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Abstract 14 

 15 

The Coupled Model Intercomparison Project (CMIP) allows assessment of the representation 16 

of the Atlantic Meridional Overturning Circulation (AMOC) in climate models. While CMIP 17 

Phase 6 models display a large spread in AMOC strength by a factor of three, the multi-model 18 

mean strength agrees reasonably well with observed estimates from RAPID1, but this does not 19 

hold for its various components. In CMIP6 the present-day AMOC is characterised by a lack 20 

of lower North Atlantic Deep Water (lNADW), due to the small-scale of Greenland-Iceland-21 

Scotland Ridge overflow and too much mixing. This is compensated by increased 22 

recirculation in the subtropical gyre and more Antarctic Bottom Water (AABW). Deep-water 23 

circulation is dominated by a distinct deep western boundary current (DWBC) with minor 24 

interior recirculation compared to observations. The future decline in the AMOC to 2100 of 25 

7Sv under a SSP5-8.5 scenario is associated with decreased northward western boundary 26 

current transport in combination with reduced southward flow of upper North Atlantic Deep 27 

Water (uNADW).  In CMIP6, wind stress curl decreases with time by 14% so that the wind-28 

driven thermocline recirculation in the subtropical gyre is reduced by 4 Sv (17%) by 2100.  29 

The reduction in western boundary current transport of 11Sv is more than the decrease in the 30 

wind-driven gyre transport indicating a decrease over time in the component of the Gulf 31 

Stream originating in the South Atlantic.  32 

 33 

1.  Introduction 34 

 35 

The Atlantic Meridional Overturning Circulation (AMOC) is the Atlantic part of the global 36 

overturning circulation.  The global overturning circulation, in which deep waters formed at 37 

high latitudes in the northern Atlantic and Weddell Sea flow equatorward, upwell, circulate 38 

and eventually flow as upper waters back toward the formation regions, transports heat, 39 

freshwater, nutrients and CO2 throughout the global ocean.  The AMOC includes North 40 

Atlantic Deep Water (NADW) formation in the subpolar and polar regions of the northern 41 

Atlantic, southward flow of NADW in deep western boundary currents, wind-driven 42 

circulation in the subtropical and subpolar gyres and northward flow of upper waters notably 43 

in the Gulf Stream.  Upwelling of NADW occurs principally outside of the North Atlantic.    44 

Our understanding of the strength, variability and structure of the AMOC has improved since 45 

the deployment of the RAPID1 array, which monitors the volume transport at 26°N since 46 

 
1 RAPID is used here as shorthand for the RAPID-Meridional Overturning Circulation and Heatflux 

Array-Western Boundary Time Series at 26°N (Moat et al., 2022). 
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April 2004 (Moat et al., 2020). Additionally, these observations serve as invaluable reference 50 

data for the representation of the AMOC in coupled climate and Earth System models. The 51 

most recent phase of the Coupled Model Intercomparison Project, CMIP Phase 6, allows us to 52 

assess the representation of the AMOC in these models.  The models project the AMOC 53 

strength will decline over the next century (Lee et al., 2021).  Here we compare observed and 54 

modeled components of the AMOC over the historical period 2004 to 2014 and then assess 55 

how the ensemble-mean CMIP6 transport components change in a declining AMOC over the 56 

next century under SSP5-8.5 emission scenario. 57 

 58 

The RAPID AMOC observations from 2004 to 2018 indicate that the AMOC has declined by 59 

2.4 Sv, about 12%, from 18.3 Sv to 15.9 Sv (Bryden, 2021).  The decline is primarily evident 60 

in reduced southward transport of lower North Atlantic Deep Water (lNADW) that is 61 

balanced by slightly reduced Gulf Stream transport and more southward recirculation within 62 

the subtropical gyre.  In CMIP6 models, the AMOC declines by about 40% over the 21st 63 

century (Weijer et al., 2020).  Here we analyse 19 CMIP6 model projections in order to 64 

identify which components lead to the AMOC decline, for clues as to how the AMOC may 65 

change within the continuing RAPID observational framework.  66 

 67 

The Coupled Model Intercomparison Project (CMIP) is a comprehensive effort of modelling 68 

centres around the world to improve our understanding about past, present and future changes 69 

