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We would like to express our sincere gratitude to the three reviewers, Georg Reuber, Nicolas Coltice, and an anonymous
reviewer, for their insightful and constructive comments. Their expertise and thoughtful suggestions have allowed
us to enhance the quality and clarity of our manuscript. We also extend our thanks to the journal’s editorial staff,
specifically Boris Kaus, for his efficient handling of the review process and the understanding and flexibility regarding
circumstances beyond our control. Below are our responses marked with “Response - [#] ”, each following the original
comment it is addressing in light italic grey.

Responses to Reviewer 1: (Georg Reuber)
G. R. – C1:“ The authors present an open-source mantle convection inversion modelling library based on Firedrake, ROL and
dolfin-adjoint. The library makes use of Firedrake’s high level of abstraction to discretize the forward problem and automatically
derive the adjoint equation and derivative expressions via UFL. A connection to ROL allows for usage of scipy optimizers. They
solve 2 toy inverse problems while investigating the effects of their regularization choice. The contribution is valuable to the com-
munity as their library might facilitate prototyping of mantle convection related inverse problems. The choice of regularization
terms can be adapted for future (mantle) reconstructions. The paper is very well written and mostly well structured. Especially the
description of the numerical implications of DTO versus OTD is well formulated. I recommend publication with minor modifica-
tions. ”
Response – 1: We appreciate Georg’s positive feedback and concise summary of our work. To add to this, we would
like to reiterate a detail that has been appropriately addressed already in our manuscript. The Rapid Optimization
Library (ROL), as described in our manuscript, is a component of the Trilinos project, designed for highly-efficient,
large-scale optimisation, and provides an alternative rather than a interface to scipy’s optimization algorithms. Al-
though many of ROL’s algorithms are similar to those in scipy.optimize, there are fundamental differences. Most
importantly, ROL provides a generic interface for data structures that can be overloaded to perform inner-product
aware operations (e.g., in L2 space) and achieve mesh-independent convergence results not otherwise attainable with
scipy.optimize.

G. R. – C2:“ Major comments: Collect all mathematical symbols in Table 1.”
Response – 2: In response, we have updated Table 1 to include all mathematical symbols up to Section 2.2.3. We
opted not to incorporate the symbols in the adjoint system’s derivation into Table 1 to maintain readability and prevent
it from becoming overly extensive.

G. R. – C3:“ A comparison to existing automatic adjoint frameworks for PDEs, e.g. FEniCSx adjoint, TAO based PETSc adjoint,
Julia AdFEM, etc might be valuable. On one hand it remains unclear what parts the library are abstracted away from a potential
user in contrast to directly using Firedrake, FEniCS, PETSc etc. On the other hand, it is unclear what the boundaries on the
flexibility of the library are. Such a discussion on the library would facilitate potential users’ choice to use the author’s library for
their inverse problem at hand.”
Response – 3: Acknowledging the reviewer’s suggestion for a comparison with existing AD frameworks for PDEs, we
note the variety of AD tools that have been developed over recent years. Tools such as FEniCS utilise Dolfin-Adjoint
for AD, similar to the approach employed by Firedrake. The manner in which solve options and adjoint systems are
managed, however, differs between Firedrake and the broader FEniCS projects. As for the specific FEniCSx project,
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it is a new implementation of the FEniCS project that is currently under development. As of the last public update,
there is currently no automatic differentiation functionality available in FEniCSx. Finally, any detailed description of
Firedrake and other FEniCS projects is outside this paper’s scope and is discussed in our previous work (Davies et al.,
2022).
Regarding the Toolkit for Advanced Optimization (TAO) within PETSc, the focus is again on providing algorithms for
solving large-scale optimisation problems in high-performance computing contexts, similar to ROL. Similarly, TAO
is geared towards utilising gradient information supplied by the user or computed via other methods, such as finite
differences or AD tools, rather than directly implementing AD functionalities. Automatic differentiation is indeed one
of the major focus areas identified by PETSc’s road-map, which is achieved by developments such as PETSc TSAdjoint,
which is a high level differentiation processes, similar to pyadjoint.
JuliaAdFEM represents another sophisticated computational framework designed for solving PDEs, leveraging Julia’s
just-in-time compilation and the multiple Julia’s built-in AD tools.
A detailed comparison of these frameworks would necessitate a thorough explanation of their distinct principles, which
we feel goes beyond the scope of this manuscript. Our discussion on AD aims to convey how it enables accurate deriva-
tive calculation while maintaining performance a core objective of our platform designed to abstract such complexities
from the geodynamic end-user.

G. R. – C4:“Some questions that remained unclear to me are: How to include and load data - is it limited to the data that the
authors present toy inversions for? Does changing any rheology require function overloading or is the weak form and constitutive
laws an input? What types of BCs are pre-implemented? Are other time discretizations pre-implemented or does a potential user
have to provide it? Particle advection included and in what form? How to configure the actual solver (multigrid etc?) Visualization
capabilities Support for complicated initial meshes, e.g. via gmesh interface. Even if these questions are answered in previous
work of the authors, it would be helpful to mention included functionality and potentially cite the work again.”
Response – 4: We thank the Reviewer for highlighting the need for more detail on our software’s general features.
While the combination of online documentation both provided by Firedrake and G-ADOPT projects and the paper by
Davies et al. (2022) provide extensive information, we acknowledge the importance of summarising key functionalities
in our manuscript. Here’s a brief overview, with more details available in our online documentation for G-ADOPT and
Firedrake:

• Data Inclusion and Loading: This is facilitated by Firedrake’s built-in features, as detailed in the Firedrake
documentation here.

