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Abstract. Reconstructing the thermo-chemical evolution of Earth’s mantle and its diverse surface manifestations is a widely-

recognised grand challenge for the geosciences. It requires the creation of a digital twin: a digital representation of Earth’s

mantle across space and time that is compatible with available observational constraints on the mantle’s structure, dynamics

and evolution. This has led geodynamicists to explore adjoint-based approaches that reformulate mantle convection modelling

as an inverse problem, in which unknown model parameters can be optimised to fit available observational data. Whilst there has5

been a notable increase in the use of adjoint-based methods in geodynamics, the theoretical and practical challenges of deriving,

implementing and validating adjoint systems for large-scale, non-linear, time-dependent problems, such as global mantle flow,

has hindered their broader use. Here, we present the Geoscientific Adjoint Optimisation Platform (G-ADOPT), an advanced

computational modelling framework that overcomes these challenges for coupled, non-linear, time-dependent systems. By

integrating three main components: (i) Firedrake, an automated system for the solution of partial differential equations using10

the finite element method; (ii) Dolfin-Adjoint, which automatically generates discrete adjoint models in a form compatible with

Firedrake; and (iii) the Rapid Optimisation Library, ROL, an efficient large-scale optimisation toolkit; G-ADOPT enables the

application of adjoint methods across geophysical continua, showcased herein for geodynamics. Through two sets of synthetic

experiments, we demonstrate application of this framework to the initial condition problem of mantle convection, in both square

and annular geometries, for both isoviscous and non-linear rheologies. We confirm the validity of the gradient computations15

underpinning the adjoint approach, for all cases, through second-order Taylor remainder convergence tests, and subsequently

demonstrate excellent recovery of the unknown initial conditions. Moreover, we show that the framework achieves theoretical

computational efficiency. Taken together, this confirms the suitability of G-ADOPT for reconstructing the evolution of Earth’s

mantle in space and time. The framework overcomes the significant theoretical and practical challenges of generating adjoint

models, and will allow the community to move from idealised forward models to data-driven simulations that rigorously20

account for observational constraints and their uncertainties using an inverse approach.
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1 Introduction

Mantle convection is the ‘engine’ driving our dynamic planet. It is the principal control on Earth’s thermal and chemical evo-

lution, and underpins tectonic and geological activity at Earth’s surface (e.g., Davies and Richards, 1992; Coltice et al., 2017).

Through interactions with Earth’s crust, it introduces heat and fluids that contribute to the formation and concentration of ore25

deposits (e.g., Hoggard et al., 2020). Mantle flow also induces vertical movements of Earth’s surface (so-called dynamic to-

pography, see Davies et al., 2023, for a review), leading to regional and global changes in sea level and climate (e.g., Poore

et al., 2006; Moucha et al., 2008; Cloetingh and Haq, 2015). The lithosphere, considered here to be the mantle’s upper thermal

boundary layer, serves as a window into the form and time-dependence of mantle convection, recorded through tectonic plate

motions (e.g., Iaffaldano and Bunge, 2015; Müller et al., 2016; Stotz et al., 2017, 2018; Wang et al., 2023). Although substan-30

tial progress has been made in reconstructing the history of plate tectonic motions (e.g., Seton et al., 2012; Gurnis et al., 2012;

Müller et al., 2019; Merdith et al., 2021), the quest for a dynamic reference, revealing the force equilibria within the underlying

mantle, remains ongoing. In other words, the veracity of plate motion reconstructions is not matched by an equivalent knowl-

edge of the thermochemical structure and flow history of the underlying mantle. This is a major limitation, as it inhibits our

ability to understand fundamental processes that depend on time-dependent interactions between Earth’s surface and its deep35

interior.

The primary challenge in reconstructing past mantle flow stems from the lack of knowledge surrounding the initial state,

compounded by uncertain physical and chemical parameters. Mantle convection is an initial condition problem, uniquely de-

termined by an initial condition some time in the past: starting from some point in time, it can be uniquely modelled by

solving conservation equations for mass, momentum and energy (e.g., Ricard, 2007; Zhong et al., 2007). However, the lack40

of knowledge on this initial condition — specifically the thermochemical state of Earth’s mantle at some time in the past —

renders reconstructions of mantle flow through conventional forward calculations intractable (Bunge et al., 2003) (Figure 1-a).

Moreover, current global mantle convection models employ billions of degrees of freedom and require multiple time steps to

resolve the multi-scale dynamics of Earth’s mantle (e.g., Davies and Davies, 2009; Wolstencroft et al., 2009; Stadler et al.,

2010; Weismüller et al., 2015; Dannberg and Gassmöller, 2018; Bauer et al., 2019, 2020). Owing to the resulting computa-45

tional expense, the use of conventional geophysical inverse methods, including Monte Carlo techniques (e.g. Sambridge and

Mosegaard, 2002), are considered impractical for determining the mantle’s past structure, dynamics and evolution.

The initial condition problem can be partially addressed through sequential data assimilation techniques. In essence, the

objective of sequential data assimilation is to leverage all accessible information to improve predictions of mantle flow in

space and time. Data assimilation is commonly achieved through sequential filtering (e.g., Wunsch, 1996), in which the model50

is advanced in time over the period in which observations exist. Whenever observations become available, the model is adjusted

or ‘corrected’ (e.g., Bunge and Grand, 2000; Bocher et al., 2016). The magnitude of the correction can be optimally determined

using methods such as the Kalman filter (e.g., Bocher et al., 2018), with the model subsequently restarted from the updated

state, and this process is repeated until all available information has been utilised (Figure 1-b). In a geodynamic context, the

most commonly exploited dataset consists of paleo-surface velocities from plate tectonic reconstruction models, primarily55

2



Forward modelling Sequential data assimilation

t3t2t1t0
Time

S
ta
te

V
ar
ia
bl
e

(b)

True State

Analysed State

Simulated State

Information Flow

Present

Forward Backward

t3t2t1t0
Time

S
ta
te

V
ar
ia
bl
e

(a)

True State

Predicted State

Information Flow

Present

Forward Backward

Adjoint based inversion

t3t2t1t0
Time

S
ta
te

V
ar
ia
bl
e

(c)

True State

Optimized State

Information Flow
Forward Backward

Present

Figure 1. Illustration of different procedures available for estimating past mantle structure: (a) forward modelling prediction, where an

unknown initial condition is estimated at t0, with modelling error, measured as the difference between the modelled and true states. This

difference is represented by the distance along the y-axis, which typically grows in time. Variations of forward modelling includes “nudging”

of the initial condition to better match present-day structure; (b) sequential data assimilation, or “Kalman Filtering” – starting from an

initial condition at t0, the forward model is run until t1. An analysis is subsequently undertaken from the resulting model and the available

observation. The corrected model is then subsequently integrated in time until t2, when the next observation is available. This process is

repeated until t3 or the last time step with available observational data. The information flow diagram depicts how information is carried

from both the past and present, using current data; (c) adjoint-based or four dimensional variational data-assimilation, which is capable of

carrying information on present-day structure (e.g., images from seismic tomography) explicitly backward in time. In (c) observational data

that constrains present-day mantle structure, alongside data from different points in space and time, are used to optimise the unknown initial

condition. Here, all available observations between t3 and t0 contribute to the analysis. The true (unknown) signal is represented by the solid

line. Observations (stars), predictions (dark circles) and analyses (squares) are surrounded by ellipsoids of a size proportional to the estimated

model uncertainty. Modified from Carrassi et al. (2018) and Davies et al. (2023).

through a kinematic surface boundary condition in time-dependent models. In recent years, there has been a notable increase

in the use of this approach (e.g., Bunge et al., 2002; Davies et al., 2012; Bower et al., 2013; Zhong and Rudolph, 2015; Nerlich

et al., 2016; Young et al., 2022; Panton et al., 2023). This can be attributed to two main factors: (i) improved confidence in

the validity of plate tectonic reconstruction models, and their extension further back in time (e.g., Merdith et al., 2021; Young

et al., 2022; Müller et al., 2022); and (ii) the enhanced accessibility of such models, facilitated via open-source community60

frameworks like the GPlates project (e.g., Gurnis et al., 2012; Müller et al., 2018).

Sequential data-assimilation methods, however, come with an inherent limitation: due to the sequential nature of the as-

similation process, each observation is incorporated to influence the model only at later times. Consequently, information

propagates from the past into the future but cannot be transmitted back into the past. This drawback poses a significant limita-

tion, as our knowledge of the mantle at the present day is substantially more detailed than at any other time. Thus, it becomes65

imperative to explore approaches that explicitly carry information backwards in time, or more precisely, enable the estimation

of a time-dependent model that best fits all available observational constraints.

3



Inverse geodynamics is a rapidly evolving field that embarks on this very idea. The foundation of this field is an optimisation

approach, in which mantle convection modelling is reformulated as an inverse problem. Using inverse theory, unknown model

parameters can be optimised to fit available observational data, via the so-called adjoint method (e.g., Bunge et al., 2003;70

Ismail-Zadeh et al., 2004), through which the sensitivities of a performance measure (the so-called ‘objective functional’),

with respect to model parameters (e.g., the choice of initial condition) can be computed. The resulting sensitivity information

can be used to adjust model parameters, generating a model flow trajectory that matches observational constraints (e.g., present-

day mantle thermochemical structure) (Figure 1-c). The geodynamic adjoint equations for reconstructing the initial condition

have been derived for isochemical, incompressible (e.g., Bunge et al., 2003; Horbach et al., 2014), compressible (Ghelichkhan75

and Bunge, 2016), and thermochemical mantle flow (Ghelichkhan and Bunge, 2018). Moreover, the method has been enhanced

for simultaneous recovery of initial temperature conditions and rheological parameters (Li et al., 2017), despite the inherent ill-

posedness introduced in such a problem. Growing adoption of adjoint-based methods within a broader geodynamic context is

evidenced by their application in Reuber et al. (2020) to decipher subsurface structures and rheological parameters via inversion

of principal stress directions, and by Crawford et al. (2018) to quantify the sensitivity of post-glacial sea level changes to lateral80

variations in mantle viscosity. Recent growth in computational power has led to multiple adjoint-based mantle reconstructions,

with a particular focus on regional geological events, as recorded in the geological record of the Americas (e.g., Spasojevic

et al., 2009; Liu and Gurnis, 2010; Shephard et al., 2010) and the Atlantic realm (e.g., Colli et al., 2018). To supplement these

findings, Ghelichkhan et al. (2021) undertook a systematic global-scale comparison between adjoint model predictions and

independent geological constraints, with implications for the expected rates of gravitational and dynamic ellipticity changes85

resulting from convection within Earth’s mantle (Ghelichkhan et al., 2018, 2020).