of the climate system (Eyring et al., 2016; O'Neill et al., 2016). Even though CMIP6 shows 70 

improvements compared to previous CMIP generations, model biases related to the AMOC 71 

persist. These include a shallow bias to the deep cell, too much deep convection, and a too-72 

small temperature difference between its upper and lower limbs.  Additionally, CMIP6 73 

models largely underestimate low-frequency variability of the AMOC and show large inter-74 

model differences in their AMOC representation (Weijer et al., 2020). 75 

 76 

The RAPID array monitors the AMOC volume transport at 26°N since April 2004 (Smeed et 77 

al., 2018). The transport through the cross section is estimated by a decomposition of the 78 

AMOC into 3 components: (1) transport through the Florida Straits, (2) Ekman surface 79 

transport generated by zonal wind stress, and (3) density driven interior transport estimated 80 

from mooring measurements.  The mid-ocean interior transport is further broken down into 81 

thermocline recirculation (0-800m depth)), intermediate water transport (800-1100m), upper 82 

North Atlantic Deep Water (1100-3000m), lower North Atlantic Deep Water (3000-5000m).  83 

The goal of this study is to gain insight into the cause of disagreement between CMIP6 84 

models and RAPID data in terms of AMOC strength, structure and variability.  We 85 

decompose the modelled AMOC transport at 26°N from CMIP6 into the same transport 86 

components as measured by the RAPID array.  We compare the CMIP6 transport components 87 

with the observed RAPID components for the historical period 2004-2014.  We then examine 88 

the change of these components in CMIP6 under the SSP5-8.5 emission scenario from the 89 

historical period until 2100.  90 

 91 

2. Data and Methods 92 

 93 

Monthly averages of AMOC estimates from the RAPID array are compared to the historical 94 

simulations of 19 CMIP6 models.  Note that only the overlapping period was investigated, 95 

April 2004 – December 2014.   Details of the 19 CMIP6 models are given in Table 1.  The 96 

SSP5-8.5 future projection from 2015 to 2100, is then used to investigate how the AMOC 97 

may change in future projections.  For each model, one ensemble member was used as 98 

defined in Table 1. 99 
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  101 

Table 1.  Metadata and references for the models analysed in this study.  The choice of 102 

models is motivated by the fact that historical and SSP85 date is available for all used 103 

variables including meridional velocity, zonal wind stress, salinity and temperature.  In 104 

addition only models that use horizontal depth values are included.  The choice of ensemble 105 

member is indicated and the preferered ensemble member is realisation 1, initialisation 1, 106 

physics 1 and forcing 1, indicated by r1i1p1f1.  For some models forcing 1 was not available 107 

so a different ensemble member was chosen making sure that the forcing version (v6.2.0) is 108 

the same.  References are from the Earth System Grid Federation. 109 

  110 

A cross section between Florida and the African continent at the latitude closest to 26°N was 111 

selected for each model. The net transport through the section, approximately -1 Sv for each 112 

model due to the Bering Strait throughflow, was removed before computing the AMOC 113 

components from meridional velocities as follows: 114 

 115 

Florida Straits Transport (FS):  CMIP6 models do not resolve the Bahama Islands and as a 116 

result the Florida Straits proper.  For this reason the following definition is used.  The 117 

boundary between Florida Straits (FS) transport and mid-ocean transport is defined as the 118 

longitude where the depth-averaged transport (from the surface down to the depth of 119 

maximum overturning) changes from positive (northward) to negative (southward).  This 120 

definition thus identifies the FS transport as the western boundary current, thereby including 121 

the transport by the Antilles Current, which in CMIP6 models cannot be separated from the 122 

Florida Current. 123 

 124 

For each model, we have made the following choices to define Thermocline Recirculation, 125 

Upper North Atlantic Deep Water, Lower North Atlantic Deep Water and Antarctic Bottom 126 

Water.  The decision was to use potential temperature to determine the boundaries between 127 

upper and lower North Atlantic Deep Water in the CMIP6 models.  This choice was 128 

motivated by the indistinct upper boundary (in depth) of Lower North Atlantic Deep Water in 129 

the models. 130 

 131 

Thermocline Recirculation (tr): East of FS and from the surface to down to the depth of 132 

horizontally averaged potential temperature of 8°C. 133 
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 137 