• Rheology and Weak Form Inputs: By employing UFL for describing rheology and constitutive equations, G-
ADOPT automatically adapts to any rheological law used in the forward model, ensuring consistency in the adjoint
system.

• Time Discretization Algorithms: G-ADOPT offers various schemes, including second-order Runge-Kutta, back-
ward/forward Euler, and implicit midpoint. Users can also implement custom algorithms.

• Particle Advection: This is an ongoing development in Firedrake, and future enhancements will be integrated
into our platform. Current developments are focused on Finite-element consistent treatment of points cloud in
Firedrake known as VertexOnlyMesh in Firedrake, and their movement(Nixon-Hill et al., 2023).

• Initial Meshes and Visualisation: Firedrake supports complex meshes (e.g., via gmsh) and visualises out-
puts through seamless integration with Visualization Toolkit (VTK), with limited inline visualisation capabilities
through Matplotlib.

• Boundary Conditions: G-ADOPT supports the commonly adopted mantle flow problem boundary conditions,
i.e. free-slip and no-slip on both curved and Cartesian boundaries, together with innovative boundary conditions
such as a free surface. The details for the former are described in our previous paper (Davies et al., 2022), while
the latter is the focus of on-going developments within G-ADOPT.

G. R. – C5:“ Also, as the code is open source, the code screenshots as well as their detailed description could then be moved to an
Appendix.”
Response – 5: We appreciate the reviewer’s suggestion and acknowledge that moving the code listings to an appendix

https://fenicsproject.discourse.group/t/dolfin-adjoint-in-dolfinx/8467/10
https://www.firedrakeproject.org/point-evaluation.html
https://github.com/g-adopt/g-adopt/pull/51
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could improve readability. However, our decision to include code listings in the main text was informed by GMD’s
guidelines. These guidelines state that "all material required to understand the essential aspects of the paper, such as
experimental methods, data, and interpretation, should preferably be included in the main text". Given their minimal
nature, these listings are pivotal in illustrating the use of our platform, particularly in aspects like the selection of finite
element function spaces and time-stepping schemes. They also allows us to concisely demonstrate the ease of use,
which is one of the main motivations for our developments.

G. R. – C6:“ 447 & equation 8. As you point out, this will also act as a regularizer on the reconstruction. Can you elaborate what
(types of) reconstructions this will affect?”
Response – 6: Our rationale is grounded in the principles of Total Variation Regularisation (TVR), a regularisation
technique widely used for its de-noising capabilities. Such regularisation approaches penalise the aggregate variation
within the solution, thereby concentrating on the solution’s total variations. By restricting our control to the Q1 space,
we achieve this objective. Analogous to TVR, this strategy results in de-noising of the solution by mitigating higher
variations associated with higher polynomial degree basis functions, in the Q2 case.

G. R. – C7:“ The analysis on finding the optimal scalings for the regularization, as well as velocity term respectively, is interesting
(even though generalization of it might be limited). As the authors put some focus on the effect of the regularization, visualizing
the reconstructions of their scaling parameter search to show the effect of the regularization can be interesting. This could also be
done in an Appendix.”
Response – 7: We agree with the reviewer on the significance of our findings regarding optimal scaling for regularisa-
tion and the velocity term, recognising the limitations in generalising these results. We believe a more comprehensive
parameter search involving factors like Rayleigh number, temperature and strain-rate rheology dependencies, and sim-
ulation duration, would be necessary to fully generalise our findings. However, undertaking such an extensive search
and including the results in an Appendix would not align with the guidelines provided by GMD, making it impractical
for this publication. This presents an opportunity for future research, where a detailed exploration of these parameters
will be pursued.

G. R. – C8:“ Even though the code is open source and potential users could do performance tests themselves it would greatly facil-
itate the choice to use the author’s library if they would provide runtime performance results, as well as more general information,
like:

1. Wall clock time of their simulations

2. Used hardware

3. Integration points per element

4. Parallelization capabilities (e.g. matrix free solvers for forward Newton and inverse Newton, full PETSc MPI support?)

5. Functionality of FEniCSx and PETSc incorporated and abstracted to what level? (e.g. solver availability? E.g. all multigrid
solvers from PETSc configurable, if geometric multigrid how to discretize etc?)

”
Response – 8: We thank the Reviewer for their inquiry into technical aspects. We acknowledge the importance of
providing performance metrics to aid users in evaluating our library. Our platform undergoes regular runtime perfor-
mance tests as part of our repository’s GitHub Actions, measuring the runtime of various case studies from this paper
and the previously published work by Davies et al. (2022). These tests are conducted on a dedicated cluster unit and at
the National Computing Infrastructure in Australia. The results are readily accessible on our repository, for example by
clicking here. Below are detailed responses to the specific queries raised:

1. The runtime for our documented use cases is consistently evaluated and updated on our GitHub page. For precise
runtime information, users can refer to the efficiency ratios detailed in our publication (representing the maximum
theoretical values) and compare them with the runtime metrics available for each case on our GitHub Actions,
including simulations that mimic real Earth scenarios.