While substantial strides have been made in the application of adjoint-based methods in geodynamics, there remain widespread

obstacles to the broader use of these techniques within the geodynamic modelling community. One key challenge is the com-

plexity involved with deriving, implementing, and validating adjoint models for large-scale, non-linear, time-dependent prob-

lems, core features of global mantle convection models. Owing to these difficulties, studies that have used the adjoint method90

to explore the thermochemical evolution of Earth’s mantle often resort to a simplified strategy. This typically involves either

a highly idealised treatment of mantle rheology (e.g., Colli et al., 2018; Ghelichkhan et al., 2021), omitting certain coupling

terms in the adjoint equations, or doing both (e.g., Liu et al., 2008; Spasojevic et al., 2009; Liu and Gurnis, 2010; Shephard

et al., 2010). Such simplifications limit the applicability of these results. The work of Li et al. (2017) is a notable exception

to this trend, although its focus on a 2-D rectangular domain, specifically aimed at reconstructing the dynamics of subduction,95

inherently limits its applicability to global mantle convection simulations. Furthermore, previous global applications of the

adjoint approach have been hampered by their reliance on legacy community codes (e.g., Bunge et al., 2003; Liu et al., 2010;

Shephard et al., 2010; Colli et al., 2018; Ghelichkhan et al., 2021). These codes are not easily extensible to different geome-

tries or approximations of the underlying physics, employ solver strategies that have since been superseded, and often have

limits on model resolution due to the fully structured discretisations encoded. Moreover, the complex and extensive low-level100

code implementation of coupled adjoint and forward calculations remains obscured, making it difficult to extend and validate,

thus restricting the types of observational datasets that can be incorporated. An example of these datasets are the (uncertain)
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constraints provided by plate tectonic reconstruction models that are prescribed kinematically (e.g., Spasojevic et al., 2009;

Shephard et al., 2010; Zhou and Liu, 2017; Colli et al., 2018; Ghelichkhan et al., 2021), as opposed to being formally incorpo-

rated through the objective functional. The kinematic prescription of the surface velocities, however, can only improve mantle105

reconstructions forward in time, and therefore prohibits their influence on previous system states. In light of these limitations,

there is a need for a general framework that can robustly handle the rheological complexities of Earth’s mantle and is easily

extensible and transferable to other problems in mantle and lithosphere dynamics. Such a framework must also be capable of

utilising a variety of observational constraints to comprehensively unravel the historical evolution of Earth’s interior’s and its

diverse impacts at Earth’s surface surface (Davies et al., 2023).110

In this paper, we introduce the Geoscientific Adjoint Optimisation Platform (G-ADOPT), research software infrastructure that

allows us to overcome these limitations. G-ADOPT is built around three state-of-the-art software libraries — (i) Firedrake, an

automated system for solving a range of partial differential equations using the finite element method (Rathgeber et al., 2016),

recently validated for geodynamics (Davies et al., 2022); (ii) Dolfin-Adjoint, which automatically derives the discrete adjoint

equations in a form compatible with Firedrake (Farrell et al., 2013a; Mitusch et al., 2019); and (iii) the Rapid Optimisation115

Library (ROL), a Trillions package for performing highly-efficient large-scale optimisation (The ROL Project Team, 2022).

When combined, they provide a geodynamic inversion framework that is highly efficient, with fully-consistent forward and

adjoint calculations that achieve theoretical computational efficiency.

We structure our paper as follows: in Section 2.1 we describe the geodynamic forward problem and our solution strategy

using G-ADOPT. Section 2.2 describes the inverse problem considered herein, where we focus on finding the (unknown) initial120

condition using an objective functional that accounts for observations of surface velocity over time and the final state tempera-

ture field. This is broken into three subsections: (i) Section 2.2.1 describes discrete and continuous approaches for obtaining the

adjoint systems followed by a detailed derivation of the discrete adjoint systems; (ii) Section 2.2.2 introduces Dolfin-Adjoint,

the underlying approach utilised in G-ADOPT to compute the discrete adjoint and derivative fields; and (iii) Section 2.2.6

provides an overview of the gradient-based optimisation approach utilised here, facilitated by ROL. We demonstrate the ap-125

plicability of our approach in Section 3, using two sets of twin experiments with increasing complexity, where we reconstruct

the spatial and temporal evolution of a reference simulation. The first set of experiments (Section 3.1) involves a simple isovis-

cous simulation within an enclosed square domain, while the second set (Section 3.2) examines convection with a non-linear

(temperature, depth and strain-rate dependent) rheology, at Earth-like convective vigour, within an annular domain, which has

direct applicability to convection within Earth’s mantle. We finalise by discussing our results and conclusions in Sections 4130

and 5, respectively.
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2 Method

2.1 Forward Problem

2.1.1 Governing Equations and Boundary Conditions

Mantle flow is described by conservation laws for mass, momentum and energy. We solve these equations in their simplest135

form, assuming incompressibility and the Boussinesq approximation. The three non-dimensional conservation equations are

−∇ · (2ηϵ̇(u))+∇p+RaT k̂ = 0, (1a)

∇ ·u= 0, (1b)

∂T

∂t
+u · ∇T −κ∇2T −H = 0, (1c)

with the vector field u, and scalar fields p and T as the principal unknowns of velocity, pressure and temperature, respectively.140

Table 1 summarises other symbols used in Eqs. 1 and elsewhere. In Eq. 1a, the strain-rate tensor ϵ̇(u) is given by

ϵ̇(u) =
1

2

(
∇u+(∇u)T

)
, (2)

and the Rayleigh number is defined by

Ra =
ρ0α∆Tgd

3

µ0κ
. (3)

For this problem, we define the time interval of interest as I = [tI , tF ], with the computational domain V bounded by ∂V , and S145

and C denoting the top and bottom boundaries, respectively. For all simulations, free-slip and impermeable velocity boundary

conditions are specified on all boundaries, whilst temperature boundary conditions are set to constant values of TS and TC ,

at top and bottom boundaries, respectively. For the simulations considered in an enclosed square domain, natural temperature

boundary conditions (zero heat-flux) are specified on side walls. The set of boundary conditions, for top and bottom boundaries,

are listed in Eqs. 4:150

u(x,t) ·n= 0, x ∈ ∂V, t ∈ I, (4a)

[η ϵ̇(u(x,t)) ·n] · s= 0, x ∈ ∂V, t ∈ I, (4b)

T (x,t) = TS , x ∈ S, t ∈ I, (4c)

T (x,t) = TC , x ∈ C, t ∈ I. (4d)

In Eqs. 4, n denotes the outer normal vector, and s any tangential vector. Finally, as mantle convection is an initial value155

problem we require a prescribed temperature field at initial time tI :

T (x,tI) = TIC(x), x ∈ V. (5)

6



Symbol Description Symbol Description

η Dynamic viscosity ρ0 Reference density

k̂ Unit vector in opposite gravity direction α Thermal expansion coefficient

H Internal heating rate ∆T Temperature difference between domain top and bottom

ϵ̇ Strain-rate g Gravitational acceleration

Ra Rayleigh number d Depth of domain

κ Thermal diffusivity µ0 Reference dynamic viscosity

u Velocity p Dynamic pressure

T Temperature δ(x) Dirac-delta function

βu,d,s Weightings in objective functional αu,d,s User-defined scaling for functional terms

uobs “Observed” surface velocity Tobs “Observed” present-day temperature

G(r) Radial Profile for damping
Table 1. Symbols used in this study.

2.1.2 Solution Strategy: Leveraging Firedrake through G-ADOPT

We use the Finite Element method to solve the coupled system of partial differential equations presented in Eqs. 1. For the160

Stokes system, we use a Q2 −Q1 (piecewise biquadratic, resp. bilinear) finite element pair for velocity and pressure, with

Q2 elements used for temperature. We strongly impose Dirichlet boundary conditions for temperature at top and bottom

boundaries. Free-slip velocity boundary conditions are imposed in two ways: (i) in our square domain cases, we impose

strong Dirichlet boundary conditions for u; (ii) in our annular domain cases, where boundaries do not align with Cartesian

directions, we employ a symmetric Nitsche penalty method (Nitsche, 1971), which weakly enforces boundary conditions via a165

modification of the variational formulation. An implicit mid-point scheme is used for time integration in the energy equation.

To solve the coupled system of forward (and adjoint) equations, we employ Firedrake, which provides an automated system

designed for the solution of partial differential equations using the Finite Element method (Ham et al., 2023). It incorporates

principles and some aspects of the code-base from the FEniCS project (Logg et al., 2012), including its use of the Unified Form

Language (UFL) (Alnæs et al., 2014) for the representation of variational problems. UFL is a high-level language utilised170

for the symbolic description of the governing equations in a form that closely mimics their mathematical formulation. The

key advantage of UFL in this work lies in its high-level abstraction, which allows for an innovative automatic derivation

approach when deriving adjoint systems. We will address the significance of UFL in automatic derivation of adjoint systems

in Section 2.2.2.

Firedrake provides an array of features that are particularly conducive to tackling problems in geophysical fluid dynamics.175

Key among these features is support for a variety of Finite Element discretisations, including a highly efficient implementation

of discretisations based on extruded meshes, programmable non-linear solvers and operator-aware solver preconditioners that

can be combined in a flexible manner to create linear or non-linear systems, which are solved by PETSc (e.g., Balay et al., 1997;

Dalcin et al., 2011; Balay et al., 2023). The suitability of Firedrake for geodynamics has been demonstrated via comparison
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with a comprehensive set of analytical solutions and community benchmarks in Davies et al. (2022). We refer the reader to180

this study, alongside Rathgeber et al. (2016), for a more in-depth discussion on Firedrake and its dependencies, alongside an

outline of the solution strategy employed herein.

Building upon the foundations provided by Firedrake, G-ADOPT introduces an array of features tailored for cutting-edge

geodynamical simulations. It integrates smoothly with Firedrake’s advanced data-loading capabilities, enabling finite-element

consistent point-data interpolation (Nixon-Hill et al., 2023) and facilitating the integration of diverse observational and physical185

datasets. Various non-linear rheological laws can be effortlessly incorporated using the symbolic representation provided by

UFL. G-ADOPT provides a selection of time discretisation schemes, including second-order Runge-Kutta and backward/for-

ward Euler methods. Visualisation capabilities are provided through integration with the Visualization Toolkit (VTK), allowing

comprehensive analysis in ParaView, among other visualisation packages. Compatibility with meshes generated by gmsh and

seamless integration with NETGEN provide straightforward support for a range of mesh configurations and adaptive mesh190

refinement. G-ADOPT offers a diverse array of boundary conditions, encompassing free- and no-slip conditions, a free-surface

(Kramer et al., 2012), and kinematic forcing, for example, via seamless integration with pyGplates (Gurnis et al., 2012; Müller

et al., 2018). The collection of features, elaborately detailed in the Firedrake and G-ADOPT online documentation and refer-

enced in Davies et al. (2022), highlights the platform’s robustness and adaptability for geodynamical research.

2.2 Inverse problem: An Optimisation Approach195

Representative reconstructions of the spatial and temporal evolution of mantle flow require knowledge of the initial condition

(i.e. the thermochemical state of the mantle at some point in the past), the determination of which is an inverse problem. We

therefore seek the best fitting initial condition (TIC), that results in the minimum of an objective functional that measures

the difference between predictions and observations of mantle states and irregularity in the solutions. We use the following

mathematical description of the objective functional:200

J =
1

2

∫
I

∫
V

(T −Tobs)
2
δ(t− tF )dxdt

+
βu
2

∫
I

∫
S

(u−uobs) · (u−uobs) dsdt

+
βd
2

∫
I

∫
V

G(r)
(
T − T̄

)2
δ(t− tI)dxdt

+
βs
2

∫
I

∫
V

[
∇
(
T − T̄

)]2
δ(t− tI)dxdt (6)

The first term in Eq. 6 accounts for the misfit between model predictions and temperature recorded at the final instance,205

whilst the second term measures the misfit in surface velocities through time. The other terms are Tikhonov regularisation

components (Tikhonov, 1963; Hansen, 1992), the first of which penalises deviations from an a-priori depth-averaged profile,

T̄ (i.e. the damping term), and the second penalises the gradient of these deviations to produce less complex solutions (i.e. the

smoothing term). For the damping term, we employ a depth-dependent pre-factor, G(r), that is zero within the mid mantle but
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transitions to one in the thermal boundary layers. In these areas, lateral material transport and diffusive processes dominate,210

leading to diminished sensitivity between the choice of initial condition and the final temperature field. G(r), therefore, helps

to minimise the amplitude of the solution within the top and bottom thermal boundary layers, removing noise that would

otherwise diffuse over the simulation. The three weighting terms, βu, βs and βd in Eq. 6 are defined as,

βu = αu

∫
V
T 2
obsdx

∆t
∫
S

(
ut=tF
obs ·ut=tF

obs

)
dx
, (7a)

βd = αd

∫
V
T 2
obsdx∫

V

(
T̄
)2

dx
, (7b)215

βs = αs

∫
V
T 2
obsdx∫

V

(
∇T̄

)2
dx
. (7c)

Note that ∆t is the total duration of the simulation. The integrals in Eqs. 7 are employed to ensure normalised objective terms

relative to the final temperature misfit (first term on the right hand side of Eq. 6). The three scaling parameters, αu, αs and αd,

can be set to adjust the importance of these terms relative to the final temperature misfit. We perform a parameter search to find

the best performing combinations of α values.220

For our inverse problem we are interested in optimising J described by Eq. 6. J depends on some ‘control’ parameters,

which in this case is the initial temperature field, and some ‘state’ variables (i.e. surface velocity and the final temperature),

which are solutions of the forward problem in Eqs. 1, with the forward system itself depending again on the control. To solve

this problem, we define a ‘reduced’ functional, which is a function of the initial condition, TIC , alone. This reduced functional

is typically defined by first solving the forward PDEs (Eqs. 1) for a given value of the control, and then substituting the solutions225

into the expression for the functional (Eq. 6). The result is a functional that depends only on the control parameters, not the

state variables directly (hence the name reduced).