Intermediate Waters (iw): East of FS and between the depth of horizontally averaged potential 138 

temperature of 8°C and depth of maximum overturning. 139 

 140 

Upper North Atlantic Deep Water (uNADW): Between the depth of maximum overturning 141 

and the depth of horizontally averaged potential temperature of 3°C. 142 

 143 

Lower North Atlantic Deep Water (lNADW): Between the depth of horizontally averaged 144 

potential temperature of 3°C and the depth where horizontally-averaged transport changes 145 

from negative to positive. 146 

 147 

Antarctic Bottom Water (AABW): Between the depth where horizontally-averaged transport 148 

changes from negative to positive and the bottom. 149 

 150 

Ekman (ek):  Near surface ageostrophic transport estimated from the zonal wind stress. 151 

 152 

Multi-model means (MMM) for each component over the 19 models are then made with their 153 

standard deviation. 154 

 155 

3. Results 156 

 157 

Figure 1 compares the RAPID observations of the AMOC transport components with the 158 

CMIP6 components for the historical period 2004-2014.  For the historical period (2004-159 

2014) the MMM CMIP6 AMOC underestimates the observed AMOC transport by 2.2 Sv 160 

(Table 2).  The underestimation of AMOC strength in the CMIP6 models is likely related to 161 

the reduced transport of lower NADW, due to the small scale of Greenland-Iceland-Scotland 162 

Ridge overflow compared to the resolution of models and excessive mixing at this location. In 163 

a study of deep waters in CMIP6, Heuzé (2021) noted that the models did form water masses 164 

similar in properties to lNADW in the Nordic Seas, but none of the deep waters made it over 165 

the ridge and into the Iceland or Irminger basins. In the models, this lack of lNADW is 166 

partially compensated by increased southward flow of upper NADW so the total southward 167 

flow of deep water in CMIP6 is comparable to that observed by RAPID. The variability of 168 

NADW is underestimated, most likely due to the inability of models to reproduce lower 169 

NADW overflow.  Deep-water circulation in models is dominated by a distinct DWBC with 170 

minor interior recirculation compared with observations.  CMIP6 MMM Florida Straits (FS) 171 

transport (37.4 Sv) is larger than observed Florida Straits transport (31.3 Sv).  The relatively 172 

coarse-resolution models do not resolve the narrow Florida Straits, and the model western 173 

boundary current includes the narrow Antilles Current east of the Bahamas as well as the Gulf 174 

Stream flow through Florida Straits. The Antilles Current has maximum northward velocity at 175 

360m depth and the core of the Current is within 50 km of the Bahama Islands.  Recent 176 

estimates of Antilles Current transport are about 5 Sv (Meinen et al., 2019) and adding this 177 

transport to the observed Florida Straits transport suggests that the observed (36.3 Sv) and 178 

modeled (37.4 Sv) western boundary current transports are similar.  The low-frequency 179 

variability of Florida Straits transport is largely overestimated in CMIP6 models and we 180 

hypothesize that the inclusion of the Antilles Current in this component in models may be a 181 

significant contributor to this variability as the observed Antilles Current transport exhibits 182 

rms variability of 7.5 Sv that is not correlated with Florida Straits transport variability.  The 183 

MMM thermocline recirculation (tr) in CMIP6 models (-26.2 Sv) is larger than observed by 184 

the RAPID array (-18.6 Sv) though again this may be due to issues on how the Antilles 185 

Current transport is accounted in the observations and in the models.  RAPID estimates 186 
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thermocline recirculation to be the overall southward flow above 800m depth between the 188 

Bahamas and Africa and this overall flow includes both the Antilles Current transport and the 189 

mid-ocean thermocline recirculation associated with the wind-driven subtropical gyre.  If we 190 

separate out the northward Antilles Current transport of 5 Sv, then the mid-ocean thermocline 191 

recirculation for RAPID would be -23.6 Sv (Table 2) in more reasonable agreement with the 192 

CMIP6 MMM thermocline circulation of -26.2 Sv.  Overall, the MMM circulation in CMIP6 193 

models for the historical period reasonably represents the observed circulation in RAPID 194 

except for the underestimated lNADW transport associated with issues of model 195 

representation of flows over ridges.  196 

 197 

 198 
Figure 1.  Historical time series for RAPID data (left) and multi-model mean CMIP6 data 199 

(right).  Shaded areas indicate one standard deviation of the ensemble spread.   200 

