referred to as

DIVA. Nevertheless, the DIVA solver had been previously used in continental scale models by Arthern et al. (2015) and Arthern

and Williams (2017). The numerical stability of this solver was systematically studied by Robinson et al. (2022), where the75

authors show that the DIVA solver emerges as a clear outlier in terms of both model performance and its representation of the

ice-flow physics itself.

The appropriate stress balance treatment is merely one of the challenges of ice streaming and grounding line stability.

Understanding the mechanisms governing its temporal variability also remains as a major obstacle particularly at the aim of

developing models of ice sheet dynamics (Robel et al., 2013). Given the broad range of ice flow speeds observed in real ice80

sheets (e.g., Shepherd and Wingham, 2007; Truffer and Fahnestock, 2007; Vaughan and Arthern, 2007), numerical simulations

of these rapidly flowing bands are a well-known difficulty. Diverse approaches are found in the literature for varying dynamical

complexity and basal hydrology.

Despite the extensive research on the topic, important questions regarding the particular effect of thermodynamics remain

unanswered. Specifically, whether marine ice sheets have discrete steady surface profiles if ice temperatures can freely evolve85

in time and further the potential implications on the hysteresis behaviour in overdeepened bed geometries. In ice streaming

regions, ice flow occurs mostly along one main direction, thus becoming the preferred axis across which lateral variations

are negligible. It is a common approach to reduce the number of horizontal dimensions to the main flow direction so as to

minimize computing time. Nonetheless, the thermal state of the ice and the potential oceanic forcing are still fundamental

pieces to understand the future evolution of ice sheets that have not been considered in low-dimensional models.90

We herein describe the 2D ice sheet model Nix. Unlike previous models, the default setup consists of a Blatter-Pattyn stress

balance fully coupled to a thermodynamical solver that accounts for both vertical and along-flow horizontal heat advection, as
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well as vertical diffusion. Note that other configurations are also possible given the independent structure of Nix funtionalities.

In other words, the user can select a particular stress balance description from a hierarchy of Stokes approximations (i.e.,

Blatter-Pattyn, Depth Integrated Viscosity Approximation, SSA or SIA) and optionally solve the associated heat problem. The95

paper is structured as follows: we begin by describing the technical model design (Section 2). We then describe the physical

approximations (Section 3) and numerics (Section 4) of the model. Several benchmarks and idealized experiments are presented

in Section 5. A thorough discussion is given in Section 6 and the work is summarised in Section 7.

2 Model design

Nix is an open source software available under the Creative Commons Attribution 4.0 International license. The model has been100

derived from scratch with a clear Application Programming Interface (API). It is written in C/C++ for efficiency and extremely

fast computing and is readily available to run in any High Performance Computing Cluster. There are two key dependencies:

NetCDF and Eigen libraries. The former handles tasks for convenient community-standard input/output capability, whereas

the latter serves to define vectors, matrices and further necessary computations (Fig. 1).

Nix’s design offers a friendly Python wrapper module that handles directory management and compilation, though it can be105

compiled and run independently. The exact version used to produce the results of this work is archived at a persistent Zenodo

repository (Moreno-Parada et al., 2023) while the latest version can be accessed on GitHub at: https://github.com/d-morenop/

nix.

3 Model physics

In this section, the fundamental equations of the model are described. Generally speaking, we consider an ice slab of two110

spatial dimensions (i.e., horizontal and vertical) by coupling a particular choice of stress balance, the advection equation and

the associated heat problem.

Our system is thought to thermodynamically evolve in time through three main processes: vertical difusion, horizontal

and vertical advection and internal heat deformation of the ice. Viscosity is thus dependent on both the strain rate and the

temperature. With respect to dynamics, basal friction can be parametrised by three distinct formulations (linear, power-law115

and Regularized-Coulomb). Additionally, the basal friction captures the thermal state of the base by a two-valued friction

coefficient encapsulating frozen and thawed bedrocks.

3.1 The Blatter-Pattyn approximation

Ice sheets and glaciers are generally described as an incompressible fluid in a low Reynolds number flow. Conservation of mo-

mentum is then ensured if velocities satisfy the Stokes equations, a quasi-static stress description where intertial and advective120

terms are neglected due to the slow movement of the ice.
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Figure 1. Overview of Nix modular structure. Each colour represents a C++ class: dynamics, material, topography, thermodynamics and

boundary conditions. The Python wrapper is an optional user friendly option and the code can be compiled without any additional depedencies

at any standard High Performance Computing Cluster.

The typical ice sheet geometry allows to further simplify the Stokes flow equations by the defining an aspect ratio ε. Given the

characteristic length scales for the horizontal and vertical dimensions, ε≪ 1 (e.g., Greve and Blatter, 2009). Simply by keeping

terms of order O (ε) in the Stokes equations, the Blatter-Pattyn model (Blatter, 1995; Pattyn, 2003) arises with a hydrostatic

approximation error of O
(
ε2
)

(Dukowicz et al., 2010; Schoof and Hindmarsh, 2010). This first-order approximation forms an125

elliptic coercive problem, significantly easier to solve than the intricate saddle-point problem of the full Stokes system.

For the purpose of this work, we shall consider two spatial dimensions: horizontal x and vertical z, respectively. This

considerably reduces the computational time and allows for extremely high spatial resolutions, whilst explicitly accounting for

the vertical gradients in ice viscosity and velocity. The 2D version of the Blatter-Pattyn model can be written as:

∂

∂x

(
4η

∂u

∂x

)
+

∂

∂z

(
η
∂u

∂z

)
= ρg

∂h

∂x
, (1)130

where ρ is the ice density, g is the gravitational acceleration, η(x,z) is the effective viscosity, h(x) is the surface elevation and

u(x,z) is the ice velocity.
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The problem is subjected to a set of boundary conditions. Nix considers potential friction at the base of the ice, whereas a

free surface on the upper boundary (Veen and Whillans, 1989). In terms of velocity gradients, the free surface condition can be

expressed as (Pattyn, 2003):135

∂u

∂z
= 4

∂u

∂x

∂h

∂x
, (2)

and the basal drag is defined as the sum of all resistive forces:

∂u

∂z
= 4

∂u

∂x

∂b

∂x
+

τ(u)
2η

, (3)

for the base (z = b) in the presence of potential drag τ(u) (see Section 3.4 for a thorough description on basal friction). A

stress-free base can be obtained simply by setting τ = 0 in Eq. 3.140

We further assume an ice divide at one end of the domain (x = 0), where ∂u/∂x = 0 and hydrostatic equilibrium at the

shelf-ocean boundary (x = L), where the water pressure balances the longitudinal stress gradient. The full problem thus takes

the following succint form (subscripts hereinafter denotes partial differentiation):





(4ηux)x + (ηuz)z = ρghx, x ∈ I, z ∈ L,

uz = 4uxhx, x ∈ I, z ∈ ∂L+,

2ηuz = 8ηuxbx + τ, x ∈ I, z ∈ ∂L−,

ux = 0, x = 0, z ∈ L,

8ηux = ρgH2− ρwgz2, x = L, z ∈ L,

(4)

where ρw is the water density, H is the ice thickness evaluated at the grounding line x = L and the ∂L± symbols denote the145

upper and lower vertical boundaries, respectively.

