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Abstract. Landscape fires, predominantly in the frequently burning global savannas, are a substantial source of 

greenhouse gases and aerosols. The impact of these fires on atmospheric composition is partially determined by 20 

the chemical breakup of the elements in the fuel into individual emitted chemical species, which is described by 

emission factors (EFs). These EFs are known to be dependent on, amongst others, the type of fuel consumed, the 

moisture content of that fuel and the meteorological conditions during the fire, indicating that savanna EFs are 

temporally and spatially dynamic. Global emission inventories, however, rely on static biome-averaged EFs which 

makes them ill-suited for the estimation of regional biomass burning (BB) emissions and for capturing the effects 25 

of shifts in fire regimes. In this study we explore the main drivers of EF-variability within the savanna biome and 

assess which geospatial proxies can be used to estimate dynamic EFs for global models. We collected over 4500 

EF bag measurements of CO2, CO, CH4 and N2O using an unmanned aerial system (UAS), and measured fuel 

parameters and fire severity proxies during 129 individual fires. The measurements cover a variety of savanna 

ecosystems under different seasonal conditions, sampled over the course of six fire seasons between 2017 and 30 

2022. We complemented our own data with EFs from 85 fires with known locations and dates listed in the 

literature. Based on the locations, dates and time of the fires we retrieved a variety of fuel-, weather- and fire 

severity proxies (i.e. possible predictors) using globally available satellite and reanalysis data. We then trained 

random forest (RF) regressors to estimate dynamic EFs for CO2, CO, CH4 and N2O and calculated the 

spatiotemporal impact on BB emissions over the 2002-2016 period using the Global Fire Emissions Database 35 

version 4 with small fires (GFED4s). We found that the most important field indicators for the EFs of CO2, CO 

and CH4 were tree cover density, fuel moisture content and the grass to litter ratio. The grass to litter ratio and the 

nitrogen to carbon ratio were important indicators for N2O EFs. RF models using satellite observations performed 

well for the prediction of EF variability in the measured fires with out-of-sample correlation coefficients between 

https://doi.org/10.5194/egusphere-2023-267
Preprint. Discussion started: 6 March 2023
c© Author(s) 2023. CC BY 4.0 License.



 2 

0.80 and 0.99, reducing the error in EF estimates by 60-85% compared to static biome averages. Using dynamic 

EFs, global savanna emission estimates for 2002-2016 were 1.8% higher for CO while CH4 and N2O emissions 

were respectively 5% and 18% lower compared to GFED4s. On a regional scale we found a spatial redistribution 

compared to GFED4s with higher CO, CH4 and N2O EFs in mesic regions and lower ones in xeric regions. 

Seasonal drying resulted in a decrease of the EFs of these species with the fire season progressing, with a stronger 5 

trend in open savannas than woodlands. Contrary to the minor impact on annual savanna average emissions, the 

model predicts localized reductions in EFs of CO, CH4 and N2O exceeding 60% under seasonal conditions.  

 

1 Introduction 
Landscape fires emit substantial amounts of gases, including the greenhouse gases CO2, CH4, and N2O which 10 

affect the Earth’s climate. To quantify the impact of these fire emissions, and track the role of fire in the 

biogeochemical system, fire emission inventories like the Global Fire Emissions Database (GFED, van der Werf 

et al., 2017) and the Global Fire Assimilation System (GFAS, Kaiser et al., 2012) use satellite observations to 

monitor global landscape fires. They estimate that, due to their high burning frequency, savannas account for 

roughly 60% of the global carbon emissions from biomass burning (BB). The impact of fire emissions on 15 

atmospheric radiative forcing is strongly dependent on the partitioning of burned biomass into individual emission 

species, which in part depends on the combustion efficiency (often simplified as the CO2 emissions divided by 

the combined CO2 and CO emissions, referred to as the modified combustion efficiency or MCE) during the fire. 

For this partitioning, models currently use biome-specific emission factors (EFs), expressed in grams of a 

molecule emitted for each kilogram of dry matter (DM) burned. However, measurements from both laboratory 20 

and landscape fires indicate that important drivers of fire intensity and combustion efficiency, e.g. the moisture 

content of the fuel (Chen et al., 2010) and the curing state of grasses (Korontzi et al., 2003b), are seasonal and 

that therefore EFs are both spatially and temporally dynamic. 

 

Field measurements of BB EFs have been inventoried for a large number of chemical species (Akagi et al., 2011; 25 

Andreae, 2019) and also indicate substantial intra-biome variability. Due to the lack of direct field measurements 

and their limited geospatial and temporal coverage, the variability in EFs has been difficult to quantify for the 

incorporation in global models (van Leeuwen and van der Werf, 2011). This makes current global models ill-

equipped to estimate emissions on local to regional scales. This results, for example, in the same EFs being 

assumed for a closed-canopy savanna woodland and an open grassland. Using historic averages also means that 30 

EFs do not dynamically change while fire regimes and environmental burning conditions can shift as a result of 

climate change or human interaction. One additional field of research that requires a better understanding of 

spatiotemporal dynamics involves fire management strategies in savannas to reduce fire emissions, with the aim 

of mitigating climate change. Over the past decennium, significant efforts have been directed at shifting the 

temporal patterns of savanna fire regimes in order to make them more sustainable and abate greenhouse gas 35 

emissions (e.g. Russell-Smith et al., 2013; Schmidt et al., 2018). EFs used for the accreditation of such projects 

currently assume a dichotomy of early- and late dry season averages, determined by a cut-off date. However, the 

fuel and meteorological conditions thought to drive EFs vary more gradually over the season and are moreover 
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subjected to substantial inter-annual and spatial variability. Incorporating spatiotemporal variability in models 

therefore makes these models more dynamic and better equipped for assessing seasonal fluctuations.  

 

Over the past six years (2017-2022), a series of savanna burning campaigns measuring EF measurements using 

unmanned aerial systems (UAS) have resulted in a large number of new measurements with broad spatiotemporal 5 

coverage (e.g. Vernooij et al., 2021, 2022; Russell-Smith et al., 2021). In this study we describe the variability 

identified in over 4500 individual bag samples of CO2, CO, CH4 and N2O EFs covering 129 fires. Combined with 

the EFs from fires already reported in literature, these new EF measurements allow us to analyse the variability 

in BB EFs in more detail by using unexplored non-linear statistical methods like decision-tree-based machine 

learning algorithms. The non-linear nature of these models makes them suitable to quantify distinctive dynamics 10 

under different circumstances due to complex natural processes in landscape fires. This approach does require 

large datasets for training and validation which were not available until now. We first determine the dominant 

drivers of EF variability based on field measurements and then apply random forest regression methods to estimate 

dynamic EFs for the abovementioned species using globally available satellite data and geospatial reanalysis data. 