2. The simulations were performed on Gadi, a supercomputer at the Australian National Computational Infrastruc-
ture (NCI), utilising Intel Sapphire Rapids processors.

https://github.com/g-adopt/g-adopt/actions/runs/8275679210
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3. Routine regression tests via our GitHub Actions are executed on a dedicated cluster powered by an AMD EPYC
7763 64-Core Processor. The manuscript’s simulations, however, are conducted on Intel Sapphire Rapids,
demonstrating improved runtimes to those available online.

4. Regarding parallelisation capabilities: G-ADOPT leverages Firedrake and its integration with Dolfin-Adjoint.
Firedrake itself utilises the distributed memory parallelism withing PETSc. Through coupling with petsc4py, it
seamlessly integrates with PETSc, enabling strategies like matrix-free solvers. These functionalities are elabo-
rated in our previous publication by Davies et al. (2022) and other references for Firedrake. We direct readers to
these sources for comprehensive details.

G. R. – C9:“ The data types used in the toy inversions are explained in the discussion section. To facilitate reading one could move
this part to a separate section, potentially before presenting the inversions. I agree with the authors that a substantial discussion
of the used data types is beyond the scope of this work, which should mainly present their library. Nevertheless, a discussion of
availability and quality of (current) global (on each grid point) temperature data might be helpful, as it might be strongly priored
by a previous model.”

Response – 9: We concur with the reviewer on the significance of discussing the datasets utilised for the inverse
methods outlined in our manuscript. Considerable thought has been devoted to how best to integrate this suggestion,
including the possibility of segregating the discussion concerning data. Nevertheless, the exposition of data within
the discussion section primarily serves to underpin some of our choices in the inverse scheme, notably the selection
of regularisation terms. The body of recent research, to which we have tried to duly cite throughout the manuscript,
extensively examines these datasets. Therefore, we posit that retaining the current structure of the discussion serves
best to preserve the link between the datasets and our methodological decisions.

G. R. – C10:“ Minor comments:

• Note that there is no guarantee that automatic differentiation, even on the symbolic level, leads to the maximum possible
efficiency, e.g. derivations by hand might, in complex systems, still find more efficient substitutions.

• Equation 7: 7a uobs should be a vector (bold). Also, squaring uobs probably means taking the inner product here?

• Explain further your choice to normalize against equation 7a, or temperature, and not using a standard scaling for all terms

• 91: Sentence is hard to understand.

• 168: ther – their

• 430: should the velocity vector u be bold?

• Figure 3 is missing letters in the subfigures

• Figure 6: Missing characters in the text boxes on the left.

• Typo: Inital − > Initial

• 738: Missing space

”
Response – 10: What follows are our responses: In response to the Reviewer’s minor comments, we provide the
following clarifications and corrections:

• We concur with the reviewer’s point regarding automatic differentiation. As discussed in Section 2.2.1, manually
deriving adjoint equations can indeed lead to more cost-effective approximations. However, our derivation of the
discrete adjoint system suggests the runtime of one forward simulation with a linearized timestepping scheme as
the upper efficiency bound, primarily due to the similarity of the adjoint and forward systems. Manual approxima-
tions, while potentially exceeding this theoretical limit by introducing some approximations, might compromise
the accuracy of gradient information.

• Correction made. The squaring of uobs intended to denote the inner product u ·u has been appropriately revised.
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• The rationale behind normalising against the first term (associated with final temperature field) stems from prior
studies that dealt solely with this term. In those studies, given that the control (initial temperature field) shares
the same units as the state variable temperature, no normalisation was deemed necessary. We normalise all
subsequent terms relative to the first to ensure comparability.

• The sentence at line 91 has been rephrased for improved clarity.

• Typographical error corrected.

• The presentation issues in Figures 3 and 6 were attributed to the use of PDF format for figures within the LaTeX
compilation. We have transitioned to PNG format to address this.

Responses to Reviewer 2: (Anonymous)
Anon–C1: I enjoyed reviewing this manuscript, which explores the performance of adjoint mantle convection models aimed
at initial condition recovery in the context of a powerful new computational modeling framework, i.e. the Geoscientific Adjoint
Optimisation Platform (G–ADOPT). The MS is well written, the figures are effective, the results are well presented and should be
of broad interest to the geodynamic modeling community. To say it upfront: I strongly urge publication as is. Three advances make
the MS particularly noteworthy.

• The authors introduce the Geoscientific Adjoint Optimisation Platform (G- ADOPT) as an efficient computational modelling
platform. They also present a number of impressive computational and accuracy performance measures. This will be helpful
as a wider geodynamic user community wishes to adopt adjoint based methods for their work.

• The authors introduce the effects of damping and smoothing to the inverse problem.

• The authors introduce a surface velocity misfit into the objective functional. The spatial extend of the associated kernel
differs from the thermal misfit. Importantly, the measure injects misfit information throughout the simulation period. This
makes the new measure complementary to the mere use of the final thermal misfit information applied in earlier adjoint
models. I regard this as an important step forward. In my copy of the MS, the labels of Figure3 A−D are not printed, this
needs to be fixed

Response – 1: We are grateful for the reviewer’s insightful feedback and appreciate the positive summary of our work.
Regarding the issue of missing labels from Figure 3 A–D, this was indeed due to the use of PDF format for figure
compilation. We have since transitioned to PNG format to address this issue. Below we address the specific points
raised in the review.