 201 

Table 2.  Components of the Atlantic Meridional Overturning Circulation at 26°N.  Model 202 

western boundary current includes both Florida Straits and Antilles Current transports.  The 203 

observed Antilles Currrent (AC) transport of 5 Sv is a rounded value from Meinen et al. 204 

(2019)’s mean transport of 4.7±7.5 Sv.  For standard RAPID analyses, thermocline 205 

recirculation includes Antilles Current transport. 206 
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 209 

CMIP6 model projections suggest that the AMOC will decline over the next century as noted 210 

by Weijer et al. (2020).  Here we find that the AMOC declines by 45% over the period 2015 211 

to 2100 in a MMM of 19 CMIP6 projections.  For comparison, over the RAPID time period 212 

2004 to 2021, the AMOC has exhibited a small (order 12%) reduction that is manifest 213 

principally in reduced southward transport of lNADW (Bryden, 2021).   It is of interest to 214 

identify which components contribute to the projected 45% decline in the AMOC over the 215 

coming century in CMIP6 simulations. 216 

 217 

All 19 CMIP6 models analysed here exhibit a decline in the AMOC over the 21st century 218 

(Table 3).  This decline of the AMOC under SSP5-8.5 is in line with other modelling studies 219 

(Levang and Schmitt, 2020; Weijer et al, 2020; Roberts et al., 2020).  Averaged over the 19 220 

models, the AMOC decline from 2004-2014 to 2090-2100 is 6.6 Sv or 45% in the AMOC 221 

transport for the historical period (Figure 2).  We find that the decline in the AMOC at 26°N 222 

in CMIP6 models from 2015 to 2100 is dominated by a 30% decrease in western boundary 223 

current transport (FS in Figure 2) and a 34% reduction in southward deep water transport 224 

(uNADW in Figure 2).  As Ekman transport (ek) shows no significant change in the model 225 

projections, the AMOC decline of 6.6 Sv in the upper waters is the result of the difference 226 

between the decline in western boundary current (FS) transport of 11.0 Sv and the 17% 227 

decline in southward thermocline recirculation (tr) of 4.4 Sv. For the lower waters the overall 228 

decline in northward transport of upper waters of 6.6 Sv is compensated by a decrease in 229 

uNADW transport of 6.4 Sv and a small increase in northward AABW transport of 0.2 Sv, so 230 

that the net transport through the cross section remains zero. 231 

 232 
Figure 2.  Multi-model mean timeseries of each component under SSP5-8.5.  Shaded areas 233 

illustrate one standard deviation of the inter-model spread.  Percentages show the decline 234 

relative to the historical period.   235 
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 238 

 239 
Table 3.  Values of the total AMOC for every model.  Shown are the historical mean values, 240 

2090-2100 mean values, absolute change and relative change.  Changes are relative to the 241 

historical period.   242 

  243 

To examine changes in wind-driven circulation over the 21st century in the subtropical North 244 

Atlantic, we examined the mean wind-stress curl along the 26°N section for the historical and 245 

SSP5-8.5 period.  The values are negative (i.e. clockwise rotation), which results in 246 

southward mid-ocean Sverdrup transport.  Since the upper level gyre circulation is driven by 247 

wind-stress curl (DiNezio et al., 2009; Zhao and Johns, 2014), we expect a decrease of this 248 

driver to affect both Florida Straits transport and thermocline recirculation. Averaged over the 249 

model projections, wind stress curl decreases by 14% from about 6 x 10-8m s-2.  On the basis 250 

of Sverdrup dynamics, we expect this change in wind stress curl will reduce the thermocline 251 

recirculation at 26°N and indeed the thermocline recirculation does decrease by 4.4 Sv or 252 

17% over the 21st century.  We conclude that the reduction of thermocline recirculation is 253 

almost entirely caused by a decline in wind-stress curl and the decline in the directly wind-254 

driven component of the AMOC is exactly reflected in the 17% decline of the Thermocline 255 