Depending on the application, these dynamic EFs can be computed at various spatiotemporal resolutions, limited 15 

by the resolution of the underlying features (i.e. starting from 500-meter and with hourly timesteps). Finally, we 

use GFED4s, in combination with the dynamic EFs –computed on a monthly basis at 0.25°– to estimate the 

emission dynamics over the 2002-2016 period.  

 

2 Methods 20 

The main objectives of this study are: (1) to identify the drivers of EF variability in the savanna biome and (2) to 

implement this variability into global models through dynamic EFs. The first objective requires a large dataset of 

EFs and a thorough assessment of a wide range of possible drivers, including direct field measurements of 

vegetation composition, meteorological conditions and fire intensity dynamics. This is described in section 2.1. 

The second objective requires a more globalized approach which allows BB EFs to be predicted based on satellite 25 

and reanalysis data with broad spatiotemporal coverage, see sections 2.2 and 2.3.   

 

2.1 Field measurements 

2.1.1 Measurement setup 

Using a UAS-mounted sampling system we measured BB EFs of CO2, CO, CH4 and N2O in fresh smoke during 30 

landscape fires, following the methodology described by Vernooij et al. (2021, 2022). Emissions were sampled 

at an altitude of between 5-50 m depending on flame height for a duration of 35 seconds, resulting in 0.7 litres of 

gas sample. Within 12 hours, these samples were measured using cavity-ringdown spectroscopy for atmospheric 

mixing ratios of CO2 and CH4 (Los Gatos Research, Microportable gas analyser), and CO and N2O (Aeris 

Technologies, Pico series). The measurement setup, calibration procedures, and a comparison of the setup to mast 35 

measurements were described in Vernooij et al. (2022). We calculated EFs using the carbon mass balance method 

(Ward and Radke, 1993), using ground measurements of the weighted average (WA) carbon content of the 

combusted fuel and emissions of CO2, CO, CH4 and N2O. The carbon emitted in non-methane hydrocarbons 
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(NMHC) and particulates was estimated based on the linear relations with EFs of CO (for particulates) and CH4 

(for NMHCs), which were derived from previous savanna literature (Andreae, 2019; Vernooij et al., 2022). EFs 

of N2O were calculated using CO2 as the co-emitted carbonaceous reference species.  

 

2.1.2 Sample coverage and literature studies 5 

The dataset obtained using the abovementioned UAS methodology includes both previously published data 

collected in Mozambique, South Africa, and Brazil (Russell-Smith et al., 2021; Vernooij et al., 2021, 2022) and 

new measurements from xeric and mesic savannas in Botswana, Zambia and Australia, measured during the fire 

seasons of 2021 and 2022. The dataset covers three continents and the full length of the dry season, ranging from 

early dry season (EDS) campaigns in which fuel conditions prevented successful ignition to late dry season (LDS) 10 

campaigns with high-intensity fires. The 129 fires that we measured using the abovementioned methodology were 

supplemented with 85 previous savanna fires for which EFs of the measured species were reported in the updated 

database by Andreae (2019). This literature compilation only includes samples taken within minutes after 

emission to avoid significant chemical changes during atmospheric aging. For the comparison with geospatial 

data, we only included fires for which the fire date and coordinates were known, a prerequisite to get relevant 15 

satellite features. These criteria mean that laboratory studies, satellite studies covering wider regions, and most 

aircraft campaigns were excluded. Fig. 1 provides an overview of the UAS (red for previously published and 

orange for our new measurements), and literature (yellow) sample locations included in the study.  

 

2.1.3 Fuel measurements 20 

During more recent fieldwork campaigns, we not only collected EFs but also other parameters including fuel 

characteristics. Before the fire, we collected fuel load and fuel composition from various classes (e.g., grass, litter, 

coarse woody debris, shrubs and trees) and meteorological parameters. After the fire, we revisited the plots and 

recorded various fire severity proxies including the combustion completeness of various fuel classes as well as 

fire intensity proxies (e.g. patchiness of the fire, and scorch and char heights) following the methodology outlined 25 

by Eames et al. (2021) and Russell-Smith et al. (2020). Table 1 lists the individual UAS EF-measurement 

campaigns, and whether fuel was collected following the abovementioned methodology. Fires were lit on the 

windward side of the plot and generally burned through 2-6 individual randomly scattered 50´10-meter fuel 

transects covering the target vegetation type and fuel age. We took the average of the affected fuel transects as 

the fire-averaged value, to correspond to the fire-averaged EF measured over all the bag samples taken from that 30 

specific fire.   

 

2.2 Regression analysis 
Field measurements provide the most accurate description of the vegetation and weather conditions during the 

fire and yielded the most reliable insights in the drivers of EF dynamics. However, these measurements are sparse 35 

and thus unsuitable for spatiotemporal extrapolation. We therefore build machine learning algorithms, for which 

we selected a subset of satellite and reanalysis features with global coverage and temporal data availability for at 

least the past 20 years. 
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2.2.1 Global feature selection 

To avoid the model becoming a black box, we did not include features with no intuitive significance or cogent 

link to EFs (e.g. individual satellite retrieval bands). Table 2 lists the different satellite and reanalysis products 

included in this study, along with the observed range for each feature over the included fires.  

 5 
We used remote sensing products based on retrievals from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) and reanalysis data with sufficient spatial and temporal coverage. Based on the coordinates of the 

individual samples we obtained a broad range of features which we then averaged over the samples from each 

individual fire to obtain the fire-averaged feature scores. As proxies for the vegetation conditions and landscape 

parameters prior to the fire we used Fractional Tree Cover (FTC) and Fractional Bare soil Cover (FBC) from 10 

MOD44BC6 (DiMiceli et al., 2015), the Fraction of absorbed Photosynthetically Active Radiation (FPAR) and 

the Leaf Area Index (LAI), which were retrieved from MCD15A2HC6 (Myneni et al., 2015). Based on 

MOD09GAC6 surface spectral reflectance (Vermote, 2015), we determined the Normalized Difference 

Vegetation Index (NDVI) before the fire and the Pgreen (calculated as NDVI before the fire minus the minimum 

NDVI of the previous year, divided by the total NDVI range of previous year (Korontzi, 2005)). 15 

 

To estimate the weather conditions during the fire, we used ERA5-land meteorological reanalysis data from the 

European Centre for Medium Range Weather Forecasts (ECMWF) (Muñoz-Sabater et al., 2021). Hourly 

meteorological data for air temperature, wind speed, relative humidity, evapotranspiration and potential 

evapotranspiration were used for the UTC-corrected time stamp of each sample. Based on the timing of the 20 

sample, the feature value was obtained using linear temporal interpolation. Temperature and relative humidity 

were subsequently used to derive the Vapor Pressure Deficit (VPD, i.e. the difference between the saturation 

vapor pressure and the actual vapor pressure) following the method described by Tetens (1930). The Evaporative 

Stress Index (ESI) was calculated as the actual evapotranspiration divided by the potential evapotranspiration 

(Anderson et al., 2007). We used ERA5-land monthly average rainfall data to estimate the mean annual rainfall 25 

(MAR) over the 1990-2022 period, as well as the cumulative rainfall in the 12 months prior to the fire. We found 

meteorological parameters obtained from ERA5-Land (Muñoz-Sabater et al., 2021) to be in close accordance with 

ERA5 (Hersbach et al., 2020), indicating the two may also be substituted.  