Anon–C2: I have three minor comments: 1) The lower misfit reduction in the non-linear experiment relative to the isoviscous
experiment is attributed both to the higher Rayleigh number and to the extended simulation period. The latter appears to approach
a transit time, although this seemingly is not made explicit. However, a higher Rayleigh number should help in the adjoint
performance, as unrecoverable effects from thermal diffusion are reduced. So it would seem that the longer simulation period is
the more relevant factor when explaining the lower misfit reduction.
Response – 2: We agree with the reviewer’s observations regarding the diminished misfit reduction in our non-linear
experiment. In response, we now focus on the extended simulation time as the key factor in our discussion of results.
It is important to note, however, that while high Rayleigh number fluids exhibit reduced diffusion effects – thereby
minimising information loss – they are also characterised by increased chaotic behaviour, as highlighted in previous
research (Bello et al., 2014). This chaos, although mitigated in synthetic adjoint inversion tests through the imposition of
known surface velocities (Colli et al., 2015; Taiwo et al., 2023), does not necessarily improve initial condition recovery.
Our study’s new approach, where surface velocity emerges from the inversion process itself, leaves the chaotic nature
of high Rayleigh number simulations unaltered, adversely impacting the results over prolonged simulations.
Future efforts will aim at strategising the incorporation of various information sources, such as initially imposing
surface velocities and progressively augmenting the objective functional in later iterations to enhance solution recovery
and consistency.

Anon–C3: 2) Surface velocity misfits are helpful for initial condition recovery if the surface velocities exclusively represent the
influence of mantle flow. There are observations (e.g. Late Miocene slow down of South American plate velocity) that this may not
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be the case.
Response – 3: We acknowledge the reviewer’s insightful comments regarding surface velocity misfits. It is under-
stood that the surface velocities observed on Earth result from the combined forces arising from thermal and chemical
anomalies across the mantle, and tectonic forces acting at plate boundaries, including orogeny at convergent boundaries.
Previous studies have indeed associated the rate of change in observed surface velocities – not the absolute velocities
assimilated here – with variations in plate boundary forces (e.g., slab sinking, orogeny) or changes in asthenospheric
pressure-driven flow. Our model does not incorporate the forces related to plate geometries, such as orogenies, which
means surface velocities driven by these boundary forces could be misattributed to other forces present in our models.
In light of this, we propose two essential considerations regarding surface velocities:

1. Surface velocities should be considered as a secondary dataset in data assimilation methods, supplementary to the
primary temperature field derived from seismic tomography. While plate reconstruction models offering surface
velocity reconstructions provide a valuable perspective on past mantle flow, their surface-limited nature means
they serve primarily as a proxy for the aggregate force balance in the mantle.

2. The dynamic forces influencing plate movements, which may not be accounted for in our models, highlight
the necessity for employing appropriate weighting factors. These factors should prioritise direct temperature
observations from seismology (i.e. final temperature field) over the derived observations from plate reconstruction
models, despite the latter being crucial for understanding geologic force balances.

To clarify this point, we have referenced studies by Colli et al. (2014) and Iaffaldano and Bunge (2015) in our discussion
and have expanded the manuscript’s discussion section accordingly. This approach acknowledges the limitations and
challenges in interpreting surface velocity data and underscores the importance of integrating direct observations with
model-derived insights to more accurately infer mantle dynamics.

Anon–C4: 3) The authors rightfully acknowledge the inverse crime, i.e. their experiments neglect effects from uncertainty in the
use of the forward model and the relevant observations. The inverse crime effects in geodynamic adjoint models where studied
explicitly in Colli etal. 2020 and that study could be cited.
Response – 4: The reference to the study by Colli et al. (2020), which explicitly investigates the effects of inverse
crimes, was indeed intended to be a crucial part of our discussion on the complexities of time-dependent reconstruction
models in geodynamics. Due to an oversight on our part, the manuscript originally referenced Colli et al. (2018), instead
of the correct study from 2020 in the discussion between lines 706 and 710. We apologise for this confusion and have
since corrected this mistake in our manuscript to accurately reflect the significant contributions of Colli et al. (2020).

Responses to Reviewer 3: (Nicolas Coltice)
N. C.–C1: The manuscript presents a workflow to realize a geodynamic grail: full inversion of mantle flow together with tectonics
to generate digital twins of the Earth. The paradigm in the past to was to push plates at the surface of rheologically simple
models and either push them as long as possible so that the last tens of Myrs could become adequate or employ and adjoint for an
inversion of the final state given by a thermo-chemical translation of seismic tomography images. Inverting surface kinematics was
proposed recently by Li et al. (2007) and Bocher et al. (2016, 2018) on similar types of models (2D). What does this manuscript
bring compared to the former studies? It proposes an adaptive framework thanks to automatic differentiation and open software
machinery. One could argue for the adjoint method keep physical consistency over the reconstructed duration. The generalization
of the approach to other geodynamic problems makes it also very interesting for the community. I find the paper is well presented,
provides most of what is needed and giving the most of the needs to evaluate if one wants to dive into the inverse geodynamic
adventure. I have general recommendations for improvements.
Response – 1: We are greatly encouraged by the Nicolas’ comments and thank him for the insightful summary.
We share the enthusiasm that our open-source framework will serve the geodynamic community well, facilitating the
exploration of a broad spectrum of geodynamic problems.