3.2 The Depth Integrated Viscosity Approximation

We now briefly describe the mathematical problem underlying the Depth Integrated Viscosity Approximation (DIVA) stress

balance in Cartesian coordinates (Goldberg, 2011; Lipscomb et al., 2019).

As for the Blatter-Pattyn model, we shall consider only one horizontal dimension, leaving unaltered the nature of DIVA/SSA150

equations. This allows us to consider our model as a longitudinal section of a three-dimensional ice stream:

∂

∂x

(
4η̄H

∂u

∂x

)
+ τ(u) = ρgH

∂h

∂x
, (5)

Since the stress balance is also a second-order partial differential equation on the velocity, we again need two boundary

conditions. Analogously to the Blatter-Pattyn approximation, we assume an ice divide at one end and, at the other end of

the domain, the problem is subjected to a dynamic boundary condition that accounts for the balance between cryostatic and155
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hydrostatic pressures. Thus, we can express the DIVA/SSA boundary problem in the following compact form:




(4η̄Hux)x + τ(u) = ρgHhx, x ∈ I,

u = 0, x = 0,

8η̄ux = ρgH2− ρwgD2, x = L,

(6)

where D is the distance from the sea surface to the bottom of the ice.

Equation 5 is an elliptic non-linear differential equation. In the purely SSA form (neither velocity nor viscosity dependency

on z, i.e., u = ū and η = η̄), it constitutes the simplest form of longitudinal stress balance derivable from the Stokes model160

(Bueler and Brown, 2009). We can then solve for the velocity u(x) by integrating Eq. 6 if the functions H(x), η̄(x), h(x) and

τ(u) are known. We have implemented an implicit algorithm so as to numerically integrate the one-dimensional DIVA/SSA

equation (see integrating scheme description in Appendix A).

3.3 The advection coupling

Given that all models herein presented provide a quasi-static description of the ice flow, the stress balance does not determine165

the temporal evolution of the system, but rather it represents an equilibrium state for a particular ice thickness H(x) and

viscosity η(x,z) configurations. The temporal evolution is generally considered by coupling the stress balance to the advection

equation:

Ht + (ūH)x = S(x), (7)

where S(x) is the surface mass balance. Given that Eq. 7 is first order, we only need one boundary condition H(x = 0, t) and170

the consequent initial condition H(x,t = 0).

We now couple Eqs. 6 and 7 to study the evolution of the ice thickness H(x,t) governed by the advection equation, where

the velocity field u(x,z) satisfies the stress balance imposed by a particular choice of the Stokes approximation. Namely, our

problem takes the following mathematical form:




Ht + (ūH)x = S(x), x ∈ I, t > 0

(4ηux)x + (ηuz)z = ρghx, x ∈ I, z ∈ L,

H = H0, x ∈ I, t = 0.

hx = 0, x = 0, t > 0.

u = 0, x = 0, t > 0.

8ηux = ρgH2− ρwgz2, x = L, z ∈ L, t > 0.

(8)175

From a purely physical perspective, Eq. 8 describes a fluid membrane of variable thickness driven by its own weight that

evolves in time due to advection.
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3.4 Basal friction

Basal shear stress can be generally expressed as a function of the sliding velocity ub and the effective pressure N , i.e., τb =

f(ub,N ). The physical properties of the material over which the ice may potentially slide can correspond either to a hard180

bedrock flow (e.g., Weertman, 1957) or to a Coulomb-plastic rheology (e.g., Tulaczyk et al., 1998). Moreover, the influence of

the sliding velocity on τb is often represented by a power friction law, although a regularization term u0 accounting for local

properties of the bed has been shown to outperform such a power law in both pressurized ice experiments (Zoet and Iverson,

2020) and observations (Minchew et al., 2018; Stearns and van der Veen, 2018; Joughin et al., 2019)

As a result, Nix can calculate the basal shear stress (i.e., basal drag) via two independent formulations: a pseudo-plastic185

power law (Schoof, 2010; Aschwanden et al., 2013) and the regularized-Coulomb law (Schoof, 2005; Joughin et al., 2019).

The former reads:

τ b =−cb

( |ub|
u0

)q
ub

|ub|
, (9)

where u0 = 100 m/yr and cb is a spatially-variable friction coefficient defined below. We shall focus on two particular cases of

the pseudo-plastic law based upon the choice of the exponent q. Namely, the linear law (q = 1; e.g., Quiquet et al., 2018) and190

the purely plastic law (q = 0).

On the other hand, the regularized-Coulomb formula is given by:

τ b =−cb

( |ub|
|ub|+ u0

)q
ub

|ub|
, (10)

behaving as a power law for small sliding velocities (i.e., ub < u0) whilst always yielding a bounded friction value for arbitrarily

high velocities (i.e., ub ≫ u0). Following Zoet and Iverson (2020), we set q = 1/5 and u0 = 100 m/yr by default to ensure a195

reasonable transition to the steady-state shear stress supported by the till bed. The same study empirically established that q

remains unaffected by variations in the detailed bed surface geometry.

The basal drag coefficient β is usually defined as:

β = cb(x)N, (11)

where N = ρgH is the overburden pressure exerted by the ice column and cb(x) is a coefficient that reflects the bedrock200

characteristics.

Nevertheless, for simplicity and consistency with prior benchmark experiments as MISMIP (Pattyn et al., 2012), the model

also allows to represent basal friction as:

τb = Cuq, (12)

with the chosen value of C = 7.624× 106 Pa m−1/3 s1/3 and q = 1/3, a sliding velocity of about 35 m yr−1 yields a basal205

shear stress of 80 kPa.
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3.5 Thermodynamics

The ice temperature in the flow line depends on the two spatial dimensions x and z (horizontal and vertical, respectively)

along with time (i.e., θ = θ(x,z, t)). Heat transfer is further considered to occur due to vertical diffusion, both horizontal and

vertical advection and internal heat deformation. Energy conservation is ensured in a classical approach by a balance equation210

(neglecting horizontal diffusion, Greve and Blatter, 2009):




ρcθt = kθzz − ρc(uθx + wθz) +Φ, x ∈ I, z ∈ L, t > 0,

θ = θ0, x ∈ I, z ∈ L, t = 0,

θz =−G/k, x ∈ I, z = ∂L−, t > 0,

θ = θL, x ∈ I, z = ∂L+, t > 0,

(13)

where k is the ice conductivity, c is the specific heat capacity, Φ = 4ηε̇2 denotes the internal strain heating, G is the geothermal

heat flow, θ0 is the initial temperature profile and θL surface ice temperature. The ∂L± symbols denote the upper and lower

vertical boundaries, respectively.215

The energy balance is discretised using an upwind scheme with a forward Euler step and centred differences for the spatial

derivatives (see Appendix A4 for a detailed description).