 

Fire weather comprises combinations of weather and fuel parameters that determine the risk of wildfire. Indices 30 

like the globally available Fire Weather Index (FWI) have been developed with the aim of estimating the risk of 

wildfires (De Groot, 1987; Van Wagner, 1987) and are based on global reanalysis data. In this assessment we 

have included the daily FWI along with some of the intermediate parameters used to calculate the FWI. These 

intermediate parameters include: (1) the Fine Fuel Moisture Code (FFMC), designed to capture changes in the 

moisture content of fine fuels and leaf litter, (2) the Drought Code (DC), which captures the moisture content of 35 

deep, compacted organic soils and heavy surface fuels, (3) the Build-up Index (BUI) which represents the total 

fuel availability, and (4) the Initial Spread Index (ISI), which is driven by wind speed and the FFMC, and 

represents the ability of a fire to spread immediately after ignition. We used the global fire weather indices based 

on ERA5 (Hersbach et al., 2020) with a 0.25 spatial resolution and 1950-present temporal coverage (Vitolo et al., 

2020) that are calculated as part of the European Forest Fire Information System (EFFIS). Global fire weather 40 

indices based on ERA5 (Vitolo et al., 2020) had significant inconsistency compared to fire weather indices based 
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on GEOS-5 and MERRA-2 obtained from the Global Fire Weather Database (GFWED; Field et al., 2015), 

meaning these data should not be used as substitutes. Because of the consistency and higher spatial resolution, we 

only included ERA5 in our analysis.  

 

For fire severity proxies we used the differential Normalized Burn Ratio (dNBR) and the differential Normalized 5 

Difference Vegetation Index (dNDVI) retrieved before and after the fire. These were based on the MODIS surface 

spectral reflectance, corrected for atmospheric conditions (MOD09GAV6; Vermote, 2015). If the scene before or 

after the fire was cloud-covered, the preceding or successive scene was used with a limit of 14 days before or after 

the fire. If no cloud-free scene was available in that time window, the fire was removed from the dataset. 

 10 

2.2.2 Machine learning methodology 

We tested a variety of different regression methodologies for the prediction of the fire-WA EFs based on the 

abovementioned satellite and reanalysis features. Using the Scikit-learn library in Python (Pedregosa et al., 2011), 

we trained multiple linear regression, decision tree-, random forest-, gradient boosting machine- and neural 

network regressors to predict the MCE and the EFs of CO, CO2, CH4 and N2O. Many of the meteorological and 15 

fuel characteristics follow seasonal patterns and exhibit strong co-variation. While this may be problematic for 

linear models, it should not negatively impact the decision-tree-based modes and therefore these features were 

included in the model. We trained the models using the in-situ EF measurements (both ours and those from 

literature), to reconstruct the measured EF dynamics. We removed measurements with missing values for any of 

the included features. The remaining data was divided into training (70%) and validation data (30%), and the 20 

training data was resampled using ten-fold cross validation while allowing sample replacement (i.e., bootstrap 

method). All regression methods were trained to maximize the explained variance in the data. The hyper 

parameters were tuned using the scikitlearn “GridsearchCV” algorithm (Pedregosa et al., 2011). Random Forest 

(RF) regressors gave the best results followed by gradient boosting machine (GBM) regressors. We therefore 

decided to proceed using RF regressors to predict the MCE and the EFs of CO, CO2, CH4 and N2O.  25 

 

2.3 Spatial extrapolation for global savanna emission estimates  
Depending on the required spatial resolution of the EF product, we re-gridded the feature values by averaging 

features with overlapping grid cells. Figure 2 provides an example for the estimation of the CO EF at 500-meter 

resolution for MODIS tile “h20v10” (covering parts of Zambia, Botswana, Angola, Namibia, Zimbabwe, 30 

Mozambique and the Democratic Republic of the Congo) on June 1st, 2019, using the features shown in Fig 2a-e. 

The temporal resolution of the EFs in the example of Fig. 2 is daily, in which the day-to-day EF dynamics are 

being driven by daily variations in VPD, FPAR, FWI and soil moisture. Most burned area products do not 

differentiate the time of the day at which a grid cell was burned. For features with a typically diurnal pattern, we 

therefore weighed the hourly meteorological data by the average diurnal fire profile in the respective month for 35 

the grid cell.  For monthly resolution EFs we did the same using the ERA5-land monthly data averaged by hour 

of day. This diurnal fire profile was based on the three-hourly fractions of daily emissions obtained from 

GFED4.1s, which is based on the timing of active fire detections from both MODIS and geostationary satellites 

(Mu et al., 2011; van der Werf et al., 2017). To study the effect of EF patterns in savannas, we calculated monthly 

global savanna emissions by multiplying the dynamic EFs with dry matter emissions from GFED4s (Randerson 40 
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et al., 2012; van der Werf et al., 2017) at 0.25° spatial resolution, for the 2002-2016 period (the period for which 

MCD64AC5 as used in GFED4s was available). To classify the landcover type of the cell (Fig. 2f) we used the 

International Geosphere-Biosphere Program (IGBP) classification (Loveland and Belward, 1997), obtained from 

the MODIS annual MCD12Q1C6 product (Friedl and Sulla-Menashe, 2019), where the savanna biome comprised 

land cover types classes 6-11 . We then calculated the dynamic monthly EFs at 0.25° spatial resolution for the 5 

savanna biome using the RF models for the MCE and the EFs for CO, CH4, N2O and CO2. For burned grid cells 

that were partially classified as savanna, the EF of the cell was obtained by averaging the EFs of the different 

biomes in the underlying 500-meter grid cells, weighted by their dry matter emissions. We ran GFED4s using 

both static (original) and dynamic (this study) EFs for the savanna biome to determine the impact on seasonal and 

spatial emission patterns using our approach.   10 

3 Results 
3.1 Variability of savanna EF measurements 
During six fire seasons we have collected over 4500 bag samples containing emissions from 129 fires, in a variety 

of savanna ecosystems under different seasonal conditions. Figure 3 shows the range, averages (green diamond), 

and WA EFs (red crosses) measured during the campaigns listed in Table 1. For the calculation of the WA N2O 15 

EF we excluded samples which contained less than 10 moles of total carbon emissions following the findings 

described by Vernooij et al. (2021). Table A1 provides a short geomorphological and floristic description of the 

measured savanna ecosystems, including the seasonal behaviour of the dominant vegetation. The relatively small 

range in the boxplot describing previous savanna literature (Fig. 3, red box) may be attributed to the fact that most 

studies report either fire-averages, vegetation type averages or even study averages, whereas the other boxplots 20 

based on our measurements show the variability observed between individual samples.  