N. C.–C2: The most important one is how the Taylor test (or gradient test) is performed. Indeed the residual has to be O(h2)

WHEN h tends to 0. So one can find that it is O(h2) for some values of h, but it is the most important that it is O(h2) at the
vicinity of machine epsilon. Olivier Talagrand who pioneered the adjoint methods for data assimilation was hard on me on this
issue and sent me a variety of gradient test that are successful and failing. Some of them show a residual O(h2) for large h and
become O(h) close to h. So the authors should diminish delta m by orders of magnitude until they reach machine epsilon and
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the residual becomes then stable. If the residual is O(h2) close to when it is close to machine epsilon, everything is good. Many
papers show this kind of plot. For geodynamics, you can check my preprint on automatic differentiation of StagYY Link - it can be
also interesting to include it in your discussion since we both took parallel paths. By doing so, Figures 4 and 9 will leave no doubt
on the efficiency of your method. I you want me to send you the document of Olivier, let me know.

Response – 2: We appreciate the reviewer’s input on conducting Taylor Remainder tests and their referral to their
preprint, which we now use as a reference in our discussion. We are also grateful for the shared experiences and
insights from Olivier Talagrand, a pioneer in variational data assimilation within Earth sciences.
Addressing the concerns raised, we’ve extended the perturbation range in our Taylor Remainder tests to 10−10. The re-
sults demonstrate the robustness of our approach, ensuring that our analysis comprehensively extends down to smallest
floatig-point number, here defined as smallest positive ϵ, such that 1.0 + ϵ is differentiable from 1.0. As depicted in
Fig. 1, both the top and bottom outcomes reveal deviations from the expected O(h2) behaviour as residuals approach
ϵ, a behaviour already documented in Coltice et al. (2023). Notably, in cases where we use SNES to solve non-linear
stokes problems, when setting the relative solver tolerance to 10−5 (shown by transparent yellow and red markers),
perturbations beyond solver tolerance exhibit divergence from O(h2) trend, primarily dictated by the precision of our
forward system solutions. When setting this tolerance to 10−10 we see that the same behaviour as reported by Coltice
et al. (2023) is observed. Using direct solver options, i.e. MUMPS, sets the precision limit in the isoviscous case to
practically machine precision.
These tests underscore a crucial consideration in applying adjoint methods within geodynamics: the practicality and
precision of derivative calculations are significantly influenced by the solver tolerances applied in both forward and
adjoint processes. Although achieving machine-level precision in derivative fields remains ideal, the complexity of
real-world simulations often renders this goal unattainable due to computational constraints. Our findings highlight this
reality, underscoring that while our method is capable of maximum accuracy, the limitations imposed by solver toler-
ances are an inescapable aspect of adjoint inversions, which question the necessity of approaching machine precision
accuracy for the derivative information. Nonetheless, the results presented are aligned with expectations from Nicolas’
work, which is reassuring. We thank him for this comment and report this alignment by citing Coltice et al. (2023).
For our Taylor tests, we utilise the pyadjoint library’s implementation, available at pyadjoint verification. The default
setting for halving the perturbation is set to 4 consequent divisions, which spans ≈ two orders of residuals. To ensure
reproducibility, we maintain the Taylor tests in our figures but confirm the results presented in our response in the
manuscript. This way we maintain the standard form of Taylor tests in our paper, aligning with Dolfin-Adjoint upstream
repository.

N. C.–C3: The automatic differentiation section (Dolfin). This is very important to be more explicit since it is a new methodology
that you take to geodynamics, and this is precisely this methodology that empower your workflow. It is too abstract now. I would
prefer you explain more precisely how it works and how it respects the idea that the generated adjoint is the exact adjoint of the
forward code. I understand it is hard, since it is why I have such hard time publishing my preprint. But a little more would be
nice. Maybe I did not have enough time, but it seems to me that some of the important preparation work to make for automatic
differentiation is not explicit. Do you have directives in the forward code? Where do you tape, or checkpoint? What is your
organization? It is nice to give a glimpse to the future users of what to be careful about if they want to modify what you have done?
Off course, if it’s too technical in the paper, that may not work.
Response – 3: We recognise the challenge in elucidating the concept of automatic differentiation (AD) for the geo-
dynamic community. The essence of our framework’s AD capability, particularly through Dolfin-Adjoint, can be
appreciated by understanding several key points. We have now added details of how Dolfin-Adjoint strategy in taping
and generating blocks to Sec. 2.2.2. The brief overview aims to introduce our approach succinctly and a more detailed
technical exposition might be beyond the geodynamic community’s general interest. Our primary objective in devel-
oping G-ADOPT has been to decouple these technical aspects from the user community’s concerns, thereby promoting
the broader application of adjoint inverse methodologies in geodynamics.

N. C.–C4: I would put the derivation of the adjoint equation in an Appendix, you could refer to when you talk about the linear
properties of the adjoint with pseudo-plasticity.
Response – 4: We appreciate the suggestion to relocate the derivation of the adjoint equation to an appendix to enhance
the readability of our manuscript. Our initial decision to incorporate this derivation within the main text was informed
by the guidelines provided by GMD, which advocate for including "all material required to understand the essential
aspects of the paper, such as experimental methods, data, and interpretation, should preferably be included in the main
text." Considering the brevity of the derivation, we have opted to retain it in the main text. However, we are open to

https://eartharxiv.org/repository/view/6398/
https://github.com/dolfin-adjoint/pyadjoint/blob/2c6614d2b16a972a180fec2ee5ca002ddb214fd4/pyadjoint/verification.py#L7
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Figure 1: Expansion of the Tay-
lor test for the two scenarios in our
study, top: two dimensional annu-
lus domain with non-linear rheol-
ogy, bottom: two dimensional rect-
angular case with constant viscos-
ity. In all cases the convergence
behaviour of O(h−2) approaches a
machine precision, except for the
TF and uS misfits in the annulus
case. In those cases the accuracy
of the derivative is controled by the
solver tolerance set for SNES. Our
tests confirms the behaviour shown
previously in Coltice et al. (2023).
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relocating the derivation to the Appendix should the editor recommend this adjustment, as our primary adherence is to
the guidelines set forth by GMD.

