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Experimental drought and soil amendments affect grassland
above- and belowground vegetation but not soil carbon stocks
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Abstract

Soils are the largest terrestrial carbon (C) pool on the planet, and targeted grassland management has
the potential to increase grassland C sequestrationand-grassland-seHs-have-aparticularlylarge ©
segquestration-potential. Appropriate land management strategies, such as organic matter additions,
can improve-set-health—increase soil C stocks; and increase grassland resilience to drought by
improving soil meistureretentionwater retention and infiltration. However, soil carbon dynamics are

closely tied to vegetation responses to management and climate changes, affecting beth-roots and

shoots differently.

study presents findings from a three-year field experiment on two Swedish grasslands that assessed

the impact of a-compost amendment and ef-reduced precipitation on plant biomass and on soil C at
various soil depthsseil-and—vegetation-C—pools. Aboveground biomass and soil C content (% C)
increased compared to controls in compost-amended plotsGempest-addition-increased-aboveground
biomass-and-soH-C-content{(%C), but because bulk density decreased, there was no significant effect

on soil C stocks. Experimental drought did not significantly reduce plant biomass compared to control

plots, but stunted the increase in aboveground biomass in compost-treated plots and led to changes in

root traits

dynamics and the importance of consideringthe-need-to-consider multiple biotic and abiotic factors
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driving-ecosystem-C-dynamies-across spatial scales when developing land management strategies to
enhance C sequestration-when-upsecatingresultsfrom-field-trials.

Introduction

Management-ofseil-health-and-soil-carben{C)-steeksSoil management has been receiving increasing

attention in the past years, with growing awareness that soils provide vital ecosystem services and

can act as C sinks_ (Minasny et al. 2017, European Commission, Directorate-General for Health and

Food Safety, 2020). The soil-plant system is integral to this process, as plants capture atmospheric

carbon dioxide through photosynthesis and transfer it to the soil via roots and organic matter.

Concerns about soil erosion and historic soil C depletion in agricultural and grassland soils
(Sanderman et al. 2017, Bai and Cotrufo, 2022) have motivated the development of sustainable land
management strategies, soretimes—generally named “carbon farming” (Paul et al. 2023) and

promoted by the “4 per 1000 initiative (Minasny et al. 2017). These approaches include mitigating

soil organic carbon (SOC) loss in specific sites resulting from agricultural activities such as tilling,

which can be achieved withOne-such-strategy-is the use of soil C amendments{Ryals-and-Sihver2013-

023)-including like

compost, biochar, and varieus-types-ef-manure_on croplands or grasslands (Ryals and Silver 2013;
Ryals et al. 2015; Keesstra et al. 2016; Fischer et al. 2019; Garbowski et al. 2023)—These-treatments

an-be-applied-on-croplands-orrangelands,-in-single-or-multiple-applications..—and-can-increase-soil
aggregation{Sarkeret-al—2022) Soil C management via compost -amendments aims at-transferring
plant-derived-erganic-matter-to facilitate S-accumulation of plant-derived C in the soil C pool-in
specificlocations, where it can be retained over long time scales — i.e. decades to centuries (Shi et al.

2020). If the total C inputs and accumulation in the soil exceed the total losses, C amendments can

lead to C sequestration (Don et al. 2024, Moinet et al. 2023). -and-mitigate soil-organic-carbon{SOC)




59
60
61
62
63
64
65
66
67

68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85

86
87

Since SOC accrual and C sequestration potential are uncertain and context dependent (Moinet et al.

2023), it is important to investigate the effects of C amendments across a range of climatic and

management conditions. Grasslands and croplands converted to grasslands can store considerable

amounts of soil C and are therefore ideal systems to apply C amendments. They can act as C sinks if

managed appropriately (Conant et al. 2001), and can have higher root biomass C compared to

agricultural lands, usually cultivated with annual crops (Beniston et al. 2014). ManySeveral studies

have investigated the effects of organic amendments on aboveground biomass (Ryals et al. 2016), en

crop yields (Luo et al. 2018; Ahmad et al. 2009), and ofn roots in farming systems (Hirte et al. 2021),

but fewer focus on non-cultivated grasslands. -

C amendments add C to the soil in two ways: directly, by moving plant biomass from one location to

another, and indirectly, by promoting plant growth (Ryals et al. 2016). Compost is rich in organic

matter, which serves as a substrate-foed-souree for soil microorganisms. As microbes decompose this

organic matter, they release nutrients in forms that plants can readily absorb (Malik et al. 2013). In

turn, the increased vegetation growth can increase the natural rate of C input and thus potentially SOC

stocks (Ryals et al. 2013). Indeed, and-model predictions suggest that compost additions on grasslands

can lead to soil C sequestration (DeLonge et al. 2013). By improving soil structure and reducing

compaction, compost additions may also reduce soil bulk density. As SOC stocks are calculated by

multiplying C concentration by the bulk density, improved management may also lead to net zero

effects on C stock despite increased soil C contentsAdding-C-te-seils—in-theform-of-amendments

. Considering these
indirect effects requires an ecosystem-level perspective on the petential-C seH-C-sequestration
potential ofpetentiakin soils that accounts for both below- and above-ground vegetation contributions
to soil C stocks, as well as the soil depth at which management effects are detectable. To this end, the

use of isotope-labelled compost can improve our understanding of soil C dynamics.