Non-linear optimisation methods provide the means to find the optimal TIC by minimising a reduced functional defined by

J . These methods are iterative. They begin with an initial guess of TIC to generate a sequence of improved estimates (called

iterates) until certain conditions, e.g., residual tolerance, in the objective functional are achieved. Crucial for the efficiency230

of these iterations are derivatives of Eq. 6 with respect to TIC . Owing to the large number of unknowns in 3-D spherical

mantle convection models with Earth-like parameters, obtaining the derivative by means of classical finite differencing tech-

niques is impractical. The adjoint method serves as a mathematically elegant and computationally efficient way to obtain the

derivatives (e.g., Talagrand, 1997; Giles and Pierce, 2000; Plessix, 2006; Hinze et al., 2008).

2.2.1 Continuous versus Discrete Adjoints235

Approaches to deriving, implementing, and obtaining derivatives using the adjoint method primarily fall into two categories: (i)

continuous, or the differentiate-then-discretise approach; and (ii) discrete, or the discretise-then-differentiate approach (Gun-

zburger, 2000).

The continuous approach commences with derivation of the adjoint equations. The resemblance between the forward and

resulting adjoint equations allows the adjoint PDEs to be discretised in a consistent manner and, subsequently, implemented240
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within a numerical framework. By deriving the continuous adjoint PDEs, one can develop an understanding of the key char-

acteristics of adjoint sensitivities, the physical implications of individual terms in the PDEs, and their boundary conditions.

Moreover, the continuous method affords complete autonomy in the discretisation and implementation of the adjoint system,

often leading to simplified, but more cost-effective approximations of the solutions, as demonstrated by Ismail-Zadeh et al.

(2004).245

By contrast, the discrete approach relies on already discretised forward equations then differentiates and transposes them

to obtain the adjoint equations. This method’s primary advantage lies in maintaining consistency in spatial and temporal

discretisations, allowing for the automatic determination of the exact gradient of the (discrete) objective functional (Giering

and Kaminski, 1998; Gunzburger, 2002). Such consistency ensures full convergence of second-order Newtonian optimisation

methods and simplifies the debugging of adjoint programs (Giles and Pierce, 2000). For example, with the discrete approach,250

even minor inconsistencies in the derivative can highlight numerical or programming errors that must be rectified. It also

permits the automatic creation of the adjoint program, stemming from the property that a transposed (adjoint) matrix shares

the same eigenvalues with the original linear matrix, ensuring convergence for the adjoint problem’s iterative solution methods

(Giles and Pierce, 2000). This advantage has facilitated the development of various Automatic Differentiation (AD) tools in

recent decades, including those used in Tensor-Flow (Abadi et al., 2015), PyTorch (Paszke et al., 2019) and Enzyne (Moses255

et al., 2022). It is essential to note that the continuous and discrete methods are equivalent in the limit of infinite spatial

and temporal resolution. However, in practical terms, it is the discrete method that typically provides more accurate gradient

information. For more details on both approaches we refer the reader to Giles and Pierce (2000) and Gunzburger (2002).

2.2.2 Dolfin-Adjoint

Robust and efficient derivative calculations for large-scale simulations using automatic differentiation is challenging and often260

too slow for the purpose of large-scale optimisation problems (Naumann, 2011). This inefficiency is often attributed to the usu-

ally employed approach of treating a numerical model as a sequence of elementary instructions such as addition, multiplication

or exponentiation, known as blocks. Once the AD tool establishes a sequence of blocks with their dependencies (a process

often called taping), each block is individually differentiated, and one arrives at the derivative of the entire model using the

chain rule.265

Dolfin-Adjoint uses an innovative approach to achieve theoretical efficiency by using so-called operator overloading differ-

entiation (Tijskens et al., 2002). By leveraging the high-level mathematical language used by Firedrake and FEniCS (UFL),

Dolfin-Adjoint performs the taping process at the highest abstraction level. This can result in blocks that symbolise whole PDE

system solves, for which the adjoint derivation is performed at the same level of abstraction. The derived adjoint operation to

a block is itself a Firedrake operation. This facilitates generation of the low-level adjoint code using the same finite element270

form compiler as the forward model. That is, while the taping operation is, in essence, similar to the fundamental abstraction

in automatic differentiation techniques, Dolfin-Adjoint operates at a higher level of abstraction and, accordingly, can achieve

maximum efficiency and robustness. Consequently, platforms such as Firedrake and FEniCS have incorporated Dolfin-Adjoint

for precise derivative computations, which are essential for solving various optimisation and inverse problems. We note the
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pursuit of similar automatic differentiation techniques, which have been central to the development of numerical tools like275

PETSc’s TSAdjoint (Zhang et al., 2022) and JuliaAdFEM (Xu and Darve, 2022).

To efficiently compute derivatives, Dolfin-Adjoint tracks and manipulates the computational operations involved in solving

the forward and adjoint problem. Central to Dolfin-Adjoint’s design is the Tape class, responsible for recording a series of

high-level finite-element operations — such as (non-)linear solves, functions, and interpolations — that map the initial temper-

ature field TIC into an objective functional J through a series of operations. Operations executed during the forward problem280

are encapsulated within instances of Block subclasses, each representing a distinct computational step. These Block in-

stances, by keeping track of their inputs and outputs through BlockVariable instances, establish a computational graph

that is used by Dolfin-Adjoint to navigate to compute adjoints. To seamlessly integrate this functionality, Dolfin-Adjoint em-

ploys operator overloading, allowing the creation of overloaded functions and data types that, to the user, behave identically

to their original counterparts but are augmented to support automatic differentiation. This approach enables the overloading of285

data types through inheritance from both the original data type and the OverloadedType class in Dolfin-Adjoint, ensuring

that each data object carries a BlockVariable for tracking its computational lineage. The elegance of Dolfin-Adjoint’s

design lies in its ability to abstract the computational details, allowing the scientific end-user to focus on designing the for-

ward problem, and simultaneously leverage the computational efficiency of automatic differentiation. Mimicking Firedrake’s

strategy in utilising Dolfin-Adjoint, the forward operations in G-ADOPT are overloaded by importing the inverse module of290

G-ADOPT (gadopt.inverse), which will be used to populate a tape and establish a ReducedFunctional, providing

the necessary functionalities for computing a functional and its derivative with respect to controls.

2.2.3 Discrete forward model

As explained in more detail in Davies et al. (2022), the forward geodynamical model can be described as a series of linear and

nonlinear solves. Although we solve for temperature using Q2 elements, we choose the control TIC to be in the Q1 function295

space as a means to regularise the inversion problem. This means we need to project TIC to the discrete function spaceQ=Q2,

to obtain a temperature T 0 used in the first timestep. This can be formulated as solving the following system for T 0:

Fproject(q;T
0,TIC) :=

∫
V

q
(
T 0 −TIC

)
dx= 0 for all q ∈Q, (8)

where q are test functions in Q. Subsequently we solve in each timestep n= 0, . . .N−1, the following two systems for un,pn,

and Tn+1, respectively:300

FStokes(v,w;u
n,pn,Tn) :=

∫
V

(∇v) : η(un,Tn)
[
∇un +(∇un)

T
]
dx−

∫
V

(∇ ·v)pndx−
∫
V

RaTnv · k̂dx

−
∫
V

w∇ ·undx= 0 for all v ∈ V,w ∈W,
(9)

Fenergy(q;T
n+1,Tn,un) :=

∫
V

q
Tn+1 −Tn

∆t
dx+

∫
V

qun · ∇Tn+θdx+

∫
V

(∇q) ·
(
κ∇Tn+θ

)
dx= 0 for all q ∈Q, (10)
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where V,W are the discrete function spaces for velocity and pressure (here V = [Q2]
dim
,W =Q1) with test functions v, and

w. Tn+θ is the weighted average θTn+1 +(1− θ)Tn. Note that we assume a strain rate and temperature dependent rheology,

and thus write η = η(u,T ). This makes Eq. (9) a non-linear system, which we solve through Newton’s method. The discrete305

functional is calculated as

J(TN ,u0, . . . ,uN−1,TIC) =
1

2

∫
V

(
TN −Tobs

)2
dx+

βu
2

N−1∑
n=0

∫
S

(un −un
obs) · (un −un

obs)ds

+
βd
2

∫
V

G(r)
(
TIC − T̄

)2
dx+

βs
2

∫
V

[
∇(TIC − T̄ )

]2
dx (11)

2.2.4 Calculating Gradients Using the Adjoint Method

We denote the entire forward solution as z = (T 0, . . .TN ,u0, . . .uN−1,p0, . . .pN−1), so that the functional can be written as a310

function J(z,TIC), of z and the control TIC . The forward solution itself is also dependent on TIC , as for each choice of TIC

we can solve the forward model to obtain z(TIC). We define the reduced functional Ĵ as

Ĵ(TIC) = J(z(TIC),TIC). (12)

Thus we can reformulate the PDE-constrained minimisation problem:

minimise J(z,TIC) under the constraints (8–10),315

as an unconstrained minimisation problem for Ĵ(TIC). To use efficient gradient-based optimisation algorithms we do, however,

need a means of computing its gradient for which we will employ the adjoint method. In addition to the forward solution z,

we also define an adjoint solution λ= (Ψ0, . . .ΨN ,ϕ0, . . .ϕN−1, ξ0 . . . ξN−1), where each component is associated with one

of the constraints: Ψ0 ∈Q with (8), ϕn ∈ V,ξn ∈W with (9), and Ψn+1 ∈Q with (10) for n= 0, . . .N − 1. Using these we

define the following sum of the constraints, with each constraint weighted by the corresponding adjoint solution λ:320

F (λ;z,TIC) = Fproject(Ψ
0;T 0,TIC)+

N−1∑
n=0

FStokes(ϕ
n, ξn;un,pn,Tn)+

N−1∑
n=0

Fenergy(Ψ
n+1;Tn+1,Tn,un). (13)

Since, by definition, for any choice of TIC the associated forward solution z(TIC) satisfies all constraints, we have:

F (λ;z(TIC),TIC) = 0,

and thus, for any choice of λ we have:

∂F (λ;z(TIC),TIC)

∂TIC
=
∂F (λ;z,TIC)

∂z

∣∣∣∣
z=z(TIC)

∂z(TIC)

∂TIC
+
∂F (λ;z,TIC)

∂TIC

∣∣∣∣
z=z(TIC)

= 0. (14)325

If we choose λ to be the solution to the following, so called, adjoint equation

∂F (λ;z,TIC)

∂z

∣∣∣∣
z=z(TIC)

=
∂J(z,TIC)

∂z

∣∣∣∣
z=z(TIC)

, (15)
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we can work out the gradient of the reduced functional:

∂Ĵ(TIC)

∂TIC
=
∂J(z,TIC)

∂z

∣∣∣∣
z=z(TIC)

∂z(TIC)

∂TIC
+
∂J(z,TIC)

∂TIC

∣∣∣∣
z=TIC

(16)

=
∂F (λ;z,TIC)

∂z

∣∣∣∣
z=z(TIC)

∂z(TIC)

∂TIC
+
∂J(z,TIC)

∂TIC

∣∣∣∣
z=TIC

(17)330

=− ∂F (λ;z,TIC)

∂TIC

∣∣∣∣
z=z(TIC)

+
∂J(z,TIC)

∂TIC

∣∣∣∣
z=TIC

(18)

2.2.5 Discrete Backward Model

Although the adjoint equation (15) is derived symbolically from the forward model (8–10), and solved for fully automatically

by Dolfin-Adjoint, we here briefly work out the discrete adjoint equations to show that these equations can still be interpreted

as the solution process of a backwards-in-time PDE, similar to the continuous adjoint approach, but that a specific time-335

discretisation is derived, which is necessary to obtain a gradient that is consistent with the discrete forward model. Split out by

component, the adjoint equations read

∂F

∂T 0
=

∂J

∂T 0
, (19)

∂F

∂un
=

∂J

∂un
, for n= 0, . . .N − 1, (20)

∂F

∂pn
=

∂J

∂pn
, for n= 0, . . .N − 1, (21)340

∂F

∂Tn+1
=

∂J

∂Tn+1
, for n= 0, . . .N − 1, (22)

which can be solved for Ψn,ϕn, ξn.