 

We observed substantial variability within different savanna ecosystems which was strongly linked to tree-cover 

density and mean annual rainfall. EFs of CO and CH4 were lower in xeric open savannas compared to woodland 

savannas. Fire-WA EF measurements for CO, CH4 and N2O, using the UAS method were on average 13%, 29% 25 

and 44% lower than estimates listed in previous inventories. However, this may be largely attributable to the fact 

that xeric savannas were overly represented in our measurements in terms of annual burned area (i.e. sample bias). 

Our measurements in higher rainfall savannas were much closer to the previous averages (Fig. 3). In humid areas 

(e.g. seasonally inundated grasslands), we found large intra-seasonal differences in N2O, CO and CH4 EFs. Water 

availability in these landscape features is often strongly soil type and geomorphology related (Bullock, 1992; 30 

Gonçalves et al., 2022), making the correlation with seasonal rainfall less direct and drying patterns over the dry-

season more diverse. The grasslands with the highest EFs (found in high-rainfall savanna Dambos) were 

uncharacteristically green for the time of the season, and fires in these landscapes would therefore not be 

representative of more xeric grasslands.  

 35 

5 
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3.2 EF seasonality, fire intensity dynamics and fuel consumption in xeric and mesic savannas 
Table 3 lists the EDS and LDS pre- and post-fire fuel characteristics, averaged over all the transects we measured 

in the respective vegetation type and season. For some characteristics (e.g. the total fuel load), it is important to 

note that the columns do not necessarily represent corresponding mixtures of fuel age. For some field campaigns, 

no nutrient content data was collected from the leaves and stems of shrubs. In both xeric- and mesic savannas, the 5 

moisture content of the fuel and the relative humidity were substantially lower in the LDS compared to the EDS. 

This resulted in increases in fire intensity proxies over the dry season. Particularly during measurement campaigns 

in the Miombo woodlands in Mozambique and Zambia, the fine fuel in the EDS plots predominantly consisted of 

tree litter and became even more litter-dominated with the progression of the dry season. EDS fires were patchy, 

and generally did not consume coarse woody debris and shrubs. As the dry season progressed, there was a clear 10 

shift towards the combustion of more Residual Smouldering Combustion (RSC)-prone fuels like coarse woody 

debris, stems, live foliage, and densely packed litter, which coincided with higher EFs for CO and CH4 in the 

LDS. This shift also results in a seasonal increase in the WA carbon content of the consumed fuel of woody 

savannas (Table 3) which linearly scales the EFs of all measured species.  

 15 

Overall, our measurements of CO and CH4 EFs in xeric, grass- and shrub dominated savannas (e.g., Australian 

spinifex grasslands and open savannas in the Kalahari) were slightly lower in the LDS compared to the EDS 

campaigns but much lower compared to woody savannas (Fig. 3). Contrary to the woody-dominated savannas, 

where RSC-prone fuel is readily available and becomes more flammable with the progression of the fire season, 

fires in xeric shrub and grasslands tended to consume much of the available fuel in the EDS (Table 3). Overall, 20 

the WA nitrogen content of the combusted fuel decreased with the progression of the dry season through curing 

of grasses and litter decomposition. This was somewhat compensated for by an influx of leaf litter and an increased 

combustion of live shrubs, which were richer in nitrogen than grasses (that had commodiously already cured in 

the EDS). Overall, fires that consumed more litter emitted more N2O than grass-dominated fires. Between 

individual fires, the curing stage of the grasses affected the N2O EF, with green seasonally-inundated grasslands 25 

emitting more N2O compared to fully cured grasslands. In some miombo woodland fires in Kafue, which were 

measured in November when the vegetation already carried its first green flush, we also measured relatively high 

N2O EFs.  

 

3.3 Estimation of BB EFs using random forest regression based on global features 30 

To extrapolate these relations for use in global models we correlated the field measurements to satellite products. 

Table 4 lists the correlations of the individual field parameters to the EF measurements, as well as global satellite 

proxies. The strongest predictors for the MCE and the CO and CH4 EF were the tree density in the plots, the grass 

to litter ratio, the combustion completeness and the WA moisture content of the consumed fuel (Table 4). In turn, 

these parameters were best correlated to the remotely sensed FTC, FBC, VPD and the FWI. EFs for CO and CH4 35 

are primarily proportionate to the inverse combustion efficiency (i.e. the not fully oxidized compounds) which 

had a standard deviation of 90% relative to the mean. CO2, on the other hand is proportionate to the fully 

combusted carbon fraction which is much larger and more stable with a relative standard deviation of 4.5% 

compared to its mean. Therefore, the carbon content of the fuel -with a standard deviation of roughly 5%- 

becomes a dominant factor explaining the variability in CO2 EFs. The features that strongest correlated with the 40 
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N2O EF were the nitrogen to carbon ratio in the combusted fuel and the percentage of grass in the fine fuel 

(consisting of grass, litter and course woody debris), which in turn correlated with the FBC and the VPD. 

 

For the global estimation of MCE and GHG EFs, we found that RF models performed well with respective out of 

sample correlation coefficients ranging between 0.80 and 0.99. In Figures 4 and 5, feature importance represents 5 

the mean accumulation of the impurity decrease within each tree and is an indication of how much each feature 

is used as a split to explain the variability in the data. The average MCE in the measurements was slightly higher 

compared to earlier assessments which were used by GFED4s (red line in Figure 4), which may again be 

attributable to the dominance of relatively dry savannas. Overall, we found that using only globally available data 

covering a large (>20 year) timespan, we could recalculate the MCE well with a mean absolute error (MAE) of 10 

0.007, which meant a reduction of the MAE of 62% compared to the static biome-averaged MCE.  

 

Although the features listed in Fig. 4 all have sufficient spatiotemporal coverage for global emission modelling, 

some features exhibited strong co-variation. Other retrievals were hampered by LDS cloud-cover (e.g., dNBR and 

Pgreen), which meant we could not use consistent quality retrievals or had to remove samples from the data. 15 

Further simplification by excluding these features somewhat remedied these issues and could therefore improve 

the global applicability, fortunately without losing much explained variance. When using a 5-feature subset, we 

found that RF regressors still predicted much of the variability in the MCE and EFs. Figure 5a shows the predictive 

performance of a RF regression model that uses VPD, FTC, FWI, FPAR and soil moisture (SM) to estimate the 

MCE, which was relatively similar to the model predicting MCE using all features (r of 0.80 vs. 0.86).  20 

 

We found that spatial variability dominated the total variability in the MCE within the savanna biome with higher 

combustion efficiency in more xeric and open savannas. To isolate the effect of combustion efficiency in the 

prediction of individual species and make the model more transparent, we added the computed MCE to the 

predictor features. Both models that were trained using the full set of features in Table 1 and the 5-feature models 25 

identified the computed MCE as one of the primary features explaining of the variability in other EFs. The largest 

deviation from static EFs (vertical red line in Fig. 5d) was predicted for N2O. This is partially due to the large 

number of new fires measured using the UAS system (130 fires versus 6 included literature fires) which on average 

were 44% lower than the static reference used in GFED4s. The modelled MCE was the main predictor of the N2O 

EF, followed by the soil moisture in the top layer (0 - 7cm depth). Somewhat surprisingly, we found soil moisture 30 

to correlate more strongly with the tree density in the plot rather than the fuel moisture content (Table 4).  

