Supplementary Information

Measurement report: Secondary organic aerosols at a forested mountain site in southeastern China

Zijun Zhang^{1,2}, Weiqi Xu^{1,*}, Yi Zhang^{1,2}, Wei Zhou¹, Xiangyu Xu^{1,2}, Aodong Du^{1,2}, Yinzhou Zhang¹, Hongqin Qiao³, Ye Kuang³, Xiaole Pan¹, Zifa Wang^{1,2}, Xueling Cheng¹, Lanzhong Liu⁴, Qingyan Fu⁵, Douglas R. Worsnop⁶, Jie Li¹, Yele Sun^{1,2,*}

¹State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

²College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

³Institute for Environmental and Climate Research, Jinan University, Guangzhou 511143, China

 ⁴Shanghuang Atmospheric Boundary Layer and Eco-Environment Observatory, Institute of Atmospheric Physics, Chinese Academy of Sciences, Jinhua 321203, China
⁵Shanghai Environmental Monitoring Center, Shanghai 200235, China
⁶Aerodyne Research Inc., Billerica, Massachusetts 01821, United States

Correspondence to: Weiqi Xu (xuweiqi@mail.iap.ac.cn), Yele Sun (sunyele@mail.iap.ac.cn)

Location		Mt. Wuzhi	Mt. Tai	Mt. Yulong	Mt. Daban	Mt. Waliguan
Time		3/19/2015-	2011	3/22/2015-	9/5/2013-	7/1/2017-
		4/15/2015		4/14/2015	10/15/2013	7/31/2017
Org	Mass	4.8	11.2	3.9	4.9	3.5
	Frac.	43.8 %	32.6 %	68 %	43.2 %	38.1 %
SO ₄	Mass	3.4	9.2	0.8	3.2	3.1
	Frac.	30.9 %	26.7 %	14 %	28.2 %	34.5 %
NO ₃	Mass	0.5	7.2	0.2	1.2	0.7
	Frac.	4.7 %	20.9 %	4 %	10.6 %	8.1 %
NH4	Mass	1.5	5.8	0.3	1.4	1.4
	Frac.	13.7 %	16.9 %	5 %	12.3 %	15.2 %
Chl	Mass	0.03	0.95		0.14	0.1
	Frac.	0.3 %	2.8 %		1.2 %	1.1 %
BC	Mass	0.7		0.5	0.51	0.3
	Frac.	6.6 %		9 %	4.5 %	3.0 %
NR-PM ₁		10.2	34.4	5.2	10.9	8.8
PM_1		10.9		5.7	11.4	9.1
References		(Zhu et al.,	(Zhang et	(Zheng et	(Du et al.,	(Zhang et al.,
		2016)	al., 2014)	al., 2017)	2015)	2019)

Table S1. Summary of mean mass concentrations (in μ g m⁻³) and chemical composition of submicron aerosols measured at selected mountain sites in China.

Species		Entire study	P1	P2
	PM_1	4.45 ± 6.51	1.34 ± 0.83	9.39 ± 5.57
	Org	2.01 ± 2.82	0.74 ± 0.48	4.22 ± 2.54
	NO ₃	1.02 ± 2.38	0.13 ± 0.20	1.74 ± 1.51
PM ₁ species	SO ₄	0.54 ± 0.89	0.09 ± 0.10	1.54 ± 0.93
(µg m ⁻³)	NH4	0.83 ± 2.60	0.12 ± 0.10	1.01 ± 0.66
	Chl	0.05 ± 0.20	0.01 ± 0.02	0.06 ± 0.05
	BC	0.44 ± 0.36	0.25 ± 0.14	0.82 ± 0.47
	O3	13.70 ± 12.42	4.80 ± 4.73	15.0 ± 7.15
	NO	0.55 ± 0.95	0.78 ± 1.62	0.32 ± 0.09
Air pollutants	NO ₂	3.45 ± 3.33	5.00 ± 4.88	2.20 ± 1.03
(ppbv)	CO (ppmv)	0.26 ± 0.12	0.36 ± 0.09	0.26 ± 0.07
	PM _{2.5} (µg m ⁻³)	6.74 ± 7.11	2.08 ± 1.67	15.27 ± 9.03
	PM ₁₀ (µg m ⁻³)	15.78 ± 13.23	NA	21.19 ± 12.83
	<i>T</i> (°C)	13.03 ± 6.13	11.58 ± 1.92	11.93 ± 1.64
Meteorological	RH (%)	86.98 ± 16.60	100 ± 0	93.90 ± 8.11
parameters	WS (m s ⁻¹)	2.42 ± 1.24	2.17 ± 1.51	3.24 ± 1.83
	P (hPa)	894.28 ± 3.21	894.43 ± 1.20	893.29 ± 1.07