These equations can be solved by going backwards through the timesteps n=N − 1 . . .0. In each, we first solve (22) for

Ψn+1. Starting at the last timestep n=N − 1, we get:

∂Fenergy(Ψ
N ;TN ,TN−1,uN−1)

∂TN
δT =

∂J

∂TN
δT, (23)345

where we have applied the gradient of F with respect to TN to an arbitrary perturbation δT . This allows us to interpret this

equation as a weak form, tested with δT , that we can solve for ΨN :∫
V

ΨN δT

∆t
dx+ θ

∫
V

ΨNuN−1 · ∇δTdx+ θ

∫
V

(
∇ΨN

)
· (κ∇δT )dx=

∫
V

(
TN −Tobs

)
δTdx for all δT ∈Q. (24)

Defining an auxiliary ΨN+1 =∆t(TN −Tobs), and integrating the advection term by parts, we get:∫
V

[
ΨN −ΨN+1

∆t
δT − θ∇ ·

(
ΨNuN−1

)
δT + θ

(
∇ΨN

)
·κ∇δT

]
dx= 0 for all δT ∈Q, (25)350

which for θ = 1, we may recognise an advection-diffusion equation run backwards in time.
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For n <N − 1, equation (22) contains more terms:

∂Fenergy(Ψ
n+1;Tn+1,Tn,un)

∂Tn+1
δT =−

∂Fenergy(Ψ
n+2;Tn+2,Tn+1,un+1)

∂Tn+1
δT

− ∂FStokes(ϕ
n+1, ξn+1;un+1,pn+1,Tn+1)

∂Tn+1
+

∂J

∂Tn+1
δT for all δT ∈Q. (26)

as the energy equation in both forward time steps n and n+1 depends on Tn+1, as does the Stokes system in time step n+1.355

Going backwards through the equations however, we can still solve for Ψn+1, associated with time step n, as we have already

solved for ϕn+1, ξn+1, and Ψn+2 associated with time step n+1. Note that the ∂J/∂Tn+1–term vanishes in this case as J

does not explicitly depend on intermediate temperature solutions. Similar to (25), we may rewrite to∫
V

[
Ψn+1 −Ψn+2

∆t
δT −∇ ·

(
θΨn+1un +(1− θ)Ψn+2un+1

)
δT +∇

(
θΨn+1 +(1− θ)Ψn+2

)
·κ∇δT

]
dx=

−
∫
V

∇ϕn+1 :
∂η(un+1,Tn+1)

∂Tn+1

[
∇un+1 +

(
∇un+1

)T ]
δTdx+

∫
V

Raϕn+1 · k̂δTdx for all δT ∈Q, (27)360

which we can interpret as a backward-in-time theta-weighted advection diffusion step for Ψ, with source terms associated with

sensitivity of the rheology and buoyancy to temperature. Note, however, that here in the advection term we weight both Ψ and

u with θ, in contrast to the forward timestep (10).

After solving for Ψn+1, we can solve (20) together with (21) for ϕn and ξn:

∂FStokes(ϕ
n, ξn;un,pn,Tn)

∂un
δu+

∂FStokes(ϕ
n, ξn;un,pn,Tn)

∂pn
δp=−

∂Fenergy(Ψ
n+1;Tn+1,Tn,un)

∂un
δu+

∂J

∂un
δu (28)365

for all velocity and pressure perturbations δu ∈ V,δp ∈W . This leads to the following weak-form equation for ϕn and ξn:∫
V

[∇ϕn +(∇ϕn)] : η(un,Tn)∇δudx+
∫
V

[∇ϕn +(∇ϕn)] :
∂η(un,Tn)

∂un
δu∇udx−

∫
V

ξn∇ · δundx−
∫
V

(∇ ·ϕn)δpdx

=−
∫
V

Ψn+1δu · ∇Tn+θ +βu

∫
S

(un −uobs)δudx for all δu ∈ V,δp ∈W (29)

The left-hand side is similar to the Stokes system in (9), except for an additional ∂η/∂u term, alongside the fact that this is

now just a linear system as the rheology only depends on the forward variables un and Tn. Instead of a buoyancy term, we370

now have forcing terms associated with sensitivity of temperature advection and the mismatch with observed velocities at the

surface.

Finally, after having solved either (25) (n=N-1) or (27) (n<N-1) for Ψn+1, and (29) for ϕn, ξn going backward through the

timesteps n=N − 1→ n= 0, we can solve (19) for Ψ0:

∂Fproject(Ψ
0;T 0,TIC)

∂T 0
δT =−

∂Fenergy(Ψ
1,T 1,T 0,u0)

∂T 0
δT − ∂FStokes(ϕ

0, ξ0;u0,p0,T 0)

∂T 0
δT for all δT ∈Q (30)375

which can be worked out as a projection
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∫
V

Ψ0δTdx=

∫
V

Ψ1

∆t
δTdx+(1− θ)

∫
V

(
∇ ·Ψ1u1

)
δTdx− (1− θ)

∫
V

∇ψn+1 ·κ∇δTdx

−
∫
V

∇ϕ1 :
∂η(u1,T 1)

∂T 1

[
∇u1 +

(
∇u1

)T ]
δTdx+

∫
V

Raϕ1 · k̂δTdx for all δT ∈Q. (31)

Finally, the gradient of the reduced functional with respect to the control is obtained by:

∂Ĵ(TIC)

∂TIC
δT =−

∫
V

Ψ0 δT dx+
βd
2

∫
V

(
TIC − T̄

)
δT dx+

βs
2

∫
V

∇
(
TIC − T̄

)
· ∇δT dx (32)380

2.2.6 Gradient-Based Non-linear Optimisation

To find the solution to the inverse problem, the gradient fields from Firedrake and Dolfin-Adjoint can be redirected to an opti-

misation package with a Python interface (e.g., scipy.optimize: Virtanen et al., 2020). However, the majority of well-established

optimisation packages are hard-coded to apply the Euclidean (l2) inner product for optimisation-specific operations. l2, typi-

cally referred to as a sequence space, is often used in signal processing or discrete mathematics where functions are treated as385

sequences, i.e. discrete data, and do not represent continuous functions. The Euclidean inner product is therefore not suitable

for finite element function-based optimisation and, unlike L2 or Sobolev spaces, it cannot produce mesh and/or basis function

independent convergence (Schwedes et al., 2017). The Rapid Optimisation Library (ROL, The ROL Project Team, 2022), a

Trilinos package for large-scale optimisation, resolves this issue by introducing a generic interface for data structures that

can be overloaded to perform inner-product aware operations (e.g., in L2 space) and achieve mesh-independent convergence390

results (Schwedes et al., 2016). ROL has been primarily used for the solution of optimal design, optimal control and inverse

problems in large-scale engineering applications (Iglesias et al., 2018; Kouri et al., 2021a, b, 2023) and has a comprehensive

catalogue of gradient-based optimisation algorithms. For the results presented herein, we use the python interface for ROL in

Firedrake, which we have supplemented with additional checkpointing functionality. This allows us to checkpoint intermediate

optimisation states and variables, including those related to step lengths or Hessian estimates, and subsequently restart the395

optimisation procedure without loss of performance. This, in particular, is relevant on modern High Performance Computing

facilities with strict wall time limits.

The distinguishing factor between different optimisation algorithms (in ROL or elsewhere) is the strategy used to move

from one iterate to the next. Broadly speaking, there are two strategies for moving from the current iterate, xk, to a new one,

xk+1: line-search and trust-region strategies (Nocedal and Wright, 1999). A fundamental distinction between line-search and400

trust-region methods lies in the sequence of selecting the direction and distance (Nocedal and Wright, 2006). In line search

methods, the direction is initially fixed, and an appropriate step length is subsequently determined. Conversely, trust-region

methods commence by establishing an initial size for a trusted region (hence the name), and then simultaneously constrain

the direction and step to achieve sufficient amount of improvement within this trusted region. The size of this trusted region

around the current iterate is determined according to a model, m, that approximates the region around the current iterate, xk,405

according to a quadratic approximation. At each iteration, the accuracy of this model then is assessed based on its agreement

with the actual changes in the function, f . If the new value, f(xk + pk) is greater than the current value of f(xk), m is not
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a good approximation of the objective functional around xk and the size of the trusted-region measured by the trust-region

radius is therefore reduced to improve the applicability of the model. By bounding the calculations to a trusted region where

model m is applicable, trust-region methods prohibit overly aggressive steps, which make them suitable for handling negative410

curvature situations (non-convexity optimisation problems) more gracefully compared to line-search methods. Nonetheless,

faster convergence can be achieved by expanding trust region in case of a predictive model, ensuring robust minimisation of

the objective functional.

In this study, we employ the trust region method of Lin and Moré (1999) implemented in ROL. Lin-More is a truncated New-

ton method, consisting of repeated application of an iterative algorithm to approximately solve Newton’s equations (Dembo415

and Steihaug, 1983). Lin-More can effectively handle provided bound constraints by ensuring that variables remain within their

specified bounds: At each iteration, variables are classified into “active” and “inactive” sets. Variables at their bounds and not

allowing descent are considered active and are fixed during the iteration. The remaining variables, which can change without

violating the bounds, are inactive. The described properties renders the algorithm as a robust and efficient method for solving

bound-constrained optimisation problems.420

3 Numerical Experiments and Results

Twin experiments serve as a means to illustrate the feasibility of geophysical inverse methods. In our experimental setup,

we generate a synthetic reference simulation that advances forward in time, starting from a user-defined initial condition.

We use this reference simulation to emulate a real-Earth reconstruction scenario, where the resulting temperature field at the

final time, T (x,t= tF ), and the corresponding surface velocities at all times, u(x= xS , t), are stored for subsequent use as425

‘observations’ in reconstructing the initial state of the mantle and its evolution through space and time. These fields are used to

mimic fundamental datasets in mantle reconstruction models, drawing parallels to 3-D models of mantle temperature inferred

from seismic tomography images, and surface velocities derived from plate tectonic reconstructions. We examine two sets of

2-D twin experiments: (i) simulations of a single upwelling in an enclosed square domain, with an isoviscous rheology; and

(ii) convection within an annular domain, incorporating a non-linear visco-plastic rheology, as has previously been employed430

to generate plate-like behaviour in mantle convection models (see Coltice et al., 2017, for a review).