Recirculation (tr in Figure 2).  On the basis of western intensification theory (Stommel, 1948), 256 

the decrease in wind-stress curl should also lead to a decrease in western boundary current 257 

transport by a similar amount. Thus we can explain a decrease in western boundary current 258 

transport of 4.4 Sv over the 21st century as being due to changes in the wind forcing. 259 

 260 

The change in the western boundary current transport of 11 Sv in the CMIP projections is due 261 

to a reduction in the wind-driven component by 4.4 Sv and to a reduction in the component of 262 

the Gulf Stream flow originating from the South Atlantic of 6.6 Sv.  The overall 6.6 Sv 263 

reduction in the northward flow in the upper waters is then compensated by a reduction in 264 

southward flow of the deep waters.  In CMIP6, the reduction in the southward flow of deep 265 

water is almost entirely due to a decreased DWBC transport of uNADW over the period 266 

2015-2100.  Hence the decline in the thermohaline component is reflected in the 34% decline 267 

in uNADW transport (uNADW in Figure 2). Overall, the projected AMOC reduction over the 268 

21st century in CMIP6 is due to a reduction in the thermohaline circulation where there is less 269 

northward transport of upper waters principally in the western boundary current across 26°N 270 
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and less southward deep water transport in the deep western boundary current. 275 

 276 

 277 

4. Discussion 278 

 279 

There is much interest in whether the AMOC will decline over the 21st century.  Recent 280 

analyses of historical observations using Bayesian methods have concluded that the Gulf 281 

Stream has weakened by about 1 Sv over the past 40 years (Piecuch and Beal, 2023) and that 282 

the AMOC will decline markedly over the next 50 years (Ditlevsen and Ditlevsen, 2023).  283 

These studies have generated great media interest.  Here we use CMIP6 forward model 284 

projections under expected climate forcing (SSP5-8.5) to assess what state-of-the-art coupled 285 

climate models 'predict' for the AMOC over the 21st century.  McCarthy and Caesar (2023) 286 

have argued that models like CMIP6 have not been able to simulate large AMOC variations 287 

in the paleo record and hence should not be relied upon to generate accurate projections of 288 

future AMOC.  Comparisons between model projections and observed circulation variability 289 

like those presented above do provide an assessment of the models ability to reliably project 290 

the future course of the AMOC.  CMIP6 models project declines in both wind-driven and 291 

thermohaline components of the AMOC out to 2100.  Comparing these projections with 292 

ongoing observations like RAPID then provides a reality check on the ability of present 293 

models to define future climate change. 294 

 295 

Over the SSP5-8.5 period (2015-2100) in CMIP6 projections, we find declines in the western 296 

boundary current transport, thermocline recirculation and NADW transport. Decreased 297 

thermocline recirculation is related to a decline in wind stress curl along the section and this 298 

decline is also expected to contribute to the decline in Gulf Stream transport.  But the decline 299 

in western boundary current transport in CMIP6 models is substantially greater than the 300 

decline in wind stress curl and accompanying thermocline recirculation.   Therefore, for the 301 

upper water circulation the CMIP6 decline in the AMOC is mostly caused by a decrease in 302 

the component of the western boundary current associated with the thermohaline circulation.  303 

For the lower water circulation, the decline in southward transport over the SSP5-8.5 period is 304 

associated with reduced uNADW transport.  The overall reduction in southward deep water 305 

transport suggests a decline in NADW formation. 306 

 307 

In a similar study, Asbjornsen and Arthun (2023) examined future changes in the AMOC 308 

using 14 CMIP6 models and found a weakening AMOC by 8.5 Sv over the coming century.  309 

For their ensemble, the Gulf Stream weakened by 33% or 11.2 Sv, 3.7 Sv of which was due to 310 

change in wind stress, and the Deep Western Boundary Current transport weakened by 8.5 311 

Sv.  As noted above, the CMIP6 projections are consistent in projecting a decline in the 312 

AMOC this century (Table 3), but the exact size of the AMOC reduction depends on which 313 

models are used for the study. 314 

 315 

Because the AMOC is responsible for most of the northward heat transport in the Atlantic 316 

Ocean (Johns et al., 2011; Johns et al., 2023), CMIP6 model projections also exhibit a 317 

decrease in northward heat transport at 26°N over the 2015-2100 time period (Mecking and 318 