Land management practices—including Scompost amendments——can significantly impact both

above- and belowground plant biomass, which contribute differently to SOC storage. Root biomass;
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belowground-plant-organs_-and root exudates are an integral part of soil C formation and retention

(Jacksonetal., 2017). In fact:, roots are more recalcitrant to decomposition compared to shoots (Rasse

et al. 2005, Gaudinski et al. 2000), and play a central role in C sequestration efforts. However,

aboveground plant biomass should also be included in these assessments to identify potential trade-
offs in above- vs.and belowground C allocation within the vegetation pool, and to determine whether

there-are-changes in plant biomass vegetation-C-poels-which-may-affect the soil C pool_(Hayes et al.
2017). H-is-especi important-to-determine-theproportion-of plant-litterth ontributes-to-soi

biomass may also respond differently to soil amendments (Garbowski et al. 2020). This variation is

expected, as roots and shoots respond differently to changes in nutrient (Hayes et al. 2017) and water

availability (Wilcox et al. 2017; Guasconi et al. 2023). Therefore, an approach that accounts for

above- and belowground interactions is essential to understand the proportion of plant litter

contributing to SOM formation and stabilization (Cotrufo et al., 2015), and to get-achieve a

comprehensive understanding of ecosystem C dynamics (Heimann and Reichstein, 2008).

application of soil organic amendments_-is their use to mitigate the negative effects of drought on

vegetation and soil microbial communities, as has been observed with biochar (Fischer et al. 2019)

{Fischeretal—2019). Future climate projections indicate an increase in extreme weather events,

including longer and more frequent droughts (IPCC, 2021). These conditions may decrease

vegetation growth both above- and belowground (Guasconi et al., 2023) and modify plant carbon (C)

allocation (Hasibeder et al., 2015), leading to lower C inputs to the soil and potentially decreased soil




118
119
120
121
122
123
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144
145
146

2022)--Organic soil amendments can enhance resilience to drought by increasing soil’s water-holding
capacity to—retain—seH-moisture—(Fischer et al. 2019; Haque et al. 2021). These effects ef-soit
soil organic matter (Rawls et al. 2003; Yang et al. 2014; Franco-Andreu et al. 2017; Sarker et al.
2022) and by theits chemical composition efthe-cempost-(Franco-Andreu et al. 2017). FhisThe

increased moisture retention can also indirectly benefit the ecosystem C balance by partly

compensating the drought-induced loss of plant biomass (Kallenbach et al. 2019; Ali et al. 2017).

communities can show great variability in response to both drought (Guasconi et al. 2023; Canarini
et al. 2017) and soil amendments (Gebhardt et al. 2017). This variability derives partly from the

variable physical properties of soil, but can also depend on land use history or on small- and large-

scale topography (Wang et al. 2020)--, and highlights the need for more field-based data collections—

in particular under experimental conditions that combine soil amendments and drought.Fhis-ay

Here, we present the results of a field experiment designed to assess the effects of a—seil
amendmentcompost and of reduced precipitation on both soil and plant biomass after three growing

seasons. vegetation-C-pools-where-we-observed-changesThe changes were observed at various soil

depths, in two grasslands, and at two catenary positions, i.e. at the top and at the bottom of a slope.
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biemass-includingplanttitter)-We tested the hypotheses that:

1) compost amendment increases soil C content and plant growth (both having positive effects on C

stocks), while decreasing soil bulk density (having a negative effect on C stocks); we expect that these

mechanisms have counteracting effects on net soil C storage;

2) dBrought will have a weak negative or non-detectable effect on SOC by decreasing both
productivity (organic C input) and respiration (microbial decomposition of SOM)by-deereasing-both

3) compost amendment mitigates the loss of soil moisture under drought which may alleviate loss of

plant growth under drought.

Methods

Site description and experimental setup
The experimental site was established in summer 2019 in the proximity of Tovetorp Research Station
south of Stockholm, Sweden, and consists of two former arable fields (hereafter called “Tovetorp”

and “Amtvik”), each with an upper and a lower catenary position (hereafter called “high” and “low™).

Today, the land management consists of cow grazing and hay production (see Roth et al. 2023)the
fields-are-managed-for-grazing-and-haymaking. Soil in all locations is rich in clay and ranges from
silty clay to silty loam (table S1).

In each of these four locations, four treatments-{compest—drought—drought-compest-control) were
applied in three replicates, resulting in 12 plots per location and 48 plots in total: compost, drought

drought-compost, control (ambient precipitation, no compost treatment). Each plot measured 2x2 m.