 

3.4 Impact on global emission estimates using variable savanna emission factors 
Both our measurements and the averages in savanna literature compilations (e.g. Akagi et al., 2011; Andreae, 

2019) for the savanna biome are subjected to sampling bias, with respect to global savannas. Rather than 35 

comparing the average of our savanna measurements to the literature averages, we computed the dynamic EFs 

using the RF model and subsequently calculated the emissions for the entire savanna biome, which is more 

indicative of the “effective” EFs and compared this to emissions based on static EFs. Figure 6 shows the relative 

impact of using variable EFs on annual global savanna fire emissions of CO (a), CH4 (b) and N2O (c), averaged 

over the 2002-2016 period based on GFED4s. The map only shows cells for which the partial coverage of 40 
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savannas exceeds 50%. In grid cells that are partially (50-99%) covered by savanna, the total impact on emissions 

is to some degree diluted as the EFs of the non-savanna biomes remained constant. 

 

For CO and CH4, the dominant effect is a spatial redistribution with higher CO and CH4 EFs in mesic, high-tree-

cover savannas and lower EFs in xeric savannas compared to previous estimates. For CO2 (not shown), we find 5 

the opposite pattern to CO. Relatively speaking, however, changes in CO2 emission are much smaller because 

most carbon is emitted as CO2, even when MCE values are low. Although CO and CH4 followed the same spatial 

pattern, we found that MCE affected the CH4 EF more strongly than the CO EF which resulted in lower CH4 to 

MCE ratios in open savannas. Global savanna emissions of CO were 2% higher compared to the GFED4s 

reference scenario whereas N2O and CH4 emissions were respectively 18% and 5% lower. N2O emissions were 10 

lower for the entire savanna biome (Fig. 6c). Over the 2002-2016 period, the annual effective EFs (i.e. weighted 

by the burned fuel) remained more or less stable over the savanna biome.  

 

Figure 7 shows the seasonal patterns in the average CO EF for different savanna vegetation classes in southern 

hemisphere Africa. The IGBP savanna subclasses are only used here to indicate the average patterns and are not 15 

involved in the EF calculation. We found a stronger and more persistent seasonal decline of the CO EF in xeric 

grass- and shrublands compared to typical and woody savannas. N2O EFs showed a similar pattern characterised 

by a decline over the dry season in the more xeric grass and shrubland savannas while EFs in woody savannas are 

more stable. The model indicates a reversal of the seasonal trend in typical and woody savannas around August-

September, long before these rains start. The coloured areas represent the timing of our field campaigns in this 20 

region. Although LDS campaigns were conducted before the first seasonal rains, the graph indicates they may not 

be indicative of peak-season fires. Figure 8 shows an overview of the relative changes in emissions for the various 

savanna rich GFED regions. Many of these regions contain both xeric and mesic savannas with contrasting spatial 

patterns, meaning local differences may be much larger (Fig. 6).  

4 Discussion  25 

4.1 Comparison with previous studies 
The largest difference compared to previous savanna burning emission estimates is the reduction in N2O 

emissions. Rather than being the effect of spatiotemporal dynamics, this reduction resulted from a relatively large 

number of new N2O EF measurements that were significantly lower than averages reported by EF compilations. 

These were 0.21 g kg-1 in Andreae and Merlet (2001), 0.20 g kg-1 in Akagi et al. (2011), and 0.17 g kg-1 in Andreae 30 

(2019) while our average value for the field measurements was 0.11 g kg-1. However, in our measurements, xeric 

savannas are overrepresented. When using the global RF model to extrapolate the measurements over the entire 

savanna biome the “effective” average N2O EF –for savanna grid cells at the time of their burning– was 0.16 g 

kg-1, which is similar to those listed in Andreae (2019). It is known that older studies might overestimate N2O, 

due to N2O formation in stainless steel sample containers (Muzio and Kramlich, 1988). Particularly compared to 35 

more recent studies, our EFs were in line with other savanna measurements from South America (0.05-0.07 g kg-

1; Hao et al., 1991; Susott et al., 1996), Australia (0.07 – 0.12 g kg-1; Hurst et al., 1994; Meyer et al., 2012; 

Surawski et al., 2015) and Africa (0.16 g kg-1; Cofer et al., 1996). In accordance with Winter et al. (1999b), we 

found N2O EFs to be closely correlated with the nitrogen content of the fuel. Through this relation, we can explain 
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both the spatial distribution observed in Fig. 6c and the different seasonal trends. In line with Susott et al. (1996) 

and Ward et al. (1992) we found that woody vegetation has higher nitrogen content (Table 3), causing higher N2O 

emissions from tree dominated areas. The seasonal reduction in the nitrogen content of the fuel as the vegetation 

cures (Table 3) coincides with a reduction of the N2O EF over the dry season (Yokelson et al., 2011; Vernooij et 

al., 2021). This tends to happen quicker in xeric grass- and shrublands compared to mesic tree-covered areas. On 5 

the other hand, as fires get more intense over the dry season, they consume increasingly more litter, coarse fuels 

and live foliage, provided these fuels are available (Table 3). This increases the WA carbon- and nitrogen contents 

of the fuel. We found relatively low nitrogen content for Australian open woodland savannas, which was in line 

with previous studies (Bustamante et al., 2006).  

 10 

For carbonaceous species our model predicts a spatial redistribution, characterized by higher combustion 

efficiency in lower tree-cover savannas and lower combustion efficiencies in more woody savannas. Previous 

research by van Leeuwen and van der Werf (2011) identified multi-linear correlations between EFs of CO2, CO 

and CH4 and environmental drivers resulting in coefficients of determination (r2) ranging from 0.48 to 0.62. In 

accordance with their study, we found the FTC to be a strong predictor of the MCE and the CO- and CH4 EFs 15 

(Fig. 9). When denoted in grams per kilogram of dry biomass consumed, EFs of carbonaceous species are 

dependent on both the combustion efficiency and the carbon content of the fuel. The carbon content is often fixed 

in global studies (e.g. 45% in Andreae (2019) and Andreae and Merlet (2001) or 50% in Akagi et al. (2011)), with 

the latter forming the basis of the EFs used in GFED4s that represent the static EF references in this study. 