Drijfhout, 2023).  The northward ocean heat transport across 26°N decreases by an average of 319 

0.3 PW for the SSP5-8.5 scenario and this represents a 30% decline from the historical value 320 

of 1.0 PW. 321 

 322 

The decline in the thermohaline circulation at 26°N implies that the overturning circulation 323 

south of 26°N, that is in the global circulation outside the North Atlantic, has also changed.  324 
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The extra-Atlantic circulation converts deep water into upper and intermediate waters so that 325 

the southward deep water flow across 26°N and out of the North Atlantic must ultimately be 326 

converted within the global ocean into upper and intermediate waters that flow back into the 327 

North Atlantic and northward across 26°N.  The decline in the North Atlantic thermohaline 328 

circulation at 26°N suggests that this global-scale overturning circulation must also have 329 

changed. Baker et al (2023) have explored how 2 mechanisms converting deep water into 330 

upper water south of 26°N change within CMIP6 simulations.  The 2 mechanisms considered 331 

are Southern Ocean upwelling associated with eastward wind stress around Antarctica 332 

(Toggweiler and Samuels, 1993) and Indo-Pacific diffusive upwelling associated with deep 333 

interior mixing (Munk, 1966).  Baker et al. found that the wind stress around Antarctica did 334 

not decline enough to account for a reduced 6 Sv upwelling of deep water, in fact there 335 

appeared to be a small increase in Southern Ocean wind stress and upwelling.  Instead they 336 

found evidence in the CMIP6 projections that the interior Indo-Pacific upwelling declined 337 

enough to account for reduced conversion of deep waters into thermocline waters.  They 338 

attributed such decline to the global warming that increases stratification (Li et al., 2020) and 339 

inhibits vertical mixing and associated upwelling.  340 

 341 

Overall, the Atlantic and global overturning circulations appear to have declined in CMIP6 342 

projections from 2015 to 2100.  The manifestation of these declines at 26°N include a 343 

reduction in the southward transport of NADW and a compensating reduction in the 344 

northward flow of upper and thermocline waters through Florida Straits.  The reduction in 345 

southward deep water transport in CMIP6 is linked to a lack of lNADW formed in the Nordic 346 

Seas flowing out over the Greenland-Iceland-Scotland Ridge into the northern Atlantic 347 

(Heuzé, 2021); and the reduction in northward flow of upper waters is linked to a decrease in 348 

diffusive upwelling in the Indo-Pacific related to increased stratification due to global 349 

warming (Li et al., 2020; Baker et al., 2023).  The ability of coupled climate models to 350 

realistically include these critical processes of deep water formation, mixing in ridge 351 

overflows and mid-ocean diffusive upwelling for future projections of ocean circulation 352 

should be carefully assessed.  In particular, the representation of deep water formation 353 

in coupled climate models could be examined in comparison with observed production of 354 

deep water.  Implementing mixing parameterisations for overflows (Holt et al., 2017) in 355 

coupled climate models could be assessed for their effectiveness in allowing the southward 356 

transport of lNADW into and through the North Atlantic.  And coupled climate models could 357 

be examined for their parameterisations of diffusive mixing and upwelling, testing how 358 

different parameterisations affect the global ocean overturning circulation over century time 359 

scales. 360 

 361 

In terms of observations, our results suggest that the ongoing RAPID project should 362 

separately measure the Antilles Current and add it to Florida Straits transport for a true 363 

measure of western boundary current transport for comparison with modelled transport 364 

components. And the Antilles Current transport should be separated from the net mid-ocean 365 

southward flow across 26N in the upper 800m that RAPID labels thermocline recirculation so 366 

as to identify the actual mid-ocean thermocline recirculation associated with the wind stress 367 

curl.  By separately estimating the Antilles Current transport contribution, the RAPID project 368 

could then provide well-defined estimates for the wind-driven and thermohaline contributions 369 

to the AMOC at 26°N. 370 

 371 

Code Availability 372 

 373 

The code used to obtain the results of this study and a file containing metadata of the models 374 
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is freely available on GitHub: https://github.com/jordibeunk/MSc_Thesis.git 375 
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cluster JASMIN (Lawerence et al. 2013).  The choice of these models is motivated by the fact 381 
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