A=Because the effects of
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already partly decomposed organic amendments can be expected to be longer-lasting than those of

easily decomposable ones (Sarker et al. 2022), we applied a one-time compost treatment
coupledcombined with-te a yearly-growing season drought and investigated the effects on the soil C

stocks after three full growing seasons. The compost was made of Zea mays with a C:N ratio of 9.8

and 813C value of about -15.39%.. -After the seasonal corn harvest (summer 2019) the green parts of

the plants were collected in an open field. The piled material was reqularly stirred to promote the

composting process, and the resulting compost was collected and and-was-applied in mid-February

2020 as a thin surface layer of ca. 11 kg per m? (wet weight), similar to the procedure described in
Ryals and Silver (2013). The total amount of C added is estimated-to-beon average ~0.54 kg C m-2,
The 83C isotope ratio of the compost is higher than that of bulk soil (-15.39 and -27.25, respectively),

which means that the 813C isotope ratios of different treatments can be used to assess if and where in
the soil the compost material is retained after the three years of treatment.

The drought treatment followed the guidelines of the Drought-Net Research Coordination Network
(Knapp et al. 2017; Yahdjian and Sala, 2002), and consisted of 12 rainout shelters (3 per location)
with roofs made out of evenly-placed v-shaped polycarbonate strips designed to exclude 60% of the
precipitation during the entire growing season (in place from beginning of July to end of October in
2019, and from beginning of April to end of October in 2020, 2021 and 2022). This precipitation
reduction corresponds to the 1%t quantile of the local 100-year precipitation record (Swedish
Meteorological and Hydrological Institute, 2021). Each shelter covered two plots, one for the drought
treatment and one for the combined drought-compost treatment. A rubber sheet, approximately 40
cm in depth, was inserted in the soil around each shelter to isolate the study plots from the ambient
soil moisture. Pictures and sketches of the sites and of the experimental design are presented in Roth

et al. (2023). Total annual precipitation during the study years was retrieved from the records of

Tovetorp Research Station (table S2). We note that while the precipitation in the growing seasons

2019 and 2022 (April through August) was roughly the same (157 mm and 156 mm, respectively),

the 2019 sampling followed an extremely dry summer in 2018, when the study area received only 77

mm of precipitation, about half of the precipitation compared to the average 1961-1990 (historical

data from SMHI, 2021). Conversely, the 2022 sampling followed the very wet 2021, when the area

received almost 140% of the normal precipitation over the same time period (250 mm).
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Soil and vegetation sampling and analyses

Soil and root samples were collected in three replicates from each of the four sites and treatments

(one sampling per plot) at the end of the first growing season in 2019 (August - September), and again

at the end of the experiment in 2022 (August and October). Seil-and-root-samples-were-collected-in

EijketkampTFhe-Netherlands)-Samples for soil bulk density were collected with a large fixed volume

root auger with a sharpened cutting edge (8 cm diameter and 15 cm in length; Eijkelkamp, The

Netherlands). Three 15 cm segments were collected sequentially using the same hole, reaching a total

depth of 45 cm. Upon extraction, the cores were cut into 5 cm segments, and the bulk density was

determined after drying the samples at 105 °CFhe-cores-were-taken-incrementaty-every-15-em-and

°C. After drying, a subsample from the same core was used to calculate the soil organic matter (SOM)
content through loss on ignition at 550 °C for 4 h. A subset was further burned at 960 °C in order to
determine the presence of inorganic C, which was very-low (0.5 %), indicating that the total C can be
considered equal to organic C (OC). Samples for total C and N and 8'3C were taken to a depth of 1
m with a Pirckhauer soil corer (2.5 cm diameter; Eijkelkamp, The Netherlands)_in 5 cm increments.

The analyses for total C and N_contents, and for 813C were carried out on a subset of the samples by

the Stable Isotope Facility at UC Davis (California). A subset of these samples was sent to a

commercial lab and used for pH measurements (measured in a commercial lab using distilled water

with a Mantech Automax 73, Guelph, ON., Canada) and nutrient content analyses (P, Ca, Mg and K;
Avio 500 ICP Optical Emission Spectrometer, Perkin Elmer, Waltham, MA; USA) (Table S3). Soil
moisture was measured every three weeks throughout the growing season (2019 through 2022) from
one access tube (1 m long) permanently installed in each plot, using a PR2 profile probe (Delta-T
Devices Ltd, Cambridge, UK). The values used in the analyses are growing season averages of

volumetric soil water content (%) in the first 30 cm in each plot.

Root biomass was collected in September 2019 and in August 2022 with one soil core sampled with

a root auger (8 cm diameter; Eijkelkamp, The Netherlands) by placing the auger on top of the plants,

but living aboveground plant biomass and fresh litter were removed and not included in the soil
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samples. Samples were taken to a depth of 30 cm in all plots and to a depth of 45 cm in a subsample

of 16 plots_(used as control for maximum rooting depth), with soil cores divided into 5 cm segments.