However, both the combustion efficiency and the carbon content have a spatial component with higher carbon 20 

contents in shrubs and trees compared to grasses (Table 3). For the studied fires, the WA carbon content of the 

fuel ranged from 40.3 to 49.3%, which linearly scales to a 22% difference in EFs between those extremes. In line 

with Andreae (2019), we assigned a carbon content of 45% to literature studies for which the carbon content was 

not reported which was close to our average measured value of 45.8 ± 2.3%. Contrary to previous research which 

indicated that dryer conditions in the LDS would lead to higher-MCE fires in high-tree-cover savannas (Hoffa et 25 

al., 1999;  Korontzi et al., 2003a), we found lower MCE in these regions under late-LDS conditions (Fig. 3). In 

part,  this may be because our measurement campaigns missed the peak-season fires when the fires may be hotter 

(N’Dri et al., 2018). Another explanation is that although the LDS fires were more intense, they consumed much 

more RSC-prone fuels (Table 3), which may explain the higher CH4 and CO EFs. Eck et al. (2013) studied 

seasonal changes of BB particles during 15 annual fire seasons in xeric and mesic savannas in southern Africa 30 

using the Aerosol Robotic Network (AERONET). They found a linear trend of the single scattering albedo (SSA), 

increasing throughout the dry season, which would support a late dry season decrease in MCE. In open savannas, 

we did observe a slight seasonal decline in CO and CH4 EFs. We found that LDS fires did not significantly change 

the composition of the fuel and in these areas, as most of the available fuel was consumed in both the EDS and 

LDS fires. 35 

 

In accordance with previous studies (e.g. Korontzi et al., 2003b; van Leeuwen and van der Werf, 2011), we found 

steeper CH4 EF to MCE regression slopes in woodlands compared to grasslands. Our data indicated a positive 

correlation of the CH4 EF to MCE slope with the FTC from MOD44Bv6. Keep in mind that the MCE is only 

calculated through CO and CO2 emissions. Being less oxidized, CH4 emissions have a stronger dependency on 40 
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the actual combustion efficiency than CO (which is still common in flaming combustion), and therefore the MCE. 

Stable carbon isotopes also point to CH4 emissions being more depleted in heavy carbon (13C) compared to CO, 

indicating a stronger dominance of RSC in its total emissions (Vernooij et al. 2022b). 

  

While most studies describe the relationship between the CH4 EF and the MCE as being linear (Korontzi et al., 5 

2003b; van Leeuwen and van der Werf, 2011; Selimovic et al., 2018; Yokelson et al., 2003), we found it may be 

better described using a nonlinear function (Fig. 9), in line with findings by Meyer et al. (2012) for Australian 

savanna measurements. This may explain why studies that are skewed towards either smouldering- or flaming 

phase emissions find different CH4 EF to MCE slopes using linear regressions.  

 10 

Although higher MAR generally coincides with high FTC, this was not the case for our measurements from Brazil. 

The measured areas in the EESGT received relatively high MAR (1250–1600 mm yr-1) compared to 850–1250 

mm yr-1 for Zambian and 890–1100 mm yr-1 for Mozambican Miombo woodlands. Nonetheless, although being 

strictly protected from logging and other land clearing practices, the MOD44BC6 FTC in the measured areas in 

EESGT was very low (1-10%, with an average of 2%) compared to 7-32% with an average of 19% for Zambian-15 

, and 3-43% with an average of 22% for Mozambican miombo woodlands. That our measurements in the EESGT 

were skewed towards open savannas (that typically burn with higher MCE), may explain the relatively low CH4 

EF to MCE slope discussed in Vernooij et al. (2021). For the whole Cerrado, the average MOD44BC6 FTC is 

17%, indicating that the measurements in EESGT may be underestimating the MCE in other parts of the Cerrado. 

According to its classification, MCD44Bv6 FTC only includes canopies of trees exceeding 5m in height (Adzhar 20 

et al., 2021) which may be why some common Cerrado species are classified as shrubs. However, the EFs 

observed from these areas were similar to those observed in low tree-cover savannas.   

 

4.2 Model representativeness 
This is the first study to quantify the spatial distribution of GHG EFs over the entire savanna biome using field 25 

measurements from a variety of savanna ecosystems, based on dynamic satellite data. Although spatiotemporal 

coverage has improved, there are still many understudied savanna and grassland areas for which we have derived 

EFs based on our model. Figure 1 clearly illustrates the gaps in the spatial distribution of the training data. 

Particularly savannas bordering the tropical rainforest, northern hemisphere Africa, meso America, south-east 

Asia as well as temperate grassland systems are understudied. The absence of measurements in these ecosystems 30 

means EFs are currently calculated using measurements from predominantly southern hemisphere Africa. 

However, Fig. 8 suggests EF dynamics may significantly deviate from those in the well-studied savannas. In order 

to ensure the representativeness of the model to specific areas, calibration and model evaluation using additional 

in-situ EF measurements remains necessary.  

 35 

4.3 Spatial resolution and small-scale landscape features 
We found the highest variability of EFs within smaller landscape features that are bound to geomorphological 

niches, typically along rivers and valleys. While these features are likely to have low significance for global 

emission patterns, they represent vital ecosystems that may require special fire protection. High-resolution 

modelling allows for a better understanding of localized fire regimes, especially in relatively heterogeneous 40 
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landcover regions. In this study we averaged the features over the 0.25° grid cell prior to determining the savanna 

EF. This approach was chosen because GFED4s burned area, which includes an assumption for small fires, is 

produced at 0.25° resolution. Recent studies have shown that higher resolution modelling can lead to different 

emissions partly because landscape heterogeneity is better represented (van Wees and van der Werf, 2019). Next 

generation global emission models are therefore likely to incorporate increased spatial resolution. Particularly 5 

from a land management perspective, having more representative local data is beneficial.  

 

The model is limited by the accuracy and spatial resolution of the underlying products. Using the features included 

in the current models, EFs can be calculated up to the native resolution of the included MODIS-based products 

(500×500m), which is also the resolution of globally available burned area products. New high-resolution burned 10 

area products, however, indicate that these global products grossly underestimate burned area due to omission of 

small fires (Roteta et al., 2021; Roy et al., 2019). As this model is trained using specific datasets, these features 

should not be replaced by other sources without evaluating the consistency of that source to the training datasets. 

Particularly if the error in the underlying features in inconsistent, this propagates to the EF estimations. FTC and 

FBC, based on MOD44Bv6 were found to be strong predictors of BB EFs. However, intercomparison with 15 

Tropical Biomes in Transition (TROBIT) field sites in African, Brazilian and Australian savannas has shown that 

this product consistently underestimates canopy cover in tropical savannas by between 9 to 15% (Adzhar et al., 

2021). Products based on higher-resolution satellite retrievals (e.g. LandSat and Sentinel) have the potential to 

further enhance the spatial resolution of the EF estimates to include small landscape features and thus become 

more representative.    20 

 

Cross-correlation between the features meant that feature importance scores varied over various model runs based 

on the test-train data split and bootstrap resampling. For example, a decision tree split based on VPD is most likely 

very similar to soil moisture or RH, and FTC in national parks is often closely correlated to the MAR, with our 

measurement sites in Brazil being the notable exception. Although we conducted model runs for various feature-25 

subsets and selected the best, different features may also perform well in explaining much of the variability. For 

features with very high co-variation (e.g., FPAR and LAI or FWI and ISI), this meant only one feature was 

selected for the trimmed-down model even when both features scored high on the initial assessment.  