3.6 Viscosity

We consider Glen’s flow law (Glen 1955; Nye, 1957) to relate the shear stress, the ice temperature and the pressure of isotropic

polycrystaline ice. Formation of anistropic fabric is considered via a flow enhancement factor.220

As shown in Section 3.1, the Blatter-Pattyn stress balance equations define the effective viscosity as:

η =
B

2
(
ε̇2 + ε̇2

0

) 1−n
2n , (14)

where B is the ice hardness, n = 3 is the exponent in Glen’s flow law, ε̇2 is the effective strain rate and ε̇2
0 is a regularization

factor to elude potential singularities when velocity gradients are zero. Notably, for a 2D model with explicit thermodynamics,

the viscosity expression further simplifies the expression of B and ε̇2:225

B = A(θ)−1/n, (15)

ε̇2 =
(

∂u

∂x

)2

+
1
4

(
∂u

∂z

)2

, (16)

where n = 3 is the Glen-flow exponent. A(θ) is the rate factor and follows an Arrhenius law:

A(θ) = A0Ee−Q/Rθ, (17)

A0 and Q are the temperature-dependent rate factor coefficient and activation energy, respectively (Greve and Blatter, 2009).230

Ef is the so-called enhancement factor, commonly used to approximate the effect of anisotropic flow. It is possible to specify
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different values of the enhancement factor for different flow regimes (shear or stream). Typical values of the enhancement

factor for the shearing and streaming regimes are Eshr = 3.0 and Estrm = 0.7 (Ma et al., 2010), respectively. Here we use for

both a default value of E = 1.0.

For the vertically-integrated stress balance models (i.e., DIVA and SSA), Eqs. 14 and 15 are slightly modified by computing235

the vertically averaged quantities η̄ and B̄ following the generic formula f̄ = 1
H

∫ h

b
fdz.

3.7 Grounding line

Nix aims at simulating the flow of a sliding ice sheet. The reason behind only explicitly modeling the grounded ice upstream

of the grounding line lies on the fact that the longitudinal stress at x = L is simply a function of the ice thickness H(x = L)

(Schoof, 2007) and therefore, the behaviour of grounded ice and the location of the grounding line itself are completely240

independent of the floating part, since the model only considers one horizontal dimension.

Neither the potential distinct shapes of the ice shelf (e.g., due to sub-shelf melting) nor the calving affect the dynamics of

grounded ice. Thus, the flotation condition and the stress condition (Eq. 8) can be considered as boundary conditions at the

grounding line. These two conditions are in fact sufficient to study the ice thickness evolution and the grounding-line migration.

Following Hindmarsh (1996), an explicit expression for the grounding-line migration rate L̇ can be readily obtained from a245

total differentiation of the flotation condition:

L̇≡ dL

dt
=

ϱDt + (ūH)x−S

Hx− ϱDx
, (18)

where D is the water depth at the grounding line and ϱ = ρw/ρ is the water-to-ice density ratio, respectively.

More recent studies suggest that the maximum terminus thickness is bounded by the yield strength of ice τc (Bassis and

Walker, 2012; Bassis and Jacobs, 2013). Hence, a maximum ice thickness at the terminus occurs when the stress exceeds the250

depth integrated strength of ice:

Hmax =
τc

ρg
+

√(
τc

ρg

)2

+
ρw

ρ
D2, (19)

thus constraining the terminus thickness such that H(x = L,t)≤Hmax.

This approach eludes semi-empirical parametrizations of the calving (as in Schoof, 2007) and further provides a lower bound

on the rate of grounding line advance (Bassis et al, 2017). Combining the continuity equation and the material derivative of255

Hmax (Eq. 19), an expression for the rate of advance/retreat of the terminus can be readily obtained:

dL

dt
≥ Ht

Hmax
x −Hx

, (20)

at x = L. Negative sign indicates retreat.

Inequality Eq. 20 is analogous to the grounding-line migration derived for a marine ice sheet by Schoof (2007a; 2007b).

Particularly, if Hmax is given by the flotation condition, Eq. 20 exactly reproduces the grounding line position derived by260

Schoof (2007b) (Bassis et al., 2017).
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3.8 Sub-shelf melting parametrization

Oceanic melting beneath ice shelves is the main driver of the current mass loss of the Antarctic ice sheet. For this reason, Nix

considers various melting parameterisations from simple scalings with far-field thermal driving (e.g., Favier et al., 2019).

We adhere to local yet physically-based parametrizations based on a more complex ocean circulation models (Grosfeld et al.,265

1997). Namely, the linear dependency can be expressed as:

M = γT
ρwcpo

ρLi
(T −T0) , (21)

where γT is the heat exchange velocity, T0 is a reference temperature, cpo the specific heat capacity of the ocean mix layer and

Li the latent heat of fusion of ice.

This linear formulation with a constant exchange velocity γT assumes a circulation in the ice-shelf cavity that is independent270

from the ocean temperature. This assumption is neither supported by modelling (Holland et al., 2008; Donat-Magnin et al.,

2017) nor by observational studies (Jenkins et al., 2018) that suggest a larger circulation in response to a warmer ocean,

subsequently increasing melt rates. One manner to account for this positive feedback is by considering a quadratic dependency

(Holland et al., 2008):

M = γT

(
ρwcpo

ρLi

)2

(T −T0)
2
. (22)275

These two parametrization have been employed in numerous studies (e.g., review in Asay-Davis et al., 2017; Favier et al.,

2019). By default, Nix uses this quadratic parametrization.

4 Model numerics

4.1 Moving grid transformation

Nix uses a nonuniform moving spatial grid that explicitly solves the grounding line position. By default, the grid points280

distribution yields higher resolution near the grounding line following a polynomial or an exponential law. Evenly-spaced

grids are also possible by setting the polynomial order to one.

As already noted by Pattyn et al. (2012), moving grid models are presumably the best choice from a numerical perspective,

as the grounding line position L(t) is part of the solution and no interpolations are further required. Given that neither the

terminus position L(t) (i.e., the grounding line) nor the ice thickness H(x,t) are fixed in time, we adopt a moving grid to trace285

their positions:

σ =
x

L(t)
, ζ =

z− b(x)
H(x,t)

, τ = t, (23)

thus mapping the time-dependent intervals 0≤ x≤ L(t) and 0≤ z ≤H(x,t) into fixed ones 0≤ σ ≤ 1 and 0≤ ζ ≤ 1. The

variable τ is merely introduced to distinguish partial derivatives defined holding both σ and ζ constant (as opposed to hold x

and z constant).290
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Figure 2. Nix staggered grid definition follows an Arakawa-C scheme (Arakawa and Lamb, 1977). The number of grid points the the

horizontal r and vertical p is fixed in time (see Appendix A). As we employ a moving grid, the position of the last horizontal point (r−1/2)

explicitly tracks the grounding line L(t). The grid spacing in the vertical ∆ζj and horizontal ∆σi axis can be spatially dependent as Nix

allows for nonuniform grids. Ghost points required to satisfy the boundary condition at the ice divide are noted in grey edge colour.