The roots were rinsed with water on a 0.5 mm mesh sieve to remove soil, then placed on a transparent

tray, covered with water and scanned with a flatbed scanner at 600 dpi (grey scale), followed by

drying at 60 °C for 48 h to obtain the dry weight. The scanned images were analyzed with WinRhizo

(Regent Instruments, Québec, CA) to obtain root volume, length and diameter, used to calculate root

mass density (g roots cm-3 soil), specific root length (cm g roots) and root tissue density (g roots cm-

{Groots- €M 3100ts)= Aboveground biomass was harvested from one quarter (1 m2) of each plot every year
in mid-July, by cutting at ground level (including moss and dead biomass, table S4). More details of

the sampling design are presented in the Supplements (Fable-table F1S5).

Statistical analyses

otential effects of landscape heterogeneity on both soil C dynamics and plant growth (Sharma et al.

2022; Guo et al. 2018), the analyses include testing for differences in the control plots between the

start and the end of the experiment, as well guantifying the variability given by grassland and catenar

position, which we expect might lead to variations in all C pools.

The measured soil organic C contents (mass of C per unit mass of soil) at different depths within the
soil profile were used to calculate and-soil C stocks (caleulated-as-C content x bulk density x layer

thickness)-at-differentdepthswithintheseilprefile and-vegelation-biomass{encompassing-beth-reo

samples). The soil C stocks -These-were then normalized by soil sample thickness (kg /m-3) to allow
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comparisons among soil layers with different thickness. Because C contents were not measured in all

samples, A-a regression was performed to calculate SOC from SOM data_(which was available for
all samples) and thus obtain a complete dataset,

SOC=0.328 x SOM + 0.217, 1)
where SOC and SOM are expressed in kg/m? (Fig. S1).

The fraction F of compost-derived C detected in the soil in year 2022 was calculated with a two end-

member mixing model, as in Poeplau et al. (2023),

1 1
_ 5 3Ccompost treatment=8"3Ceontrol (2)

813Ccompost—8*3Ceontrol
where §13C was measured in both compost-amended (compost or compost-drought) and control (no
compost or drought-no compost, respectively) plots.
All the results and statistical analyses are limited to the depth range of 0-45 cm. This is because this
soil depth contains the majority of the root biomass (95% within the first 30_cm, mean ~17 cm)-and
ofthe-microbiological-activity, and no effect of treatments could be detected below this range (data
not shown).
All analyses were made in R (version 3.3.3; R core Team 2017), and statistical models were designed
with the Imer function (package: Ime4). Pairwise comparisons between categorical variables were
made with Ismeans (package: emmeans) and p-values («= 0.05) were obtained with the ANOVA
function and the ImerTest package. Residuals from the models were checked graphically. Effect sizes
were obtained by calculating Cohen’s d, with the formula

X1-X;

=2k ®)

where X1 and X2 are mean values for the two groups for which the effect size is calculated, and S is
the standard deviation.

The effect of the treatments was tested on all plots from the 2022 dataset. ~ireluding-Values for root
biomass and root traits -ferwhich-the-valtes-were log-transformed first. The model included compost
(categorical variable), drought (categorical variable) and sampling depth (continuous variable) as
fixed factors and plot (nested within site) as random factor. Cohen’s d was calculated using the
standard deviation of the control group. The effect of the compost amendment on the 313CC-isetopic
ratio was tested with a mixed linear model that included compost and depth as fixed factors, and plot

(nested within site) as random factor. Changes in soil C, bulk density and C stocks were also tested

10
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with a model using depth as categorical variable, to assess if changes occurred at specific depths. The

landseape-variability in plant biomass and soil properties across locations was tested on all data

collected in 2019 and from the control plots in 2022. The model included grassland site, catenary
position and sampling depth (continuous variable) as fixed factors and year and plot as random
factors. Cohen’s d was calculated using the standard deviation pooled from all groups. Temporal
changes during the experiment not caused by the treatments were tested using data obtained in 2019
and 2022 from the control plots. The model included year and sampling depth (continuous variable)
as fixed factors and plot (nested within site) as random factor. Cohen’s d was calculated using the
standard deviation of the 2019 dataset. The variable depth was not included in the models for

aboveground biomass.

Results

The dBrought treatment decreased soil moisture by 16% in the upper 0-30 cm_during the growing
season (Fig. S2). The effect of drought was consistent over sites, years and seasons, and there were
no statistically significant differences in the drought-driven soil moisture loss between locations,
years, or between spring_(April-May), summer (June-July-August) or growing season_(April through
August). There was also no significant difference in soil moisture decrease between drought plots and
drought-compost plots_(Fig. S3). Additionally, the compost addition did not have any significant
effect on soil pH or on soil P, Ca, Mg and K. The compost addition did, however, raise the value of
313C in the treated plots (mean control plots = -27.44%o, mean compost plots = -27.10%., P < 0.01),
and the difference was significant at 0-5 cm, 30-35 cm and 40-45 cm. The mixing model (Eq. 2)
indicated that after three growing seasons, the percentage of compost-derived C in the compost plots
was 3.43 % in the 0-5 cm layer, 4.88 % in the 30-35 cm layer and 5.51 % in the 40-45 cm layer-n-the
compestplots. In the compost x drought plots, ardand-the percentage of compost-derived C was 4.55
% in the 0-5 cm layer, 6.52 % in the 30-35 cm layer and 2.96 % in the 40-45 cm layer-ef-the-compest

sedrsnshiies,

11
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513C % of compost-derived