 

5 Conclusion 30 

Over the last decade, substantial progress has been made on increasing the spatiotemporal coverage of savanna 

fire emission factor measurements (EFs). In this study we described the variability of GHG EFs measured during 

18 new field campaigns over the 2017-2022 period during which we measured 129 fires in different parts of the 

savanna biome using UAS measurements. On average CO, CH4 and N2O EFs in these UAS measurements were 

respectively 13%, 29% and 44% lower compared to the biome-averaged EFs used in previous inventories. 35 

However, from a global savanna perspective, xeric savannas with relatively low EFs were over-represented in our 

measurements which could explain part of the mismatch. Measurements of the pre-and postfire fuel load and the 

fuel conditions during the fire indicated significant increases in fire intensity over the dry season. Particularly for 

mesic savannas, an increase in the combustion of RSC-prone fuels resulted in higher EFs of CO and CH4 during 
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LDS fires. The main drivers of variability in CO and CH4 EFs were tree-cover, fuel moisture content and the 

prevalence of grasses while EFs for N2O strongly correlated with the nitrogen content of the fuel which, in turn, 

is strongly linked to the grass to litter ratio. Although these correlations are consistent with previous savanna EF 

studies, quantifying their impact on EFs for the use in global emission studies has so far been hampered by a lack 

of measurements.  5 

 

We propose a random forest regressor that estimates dynamic EFs based on satellite retrievals to replace the use 

of static biome averaged EFs in global emission models, or the use of a dichotomy of EDS vs LDS EFs (based on 

a cut-off date). The modelled data resulted in significant improvements compared to static biome-averaged EFs, 

reducing the mean absolute error in the modelled versus measured predictions by 63% for CH4, 57% for N2O, 10 

81% for CO and 79% for CO2. We used the dynamic EF models to calculate the emissions for global savanna 

emissions over the 2002-2016 period, which is more indicative of the “effective” EF differences. This resulted in 

a spatial redistribution of emissions over the savanna biome, characterized by increases of average annual 

emissions of CO, and CH4 in woody savannas and reductions in open savannas. While the model indicates an 

initial seasonal decrease in combustion efficiency as the vegetation dried out, there was a reversal for typical and 15 

woody savannas towards the end of the dry season, occurring before the first seasonal rains. This shift coincides 

with the increased consumption of RSC-prone fuels like densely packed litter, coarse woody debris and live 

vegetation. Xeric savannas had much lower EFs with a longer and more profound seasonal decrease in CO and 

CH4. Although N2O EFs were lower for the entire savanna biome, they followed a similar spatiotemporal pattern.  

 20 

The proposed dynamic EF method resulted in a 18% reduction in the estimated annual global N2O emissions from 

savanna fires, compared to static averages, with emission reductions of up to 60% in xeric regions. The impact on 

the global savanna emission estimates for CO (increase of 1.8%) and CH4 (decrease of 2.1%) was low, indicating 

the use of static EFs did not lead to biases for studies focusing on global emissions. However, the regional impact 

on these EF estimates was as high as 60% and even 80% under extreme seasonal conditions, highlighting its 25 

significance at a more local level. Overall, the model results indicate a first step towards more dynamic and area 

specific emission models, which will further improve as more measurements and better remote sensing products 

become available.  
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Tables 
Table 1: Measurement campaigns including the number of fires for which emission factors were measured as well as 

the number of corresponding fuel-transects.  

Area Timeframe # Fires # Fuel transects 

Kruger National Park, 

South Africa 

29.08.2017 – 02.09.2017 

22.04.2018 – 28.04.2018 

21.08.2018 – 31.08.2018 

22.10.2018 – 26.10.2018 

3 

3 

8 

6 

- 

- 

- 

- 

Estação Ecológica Serra 

Geral do Tocantins, Brazil 

10.09.2017 – 20.09.2017 

15.06.2018 – 30.06.2018 

21.09.2018 – 12.10.2018 

10 

11 

6 

- 

- 

- 

North-west Ngamiland, 

Botswana 

21.05.2019 – 08.06.2019 

04.09.2019 – 15.09.2019 

5 

6 

39 

37 

Niassa special reserve 

Mozambique 

19.06.2019 – 09.07.2019 

05.10.2019 – 20.10.2019 

10 

11 

20 

24 

Kasane Extension Forest 

Reserve, Botswana 
12.10.2021 – 20.10.2021 2 42 

Bovu Forest Reserve, 

Zambia 
22.10.2021 – 26.10.2021 3 9 

Kafue national park, 

Zambia 

30.10.2021 – 12.11.2021 

15.06.2022 – 20.06.2022 

6 

5 

54 

24 

Lualaba Forest Reserve, 

Zambia 
21.06.2022 – 25.06.2022 5 60 

Tanami desert, Australia 
20.04.2022 – 28.04.2022 

12.08.2022 – 05.09.2022 

10 

6 

90 

24 

 
 5 
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Table 2: Satellite reanalysis features assessed for the prediction of savanna biomass burning emission factors 

 
  

 Parameter Data source 
Product 
reference 

Spatial 
resolution 

Temporal 
resolution 

Feature  
range 

V
eg

et
at

io
n 

pa
ra

m
et

er
s  

Fraction tree cover (FTC, %) MODIS 
MOD44BC6  
(DiMiceli et al., 2015) 

500×500 
meter 

year-1 0 - 53% 

Fraction bare soil cover (FBC, %) MODIS 
MOD44BC6  
(DiMiceli et al., 2015) 

500×500 
meter 

year-1 1 - 88% 

Time since the last fire (years) MODIS 
MCD64A1C6 
(Giglio et al., 2018) 

500×500 
meter 

year-1 1 - >10 years 

Normalized difference vegetation index 
(NDVI) before fire 

MODIS 
MOD09GAC6  
(Vermote, 2015) 

500×500 
meter 

day-1 0.02 - 0.79 

Fraction of absorbed photosynthetically 
active radiation (FPAR)  

MODIS 
MCD15A2HC6 
(Myneni et al., 2015) 

500×500 
meter 

8 days-1 0.09 - 0.75 

Leaf area index (LAI)  MODIS 
MCD15A2HC6 
(Myneni et al., 2015) 

500×500 
meter 

8 days-1 2 - 30 

Leaf area index (LAI) 
Low vegetation 

Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

day-1 0.5 - 2.0 

Leaf area index (LAI) 
High vegetation 

Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

day-1 0.0 - 5.0 

Mean annual rainfall (MAR)(mm) Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

month-1 200 - 1550 

Se
as

on
al

 p
ar

am
et

er
s  

Rainfall in the last 12 months (mm) Reanalysis 
ERA5  
(Hersbach et al., 2020) 