As a result, the corresponding derivatives contain additional terms (directly applying the Leibniz rule):

∂

∂z
=

1
H

∂

∂ζ
, (24)

∂

∂x
=

1
L

∂

∂σ
− 1

H

[
(1− ζ)

∂b

∂σ
+ ζ

∂H

∂σ

]
∂

∂ζ
, (25)

∂

∂t
=

∂

∂τ
− σ

L

∂L

∂τ

∂

∂σ
− ζ

H

∂H

∂τ

∂

∂ζ
. (26)

For simplicity and analogously for the Blatter-Pattyn approximation, the advection equation coupled with the SSA/DIVA295

stress balance can be written in terms of the new variables. Thus, Eq. 8 reads:




LHτ −σL̇Hσ + (uH)σ = LS(σ,τ), σ ∈ Ĩ, τ > 0

(4η̄Huσ)σ + τL2 = L2ρghσ σ ∈ Ĩ.

H = H0, σ ∈ Ĩ, τ = 0.

Hσ = 0, σ = 0, τ > 0.

u = 0, σ = 0,

4ηuσ =
(
ρgH2− ρwgD2

)
L/2, σ = 1,

(27)

where Ĩ ∈ [0,1] is the transformed interval and the subscripts denote partial differentiation.
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Likewise, the third evolution equation that determines the behaviour of our system (i.e., the energy balance, Eq. 13) can be

readily obtained in terms of our new variables:300




ρc
[
Lθτ −σL̇θσ − ζLHτθζ/H

]
=

kLθζζ/H2− ρcu [θσ − (bσ + ζHσ)θζ/H] +LΦ, σ ∈ Ĩ, ζ ∈ L̃, τ > 0,

θ = θ0, σ ∈ Ĩ, ζ ∈ L̃, τ = 0,

θz =−G/k, σ ∈ Ĩ, ζ = ∂L̃−, τ > 0,

θ = θL, σ ∈ Ĩ, ζ = ∂L̃+
, τ > 0,

(28)

where the transformed intervals are again denoted by Ĩ and L̃ respectively.

4.2 Spatial integration

4.2.1 Implicit scheme and Picard iteration

The lateral boundary condition is in fact non-trivial to implement using an explicit scheme (e.g., a shooting-like method)305

since it depends on the first spatial derivative of the velocity at the terminus position σ = 1, which might lead to convergence

issues. Nix thus includes an alternative velocity solver based on an implicit discretization shcheme of all stress balance models

described in Section 3 (numerical details in Appendix 3).

To account for the potential non-linearity in the velocity as a consequence of the viscosity and basal friction τ(u), the implicit

solver uses a initial guess τ0 and η0 and then enters a Picard iteration (see Theorem 2.2 in Teschl, 2012). A solution is hence310

obtained when the convergence criterion:

||un−un−1||
||un|| < ϕtol (29)

is satisfied. The tolerance ϕtol can be set by the user but the default value is 10−6.

For the Blatter-Pattyn approximation, a sparse matrix must be solved in each Picard iteration. To do so, we apply a Bi-

conjugate Gradient Stabilized method (commonly known as BiCGSTAB) with an Incomplete preconditioner (ILUT). On the315

contrary, the DIVA/SSA approximation solely requires solving a tridiagonal matrix at in each Picard iteration step, where the

ice viscosity is updated. A tridiagonal solver algorithm is implemented as a subroutine within Nix to avoid additional external

dependencies (see Appendix A).

4.3 Time integration

Once the velocity field u(x,z) is obtained for a given set of boundary conditions and a particular ice thickness initial distribution320

H(σ,τ0), we can compute the time evolution of the latter as a consequence of the advection imposed by ū(x) and the surface

mass balance S(x,t) (Eq. 7). Thus, this coupled system formed by the momentum conservation and the continuity equation

(Eq. 27) is fully integrated in two steps: first, a spatial integration to obtain the velocity velocity (where the ice viscosity
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is known); and then, a forward time integration to determine the new ice thickness. Lastly, the energy balance equation is

integrated to compute the new temperature field.325

Specifically, for a given initial ice thickness distribution H(x,t0), the stress balance equation is spatially integrated, thus

yielding the velocity u(x,z). Then, the solution u(x,z) (at t0) and H(x,t0) allow us to integrate the continuity equation

forward in time, consequently obtaining H(x,t0+∆t). Additionally, this new ice thickness distribution yields θ(x,z, t0+∆t),

thus constituting a self-consistent iterative method.

5 Methods and experimental set-up330

Prior to any comprehensive description of the results, we must test whether Nix is capable of reproducing the benchmark tests

of the "Marine Ice Sheet Model Intercomparison Project" (MISMIP, Pattyn et al., 2012). We will perform all three MISMIP

experiments: relaxation to steady state on a downward-sloping bed (Exp. 1), reversal of parameter changes (Exp. 2) and

hysteresis on an overdeepening bed (Exp. 3). The aim of Exp. 1 was to show that there should be a single stable equilibrium

profile on a downward-sloping bed. A backwards parameter relaxation in Exp. 2 was thought to demonstrate that grounding335

line positions should be identical during advance and retreat, as steady states are unique. Exp. 3 was then built to assess whether

ice sheet models exhibit hysteresis behaviour and has become a benchmark for testing the capability of numerical models to

simulate grounding-line migration

First, we adopt the exact same problem definition so as to perform a one-to-one comparison. Next, we run an ensemble of

simulations to address the question of whether the hysteresis with respect to model parameters variations found in in MISMIP340

Exp. 3 is still present even if the thermal state of the ice can evolve in time (as opposed to the idealised constant ice factor

set in Pattyn et al., 2012). Fixing a value of the ice factor A uniquely determines a constant ice temperature, since A(T ′) is

a bijective function of the temperature. We therefore impose an atmospheric forcing (i.e., the ice surface boundary condition)

that spans a wide range of realistic temperatures. As the geothermal heat flux provides a positive energy contribution, we

expect a different thermal equilibrium profile for each imposed surface temperature. This yields a different viscosity field for345

each scenario, consequently leading to a different equilibrium velocity. As noted by Sergienko et al. (2013), the temperature

profile is mostly determined by horizontal advection in streaming regions, thus bringing forward a strongly non-linear feedback

worthy of attention.

Lastly, we force the system via ocean temperature anomalies with respect to a reference value T0, so that ∆Toce = Toce−T0,

whilst holding constant the air temperature throughout the simulation. We then convert these temperature anomalies into sub-350

shelf melting at the grounding line (e.g., Favier et al., 2019) by computing any of the parametrizations shown in Section 3.8.

Even though the air temperature is held constant (i.e., the boundary condition of our heat problem), the thermal state of the

ice may evolve as both the thickness and extent are perturbed by the changing sub-shelf melting at the grounding line. Our

particular ocean forcing consist of steps of 0.5ºC evenly-spaced in time by 30 kyr to ensure equilibration, from ∆Toce = 0 to a

maximum applied anomaly of 7ºC. Then, we reverse the forcing to recover the unperturbed state (i.e., zero anomaly).355
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It is worth noting that the basal friction remains identical to MISMIP experiments both for the atmospheric and oceanic

forcings. This means that no additional dependency of friction on temperature or hydrology is considered.