3.1 A Single Upwelling in an Enclosed Square Domain

3.1.1 Forward Problem

We start our experiments by reconstructing the evolution of a single upwelling plume within an enclosed square computational

domain (free-slip boundary conditions on all boundaries). We assume an isoviscous rheology, incompressible flow under the435

Bousinessq approximation assumption, and a Rayleigh number of Ra= 106. The model is heated from below (TC = 1) and

cooled from above (TS = 0). The initial condition is generated by a Gaussian anomaly of amplitude 0.1, centred at x0 =

(0.5,0.2), superimposed on top of an average temperature profile generated by two error functions, representing top and
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1: from gadopt import *
2:
3: # load mesh
4: mesh1d = IntervalMesh(150, length_or_left=0.0, right=1.0) # Unit interval mesh
5: mesh_temp = ExtrudedMesh(
6: mesh1d, layers=150, layer_height=1.0/150, extrusion_type="uniform")
7:
8: # Set up function spaces for the Q2Q1 pair for velocity+pressure and Q2 for temperature
9: V = VectorFunctionSpace(mesh, "CG", 2) # Velocity function space (vector)

10: W = FunctionSpace(mesh, "CG", 1) # Pressure function space (scalar)
11: Z = MixedFunctionSpace([V, W]) # mixed space for Stokes
12: Q = FunctionSpace(mesh, "CG", 2) # Temperature function space (scalar)
13:
14: z = Function(Z) # A field over the mixed function space Z
15: u, p = z.subfunctions # Symbolic UFL expressions for u and p
16:
17: T = Function(Q, name="Temperature") # Temperature Field
18: X = SpatialCoordinate(mesh) # Spatial Coordinates
19: # Initial condition
20: T.interpolate(
21: 0.5 * (erf((1 - X[1]) * 3.0) + erf(-X[1] * 3.0) + 1)
22: + 0.1 * exp(-0.5 * ((X - as_vector((0.5, 0.2))) / Constant(0.1)) ** 2))
23:
24: Z_nullspace = create_stokes_nullspace(Z, closed=True, rotational=False) # Pressure nullspace
25:
26: checkpoint_file = CheckpointFile("Checkpoint_State.h5", "w")
27: checkpoint_file.save_mesh(mesh) # saving the mesh
28: Ra = Constant(1e6) # Rayleigh number
29: approximation = BoussinesqApproximation(Ra) # Incompressible (Boussinesq) approximation
30: delta_t = Constant(4e-6) # Constant time step
31: max_timesteps = 80 # Number of time steps
32:
33: # Boundary conditions
34: stokes_bcs = {"bottom": {"uy": 0}, "top": {"uy": 0}, 1: {"ux": 0}, 2: {"ux": 0}} # Velocity BCs
35: temp_bcs = {"bottom": {"T": 1.0}, "top": {"T": 0.0}} # Temperature BCs
36:
37: energy_solver = EnergySolver(T, u, approximation, delta_t, ImplicitMidpoint, bcs=temp_bcs)
38: stokes_solver = StokesSolver(z, T, approximation, bcs=stokes_bcs,
39: nullspace=Z_nullspace, transpose_nullspace=Z_nullspace)
40:
41: # time loop:
42: for timestep in range(0, max_timesteps):
43: stokes_solver.solve() # solving Stokes
44: energy_solver.solve() # solving energy
45: checkpoint_file.save_function(u, name="Velocity", idx=timestep) # Store velocity (uobs)
46:
47: checkpoint_file.save_function(T, name="Temperature", idx=max_timesteps - 1) # Store final temperature (Tobs)
48: checkpoint_file.close()

Listing 1. Selected lines from G-ADOPT code, demonstrating generation of our reference isoviscous simulation in an enclosed square domain.

bottom thermal boundary layers. Starting from this initial condition, the model is run for 80 time steps of δt= 4× 10−6 : the

time required for the temperature anomaly to form a plume that reaches the domain’s top boundary.440

Listing 1 shows selected lines of a G-ADOPT script used to generate this reference synthetic experiment. The first step,

illustrated on line 1, is to import the G-ADOPT module (which provides access to Firedrake and associated functionality). We

next need a mesh, for which we use a built-in Firedrake meshing function. The computational domain is a unit square with

150×150 elements, loaded on lines 4-6. The function spaces, within which our solutions are defined, are specified as follows:

1. A vector function space, V, is specified for the velocity field (line 9), employing a Q2 discretisation.445

2. A scalar function space, W, is specified for pressure (line 10), utilising a Q1 discretisation.

3. These are combined on line 11 to create the mixed function space, Z, for the Stokes (velocity and pressure) system.

4. A function space Q, is specified for the temperature field (line 12), using a Q2 discretisation.

We specify functions to hold our solutions on lines 14-18. The temperature field, T, is initialised on line 20 using a symbolic

expression for the coordinates from line 18. The initialisation includes a 1-D profile along the y-axis (line 21) and a Gaussian450

anomaly, as specified above (line 22). This problem has a constant pressure nullspace, defined as Z_nullspace on line 24, which
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Figure 2. Reference forward simulation: The initial condition is generated by superimposing a gaussian anomaly of maximum amplitude 0.1

centred at x0 = (0.5,0.2) on top of an adiabatic profile. The simulation runs forward in time from this initial condition, until the plume-like

feature approaches the top boundary after 80 times-steps. Also visualised at top of each snapshot are the normal stresses acting on the top

boundary, which are proportional to dynamic topography. Boxed in dashed red is the final state of the simulation that is subsequently used

as Tobs in our synthetic adjoint simulation.

will subsequently be passed to the solver, and PETSc will seek a solution in the space orthogonal to the provided nullspace. A

checkpoint file is initiated on lines 26-27 to retain the necessary fields for the subsequent adjoint inversion. Important constants

in this problem (Rayleigh Number, Ra, time-stepping parameters, delta_t and max_timesteps) are defined on lines 28-31, with

the Boussinesq approximation specified on line 29 (later passed on to the Stokes and energy systems to determine which terms455

are to be assembled). Boundary conditions for velocity and temperature are specified on lines 34 and 35, respectively. The

latter uses integer mesh markers to tag entities of meshes, with boundaries tagged as follows: tag 1 corresponds to the plane

x= 0 (left); 2 to x= 1 (right); "bottom" to y = 0; and "top" to y = 1.

We now solve the variational problem, with solver objects for the energy, energy_solver, and Stokes, stokes_solver, systems

created on lines 37 and 38. For the energy system we pass in the solution field T, velocity u, the physical approximation, time460

step, temporal discretisation approach (i.e. implicit middle point) and boundary conditions. For the Stokes system, we pass

in the solution fields z, Temperature, the physical approximation, boundary conditions and the nullspace object. Solution of

the two variational problems is undertaken by PETSc. The time-loop is defined on lines 42-45, with the Stokes system solved

on line 43, the energy equation on line 44, and velocities (for later use as time-dependent surface constraints in our adjoint

inversions) checkpointed on line 45. Figs. 2-A to E show temporal snapshots of the reference forward simulation. We note that465

the final temperature field (Fig. 2-E), subsequently utilised in the adjoint inversion, is also checkpointed on line 47.
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3.1.2 Inverse Problem

Only trivial changes are required to convert the forward problem outlined in Listing 1 into its corresponding adjoint, which

are outlined in Listing 2. We first augment our imports with gadopt.inverse (line 2): this provides access to crucial Dolfin-

Adjoint functionalities harnessed by Firedrake, enabling overloading differentiation and taping of finite element operations.470

On line 4, we activate disk checkpointing of intermediate forward solutions, ensuring that these fields — otherwise retained

in memory — are available as inputs for solving the adjoint equations. For this problem, we select the initial temperature

as the control, symbolised as Tic on line 7, using a Q1 function space defined on line 6. On line 8, we define the average

temperature field for regularisation terms using the same Q1 function space. Despite utilising Q2 elements for the forward

temperature computation, opting for a basis function with a lower polynomial degree for the control is advantageous, as it475

curtails computational expense during the internal optimisation algorithm’s operations by reducing the number of degrees of

freedom in the solution. Furthermore, using a lower polynomial degree reduces the complexity and regularisation requirements

of the optimisation problem, helping to avoid over-fitting of the solution (e.g., Hastie et al., 2009).

On line 10, a checkpoint file is opened. The reference final temperature field is subsequently loaded on line 11, with our

guess at the initial temperature condition specified on line 12 (noting that it corresponds to the terminal temperature field of the480

reference simulation). We specify the control for Dolfin-Adjoint on line 15, followed by projection of the initial temperature

condition onto T on line 18. During execution of the time loop (lines 20-24), we solve Stokes and energy systems, after which

we load velocities from the reference simulation on line 24, used when accumulating contributions to the surface velocity misfit,

u_misfit, on line 24. After the time loop, we define several components of the objective functional. Specifically, we establish

the damping term and its associated normalisation factor (lines 29-31), the smoothing term and associated normalisation (lines485

32-33), two normalisation terms associated with final state temperature and surface velocity misfits (lines 34-35), and the misfit

associated with the final temperature field (line 36). These terms are combined on lines 38-42 as our objective, using weights

(αu, αd, and αs) specified on line 37, and is later utilised on line 44 to define the reduced functional. We note that values for

αu, αd, and αs are systematically tested herein.

3.1.3 Investigating the Derivative490

Our initial guess for TIC is set to the final ‘observed’ temperature field Tobs (i.e., the terminal temperature field of the forward

model). This choice is grounded in the findings of Horbach et al. (2014), and our own tests, which demonstrate that the

minimisation problem possesses a strong minimum, rendering it insensitive to the initial guess. The first optimisation iteration

starts from this initial guess (Fig. 3-A) and runs forward in time to arrive at the first modelled terminal temperature field

Tt=tF (Fig. 3-B). Compared to the reference Tobs (Fig. 3-C), the model is further advanced in time, with the plume tail in495

the lower mantle narrower, hot buoyant anomalies spread throughout the upper part of the domain, generating a cold return

flow and resulting in thinning of the thermal boundary layers. Previously, we noted that for our reconstruction simulations,

the objective functional, denoted as J , encompasses four distinct terms: (i) final temperature field; (ii) surface velocity misfit;

(iii) smoothing terms; and (iv) damping terms. The relevance of the three latter terms is gauged by their respective weighting
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1: ...
2: from gadopt.inverse import *
3: ...
4: enable_disk_checkpointing() # Enable checkpointing to disk for adjoint
5: ...
6: Q1 = FunctionSpace(mesh, "CG", 1) # Control (Tic) function space
7: Tic = Function(Q1, name="Initial Temperature") # Control: Initial temperature
8: Taverage = Function(Q1, name="Average Temperature") # Average temperature
9:

10: checkpoint_file = CheckpointFile("Checkpoint_State.h5", "r") # File for loading reference constraints
11: Tobs = checkpoint_file.load_function(mesh, "Temperature", idx=max_timesteps - 1) # Load reference final state
12: # Initialise control to reference final T
13: Tic.project(checkpoint_file.load_function(mesh, "Temperature", idx=max_timesteps - 1))
14: ...
15: control = Control(Tic) # definition of control
16: T.project(Tic, bcs=energy_solver.strong_bcs) # projection from Q1 to Q2,
17: # and imposing boundary conds
18: # Populate the tape by running the forward simulation
19: # and calculate surface velocity misfit
20: for timestep in range(0, max_timesteps):
21: stokes_solver.solve()
22: energy_solver.solve()
23: uobs = checkpoint_file.load_function(mesh, name="Velocity", idx=timestep) # load uobs
24: u_misfit += assemble(dot(u - uobs, u - uobs) * ds_t) # accumulate misfit
25:
26: checkpoint_file.close()
27:
28: # Define the objective functional
29: damping_mask = gaussian(X[1], 1.0, 0.1) + gaussian(X[1], 0.0, 0.1)
30: damping = assemble(damping_mask * (Tic - Taverage) ** 2 * dx)
31: norm_damping = assemble(damping_mask * Taverage**2 * dx)
32: smoothing = assemble(dot(grad(Tic - Taverage), grad(Tic - Taverage)) * dx) # smoothing term
33: norm_smoothing = assemble(dot(grad(Tobs), grad(Tobs)) * dx) # normalisation for smoothing
34: norm_obs = assemble(Tobs**2 * dx) # normalisation for Tobs
35: norm_u_surface = assemble(dot(uobs, uobs) * ds_t) # normalisation for u surface
36: t_misfit = assemble((T - Tobs) ** 2 * dx) # Tobs misfit
37: alpha_u, alpha_d, alpha_s = 0.1, 0.1, 0.1
38: objective = (
39: t_misfit
40: + alpha_u * (norm_obs * u_misfit / max_timesteps / norm_u_surface)
41: + alpha_d * (norm_obs * damping / norm_damping)
42: + alpha_s * (norm_obs * smoothing / norm_smoothing))
43: # Define the reduced functional
44: reduced_functional = ReducedFunctional(objective, control)

Listing 2. Changes compared to the forward script in Listing 1 required to define the reduced functional used in the adjoint problem. The
three alpha parameters on line 36 denote the three weighting parameters for surface, damping and smoothing terms, respectively.

factors, namely, αu, αs, and αd. When combining terms linearly in the objective functional, the superposition principle dictates500

that the gradient of the entire objective functional is essentially the cumulative sum of the gradients of its constituent terms

in J . Consequently, it becomes instructive to visualise and validate the gradient of each individual term within the objective

functional.