Table S2. Summary of main PM_1 chemical components, air pollutants, and meteorological parameters (average \pm standard deviation) during different periods.

Figure S1. Scatter plots of mass concentrations of PM1 vs. PM2.5 and PM10.

Figure S2. Scatter plots of mass concentrations of PM₁ vs. PM_{2.5} and PM₁₀. PMF key diagnostic plots: (a) $Q/Q_{expected}$ vs. PMF factors at fPeak = 0; (b) mass fraction of PMF factors vs. fPeak; (c) time series of the reconstructed and measured total organic mass; (d) scaled residual for each mass; (e) time series of the residual of PMF solutions and $Q/Q_{expected}$; (f) the $Q/Q_{expected}$ for each mass.

Figure S3. Diurnal variations of PM_1 species, air pollutants, and meteorological parameters during the entire campaign.

Figure S4. Variations of organics, nitrate, and sulfate mass concentrations as a function of RH during the entire campaign. The data points are grouped in RH bins (10 % increment).

Figure S5. The average high-resolution mass spectra of OA sampled at SH site colored by six ion categories during (a) P1 and (b) P2, as well as (c) the difference in these two mass spectra.

Figure S6. Mass concentrations and mass fractions of NR-PM₁ species in four PMF factors.

Figure S7. Probability distribution of the mixing ratio of CO during the entire campaign.

References

- Du, W., Sun, Y.L., Xu, Y.S., Jiang, Q., Wang, Q.Q., Yang, W., Wang, F., Bai, Z.P., Zhao, X.D., Yang, Y.C.: Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau. Atmos. Chem. Phys. 15, 10811-10824, DOI: 10.5194/acp-15-10811-2015, 2015.
- Zhang, Y.M., Zhang, X.Y., Sun, J.Y., Hu, G.Y., Shen, X.J., Wang, Y.Q., Wang, T.T., Wang, D.Z., Zhao, Y.: Chemical composition and mass size distribution of PM₁ at an elevated site in central east China. Atmos. Chem. Phys. 14, 12237-12249, DOI: 10.5194/acp-14-12237-2014, 2014.
- Zhu, Q., He, L.Y., Huang, X.F., Cao, L.M., Gong, Z.H., Wang, C., Zhuang, X., Hu, M.: Atmospheric aerosol compositions and sources at two national background sites in northern and southern China. Atmos. Chem. Phys. 16, 10283-10297, DOI: 10.5194/acp-16-10283-2016, 2016
- Zhang, X., Xu, J., Kang, S., Zhang, Q., Sun, J.: Chemical characterization and sources of submicron aerosols in the northeastern Qinghai–Tibet Plateau: insights from high-resolution mass spectrometry. Atmos. Chem. Phys. 19, 7897-7911, DOI: 10.5194/acp-19-7897-2019, 2019.
- Zheng, J., Hu, M., Du, Z., Shang, D., Gong, Z., Qin, Y., Fang, J., Gu, F., Li, M., Peng, J., Li, J., Zhang, Y., Huang, X., He, L., Wu, Y., Guo, S.: Influence of biomass

burning from South Asia at a high-altitude mountain receptor site in China. Atmos. Chem. Phys. 17, 6853-6864, DOI: 10.5194/acp-17-6853-2017, 2017.