Table 1. Nix suite of experiments. The first row replicates MISMIP benchmark tests, whereas MISMIP-therm explores the hysteresis be-

haviour of a thermomechanically active ice sheet in two different forcing scenarios: amospheric and oceanic.

Experiment name Forcing variable Thermodynamics Melting/calving at GL

MISMIP (Exp. 1, 2 and 3) Ice rate factor A No No

MISMIP+therm (Exp. 3)

Air temperature Tair Yes No

Ocean temperatures anom. ∆Toce

No (A = const.) Yes

Yes (A = f(T )) Yes

6 Results

6.1 MISMIP benchmark experiments

As a performance test for our flowline model, we have replicated the three main MISMIP experiments shown in Pattyn et al.360

(2012). In general, results obtained (Fig. 3) reproduce the results shown for models that employ a stretched coordinate system

as ours.

We find no stable equilbirum states for the upward-sloping bed of Exp. 3 (Fig. 3c and 3c), in agreement with the theoretical

considerations by Weertman (1974) and Schoof (2007). Namely, as we gradually decrease A (i.e., increasing ice viscosity),

the grounding line postition advances accross a downward sloping bed until the upward-sloping region is reached (Fig. 3c).365

The ice flux at the grounding line then continuous to increase due to the A forcing applied. Illustrated by Fig. 3d, when the ice

flux is large enough so that there exists a stable solution beyond the unstable region (at the right-hand side of the bedrock local

maximum in Fig. 3c), the grounding line traverses the upwards-sloping sector reaching the new stable solution.

Additionally, we repeat the three MISMIP experiments using the more sophisticated velocity solvers available in Nix: DIVA

and Blatter-Pattyn. A direct inspection of Figs. 3b and 3d reveals that the solutions are nearly identical to the simpler SSA370

version, both for a downwards sloping and the overdeepending beds. The hysteresis is particularly well captured in all three

Stokes approximations and thus we will use the SSA solver in the remainder of the current work to minimise computational

costs unless otherwise stated.

6.2 MISMIP + thermodynamics

To exploit the fact that Nix is fully coupled with a thermodynamic solver, we further investigate the equilibrium states (Schoof,375

2007) when the system is forced via two scenarios: air temperatures Tair and ocean temperature anomalies ∆Toce. Both

describe a more realistic scenario with slight variations. The former implies the same underlying perturbation mechanism

(compared to the idealised rate factor A forcing): temperature changes within the ice modify its viscosity so that the grounding
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Figure 3. Left column: ice sheet extent. Right column: grounding-line position as a function of the MISMIP forcing A for three independent

Stokes approximations: SSA, DIVA and Blatter-Pattyn. Grey line represents the analytical solution at equilibrium from Schoof (2007):

solid line, stable branch; dashed line, unstable. Markers represent Nix results after the equilibration time given in Pattyn et al. (2012). Bed

geometries correspond to Experiments 1 and 2 (first row) and Experiment 3 (second row), respectively.
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line migrates to reach a new equilibrium position. Nevertheless, when forcing the system with ocean temperature anomalies

∆Toce while keeping the air temperature constant, we perturb the system via an ice flux at the grounding line. By separately380

studying each mechanism, we can determine whether a marine terminating ice sheet might undergo hysteresis in different

scenarios.

6.2.1 Air temperature Tair forcing

At the aim of building a thermomechanically active version of MISMIP experiments, the natural choice is to convert the

idealised ice rate factor forcing in MISMIP into temperatures (via an Arrhenius law, Eq. 17) and use it explicitly as a forcing385

of the new experimental setup. Nevertheless, the corresponding temperature range (see grey shading in Fig. 4a) does not yield

a full advance or retreat of the ice sheet.

This significantly reduced grounding line migration is a consequence of our active thermal evolution of the ice. For a

given air temperature value Tair, the geothermal heat flux and basal frictional heat ensure that the lower half of the ice sheet

remains warmer, thus leading to an overall less viscous ice sheet than the corresponding value of A(Tair) if the entire ice sheet390

temperature is implicitly set to Tair as it done in Pattyn et al. (2012). To overcome this issue and obtain enough grounding-line

migration, we must span a wider yet realistic atmospheric temperature range (red line in Fig.4b).

Figure 5 illustrates the implications on the thermal state and the extent of the ice sheet under the air temperature forcing

depicted in Fig. 4a. We note the temperature proximity to melting point at the base in all panels due to the combined contribution

of geothermal heatflux and frictional heat dissipation. Even so, most of the ice sheet temperature is determined by Tair and395

determines the overall extent through the viscosity.

We can still compare the grounding line position with the semi-analytical results in Schoof (2007) by converting the ice

rate factor A(T ) to the corresponding temperature. Two remarks are worth noting here. First, the corresponding temperature

values for the MISMIP forcing A(T ) are relatively high (always above −25ºC) compared to mean surface temperatures in

Greenland and Antarctica (Dee et al., 2011). Second, the ice-sheet region that best reproduces the semi-analytical solutions is400

the grounding line base (i.e., x = L, nz = 1). In other words, for an active thermodynamics, the air temperature forcing must

be strong enough to perturb the entire ice column down to the base so that the grounding line undergo migration. Otherwise,

the insulating effect of the ice leaves the ice sheet base nearly unchanged with an equilibrium temperature strongly influenced

by the geothermal heat flux (Moreno-Parada et al., 2022).

The warmest atmospheric boundary condition leads to a grounding line base near the melting point (Fig. 4d). As the air405

temperature is cooled down to −80ºC, this region also diminishes its temperatures, but with a notably reduced amplitude

(Fig. 5). Unlike the ice surface, where the forcing temperature falls from −15ºC to −80ºC, the grounding line base reaches a

minimum temperature of −23ºC (Fig. 4c).

In terms of the hysteresis behaviour, the jump over the retrograde region of the bed geometry occurs at a grounding line

basal temperature of −20ºC, far above the semi-analytical counterpart. On the contrary, as the system is forced with higher410

temperatures, the retreat takes place at neatly at the same temperature predicted by the boundary layer theory −18ºC.
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Figure 4. Overdeepened bed experiment. (a) Red solid line: Nix air temperature forcing Tair(t), shaded grey: range spanned by MISMIP ice

rate factor conversion to temperatures. (b) Grounding line position as a function of the grounding line ice temperature immediately above the

base level nz = 1. Semi-analytical results from Schoof (2007) are converted into temperatures by applying a simple Arrhenius law in the ice

rate factor A(T ).