A compost A compost*drought C in soll
e control @ drought compost compost*drought
plots plots
A
0-5cm 3.43% 4.55%
5-10 cm 1.12% 1.05%
10-15cm . 1.19% 0.75%
20-25cm . 0.30% 0.70%
A

30-35¢cm 4.88% 6.52%
40-45¢cm | A4 | 551% 2.96%

Fig 1. Values of 63C in the soil in compost-treated (red-detstriangles) and untreated (control, green trianglesdots) plots
under drought (dark red, dark blue) and at ambient precipitation (orange, light green) in 2022, at different depths. The
percentage% of compost-derived C in the soil was calculated with the isotopea mixing model in (Eq. 2.

Compost and drought effects

TFhe-compest-treatmentinereased-tTotal soil C content (P = 0.04) and aboveground biomass (P =
0.04<-0-61) increased in the compost-treated plots. The latter increased by 23% (mean control plots

=642 g m?, SD ==+ 129.23, mean compost plots = 788 g m?-+-, SD = 221.7). The effect on soil C was
significant only in the top 5 cm layertepsoi (0-5-em-Fig. 2), where therelative-inerease-of-soil C
content was-increased by 18% (mean control plots C content = 2:9.9% mg/g—=-, SD = 1.03, mean

compost plots = 3:5.3_ mg/g%=, SD = -0.75). Soil nitrogen (N) was higher in the tepseH-top 5 cm

layer in the compost-treated plots (mean control plots = 8-242.44% mg/g=, SD = 0.06, mean compost
plots = 6:28%2.88 mg/g-+-, SD = 0.06; p < 0.05), but the treatment did not significantly affect the

C:N ratio. The compost treatment also decreased bulk density by 9% (P = 0.03) in the first 10 cm of

13
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soil (mean control plots = 1.34 g cm3+-, SD =0.18, mean compost plots = 1.22 g cm¥%-, SD =0.17)-
TFhecompest—, but did not eerrelateaffect—with any other variabledid-net-have—any-statistically
ianifi Fﬁ iables, .

g-m?*+=-SB-=180.25)-Theincrease in the soil C content under compost addition was offset by the
tewer-reduced bulk density, so that there was no statistically significant change to soil C stocks.

However, we note that, albeit non-statistically significant, mean soil C stocks were 6% higher in the

compost-treated (ambient precipitation) plots in the first 15 cm, slightly higher than the percentage

of compost-derived C found in that layer (mean control plots = 4.02 kg m?%-, SD = 0.92, mean

compost plots = 4.26 kg m?=+-, SD =0.59).

Experimental drought had only an effect on aboveground biomass, which decreased by almost 4%

under the rainout shelters (mean control plots = 642 g m?, SD = 129.23, mean drought plots = 617 g

m?, SD = 180.25). However, this effect was significant only relatively to the compost-treated plots (P

= 0.02), but not relatively to untreated control. Further, there was no significant difference in plant

biomass between the drought-treated plots with and without compost addition.

14
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Fig. 2. Values of soil bulk density, tetal-soil carbon (C) contents, soil C stocks, root biomass, shoot biomass and root-
shoot ratio, at different sampling depths in 2022 (n = 12). Values are averages of all sites. White-Green = control, red =
compost, yellow = compostxdrought, blue = drought. Bars-Boxes show mean (det-diamond inside the barbox), median
(horizontal line) and interquantile range (IQR, colored barbox); whiskers extend to 1.5xIQR; dots in the graph are
outliers. Different letters indicate statistically significant differences between means (P < 0.05)._The yellow squares
indicate the top layer (0-5 cm).

Root traits
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Broughtled-toln all drought-treated plots we observed an increase in root tissue density (P = 0.048),

in specific root length of fine roots (P = 0.049), and in average root diameter (P = 0.045). If only roots

in the topsei-top layer (0-5 cm) were considered, in addition to these patterns-abeve, specific root
length of coarse roots decreased under drought (P = 0.04), while root tissue density (P = 0.02) and

specific root length of all roots increased after compost addition (P = 0.01).