Fig. 3-D to G display the gradient fields corresponding to the four terms in the objective functional. The gradient for the

final temperature misfit is presented in Fig. 3-D: it implies that a better match to the final state temperature field is achievable505

through changes to the initial condition that include a major reduction in temperature in the domain’s centre, complemented by

an increase in temperature moving towards the domain’s edges, particularly towards the domain’s upper regions. In Fig. 3-E,

we illustrate the gradient of the cumulative surface velocity misfit with respect to TIC : it reveals sensitivities extending to the

domain’s base, indicating that to better align with the ‘observed’ surface velocities, an optimal TIC should be decreased in

the middle, but increased towards the domain’s boundaries. For the smoothing term (Fig. 3-F), the highest values emerge in510

areas with the most abrupt changes in TIC . Given our optimisation strategy works by moving towards corrections opposite to

the gradient’s direction, this subsequently results in iterative refinement and smoothing of the solution. For the damping term

(Fig. 3-G), the gradient aims to minimise fluctuations of the field in relation to the ambient temperature profile (T̄ ), adjacent to

the top and bottom boundaries, implying that this can be achieved by reducing boundary layer temperatures in the centre but

increasing boundary layer temperatures towards the domain’s sides.515
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Figure 3. First forward run and associated gradients: (A) is the first guess for TIC . For all experiments in this study we choose the ‘observed’

temperature field (i.e., the final state) as the initial guess for our optimisations. (B) is the final temperature field after integrating forward in

time from (A) for 80 time steps. (C) is the reference final temperature field, Tobs, which is used in the definition of the misfit functional.

(D)-(G) illustrate the gradient fields. (D) is gradient of the final temperature misfit. (E) is the gradient of the total surface velocity misfit. (F)

and (G) are for the regularising smoothing and damping terms, respectively.

3.1.4 Verification of Gradients: Taylor Remainder Convergence Test

A fundamental tool used in verification of gradients is the Taylor remainder convergence test (Farrell et al., 2013b). For the

reduced functional, J(TIC) defined in Eq. 6 and its derivative dJ
dTIC

, it can be proven that,

|J(TIC +hδTIC)− J(TIC)−h
dJ

dTIC
· δTIC | −→ 0 at O(h2). (33)

The expression on the left hand side of Eq. 33 is termed the second-order Taylor remainder. This term’s convergence rate of520

O(h2) serves as a strong foundation for verifying any computational implementation meant for determining dJ
dTIC

(the adjoint

code) with respect to a specific functional that computes J(TIC) (the forward code). Given any arbitrary selection of h and

δTIC , halving the value of h should decrease the magnitude of the second-order Taylor remainder by a factor of 4. Grounded

in this theoretical prediction, we employ these so-called Taylor tests to confirm the accuracy of the determined gradients.
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Figure 4. Second-order Taylor remainder test: for each gradient field, the test is performed by computing the functional and the associated

gradient when randomly perturbing the initial temperature field TIC and subsequently dividing the perturbations by a factor of two at each

level. The dashed line is the theoretical convergence rate of O(2.0). Residuals show accuracy of gradient information down to floating-point

precision (defined as the smallest positive ϵ, such that 1.0+ ϵ is distinguishable from 1.0.)

We conduct a second-order Taylor remainder test for each term of the objective functional. The results are displayed in Fig. 4,525

where the gradient fields are calculated for random perturbations of the initial temperature field TIC , with the amplitude of

these perturbations successively halved (h/2, h/4, h/8, ...). Notably, all four Taylor remainder tests demonstrate a convergence

rate of O(2.0), extending down to floating-point preision, defined as the smallest positive ϵ such that 1.0+ ϵ is distinguishable

from 1.0. Our results demonstrate consistency with theoretical expectations, highlighting the robustness of our approach.

3.1.5 Efficiency530

Another metric that can be used to assess the suitability of our framework for large-scale mantle convection optimisation

problems is the efficiency of derivative calculations. Given the iterative nature of our inverse problem, where derivatives are

computed frequently, any efficiency gain, or the lack thereof, can have profound implications for the overall computational

cost and feasibility of our automated approach. The computational efficiency can be measured by comparing the computa-

tional time of a derivative calculation to that of a forward calculation. Using this reference, a theoretical optimum is defined535

which measures the ratio of the time that is required to calculate one set of forward and adjoint calculations to one forward

calculation. For the Stokes problem we have detailed, in which a linear rheology has been employed, this ratio is considered

to be 2.0 (Naumann, 2011; Funke and Farrell, 2013). This is primarily due to the similarity of the forward and adjoint sys-

tems. For the simulations presented in this section, we achieve a ratio of 2.01, consistent with theoretical expectations, thus

demonstrating the efficiency of our approach.540
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1: ...
2: # Perform a bounded nonlinear optimisation
3: T_lb = Function(Tic.function_space(), name="Lower bound temperature").assign(0.0)
4: T_ub = Function(Tic.function_space(), name="Upper bound temperature").assign(1.0)
5:
6: minimisation_problem = MinimizationProblem(reduced_functional, bounds=(T_lb, T_ub))
7:
8: optimiser = LinMoreOptimiser(minimisation_problem, minimisation_parameters, checkpoint_dir="

optimisation_checkpoint")
9: optimiser.run()

Listing 3. Necessary changes to solve the minimisation problem. T_lb and T_ub are the lower and upper bounds for the minimisation problem,
respectively.

3.1.6 Optimisation

Executing an optimisation task with G-ADOPT is straightforward. Once the reduced functional is set up (see Listing 2), only

a few additional lines of Python are required (see Listing 3). As we use a bounded method for our optimisation problem, we

specify a set of upper and lower bounds for the algorithm, on lines 3-4. Subsequently, a minimisation problem is outlined

(line 6), using both the reduced functional and the designated bounds. This minimisation problem, together with the associated545

parameters for optimisation, are passed to the Lin-More optimisation algorithm in ROL (line 8), which is executed on line 9.

Using this framework, we perform a suite of 81 different inverse simulations that aim to find the most optimal combination of

the three weightings (αu, αd, and αs) that results in the best solution for TIC when compared to the reference initial temperature

field. The simulations are obtained by sweeping through values in ranges of [10−1,10−3], [10−2,10−4] and [101,10−7] for αd,

αs and αu, respectively.550

Fig. 5 provides an overview of the outcomes from a subset (16 out of 81) of these optimisation exercises. Minimisation of

the objective functional is shown in Fig. 5-A, alongside two additional metrics: (i) the misfit between the reconstructed final

temperature field and Tobs, termed the final misfit (Fig. 5-B); and (ii) the misfit between the reconstructed initial condition,

TIC , and the reference initial condition, highlighting the quality of the reconstructed initial condition (Fig. 5-C). The reduction

in the metrics in all cases is reported versus the cost, which is the sum of the number of forward and adjoint calculations. A555

consistent pattern is observed across all reconstruction simulations for these three metrics. Firstly, the solutions are unique, as

all converge to a consistent initial condition following roughly 100 iterations (a cost of 200 forward and adjoint calculations).

However, the trajectory to this solution varies based on the smoothing weight, denoted by αs. A significant portion of the

simulations with αs = 10−1 exhibit subpar performance in the initial stages, due to over-smoothing, with most of the best

performing simulations utilising αs = 10−2. Nevertheless, despite differences in convergence rates, all simulations eventually560

converge to similar misfits in all three metrics.

Fig. 6 showcases multiple iterations from the best-performing simulation using αu = 10−2, αs = 10−3, and αd = 10−2. As

mentioned previously, the reference final condition ( Fig. 6-B) is used as our starting guess for the inverse simulation (Fig. 6-

C), which yields substantial differences in the modelled final state (Fig. 6-K), as illustrated through the squared difference

between reconstructed and reference temperature (Fig. 6-O). Leveraging derivative information, the inverse simulation corrects565

the initial condition through an iterative approach. The initial conditions obtained after 20, 50, and 100 iterations are shown in

Figs. 6-D, E, and F, respectively. These solutions reveals that most corrections occur during the initial iterations, with significant
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Figure 5. An overview of optimisation results across all experiments: (A) Illustrates the minimisation of the objective functional. (B) Depicts

the final misfit, representing the difference between the reconstructed final temperature field and Tobs. (C) Highlights the initial misfit,

characterising the discrepancy between the reconstructed initial condition TIC and the reference initial condition. The bottom horizontal axis

in all figures reports the cost, here defined as the sum of forward and derivative calculations. The top axis shows the approximate equivalent

number of iterations, which simply is the cost divided by two. Across all metrics, simulations exhibit a consistent pattern: they converge to

the same solution approximately after 100 iterations, though the path to this solution diverges depending on the smoothing weight, αs.

improvement in the domain’s upper part by iteration 20, albeit with some remaining noise in the solution (see misfit in Fig. 6-

H). By iteration 100, the solution (visible in Fig. 6-F and N) closely mirrors the reference initial condition, represented by

misfit values that have diminished by three orders of magnitude (Fig. 5-B and C).570

Fig. 7 compares the evolution of reference forward (A-E) and reconstructed simulations (F-J), with differences highlighted

(K-O). Furthermore, surface normal stresses are displayed as indicators of surface dynamic topography. For the reconstructed

simulation (Fig. 7-F), the initial condition is well captured as a Gaussian anomaly in the domain’s lower section, superimposed

on a depth-dependent field, similar to the reference initial condition. This initial temperature anomaly ascends, culminating at

the surface after 80 time steps. The precision of the reconstruction is evident from the misfit panels, with negligible differences575

between reference and reconstructed simulations throughout the model’s evolution (less than 0.01). This is further substantiated

by a reduction, by over four orders of magnitude, in the objective functional for both initial and end states (Fig. 5-B and

C). The accuracy of reconstructed surface normal stresses are evidenced by negligible discrepancies in the associated misfit

visualisation.
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Parameter Symbol Value

Viscosity [] µ —

Plastic viscosity [] µp —

Linear (temperature-dependent) viscosity [] µlin —

Principal strain rate tensor ϵii —

Ambient viscosity µ(r) —

Yield stress (at Earth’s surface) σyield 2× 104

Minimum plastic viscosity µ∗ 0.1

Temperature dependence of viscosity ∆T ln(80)

Table 2. Parameters employed for 2-D annulus twin experiments.