6.2.2 Ocean temperature anomalies ∆Toce forcing

In this scenario, we apply ocean temperature anomalies with respect to a reference value T0, so that ∆Toce = T −T0. We then

convert these temperature anomalies into sub-shelf melting at the grounding line (e.g., Favier et al., 2019) by computing any

of the parametrizations shown in Section 3.8.415

We first perform two identical hysteresis experiments forced by ∆Toce that solely differ on the thermodynamic treatment

of the ice: an idealised fixed ice rate factor A (Fig 6, blue curve) and a more realistic active thermodynamic scenario with

a constant boundary condition Tair (Fig 6, red curve). Results show that active thermodynamics narrows the width of the

hysteresis loop. This behaviour resembles the one obtained for the atmospheric-forced simulations (Fig. 4), where we find a

clear narrowing of the hysteresis width compared to the semi-analytical solutions.420

In addition to the experiments carried out to assess the importance of thermodynamics on the hysteresis behaviour of a marine

terminating ice sheet, we have performed a sensitivity study to quantify the differences caused by parameter uncertainty (e.g.,

Favier et al., 2019), particularly on the heat exchange velocity γ.

Figure 7 illustrates the high sensitivity to that stems from the heat exchange velocity parameter γ. It is worth noting that the

retreat is much more sensitive to the particular γ choice than the later advance as the anomalies approach zero. Namely, all425

intermediate values advance at ∆Toce = +1.5ºC. On the contrary, the retreat occurs for a wider range of temperature anomalies

from +4.5ºC to +6.5ºC for γ = 2.1× 10−5 m/s and 1.3× 10−5 m/s, respectively.

For a quadratic sub-shelf parametrisation (Eq. 22), the retreat takes place at ∆Toce = +2.5ºC for the highest heat exchange

velocity calibrated in Favier et al. (2019), i.e., γ = 100× 10−5 m/s. Even the lowest parameter value presented in the same
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Figure 5. Ice sheet extent and temperature distribution for the prograde (a, c) and the overdeepened (b, d) bed geometries. Retreated (a, b)

and advanced configurations (c, d) under the air temperature forcing in the thermodynamically active scenario (i.e., A = f(T )). Left column:

t = 30 kyr. Right column: t = 250 kyr. Colours indicate the ice temperature at the given time.
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Figure 6. (a) Hysteresis experiments for the overdeepened bed geometry forced via slowly-varying ocean temperature anomalies ∆Toce(t).

Blue: constant ice rate factor A = 10−26 Pa3s. Red: active thermodynamics A = f(T ) with fixed boundary condition Tair =−80 ºC. Each

forcing step is ran for 40 kyr to ensure quasi-equilibrium (solid dots). A quadratic sub-shelf parametrisation is employed in both scenarios.

Heat exchange velocity parameter γ = 5× 10−4 m/s. (b) External forcing time series: ocean temperature anomalies ∆Toce(t).

20

https://doi.org/10.5194/egusphere-2023-2690
Preprint. Discussion started: 4 December 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 7. Sensitivity tests. As in Fig. 6a, but for (a) Constant ice rate factor A = 10−26 Pa3s. (b) Active thermodynamics with fixed Tair.

Values of the heat exchange velocity parameter γ are given in 10−5 m/s and fall within the spanned range in Favier et al. (2019).

work also presents a retreat if the ocean temperature anomalies reach ∆Toce = +6.5ºC. Multiple different values of γ advance430

back at nearly the same particular forcing value ∆Toce 7, whereas the retreat happens at significantly different values. To

illustrate this, we can take the hysteresis loops corresponding to γ = 20× 10−5 m/s, 25× 10−5 m/s, 35× 10−5 m/s. They

respectively retreat at ∆Toce = +5.5ºC, +5.0ºC and +4.5ºC, whereas the advance take place at precisely the same anomaly

value ∆Toce = +2.5ºC.

7 Discussion435

The results of our MISMIP benchmark experiments are successful given the good agreement between our numerical solution

and the semi-analytical work of Schoof (2007) (Fig. 3). From a modeling perspective, our grounding line position is slightly

shifted upstream, like in other moving grid models shown in Pattyn et al. (2012). Nevertheless, a sensitivity test to spatial

resolution (not shown) shows an asymptotic convergence towards the semi-analytical solution, thus providing robustness to

our results. A further comparison among Nix velocity solvers show an excellent agreement on the equilibirum solutions for440

both bed geometries herein studied: downward sloping and overdeepening.

For active thermodynamics and air temperature forcing, the corresponding temperature range spanned by MISMIP ice rate

factor A(T ) does not yield a full advance/retreat of the ice sheet. This can be understood by the insulating effect of the ice

sheet. The MISMIP idealised forcing with varying rate factor simultaneously modifies the ice viscosity over the entire domain,

whereas the real temperatures given by an active thermomechanical solver will adjust to the new surface temperature (Fig. 4).445

This further means that the impact on the viscosity is weaker as there are other heat sources as the basal friction dissipation

and the geothermal heat flow.
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The stability of the system is accordingly perturbed, as shown in Fig. 6. Particularly, the bistability of the system is reduced,

in the sense that a narrower range of perturbation values have two stable solutions. To illustrate this, for a rate factor A = 10−26

Pa3s, the oceanic anomaly perturbation ranges from ∆Toce = +1.5 to +6.5ºC, whereas for the thermomechanically active450

scenario with constant Tair, the bistability solution is only found for smaller range from a ∆Toce = +3.0 to +6.0ºC. This can

be understood as the result of a thermal adjustment that occurs when the temperature of the ice can evolve in time. As the

forcing changes over time (i.e., the ocean temperature anomalies), the ice flux at the grounding line is modified and the inland

ice thickness is perturbed accordingly. The new ice thickness distribution implies a slightly different temperature solution and

the viscosity is consequently modified. Knowing that the viscosity field determines the velocity solution via the stress balance,455

we therefore find a clear feedback that allows for the ice sheet to adjust if thermodynamics are active.

It is worth noting the fundamental role of vertical advection if the system is to be forced with air temperatures. Both the

magnitude of vertical advection and its vertical dependency determine the temperature distrubution within the ice (Moreno-

Parada et al., 2022). Setting the vertical advection at the surface equal to the accumulation (0.3 m/yr) is a standard choice and

becomes necessary if a full advance/retreat is to be simulated. Otherwise, most of the ice interior remains too warm due to460

geothermal and frictional heat sources and the vertically-averaged viscosity remains too low for the grounding line to advance

(not shown here).

We must also discuss the calibrated values of γT (Favier et al., 2019). The impact on the hysteresis behaviour is interesting as

it does not imply a symmetric effect on the retreat/advance of the ice sheet (Fig. 7). Strictly speaking, the temperature anomaly

necessary for the ice sheet to retreat is far more sensitive to the particular γ value than the anomaly necessary to advance.465

One potential explanation for this interesting behaviour rests on the very nature of the melting/calving parametrisation at the

grounding line. Since M grows with ∆Toce (Eq. 21 and 22), the difference among M values for a fixed γ increases with the

temperature anomaly. Hence, knowing that the advance occurs when the ice flux value reaches a certain value at the grounding

line, the temperature anomaly range covered by different γ that yield such a melting/calving values is smaller (as ∆Toce → 0).