In all control plots, soil C and root biomass was positively correlated both in the tepseH-top 5-15 cm
(5-10 cm, r=0.42, P = 0.04; 10-15cm, r = 0.5, P = 0.01) and in the whole 0-30 cm layer (0-30 cm, r
=0.63, P < 0.01). Soil C content was also positively correlated to the root:shoot ratio (5-10 cm, r =
0.44, P = 0.03; 10-15 cm, r = 0.4, P = 0.052; 0-30 cm, r = 0.43, P = 0.04). In the compost--treated
plots, the only significant correlation was between soil C and root biomass when considering the
whole 0-30 cm layer (0-30 cm, r = 0.55, P < 0.01). The strength of the correlation did not differ

between control and compost-treated plots

remained—constant-in-beth—ceontroland-compost-treated-plots—(r = 0.22, P < 0.01 in control and
compost-treated plotsbeth—gpeaps) Ihw—md%ates—tk%weempe%ea#nen&s—aﬁeeted—s%@—wﬁhe

Landseape-Sspatial variability at the landscape scale

Soil C contents, total C stocks, bulk density, root biomass and root:shoot ratio aH-showed statisticatly

significant (P < 0.05) differences between catenary positions and depths, and soil C content and bulk

density also differed significantly between grasslands (Fig. 3, FableF3table S8). Grassland identity

and the interaction between grasslands and catenary positions were the only significant predictors of

aboveground biomass_(Fig. 3)-suggesting-this-variableis-most-tikelyrelated-to-land-use-history-and
| . tion,
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390 Fig. 3. Values of soil bulk density, tetat-soil carbon (C) content, soil C stocks, root biomass, shoot biomass and root-shoot
391 ratio, at different sampling depths at the four sites, excluding treatments. The data consists of average values from 2019
392  (all plots, n = 48) and 2022 (only control plots, n = 12). Red = Amtvik High catenary position, orange = Amtvik Low
393  catenary position, blue = Tovetorp High catenary position, light blue = Tovetorp Low catenary position. Bars-Boxes
394  show mean (det-diamond inside the barbox), median (horizontal line) and interquantile range (IQR, colored barbox);
395  whiskers extend to 1.5xIQR; dots in the graph are outliers. Different letters indicate statistically significant differences
396  between means (P < 0.05). The yellow squares indicate the top layer (0-5 cm).
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Natural changes during the 2019-2022 period

Aboveground biomass also differed significantly between sampling years. Between 2019 and 2022
(Fig. 4, table S9) total soil C contents and root biomass in_the first 5 cm of the control plots decreased
by 10.7% (from 3-3.5% mg/g=-, SD = 1.05 to 2-.99% mg/g-+-, SD = 1.03) and 8.4% (from 522.96 g

m2-+£, SD = 626.48 to 479.25 g m2=+, SD = 320.75), respectively. In the first 15 cm, -in-the-first5
emy-andthey decreased by 27421.5% (from 2-749.7% mg/g=+-, SD = 0.78-73 to 2:023.3% mqg/g-+-,
SD = 0.6171) and 67-438.7% (from 477-261017.95 g m2=, SD = 252.49955.16 to 155-81623.65 g
m2=+-, SD = 51.6265.19), respectively;-in-the-first-15-em. Aboveground biomass instead increased
by 53% (from 419.68 g m2=-, SD = 137.45 t0 642.23 g m2=-, SD = 129.23).
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411 Fig. 4. Values of soil bulk density, tetal-soil carbon (C) contents, soil C stocks, root biomass, shoot biomass and root-
412 shoot ratio, at different sampling depths in 2019 and 2022 (exetuding-treatmentcontrol plots, n = 12). Values are means
413 for all plots. Green = 2019, yellow = 2022. Bars-Boxes show mean (det-diamond inside the barbox), median (horizontal
414 line) and interquantile range (IQR, colored barbox); whiskers extend to 1.5%1QR; dots in the graph are outliers. Different
415 letters indicate statistically significant differences between means (P < 0.05)._The yellow squares indicate the top layer
416 (0-5cm).
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Discussion

Compost effects on soil C and plant growth

Total soil C contents increased after compost application, but because bulk density was also reduced,
there was no significant increase in soil C stocks (partly confirming our first hypothesis), despite
higher mean values-efsoil C perm?stocks in the compost treated plots in the first 15 cm of soil. This
difference was lower than the estimated-C addition (~0.54 kg C m2) and thus lower than expected,
but is; likely due to respiration loss. Compost is partly decomposed organic matter, and thus more

chemically recalcitrant than fresh grass residues. As a result, its Cempost-can—be—considered—a
recalcitrant-type-oforganicamendment-effects on SOC accrual can be persistent over several years

(Sarker et al. 2022) even after a single application (Ryals et al. 2013). FhereforeDespite there-being
evidence that compost amendments can lead to SOC accumulation already within two years after

application (Gravuer et al. 2023), it is urlikely that an-the effect of the-our treatment on soil properties
and soil C had-eceurred-before-eurwill persist beyond the 2022 sampling-and-thatsuch-an-effectwas

omewhat-transient-and-undetectable-at- the time-of the-sampling. This conclusion-is also supported
by the isotope tracing_(Fig. 1), indicating that at least a fraction of the compost-derived C is still

present in the soil after three growing seasons. Tlr-addition;-he significant increase in aboveground

biomass three years after the compost application could partly be explained by the persistence of

favorable plant growing conditions, such as increased N in the soil. This mechanism was invoked by