N. C.–C5: In my opinion, the discussion needs reworking. For now, most of it reads like a conclusion. The results should be
compared to former studies. Bocher et al. (2016, 2018) are ideal because the models have similarities in geometry and objectives.
You can discuss then, how the inversion performs. You have all the results for this in your figures. You have to discuss also
computing time. This is very important also because you state you want your method to tackle grand challenges of 3D spherical
reconstruction with self-generating plates. For now your forward model is 2D, with only 3 orders of magnitude variations in
viscosity, which is not enough yet to have plate-like behavior. What is the computing power needed for inversion of this 2D case?
To move on, how do you envision going to 6 or more orders of magnitude and 3D? How many million years will you be able to
invert for given your computing time? This is a necessary discussion here, since you bring the ambition of the method from the
start.
Response – 5: The primary objective of this manuscript is to introduce our computational platform to the community
and validate its effectiveness, building upon insights from preceding adjoint studies. It was not within our scope to
assert the superiority of the adjoint method over other methods, such as the Ensemble Kalman Filter, or to assess
method efficiency in Earth-like scenarios. Consequently, we do not see a motivation or need to prioritise comparisons
with studies in similar geometries, including those by Bocher et al. (2016). However, addressing the reviewer’s specific
points:

(i) Comprehensive timing data for the simulations featured in this study, as well as in our previous work (Davies
et al., 2022), are regularly updated and made available through our GitHub actions, an example of which is
accessible via the provided link.

(ii) We anticipate that increasing the viscosity contrast to up to 6 orders of magnitude will be feasible without signif-
icant issues. Our computational solvers and preconditioners are designed to handle such variations in viscosity
contrast efficiently, as demonstrated in Davies et al. (2022).

(iii) Transitioning to 3-D simulations will undoubtedly require more computational resources. We have already val-
idated our methodology in 3-D settings and, through access to the National Computational Infrastructure (NCI)
in Australia, we are well-positioned regarding computational capacity. Our research group is among the top 10
CPU time allocates across all science and engineering disciplines in the country, ensuring the tractability of these
more complex simulations.

In summary, while the manuscript’s focus was not on direct methodological comparisons or detailed computational
logistics, we recognise the value of these considerations and have thus provided responses to the specific inquiries
raised by the reviewer.

N. C.–C6: Recommendations along the text:
Davies and Richards, 1992 in the intro: you should propose a more up to date review here, since so many discoveries have been
made since.
Response – 6: Our initial citation of Davies and Richards (1992) in the introduction was intended to underscore the
well-established nature of the theory under discussion. Acknowledging the reviewer’s recommendation for a more
contemporary review, we have now included a citation to Coltice et al. (2017), offering readers access to more recent
insights and developments.

N. C.–C7: l.36: « state is unknown »: not only. Also because the physics we use is incomplete, and the physical and chemical
properties of the Earth remain uncertain.
Response – 7: We have now changed the sentence to reflect this.

N. C.–C8: l.39: Rolf and Tackley citation here does not feel appropriate. If you want to add a citation with pseudo-plasticity, you
souhld choose one focusing on the equations.
Response – 8: We have now removed the citation to Rolf and Tackley and added Zhong et al. (2007).

N. C.–C9: l.43: all the citations here are from the same group, except Dannberg, although other groups have used state-of-the-art
3D convection calculations at high resolution with different codes. Actually, you cite some of them in the next paragraph so you

https://github.com/g-adopt/g-adopt/actions/runs/8275679210
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could cite them here too.
Response – 9: We have updated the citations as suggested.

N. C.–C10: l.44: I would remove the discussion on Monte-Carlo technique. It’s not necessary here. It feels out of the scope.
Response – 10: We concur with the reviewer that the mention of Monte-Carlo techniques may not be strictly essential
to our introduction. However, we believe its inclusion, albeit not significantly extending the length of the introduction,
underscores a critical aspect of the cost associated with addressing our problem, which we return to in our discussion.

N. C.–C11: l.50: Bocher et al. (2016) is a Kalman filter. So it should be cited later. Bocher et al. (2018) is ensemble Kalman filter.
Both these methods are doing a similar work as you propose later so they are useful for you to compare. The major difference is
that we did not use exactly the same « observations » for the inversion and did apply a Kalman smoother to correct past states,
which is something you are interested in.
Response – 11: We agree with the reviewer’s observation and have accordingly revised the citations to accurately
reflect the distinction between the methodologies employed in Bocher et al. (2016) and Bocher et al. (2018).

N. C.–C12: l.53. “assimilated” is not a correct word here. I know it has been misused for years. But now you are considering
REAL assimilation of surface kinematics, you see the problem. What you call assimilation here is forcing the surface of a model,
so it is a forward operation. While assimilation in data assimilation is an inverse operation, specifically the one you are designing
here. So please, change it to « nudged » or some more appropriate term.
Response – 12: We have now changed the text to reflect reviewer’s concerns.