8 Conclusions470

We have presented and described the thermomechanically-coupled 2D model Nix. There are a number of novelties compared

to other two-dimensional models: a stress balance given by the Blatter-Pattyn approximation, a fully coupled thermodynamics

solver, explicit calculation of the grounding line by a stretched coordinate system, stochastic boundary conditions capability,

adaptative time stepping and potential melting/calving at the grounding line. Nix model allows the user to choose between

explicit and implicit solvers for the main differential equations, while numerical stability is ensured by a staggered grid.475

First, we have tested Nix’s performance by reproducing Experiments 1, 2 and 3 from MISMIP benchmarks (Pattyn et al.,

2012). Results were further compared to semi-analytical solutions (Schoof, 2007) yielding an excellent agreement for all Stokes

approximation available in Nix: SSA, DIVA and Blatter-Pattyn. In general, our grounding line position slightly understimates

the boundary layer results in Schoof (2007), likewise all moving-grid models participating in MISMIP. The well-known hys-

teresis behaviour in Experiment 3 is also well captured.480
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We increase the complexity of the system described by solving the associated heat problem. This allows us to investigate to

which extent the hysteresis behavior under parameter variations is perturbed. In so doing, we designed two different suites of

experiments regarding the variable forcing of the system: air temperatures Tair and ocean temperature anomalies ∆Toce.

When forcing with air temperatures, the hysteresis loop width is reduced as the dynamics are perturbed via the ice viscosity

dependency on temperature. In an idealised overdeepened bed geometry, it is necessary to reach air temperatures below−70ºC485

for the grounding line to advance beyond the bedrock local maximum.

If the system is instead forced by ocean temperature anomalies (i.e., melting/calving at the grounding line), we find that the

hysteresis behaviour persists. Notably, the ocean temperature anomaly at which the ice sheet retreats depends on the particu-

lar heat exchange parameter. Our results show that the quadratic parametrisation retreats at ∆Toce = +6.0ºC of temperature

anomaly. The system advances back to its unperturbed state at ∆Toce = +3.0ºC for the quadratic parametrisation.490

More generally, irrespective of the particular external forcing applied (i.e., oceanic or atmospheric), a thermodynamically

active ice sheet shows a narrowing hysteresis loop as a result of the internal feedback among ice temperature, stress balance

and viscosity.
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Appendix A: Discretization schemes

We herein elaborate on a thorough description of the discretization schemes of our flow line model where we follow the

ordinary notation q(σi, ζj , τn)≡ qn
i,j .

The position in the spatial coordinates is then given by σi = i∆σi+1/2 and ζj = j∆ζj+1/2 and τn = n∆τ . The fractional510

index implies that the point (i + 1/2, j) lies between (i, j) and (i + 1, j) and analogously for the vertical index j. Note that

Nix allows for a nonuniform spatial grid where the spacing between two consecutive points follows a desired distribution

(polynomial or exponential). This yields high resolutions near the grounding line whilst minimising the total number of grid

points. The horizontal index i ∈Wr = {0,1,2, ..., r} where r is the number of points in which the horizontal axis is divided.

Likewise, the vertical index follows j ∈Wp = {0,1,2, ...,p} where p is the number of vertical layers.515

Appendix: A1: Blatter-Pattyn stress balance discretization.

The discretization is straightforward for an Arakawa-C grid. The position of the grounding line L(t) is located on the velocity

grid (following Vieli and Payne, 2005). Thus, if the horizontal axis is divided in r points, the ice thickness grid ranges i =

0,1, ..., r− 1, whereas the velocity grid (staggered) indexes read i = 1/2, 3/2, ..., r− 1/2.

The Blatter-Pattyn stress balance can be written as:520

2
L2∆σi+1/2

[
ηi+1,j

ui+3/2,j −ui+1/2,j

∆σi+3/2 + ∆σi+1/2
− ηi,j

ui+1/2,j −ui−1/2,j

∆σi+1/2 + ∆σi−1/2

]
+

1
2(Hi)

2 ∆ζj+1/2

[
ηi,j+1

ui,j+3/2−ui,j+1/2

∆ζj+3/2 + ∆ζj+1/2
− ηi,j

ui,j+1/2−ui,j−1/2

∆ζj+1/2 + ∆ζj−1/2

]
= ρg

hi+1−hi

L∆σi+1/2
, (A1)

We thus have a linear system of 6× r× p unknowns that can be solved applying standard linear algebraic solvers. For each

timestep, we build a matrix of coefficients with dimension (rp)× (rp):

A
(rp)×(rp)

∗ u
(rp)×(1)

= F
(rp)×(1)

(A2)

Since our discretization stencil includes 6 points: (i + 3/2, j), (i + 1/2, j), (i− 1/2, j + 1), (i, j + 3/2), (i, j + 1/2) and525

(i, j− 1/2), we obtain a sparse matrix that allows for optimised inversion. For r = 500 and p = 25, only a 0.048% of the

coefficient matrix are nonzero entries:
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


αi−2M,j . . . αi−M,j . . . αi,j−1/2 αi,j+1/2 . . . αi+M,j . . . αi+2M,j







ui−3/2,j

...

ui−1/2,j

...

ui,j−1/2

ui,j+1/2

...

ui+1/2,j

...

ui+3/2,j




=




Fi−3/2,j

...

Fi−1/2,j

...

Fi,j−1/2

Fi,j+1/2

...

Fi+1/2,j

...

Fi+3/2,j




(A3)

Appendix: A2: DIVA/SSA stress balance discretization.

The discretization is straightforward for a staggered grid. The position of the grounding line L(t) is located on the staggered530

grid (following Vieli and Payne, 2005). Thus, if the domain is divided in n points, the ice thickness grid ranges i = 0,1, ..., r−1,

whereas the velocity grid (staggered) indexes read i = 1/2, 3/2, ..., r− 1/2.

The SSA stress balance can be then written as (note that the factor 2 difference in Eq. B.15, Vieli and Payne, 2005 since their

viscosity definition is not preceded by 1/2 is cancelled by the average between two consecutive grid lengths ∆σ necessary to

compute the velocity gradients):535

2
L2∆σi+1/2

[
ηi+1Hi+1

ui+3/2,j −ui+1/2,j

∆σi+3/2 + ∆σi+1/2
− ηiHi

ui+1/2,j −ui−1/2,j

∆σi+1/2 + ∆σi−1/2

]

−β2
i+1/2ui+1/2 = ρg

Hi+1 + Hi

2
hi+1−hi

L∆σi+1/2
, (A4)

where the friction coefficient β2 reads:

βi+1/2 = Cum−1
i+1/2, (A5)

so that τb = β2u.

Assuming our domain is divided in n points, the corresponding tridiagonal matrix is built at every time step as (where we540

have dropped the super-index to lighten the notation):



B0 C0

A1 B1 C1

A2 B2
. . .

. . . . . . Cr−2

Ar−1 Br−1







u1/2

u3/2

...

ur−3/2

ur−1/2




=




F0

F1

...