Oladeji et al (2020), and may interact with precipitation-related interannual variability in plant growth

soil. Our results suggest that compost treatments might benefit the ecosystem C balance indirectly

through increased biomass production, such as in this case, or by extending the growing season, such

as in Fenster et al. (2023). Fheseresults-are-inaccordance-with-Fensteretal—{2023)-whe-found-that
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than-as-an-increase-in-net-se-C—Thiese interactions between land management, vegetation growth

and plant-derived C inputs also stresses-underline the importance of including vegetation dynamics

when assessing the effectiveness of C management. Our compost addition treatment did not lead to

an increase in soil C accumulation, but resulted hewever-in a lower net C loss from the grassland. In

fact, soil C in a given layer increased more than the amount of compost-derived C remaining in that

layer. This suggests that the increase in soil C is not only derived from the amendment itself, but also

from increased plant C inputs. However, longer-term studies are necessary to understand whether

SOC saturation limits the effectiveness of compost amendments in sustaining these gains over time
(Moinet et al. 2023).

Compost enhanced aboveground biomass growth, but not root growth-thereby-onrby-parthyr-confirming
ourfirsthypethesis, possibly in response to the increased nutrient supply (Bloom et al. 1985; Poorter

and Nagel 2000), thereby only partly confirming our first hypothesis. and-suggesting-the-presence-of

compost treatment led plants to preferentially allocate to aboveground organs the resources that would
otherwise be allocated to nutrient acquisition belowground (Cleland et al. 2017)this-suggests-that-the

. Nevertheless, increased root tissue density
and specific root length in the tepseit-top 5 cm layer suggest that root response to organic amendments

is manifested in more subtle changes in root traits related to nutrient acquisition (Bardgett et al. 2014),

rather than in net root biomass production.

Microbial activity and microbial biomass can be higher afteras-a-result-of compost addition (Sarker

effects-of the compost treatment on soil C stocks suggest that the potential C accrual brought by the

increased plant productivity the-C-sequestration-benefits-in-the-form-of-increased-plant-growth-might
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have been offset by increased microbial respiration (promoted by either compost or enhanced

rhizodeposition of more productive plants) (Borken et al. 2002). Finally, the significant spatial and

temporal variability in both soil C and vegetation biomass observed in the control dataset suggests
that treatment effects might be site-specific (Garbowsi et al. 2020), and management plans seeking
to eptimize-soil-C-sequestrationincrease C accrual should consider the potentially interactive effects

of several biotic and abiotic factors, such as plant community composition, soil type and climate. For

instance, in our experiment, aboveground biomass increase was highest at the site with the greatest

abundance of grasses (table S4)

Drought effects on soil moisture, soil C and plant growth

Drought treatments reduced soil moisture and aboveground plant biomass, but did not significantly
decrease root biomass (Fable-table F2S7), indicating preferential biomass allocation and resource
investment to belowground organs under precipitation reductiona—tradeeff-between—above-—and
belowground-biomass-investment. Plant growth is very sensitive to yearly fluctuations and even intra-

annual distribution of precipitation (Knapp and Smith 2001, Porporato et al. 2006). Because our

analyses are based on only two temporal datapoints (2019 and 2022), it is difficult to assess whether

drought reduced plant turnover, defined as the ratio of standing biomass to net primary productivity

molinagfolowed-theve aat 20 svhen-the areareceived-almeo 40% of the-normal-precipitatio

over-thesame-time period{250-mm)-As there was some natural variability in the annual precipitation
(see_methods section), tit is possible that a legacy effect of these—two-precipitation-extremesthis
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variability may have affected plant growth_(Sala et al. 2012); particularly aboveground (Fig. 4), where
growth is more sensitive than root biomass to yearly fluctuations in water availability (Zhang et al.
2021). In particular, legacy effects of the 2018 drought could have hampered growth in 2019, as
aboveground vegetation in the control plots increased by more than 50% between 2019 and 2022.
Conversely, the high summer precipitation in 2021 could have buffered the effects of the experimental
drought in 2022, leading to overall weak drought effects (Sala et al. 2012).

The drought treatment had a relatively small impact on plant biomass and on r{Fig—2)—tn-addition-te

Roots in particular

plant-species-the-sampled-roots-belong-to—Therefore,). Because we do not know which plant species
the sampled roots belong to, we cannot make any conclusions related to belowground drought
responses of different plant functional groups the-eecology-ef-these-plant-groups—at-ofwhich-canbe
expected-torespond-differenthy-to-drought-(Zhang et al. 2017; Mackie et al. 2019; Zhong et al. 2019).

However, sireewe note that- the magnitude of the drought did not differ between locations and since

soil physical properties were similar across sites, whiebut drought effects differed across locations

(Fig. S4). Therefore, we can hypothesize that differences in the plant communities account for at least
some of the spatial heterogeneity observed in our study, as was observed n-by Garbowski et al.
(2020). Also, while drought effects on root biomass were marginal, the drought treatment did increase

both root tissue density and average root diameter. Climate is a strong predictor of root trait variation

(Freschet et al. 2017), and higher root tissue density is correlated with resource-conservative

acquisition strategies (Bardgett et al. 2014) and longer root life span (Ryser, 1996), suggesting
adaptation-ofroettraitssome degree of drought adaptation in these-our plant communities.