3.2 Convection in an Annulus, Incorporating a Visco-plastic Rheology580

We next analyse a set of reconstructions which utilise a reference twin that more closely mimics Earth’s geometrical and

rheological characteristics. We use a 2-D annular domain, generated by extruding 128 times radially from a circular manifold

consisting of 512 cells. Inner and outer radii are set to 1.22 and 2.22 respectively, ensuring unit depth and maintaining a

comparable ratio between surface and CMB radii as Earth’s mantle. We set Ra= 107 and adopt a composite visco-plastic

rheology, with effective viscosity determined via a harmonic mean, represented as:585

1

µ
=

1

µp
+

1

µlin
, µp = µ∗ +

σyield
ϵii

, µlin = µ0(r) exp

(
∆µ,T

T

)
. (34)

Parameters specified in Eq. 34 are listed in Table 2. As demonstrated by Davies et al. (2022), the changes necessary to trans-

form our forward model from a square to an annular domain, and from an isoviscous to a visco-plastic rheology, are only

minor, noting the Firedrake has already been validated for simulations of this nature (see Davies et al. (2022) and repository

accompanying this paper for a comprehensive script).590

To determine the reference simulation’s initial condition, we commence from a starting state with small-scale spherical

harmonic perturbations and advance forward in time until a quasi-steady state is achieved (i.e., when basal and surface heat-

fluxes are roughly in balance). The resulting state (Figs.8-1.A and 2.A), which contains downwellings that descend from the

upper thermal boundary layer and upwelling plumes that rise from the lower thermal boundary layer, forms our reference initial

condition. We subsequently advance forward for a duration of t= 200× (5× 10−6) to reach the reference final state shown595

in Figs. 8-1.G. While the non-dimensional time of 10−3 translates into 256 Myrs of convection, the domain velocities suggest

an equivalent Earth-like time of ≈ 100 Myrs (due to a marginally reduced Ra relative to estimates for Earth’s mantle). The

sequence presented in Figs. 8-1.A-G and 2.A-G trace the temporal development of reference temperature and viscosity fields,

respectively. The viscosity field spans approximately three orders of magnitude, extending from low asthenospheric values of

≈ 1.0, rising to 140 within the cooler segments of the lower mantle, and decreasing to 0.4 in locations of high strain-rates at600

surface convergent boundaries.
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3.2.1 Verification of Gradients

As with the previous Cartesian case examined, reconstruction simulations are conducted with an objective functional encom-

passing the misfit component related to the terminal temperature field, accumulative surface velocity misfits, and regularisation

terms. For consistency with the previous case, we first confirm the accuracy of the calculated gradient fields corresponding to605

each component in the objective functional by performing second-order Taylor remainder convergence tests. To further analyse

the robustness of our results against solver tolerances, specifically concerning the final temperature field and surface velocities,

we conduct a set of two additional convergence tests. The first set utilises a Newton (SNES) relative solver tolerance of 10−10

and is depicted using solid colors in Fig. 9, while the second set, using a relative tolerance of 10−5, is represented by semi-

transparent colors. Our findings indicate that with tighter tolerances, results adhere to an O−2 trend consistent with theoretical610

predictions, confirming accuracy down to the smallest floating-point representation. Conversely, when the tolerance is relaxed

to 10−5, this behavior holds only up to perturbations of similar magnitude (h≈ 10−5), demonstrating a divergence from the

expected O(h2) trend for smaller perturbations.

3.2.2 Efficiency

In the experiments detailed in this section, an efficiency of 1.45 is achieved. This exceeds the previously outlined theoretical615

efficiency of 2.0 for the isoviscous Stokes model in Sec. 3.1.5, due to a major difference in the forward and adjoint momentum

equations: while the forward momentum equation employs a non-linear visco-plastic rheology and requires multiple linear

Newton solves per time-step, the adjoint momentum remains linear. The forward model is therefore more computationally

demanding, explaining the improved efficiency ratio.

3.2.3 Optimisation620

As highlighted with our previous example, absolute and relative variations in weighting of different objective functional com-

ponents can generate solutions with distinct properties, some of which provide an improved match to the reference simulation.

Accordingly, it is vital to assess the consequences of these distinct weight combinations for the case considered here. To address

this, we have undertaken 21 simulations, adjusting the parameters αu, αs, and αd within the intervals [0.05,0.1], [0.01,0.1],

and [0.01,0.1] respectively, with values motivated by the results of our previous set of simulations. The collective convergence625

of all 21 simulations is illustrated in Fig. 10.

Our objective functional (Fig. 10-A), has initial values that range between ∼ 1×10−1 and 2×10−1. We consistently observe

a reduction of an order of magnitude or more in this measure. Notably, the steepest decline is seen within the initial 50 iterations

(cost ∼ 100). The simulations denoted as X, XI exhibit the largest reduction, with a consistent reduction trajectory even when

approaching iteration 200 (cost ∼ 400).630

The final temperature misfit (Fig. 10-B) exhibits different trends to the objective functional. In the initial iterations, the

largest reductions in final misfit are observed for simulations I and II, with simulation XII trailing behind. Despite displaying

a lower misfit reduction up until iterations 140 and 180 (cost ∼ 280− 360) simulations X and XI eventually display a similar
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misfit by iteration 200 (cost ∼ 400). When we turn to reduction in the initial misfit (Fig. 10-C), an entirely different trend

comes to light: simulations I and II sustain their reduction until around iteration 150 (cost ∼ 300), after which they plateau.635

Conversely, many other simulations plateau at misfit values that are, on average, twice as high.

In our analysis, the reconstruction quality is predominantly governed by three key weighting parameters: surface velocity

misfit (αu), smoothing (αs), and damping (αd). These parameters calibrate the significance of different objective terms in

relation to the final temperature misfit term. Thus, the primary metric to assess a reconstruction is the simultaneous reduction

of misfits for both initial and final states. Incorporating the misfit associated with surface velocities enhances the quality640

of the reconstructions, noting that higher weightings of the surface velocities require higher values of smoothing. Among

the weighting parameters, αs shows to have the highest effect in convergence outcomes: higher values for αs lead to over-

regularisation, thereby limiting the role of sensitivity information tied to misfit terms in the solution. αd offers a more varied

range of effective values, which aligns with its role confined to thermal boundary layers and, consequently, its lesser impact on

the overall numerical domain. Therefore, Case I, characterised by (αu,αs,αd) = (1× 10−1,1× 10−1,1× 10−2), emerges as645

the optimal set of weighting parameters for our reconstructions.

In contrast to the three orders of magnitude reduction in the misfit functions from the isoviscous experiment, our non-linear

experiment exhibits a modest reduction of O(1). The key factor contributing to this is the extended total simulation time

for the non-linear experiment. Representing a far longer reconstruction period, this implies more information loss during the

inversion process. Additionally, while the isoviscous experiment focused on a single temperature anomaly, this simulation650

tackles whole-mantle convection, with numerous, and occasionally complex and highly time-dependent anomalies, reflecting

the more intricate visco-plastic rheology. Nonetheless, this order of magnitude reduction in misfit translates into a satisfactory

reconstruction of the initial condition, demonstrating the efficacy and robustness of the numerical approaches employed.

This is confirmed by visual inspection of the best reconstruction model, with temperature, viscosity and surface normal

stresses presented and compared to the reference case in Fig. 11 (marked case I in Fig. 10, using values of αu = 10−1, αs =655

10−1 and αd = 10−2). At t= 0, the reconstructed temperature field exhibits upwelling and downwelling features that are

reconstructed in the correct locations, although temperature anomalies are generally smoother than those of the reference

case (Fig. 11-1.A). The corresponding viscosity field mirrors this smoothness, despite capturing weaker convergence zones at

the surface. Despite these variations, the spatial misfit is generally below 10−2, (Fig. 11-5.A) with errors over 0.05 restricted

to sharper features that are inevitably smoothed in the reconstruction process. This smoothness is also reflected in recovered660

surface normal stresses, with highs and lows correctly positioned, albeit at longer wavelengths than the reference case.

Given the application of a free-slip boundary condition at the surface of this simulation, a prominent outcome of this set

of experiments is the emergence of sharp subducting slabs and weak zones at the top boundary as the simulation evolves

(Figs. 11-3.B and 4.B). The marked decrease in misfit over time (Fig. 11-5.B) confirms the development of more detailed

convective patterns. As the simulation evolves, reconstructed plume features become more precise and reconstructed surface665

normal stresses more closely resembles the reference case. This enhancement progresses up to the final time-step, where the

reconstructed thermal field and surface normal stresses are indistinguishable from those in the reference simulation, reflected

via an order of magnitude reduction in the spatial misfit field.
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4 Discussion

Robust reconstructions of the spatial and temporal evolution of Earth’s mantle and its diverse surface expressions is critical670

to scientific progress across the geosciences. It requires the construction of a digital twin: a vital instrument for analysing and

revealing the complex interplay between the mantle and Earth’s other systems. To this end, the adjoint method provides the

necessary means for obtaining and analysing model sensitivities with respect to earlier mantle states. A burgeoning number of

studies exploiting this methodology for reconstructions of mantle convection have emerged in recent years (e.g., Bunge et al.,

2003; Ismail-Zadeh et al., 2004; Liu et al., 2010; Spasojevic et al., 2009; Li et al., 2017; Price and Davies, 2018; Ghelichkhan675

et al., 2021). Nevertheless, the derivation, implementation, and validation of adjoint systems for coupled, non-linear, time-

dependent systems remains notoriously difficult. It is due to these difficulties that existing applications of the geodynamic

adjoint method often include major simplifications, either incorporating an oversimplified treatment of mantle rheology (e.g.,

Colli et al., 2018; Ghelichkhan et al., 2021), neglecting certain (coupling) terms in the adjoint equations (e.g., Ismail-Zadeh

et al., 2004), or both (e.g., Liu and Gurnis, 2010): they are therefore likely limited in their applicability to realistic Earth680

scenarios. In this study, we leverage the latest advances in scientific computing to overcome these limitations and develop

G-ADOPT, an open-source numerical framework for geoscientific adjoint reconstructions, developed in full compliance with

FAIR (Findable, Accessible, Interoperable, Reusable) principles (Wilkinson et al., 2016).

G-ADOPT is underpinned by three primary software elements. The first is Firedrake (Ham et al., 2023), an automated

system for solving partial differential equations using the finite-element method. In our previous work (Davies et al., 2022)685

we examined the applicability of Firedrake for geodynamical simulations, confirming its accuracy, efficiency, extensibility

and parallel scalability through comprehensive benchmarks and state-of-the-art mantle convection simulations. The second

element is Dolfin-Adjoint (Farrell et al., 2013a; Mitusch et al., 2019), a system that automatically generates the discrete adjoint

from forward models designed in Firedrake. Dolfin-Adjoint elevates the conventional abstraction of automatic differentiation

from individual floating point operations to complete systems of differential equations, leveraging the high-level mathematical690

abstraction of finite element problems and their symbolic representation in UFL (Alnæs et al., 2014). The adjoint systems

derived by Dolfin-Adjoint are UFL expressions and valid Firedrake inputs. Therefore, they inherit the parallel support native

to the forward model, which results in optimal computational efficiency. The third element is the Rapid Optimisation Library,

ROL, a Trilinos package for large-scale optimisation problems (The ROL Project Team, 2022), enhanced herein with intra-

optimisation checkpointing functionality.695

We have demonstrated the applicability of G-ADOPT for time-dependent geodynamic reconstructions herein. The objective

functional utilised in our reconstructions is composed of two distinct misfit components. The first is a term that quantifies the

misfit corresponding to the observed final state temperature field, analogous to the present-day temperature field within Earth’s

mantle as obtained through a combination of mantle mineralogical models (e.g., Stixrude and Lithgow-Bertelloni, 2011; Chust

et al., 2017) and seismic imaging (e.g., Rawlinson et al., 2010; French and Romanowicz, 2014; Simmons et al., 2015; Bozdağ700

et al., 2016; Koelemeijer et al., 2016; Fichtner et al., 2018). The second term corresponds to observed surface velocities,
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accessible through plate tectonic reconstruction models (e.g., Müller et al., 2019). Additionally, smoothing and damping terms

have been incorporated to enforce regularity in our solutions.

Our study analysed two sets of reconstructions of systematically increasing complexity. We first examined the evolution

of a single ascending hot anomaly in an enclosed isoviscous square domain. By taking advantage of the simplicity of the705

geometry and rheological properties, we were able to deliver an in-depth examination of the gradients for each term, including

a parameter-space search to ascertain optimal weighting parameters. Our results reveal a general convergence of the solutions,

notwithstanding substantial variations in convergence rates subject to the weightings. Additionally, although not detailed in this

paper, we have explored a number of different optimisation methods and parameters. Through this comprehensive analysis, we

are confident that the problem possesses a stable solution that can be found through an appropriate combination of weighting710

parameters. The second set of reconstruction experiments explored convection with a stress-, depth- and temperature-dependent

rheology at the convective vigour of Earth’s mantle, demonstrating the feasibility of reconstruction studies for Earth’s mantle

with a non-linear rheology. The weightings selected for this series of experiments were broadly consistent with the first set.

Given the success at reproducing surface velocities and normal stresses, our findings suggest that reconstruction models of

Earth’s mantle can serve as a powerful means for probing changes in the landscape at Earth’s surface induced by mantle715

dynamics (e.g., Friedrich et al., 2018; Hoggard et al., 2021; Davies et al., 2023).