N. C.–C13: Figure 1. In line with the « assimilation » word. Case (a) can be a « nudged » model. It is a way to differentiate
nudging (a), KF data assimilation (b) and 4Dvar data assimilation (c).
Response – 13: Acknowledging the distinction highlighted by the reviewer between “nudging” and KF data assimila-
tion methods, we have now added these terms in the caption to highlight this issue.

N. C.–C14: L.62: Kalman smoother is a Kalman filter method to do retro-propagate the information in past states. So it is
possible to use Kalman filter and improve the knowledge on initial conditions. The major difference with the adjoint is that it is a
statistical treatment whereas the adjoint keeps the physical consistency (it has its advantages and disadvantages, considering that
the physical model is not perfect).
Response – 14: Kalman filtering, as depicted in Figure 1 of our manuscript, is characterised by its forward temporal
correction of state variables upon the acquisition of new observations. Kalman smoothing, on the other hand, refines this
process by utilising all available data, irrespective of their temporal positioning, to update state variables at any given
time. This characteristic has been identified by Bocher et al. (2016) as an extension to their approach for integrating
seismic tomography data.
This argument overlooks a critical aspect when applied to advection-diffusion problems, such as mantle convection.
The back-propagation of information in time necessitates the construction of a sensitivity model. In the realm of mantle
convection simulations, this is invariably accomplished through the development of an adjoint model. Hence, instances
of Kalman smoothing in Earth system modelling typically require the formulation of both tangent linear and adjoint
models to facilitate the bi-directional transmission of sensitivity information through time.
It is, therefore, not entirely accurate to suggest Kalman smoothing as an alternative to adjoint modeling within the
context of mantle convection. Instead, Kalman smoothing in such settings effectively relies on employing adjoint
models. Consequently, our manuscript’s focus on optimisation based reconstructions of mantle convection over time
using the adjoint method does not preclude the utility of our library for implementing Kalman smoothing approaches.
Moreover, our assertion that sequential filtering predominantly propagates information forward in time, remains valid.
Without an adjoint model, backward information propagation to refine past state estimates based on future observations
is not feasible. Thus, our original statement stands as both accurate and relevant within the scope of our discussion.

N. C.–C15: l.65: I would remove that idea of an emerging field. We could say that the inverse models of the geoid back in 1990s
were inverse geodynamics. Or the pioneering works of Peter and Alik are 20 years old already and we cannot say the technique
has penetrated the geodynamics community. Actually, what you propose could help to do so.
Response – 15: We changed ‘rapidly emerging’ to ‘rapidly evolving’.

N. C.–C16: l.74. About Li et al. (2017). It can be important to be nuanced saying that such recovery is limited by the ill-posedness,
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which is their conclusion.
Response – 16: We now complete this sentence by mentioning the ill-possedness of their problem.

N. C.–C17: Intro: I would say in the intro that solving adjoint equations does not necessarily generate the exact adjoint of the
forward code, while AD does. Hence, your approach enforces that the adjoint code is the exact adjoint of the forward code, which
is necessary for optimal inversion.
Response – 17: In response to this comment we have added the words "fully consistent forward and adjoint" towards
the end of the intro, to emphasise this distinction more early on and whet the reader’s appetite.

N. C.–C18: Table 1: Delta T = Temperature difference between top and bottom ; d= thickness of the system. It is not just
characteristic something.
Response – 18: These are now corrected.

N. C.–C19: l.219: it would be nice to cite Talagrand, 1997 or some of his pioneering work here.
Response – 19: We have now added the reference to Talagrand (1997).

N. C.–C20: l.225-230: Okay for the advantages. But which drawbacks? –> not the exact adjoint of the forward code which may
not be good for inversions. Write a new code for each new problem (set of equations).
Response – 20: We fully acknowledge Nicolas’ remarks. We believe these concerns are addressed in subsequent
paragraphs and within our discussion section. This response may have preceded a review of those sections, where we
elaborate on these limitations, which indeed partly motivated our approach.

N. C.–C21: l.231: I think here you could start with AD right away because with AD you find a solution to both the limitations
of the continuous adjoint: exact adjoint and versatility of problems (not rewriting the code if you change the problem/update the
code). I would reduce the length and you go straight to the point.
Response – 21: The discussion on continuous versus discrete adjoint methods remains a significant debate within
the optimisation community, which we consider crucial to the discipline. This manuscript engages with this debate,
notably reflecting on insights from Georg Reuber, who underscored the merits of the continuous (or manually derived)
adjoint approach. Our strategy aims to synthesise the strengths of both approaches, utilising the abstract representation
of mathematical operations in Firedrake to harness the respective benefits. Nonetheless, we argue that a thorough grasp
of automatic differentiation (AD) requires preceding discussion on the intricacies of continuous adjoint methods. This
foundation is essential for delineating how AD addresses these inherent challenges. We also wish to highlight that the
efficiency of AD-generated adjoint codes remains a pivotal concern for AD methodologies. Firedrake’s use of abstract
mathematical representations is instrumental in achieving optimal efficiency in our derivative calculations.

N. C.–C22: l.233: you can cite Giering and Kaminski, 1998 for AD pioneering work.
Response – 22: We have now cited Giering and Kaminski (1998)

N. C.–C23: l.240: too bad you forget to cite some existing AD tools used for science application purposes: Tapenade, TAF, or
Enzyme.
Response – 23: We recognise that the array of existing AD tools applicable to scientific problems is extensive and
not confined to those highlighted by Nicolas. Given the finite number of citations permissible within our manuscript –
which does not aim to serve as an exhaustive review of AD tools – we have selectively cited key well known examples.
Alongside the previously cited tools in Abadi et al. (2015) and Paszke et al. (2019), we have now incorporated a citation
for Enzyme software through Moses et al. (2022), broadening our discussion to include this additional tool.