Adopting a standardized approach-for-the-drought experimental design makes-ourfindings-easierto
compare—with—othersimproves comparability, but partial rainout shelters will still allow for a

substantial amount of precipitation to pass through, potentially raising soil moisture above the wilting
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sustained-vegetation-growth-in-the-drought-treatments—Experimental droughts also fail to account
Finaly—experimental-droughts—de-net-control-for reduced air humidity, which may underestimate

negative responses of plant biomass to drought in field experiments (Krdel-Dulay et al. 2022), and

for increased temperatures, which often occur in combination with natural droughts. Brier—and

given-sotbmeisture-levelH{Zhang-etak2019). These methodological limitations might explain why we

observed minor drought effects on vegetation.

To understand the ecosystem-level implications of drought, soil C changes need to be considered as
well. Dry conditions decrease heterotrophic respiration because microbial activity is inhibited due to
both physiological mechanisms, such as osmoregulation diverting efforts from resource acquisition
to survival, and physical mechanisms, like the slower transport of substrates in dry soils (as the water
films around soil particles shrink and pore connectivity is lost) (Moyano et al. 2013; Schimel 2018).
However, heterotrophic respiration increases again after soil rewetting, leading to disproportionally
large C emissions during the short post-rewetting period (Canarini et al. 2017; Barnard et al. 2020).

Because the drought plots with added compost had a higher fraction of compost-labelled isotopes

compared to the non-drought plots in the topsoil (Fig. 1), this would imply that any soil C emission

pulses at rewetting were not sufficient to compensate for the possibly lowered microbial activity

during the soil moisture dry-downs. As a result, in our experiment drought had no effects on soil C

contents and stocks, as per our second hypothesis, although it slightly reduced soil bulk density (in a

pre-treatment vs post-treatment comparison, data not shown), possibly in relation to shrinkage in dry
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Interactive effects of compost and drought

findings-(Franco-Andreu et al. 2017; Ali et al. 2017), in our study compost-treated drought plots did
not have higher soil moisture than the untreated drought plots three3 years after compost application

(Fig. S3), which leads us to reject our third hypothesisana-eads-ts-to-reject-our-third-hypethesis. As

the negative effects of drought on aboveground biomass were weak, they were not visibly

compensated for by the compost addition. On the contrary, the experimental precipitation reduction

obliterated the biomass increase detected in the compost-treated plots in ambient rainfall, overriding

the positive effects of the increased C and N provided through the compost. This suggests that the

vegetation response in our experiment does not only depend on nutrient addition and interannual

variability in precipitation, but likely also on plant physiological processes related to water

availability (Bista et al. 2018) and on the ability of soil microbes to render the nutrients available for

plant uptake. Interestingly however, while both compost and drought stighthy-redueedtended to reduce

root biomass, there was a tendency for higher root:shoot ratio in the plots with combined compost

and drought treatment the

(Fig. 42). While our results from the compost-treated plots show that plants may reduce their

belowground biomass investment relative to aboveground growth when adding organic matter, this

mechanism appears-appeared to work differently under drought conditions, when plants may-ané-the
observed shift ir-C allocation belowground may-serve-to aid in water acquisition_(Eziz et al. 2017;
Guswa et al. 2010). This—irturn,—couldlead-to-increased-evapetranspiration,—and-this improved
capacity for soil water absorption could potentially offset any compost-induced increase in soil water
retention capacitymask-any-increase-in-soil-waterretention-capacity-in-the-compo droughtpleo

However, since our experiment did not include drought recovery, it is not known if this change would

persist after the end of the experimental drought.
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Conclusions

TFhe-goal-of this-study-was-toWe explored how drought and compost amendment affect-provide-an
overview-of the-changes-in soil_properties and; above- and belowground plant biemass-vegetation-©

centent-and-biomass within a grassland ecosystem;-threugh-a-muttifactorial-droughtand-compest
amendment-field-trial. Compost amendment and drought had distinct effects on plant shoot and root

growth, revealing the presence of trade-offs in their responses to environmental change. The compost

treatment led to an increase in biomass in shoots but not in roots, and ultimately did not result in an

increase in soil C stocks. Drought did not significantly affect plant biomass, but led to changes in root

traits and stunted the compost-induced increase in plant growth measured in plots under ambient

precipitation.

environmental-change—These findings improve our understanding of C dynamics in grasslands_by
illustrating the different components of plants and soil properties affected by theland management;

offering-potential-contributions-to-ecosystem-C-modelling. We also observed significant spatial and

temporal variability in vegetation and soil C dynamics over the study period, which may be driven

by differences in topography, land use and plant community composition, as well as temporal
variability in precipitation. Fhis-suggests-that-ecosystem-C-dynamics-can-be-influenced-by-multiple
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