In both experimental sets, we assessed the numerical efficiency of our framework by evaluating the cost ratio between

forward and adjoint calculations. In the first set, our results produced a ratio of 2.01, aligning with the theoretical efficiency of

2.0 (e.g. Naumann, 2011). In the second set, where we solved the nonlinear forward equations, we observed a ratio of 1.45.

This efficiency is attributed to the linearised nature of the adjoint method: even when applying nonlinear rheologies in the720

forward equations, the adjoint equations remain linear. We also conducted second-order Taylor remainder convergence tests

for each of the objective functional terms to validate the adjoint calculations. We note our convergence is accurate down to

floating-point precision, consistent with results presented by Coltice et al. (2023). Our assessments demonstrate the accuracy of

the derivative calculations (Figs.4 and 9). These Taylor remainder convergence tests provide a robust basis for future validations

of geodynamic adjoint frameworks.725

Our experiments incorporate two significant simplifications relative to realistic-Earth scenarios, which were necessary to

facilitate the number of reconstruction simulations analysed: (i) the use of a 2-D computational domain; and (ii) application of

the Boussinesq approximation instead of more pertinent approximations such as anelastic-liquid approximations (e.g., Jarvis

and McKenzie, 1980). Nevertheless, the composable nature of G-ADOPT should alleviate any concerns regarding the extensi-

bility of our framework to these more realistic problem sets. Our prior work in Davies et al. (2022) demonstrates the flexible730

nature of our approach: for example, transitioning our 2-D annulus simulations to a 3-D spherical shell domain can be achieved

via changes to only a few lines of Python. The application of G-ADOPT for reconstructing Earth’s mantle evolution using non-

linear rheologies and compressiblity will be the subject of future investigations, although we note that the forward modelling

approach has already been developed (Davies et al., 2022). Moreover, our framework is extensible to various other problems

in geodynamics. These include utilising principal stress directions (e.g., Reuber et al., 2020), surface plate velocities (e.g.,735

Ratnaswamy et al., 2015; Bocher et al., 2018), and/or residual depth measurements (e.g., Panasyuk and Hager, 2000; Spasoje-
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vic et al., 2009) to explore the mantle’s rheological properties, and to study the visco-elastic adjustment of Earth’s surface in

response to the melting of Earth’s polar ice-sheets (Al-Attar and Tromp, 2014; Martinec et al., 2015, e.g.,), and post-seismic

deformation following significant subduction earthquakes (e.g., Sabadini and Vermeersen, 1997).

Reconstructing past mantle states is fraught with substantial theoretical and practical challenges. In this study, we targeted740

some of these theoretical and practical hurdles by introducing G-ADOPT. Nevertheless, significant obstacles exist that are be-

yond the scope of this work. We predicated our work on zero uncertainty in our reference fields (i.e., the present-day tempera-

ture field and past surface velocities), thereby committing what is known as the ‘inverse crime’ (Colton et al., 1998), a term used

to describe the situation when the code employed in the inversions is also utilised to generate reference simulations. Estimation

of the present-day mantle state from seismic imaging and the assumptions regarding the thermal and compositional interpreta-745

tion of seismic heterogeneity are both fraught with considerable uncertainty (e.g., Styles et al., 2011; Mosca et al., 2012; Zaroli

et al., 2013; Davies et al., 2015). Furthermore, plate tectonic reconstructions can be uncertain, particularly further back in time

and within the Pacific region (e.g., Shephard et al., 2012; Williams et al., 2015; Tetley et al., 2019). However, the existence

of seafloor spreading isochrons up to approximately 125 Ma for all major plates provides confidence in modelling relative

plate movements in more recent geological periods (Seton et al., 2020). An uncertainty impact study carried out by Colli et al.750

(2020) posits that the presence of uncertainties causes reconstructed and reference flow histories to diverge exponentially back

in time, with unrealistic structures materialising within and adjacent to thermal boundary layers. To minimise these impacts,

Colli et al. (2020) advocate for terminating the optimisation after a few iterations. Here, however, inclusion of regularisation

terms in the objective functional mitigates these impacts, effectively constraining the reconstruction to a smoother solution.

This becomes particularly advantageous in real-Earth applications where observational constraints become sparser and more755

uncertain back in time. Without a smoothing term, the solution to the initial condition can contain high-frequency noise, which

would diffuse over the course of the simulation. Smoothing therefore drives the solution towards a longer-wavelength initial

state, whilst maintaining sensitivity to shorter wavelength information recorded in seismic tomography images.

Moreover, by formally introducing past surface velocities into the objective functional, we infuse sensitivity information that

propagates further back in time, refining the flow trajectory to improve the accuracy of reconstructions in the upper thermal760

boundary layer region. This sets our approach apart from the method used in previous adjoint reconstruction simulations (e.g.,

Vynnytska and Bunge, 2015; Zhou and Liu, 2017; Ghelichkhan et al., 2021), where the sequential-in-time nature of plate

velocity assimilation can improve flow trajectories only forward in time. Despite this, it is crucial to recognise that observed

surface velocities are the result of a complex force balance, including contributions from within Earth’s mantle and at Earth’s

surface, including those at plate boundaries, such as the genesis and destruction of orogenies, which have been associated with765

rapid changes in plate velocities (Colli et al., 2014; Iaffaldano and Bunge, 2015). These forces are not captured in current state-

of-the-art spherical mantle convection models. Although our inversions utilise absolute plate velocities – thereby accounting

for the majority of the forces driving surface movements – it is essential to emphasise that constraints on Earth’s present-day

thermal field must be prioritised as the primary data source for such inversions.

Our study lays the foundations for exploring several unresolved geodynamical questions. Previous research has shown that770

prescribing plate tectonic reconstruction velocities as a top boundary condition improves the precision of mantle reconstruction
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models and diminishes noise (e.g., Colli et al., 2015; Taiwo et al., 2023). Our framework formally incorporates these constraints

through misfit terms, and future studies should compare this with other methods to find the most efficient way to integrate this

valuable data. Earlier research advocates solving the reduced adjoint system, effectively considering velocities as insensitive

to initial conditions (e.g., Ismail-Zadeh et al., 2004; Liu et al., 2008). The second-order Taylor remainder convergence tests,775

examined herein, provides a robust foundation for evaluating the accuracy of such simplifications. Furthermore, our framework

sets the stage for including hitherto unused observations within our inversions, such as geochemical constraints on mantle

temperature and pressure (Ball et al., 2021). This stems from the design principle of composable abstractions in the software

packages used in G-ADOPT, ensuring all components’ modularity, interoperability, reusability, scalability, and maintainability.

Specifically, Firedrake emphasises a clear separation between using the finite element method and implementing it. Dolfin-780

Adjoint automates the derivation and computation of the adjoint systems using high-level symbolic language, ensuring the

same advanced strategies that are applied for the forward calculation are utilised in the adjoints. Finally, ROL offers large-scale

optimisation algorithms that seamlessly integrates with Firedrake and Dolfin-Adjoint. Their integration through G-ADOPT is a

groundbreaking development that opens up adjoint problems to a new class of user and developer.

5 Conclusions785

Transitioning from idealised forward models to data-driven simulations necessitates an inverse approach that rigorously incor-

porates observational constraints and their uncertainties. The adjoint method has emerged as a key technique for optimising

unknown model parameters against observational data (e.g., Bunge et al., 2003). In this context, we introduce the Geoscientific

Adjoint Optimisation Platform (G-ADOPT), which capitalises on cutting-edge developments in computational sciences, partic-

ularly through innovations in Firedrake (e.g., Rathgeber et al., 2016; Davies et al., 2022), Dolfin-Adjoint (Farrell et al., 2013a;790

Mitusch et al., 2019), and the Rapid Optimisation Library (ROL) (The ROL Project Team, 2022).

Our investigation, validated by two distinct sets of twin experiments, demonstrates G-ADOPT’s efficacy in deducing the

initial conditions for mantle flow and tracing its progression through space and time. These synthetic experiments leverage

misfit terms to integrate both contemporary constraints across the computational domain and temporal constraints at Earth’s

surface. Additionally, we explored regularisation techniques to modulate the amplitude and complexity within the optimal so-795

lution. Notwithstanding the simplifications made (e.g., neglecting compressibility and 3-D geometry), G-ADOPT’s architecture

allows for straightforward adaptation to more complex scenarios with minimal modifications to the Firedrake forward model

(as evidenced by Davies et al., 2022), alongside automated adjoint derivation and computation via Dolfin-Adjoint. The employ-

ment of the second-order Taylor remainder convergence test further corroborates our methodology, establishing a precedent

for the advancement of geodynamic adjoint frameworks and facilitating prompt validation of adjoint models for more complex800

analyses.

Historically, geoscientific modelling frameworks were tailored to specific equations, which limited their application across

disciplines. The current progress in adjoint-based techniques, crucial for data assimilation, sensitivity analysis, and optimi-

sation, has markedly benefited meteorology and oceanography, though similar progress in other fields has been hindered by
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derivation and implementation challenges. G-ADOPT’s modular design seeks to bridge these divides. Its components are de-805

signed for ease of assembly and reusability, promoting a culture of modular, interoperable, scalable, and maintainable methods

and frameworks. This philosophy ensures that G-ADOPT can be readily adapted to a broad spectrum of geoscientific research

areas.
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Figure 6. Iterative optimisation process visualised: A and B depict the reference initial and final conditions. C-F present the reconstructed

initial conditions at the 0th, 20th, 50th, and 100th iterations. G-J highlight the misfits, representing the squared differences between the

reconstructed initial temperature fields and the reference temperature. Similarly, K-N display the reconstructed final temperature fields after

the 0th, 20th, 50th, and 100th iterations, with their respective misfits demonstrated in O-R.
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Figure 7. Comparison of reference forward and reconstructed simulations over time: A-E present the evolution in the reference forward,

while F-J depict the evolution in the reconstructed simulations. The misfits between the reference and reconstructed scenarios at each time

step are illustrated in K-O. Note that surface dynamic topography is represented by visualising the normal stresses at the top boundary.
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Figure 8. Reference forward simulation spanning a duration of t= 200× (5× 10−6), as depicted in 1.A to 1.G. Figs. 1 (upper panel) detail

the temporal evolution of the reference temperature field, while Figs. 2 (lower panel) show the viscosity field at each time. The viscosity

demonstrates a variation of nearly three orders of magnitude: approximately 1.0 in the asthenosphere, 140 within colder lower mantle slabs,

and 0.4 in convergent regions exhibiting elevated strain-rates.

Figure 9. Second-order Taylor remainder test for convection with a temperature, depth and stress-dependent rheology. The semi-transparent

markers are cases where the relative solver tolerance of Newton solves (SNES) is set to 10−5. With such tolerances, perturbations beyond

solver tolerance exhibit divergence from the O(h2) trend. When setting this tolerance to 10−10 (larger solid markers), residuals show

accuracy of gradient information down to floating-point precision.
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Figure 10. Summary of optimisation outcomes from 2-D annulus experiments. (A) visualises the process of objective functional minimisa-

tion. (B) illustrates the final misfit, representing the misfit between the reconstructed final temperature field and Tobs. (C) depicts the initial

misfit, indicating the difference between the reconstructed initial condition TIC and the reference initial condition. Notably, despite signifi-

cant reduction in the objective functional and final misfit in simulations XI and XII, these simulations do not perform as well in terms of the

initial misfit, which is a key measure in our experiments.
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Figure 11. Comparing the reference (1 and 2) and the best reconstruction simulation (3 and 4). Temperature and viscosity fields are shown in

panels 1,3 and 2,4 respectively. The misfit, which is the squared difference between the reconstructed and reference temperatures, is shown in

panel 5. To highlight the effectiveness of the reconstruction of the evolution of surface dynamic topography, a field representing the normal

stresses acting on the top boundary is visualised alongside the temperature fields in 1 and 3. The reconstruction simulation employs values

of αu = 10−1, αs = 10−1 and αd = 10−2, and is marked with I in Fig. 10.
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