N. C.–C24: l. 240 and equivalence of the methods: I don’t agree: the solvers, the methods involve a suite of operations that are
discrete anyways and can involve some differences that can possibly prevent the continuous adjoint to be the exact adjoint. It’s not
only a question of resolution but the approximations you make also, and the tools you use to solve the problem.
Response – 24: We agree that the potential for discrepancies is indeed higher in the continuous adjoint scenario.
However, it is feasible to utilise temporal and spatial discretisations that are consistent (at least theoretically, there should
exist such a configuration) to ensure alignment between the forward and adjoint codes. Our reference to infinite spatial
and temporal resolutions aims to underscore a hypothetical scenario where continuous and discrete representations of
PDEs converge. Clearly, such a scenario is not achievable in practice but serves to highlight a theoretical consideration.
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This statement draws upon the insightful analysis provided by Giles and Pierce (2000), particularly their examination
of both approaches on page 408.

N. C.–C25: 2.2.2 -> More would be needed here. It’s a major point of your work.
Response – 25: We have addressed this comment in the major comments above.

N. C.–C26: l.560: I find your forward model to be a little oversold here. With 3 orders of magnitude viscosity change, you don’t
make plates in convection models, and it’s even more unlikely to have Earth-like subduction zones (one-sided etc. . . ). Using this
model is perfect for the demo here, but I am sure you want to have a more plate-like behaviour in the mode in the future, which
means necessarily increasing this contrast.
Response – 26: We have now removed the term Earth-like.

N. C.–C27: For the duration of your model, it is worth giving a glimpse of what Earth time it corresponds to, so that we can
evaluate how far back in time we can go given the uncertainty on the past state we look for. Simply putting dimensions here it
would be close to 200Myrs. But probably the convection velocities are lower when I look at your figure and it would probably
translate to half of this maybe? That would be useful.
Response – 27: The reviewer’s analysis regarding the duration of our simulations is helpful. Upon dimensionalising
the time in our later simulations, it equates to approximately 250 Myrs. However, considering the distances traversed
by various features within these simulations, a more realistic representation would be less than 100 Myrs. We have
incorporated this estimate into our result section.

N. C.–C28: l.612: Visco-plasticity means surface decoupling and more non-linearities. It matters and you could show it by
showing the adjoint: the sensitivity of your misfit to surface velocities is probably lower than the isoviscous case. But again, 3
orders of magnitude is not really plate-like so pushing the interpretation is not necessarily good here.
Response – 28: We agree that the visco-plastic behaviour in our models is not strong and likely does not account for the
observed reduction in misfit. Hence, attributing decreased misfit reduction solely to visco-plasticity may be misleading
in this context. We have now removed the emphasis on the impact of nonlinearities.

N. C.–C29: l.663: surface velocities, except today, are not observed. They come from kinematic models.
Response – 29: This concern essentially pertains to semantic distinctions, reflecting the terminology commonly utilised
within our community. Similarly, one might contend that even present-day observed plate velocities essentially con-
stitute a model solution inverted to optimally represent temporal variations captured by GNSS data globally. For the
purposes of inverse problems as examined in our study, “observations” refer to constraints derived from external disci-
plines. It is acknowledged that the uncertainty inherent in these models may vary significantly, particularly with older
plate reconstruction models.

N. C.–C30: 708: Seton et al. (2023) provides an overview of plate reconstructions that should be discussed here.
Response – 30: We have incorporated a citation to Seton et al. (2023), acknowledging its comprehensive overview of
plate reconstructions.

N. C.–C31: 711: It’s not an inversion, but the work of Bello et al. (2015) assesses in some ways the errors produced on the
forward modelling.
Response – 31: We acknowledge the insightful contribution of Bello et al. (2015) to the understanding of error
propagation in forward modelling of mantle convection. However, the focus in the referenced section of our manuscript
is on the implications of uncertainty in the inverse modelling of mantle flow. In this context, the study by Colli et al.
(2020) provides a more relevant discussion and thus is the appropriate citation for our purposes.

N. C.–C32: 715: The issue with smooth solution is that geodynamic features are sharp and their shape is fundamental for the
self-consistency of the flow, especially with variable viscosity. This is very different from seismic or gravity inversions in which
smoothing does not hinders the fundamentals of the physics at play.
Response – 32: The reviewer’s point is well taken. The self-consistent development of many geodynamic features crit-
ically depends on the sharpness of these features. To mitigate issues stemming from the inherent uncertainty in seismic
imaging of the mantle, our approach incorporates a regularisation term associated with Total Variation Regularisation.
It is crucial to clarify that we do not suggest past mantle features should be inherently smooth. Rather, our methodology
entails imposing a degree of smoothness on the solutions to prevent overfitting, despite this introducing a level of
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smoothness that may not align with the precise ‘physics at play’. This aspect of regularisation becomes increasingly
significant when dealing with uncertain observations, presenting a trade-off that, in our view, constitutes the lesser of
two evils.

N. C.–C33: l.723: not “assimilation", what you do now with surface velocities is real assimilation.
Response – 33: Corrected.

N. C.–C34: Conclusion can be reduced to the essentials.
Response – 34: We have now reduced the text significantly.
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