Fr−2

Fr−1




(A6)
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where A0 = Cn−1 = 0 by definition.

The non-zero entries of the matrix and the inhomogeneous term read:

Ai = γiηiHi

Bi =−γi (ηi+1Hi+1 + ηiHi)−β2
i

Ci = γiηi+1Hi+1

Fi = ρg
Hi+1 + Hi

2
hi+1−hi

L∆σi+1/2
(A7)545

where γi = 2/(L∆σi+1/2)2.

For the edge of the matrix (i.e., i = n− 1), we use the following values:

Ar−1 = ηr−1Hr−1

Br−1 =−γr−1 (ηr−1Hr−1)−β2
n−1

Cr−1 = 0

Fr−1 = ρgHr−1
hr−1−hr−2

L∆σr−3/2
(A8)

For the boundary values, we set (note that, in the staggered grid, u1/2 is the very first velocity value of the domain):

u1/2 =−u3/2,

ur−1/2 = ur−3/2 +
L∆σr−3/2

8ηr−1

(
ρgH2

r−1− ρwgD2
)

(A9)550

where D is the bedrock depth below sea level, the first equality yields from symmetry arguments at the ice divide (i = 1) and

the second implies that the ice momentum is equated by the hydrostatic pressure of the water.

Appendix: A2: Advection discretization

For the advection equation we also chose an implicit scheme for numerical stability:

Hn+1
i −Hn

i

∆τn
= σi

L̇n

Ln

Hn+1
i+1 −Hn+1

i−1(
∆σi+1/2 + ∆σi−1/2

) −
2
(
qn+1
i+1/2− qn+1

i−1/2

)

Ln
(
∆σi+1/2 + ∆σi−1/2

) + Sn
i , (A10)555

where the ice flux is defined as:

qi+1/2 = ui+1/2
Hi+1 + Hi

2
(A11)

However, at the grounding line we use:

qr−1/2 = ur−1/2Hr−1 (A12)
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The advection equation can be rewritten as:560

AiH
n+1
i−1 + BiH

n+1
i + CiH

n+1
i+1 = Fi (A13)

so that the corresponding matrix is also tridiagonal:

Ai = γn
i

(
σiL̇−ui−1

)

Bi = 1 + γn
i (ui−ui−1)

Ci = γn
i

(
−σiL̇ + ui

)

Fi = Hn
i + ∆τnSn

i (A14)

where γn
i = ∆τn/2

(
∆σi+1/2 + ∆σi−1/2

)
Ln.

As the ice divide is located at i = 1 (note that we start counting at i = 0), the boundary condition then reads:565

Hn
0 = Hn

2 , (A15)

since σ = 1 is a symmetry axis.

Appendix: A3: Grounding line scheme

The terminus position L (i.e., the grounding line) is not fixed in time. Direct discretization of Eq. 18 in terms of σ-coordinates

leads to:570

L̇n ≡ dL

dτ
=
−Ln∆σr−1/2S

n
r−1 + 2

(
qn
r−1/2− qn

r−3/2

)
/
(
∆σr−1/2 + ∆σr−3/2

)

Hn
r−1−Hn

r−2 + ϱ
(
bn
r−1− bn

r−2

) , (A16)

Appendix: A4: Thermodynamics discretization scheme

Unlike previous discretizations, the temperature field θ(σ,ζ,τ) has an additional dependency on the vertical coordinate ζ that

brings a higher degree of complexity (Eq. 24).

The energy balance (Eq. 28) is discretized using an upwind scheme with a forward Euler step and a centred difference for575

the spatial derivatives. The lengthy expression reads:

ρc

[
θn+1

i,j − θn
i,j

∆τn
−σi

L̇n

Ln

θn
i+1,j − θn

i−1,j

∆σi+1/2 + ∆σi−1/2
+

− ζi,j

Hn
i

Hn+1
i −Hn−1

i

2∆τn

θn
i,j+1− θn

i,j−1

∆ζi,j+1/2 + ∆ζi,j−1/2

]
=

k

(Hn
i )2

θn
i,j+1− 2θn

i,j + θn
i,j−1(

∆ζi,j+1/2 + ∆ζi,j−1/2

)2 +

−ρc
un

i

Ln

[
θn

i+1,j − θn
i−1,j

∆σi+1/2 + ∆σi−1/2
−
(

bi+1− bi−1

∆σi+1/2 + ∆σi−1/2
+ ζi,j

Hn
i+1−Hn

i−1

∆σi+1/2 + ∆σi−1/2

)
θn

i,j+1− θn
i,j−1

Hn
i

(
∆ζi,j+1/2 + ∆ζi,j−1/2

)
]

+ Φn
i

(A17)
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Appendix: A5: Adaptative time stepping

We take an adaptative timestepping approach to enhance the computational performance of the flowline model. Unlike the

proportional-integral (PI) methods, we exploit the fact that Picard’s iteration already computes a metric to determine conver-580

gence. Thus, without additional calculations, we let the new timestep to evolve within a range set by the user [∆tmin,∆tmax]

with a quadratic dependency on the error:

∆t̃ =

(
1−

(
min[ε(t),ϕpic]

ϕpic

)2
)

(∆tmax−∆tmin) +∆tmin, (A18)

where ϕpic is the tolerance on Picard’s iteration and ε(t) is the error on the current iteration defined as εi = ||ui−ui−1|| (De

Schmedt et al., 2010). If the solution has not converged in the given timestep (i.e., ε > ϕpic), Eq. Equation ?? ensures that the585

timestep is set to the minimum value.

Then, we apply some relaxation to provide stability and avoid spurious oscillations:

∆t = α∆t + (1−α)∆t̃, (A19)

where α = 0.7. And we finally ensure that the timestep is no greater than the CFL condition:

∆t = min[∆t,∆tCFL] (A20)590

Appendix B: Stochastic boundary conditions

Internal climatic variability arises from chaotic fluctuation and its he effect over a real ice sheet mostly comes from the atmo-

sphere and the ocean. The latter two interact with an ice sheet via the surface mass balance and the frontal melting/calving at

the grounding line. We then need to create two random time series that fulfil three conditions: (1) random nature, (2) correlated

with each other and (3) have a prescribed persistence.595

We now describe a Fourier transform method to create such a series following Christian et al. (2022). Nevertheless, the

methods herein presented is completely general and can generate random time series of any variables provided that the system

is described by a first-order autoregressive process.

We simply start with the power spectrum of an AR-1 process as a function of the frequency:

P (ν) =
P0

1 + r2− 2rcos(2πν∆t)
(B1)600

where P0 scales the total variance (here we employ P0 = 1), r is the autocorrelation coefficient at a lag ∆t.

The persistence time τAR1 (i.e., decorrelation time) then reads:

τAR1 =
∆t

1− r
(B2)

and we can simply obtain a random complex spectrum from a random phase rotation and then applying the inverse Fourier

transform:605

P (t) = F−1
[
P (ν)eiϕ

]
(B3)
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where ϕ ∈ [0,2π].
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