0.25×0.25 
degree 

month-1 220 - 1550 

Rainfall since the last fire (mm) Reanalysis 
ERA5  
(Hersbach et al., 2020) 

0.25×0.25 
degree 

month-1 220 - 11300 

Percentage green vegetation (%)  
(Korontzi, 2005) 

MODIS 
MOD09GAC6  
(Vermote, 2015) 

500×500 
meter 

day-1 2  - 89 

Soil moisture content (m3 m-3)   
in the top layer (0 - 7cm depth) 

Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 0.01 - 0.43 

Vapor pressure deficit (mbar)  Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 8 - 51 

Evaporative stress index (index)  Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 0.02 - 0.73 

W
ea

th
er

 

Temperature at 2m (°C)  Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 16 - 36 

Windspeed (m sec-1) Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 0 - 11.2 

Relative humidity (%)  Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 8 - 71 

Canadian Fire Weather Index (FWI)  Reanalysis   
CEMS EFFIS 
(Vitolo et al., 2020)  

0.25×0.25 
degree 

day-1 10 - 102 

Fine Fuel Drought Code (FFDC)  Reanalysis   
CEMS EFFIS 
(Vitolo et al., 2020) 

0.25×0.25 
degree 

day-1 81 - 99 

Initial Spread Index (ISI)  
Reanalysis  
 

CEMS EFFIS 
(Vitolo et al., 2020) 

0.25×0.25 
degree 

day-1 1.9 - 47.5 

Fi
re

 in
te

ns
ity

 
in

di
ce

s 

Build up index (BUI)  
Reanalysis  
 

CEMS EFFIS 
(Vitolo et al., 2020) 

0.25×0.25 
degree 

day-1 64 - 624 

Differential normalized difference 
vegetation index (dNDVI) 

MODIS 
MOD09GAC6  
(Vermote, 2015) 

500×500 
meter 

day-1 -0.43 - 0.61 

Differential normalized burn ratio 
(dNBR) 

MODIS 
MOD09GAC6  
(Vermote, 2015) 

500×500 
meter 

day-1 -0.25 - 0.45 
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Table 3: Consumption of RSC-prone fuels in the EDS and LDS for xeric open savannas measured in Botswana and 

Australia and Miombo woodlands measured in Mozambique and Zambia.  

Field measurements  
before and after burning 

Xeric savannas 
(500 - 750 mm year-1 MAR) 

Mesic savannas 
(750 - 1500 mm year-1 MAR) 

 
Australian arid 
open woodland 

Kalahari  
open woodland 

Kafue woodland 
savanna 

Niassa woodland 
savanna  

EDS LDS EDS LDS EDS LDS EDS LDS  

Fine fuel load (tonne ha-1) 5.1 6.7 3.1 3.4 2.8 5.9 6.3 5.4 

Grass percentage of total fine 
fuel (i.e. grass, litter and coarse) 76% 79% 27% 25% 24% 17% 45% 35% 

Nitrogen to Carbon ratio1 1.0% 0.8% 2.3% 2.1% - 1.7% 1.3% 1.1% 

WA Carbon content1 45.2% 44.6% 49.1% 47.8% - 46.5% 43.5% 46.2% 
      Grass 45.1% 43.9% 47.6% 47.5% - 47.0% 43.0% 44.0% 
      Litter 45.2% 47.0% 50.1% 48.0% - 46.7% 43.2% 47.2% 
      Coarse woody debris 48.1% 48.0% 48.2% 47.7% - 44.7% 47.2% 47.8% 
      Shrub stems2 - 47.1% 47.9% - - 47.5% - 48.2% 
      Shrub foliage2 - 50.0% 50.3% -  51.6% - 50.7% 

WA Nitrogen content 0.45% 0.37% 1.11% 1.00% - 0.81% 0.55% 0.52% 
      Grass 0.46% 0.31% 1.06% 0.65% - 0.42% 0.34% 0.30% 
      Litter 0.43% 0.65% 1.22% 1.17% - 0.92% 0.73% 0.65% 
      Coarse woody debris 0.33% 0.48% 0.89% 0.69% - 0.61% 0.42% 0.48% 
      Shrub stems2  - 0.63% 1.10% - - 0.65% - 0.52% 
      Shrub foliage2 - 1.03% 2.55% -  2.02% - 1.13% 

Relative humidity (air) 18% 10% 13% 6% 22% 17% 24% 19% 

Fuel moisture content1 15.6% 8.6% 20.3% 8.7% 16.5% 6.5% 16.6% 8.8% 

Fine fuel combusted 93% 97% 69% 75% 58% 77% 60% 71% 

Coarse fuel combusted (Æ < 5cm) 21% 17% 21% 16% 4% 26% 2% 19% 

Heavy fuels combusted (Æ > 5cm) 76% 32% 3% 35% 0% 16% 2% 8% 

0-50 Cm shrubs combusted: 
      Leaves2 

      Stems 

 
72% 
60% 

 
86% 
65% 

 
50% 
38% 

 
60% 
88% 

 
17% 
1% 

 
79% 
44% 

 
20% 
24% 

 
71% 
40% 

50-100 Cm shrubs combusted: 
      Leaves2 

      Stems2 

 
51% 
60% 

 
78% 
65% 

 
26% 
19% 

 
48% 
8% 

 
7% 
0% 

 
43% 
15% 

 
46% 
3% 

 
55% 
20% 

100-200 Cm shrubs combusted: 
      Leaves 
      Stems 

 
26% 
7% 

 
69% 
13% 

 
22% 
4% 

 
31% 
3% 

 
0% 
0% 

 
47% 
5% 

 
20% 
4% 

 
35% 
11% 

>200 Cm shrubs combusted: 
      Leaves 
      Stems 

 
33% 
5% 

 
36% 
7% 

 
10% 
0% 

 
16% 
1% 

 
0% 
0% 

 
10% 
3% 

 
7% 
2% 

 
43% 
4% 

Scorch height (m) 2.0 m  2.2 m 0.4 m  0.4 m  0.3 m 10.3 m  0.5 m 1.7 m 

Char height (m) 0.9 m 1.1 m 0.2 m 0.3m 0.2 m 0.9 m 0.4 m 1.6 m 

Patchiness (% burned) 69% 94% 51% 72% 54% 99% 63% 95% 
1weighted average over the consumed contribution of each individual fuel subclass. 
2weighted average over the dominant shrub types found in the plots. 
 5 
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Table 4. Spearman correlation matrix for the field measurements and the globally available satellite products. Positive 

correlations are presented in blue while negative correlations are presented in red.  

 
 
Figures 5 

 
Figure 1. Overview of sampling locations used for the analysis. The previously published (red) and new (orange) UAS 

measurements as well as the locations of the included literature studies on savanna fire emission factors listed in 

Andreae, 2019 (yellow). The green shaded area shows the distribution of savanna and grassland fires over the 2002-

2016 period according to GFED4s. 10 
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Figure 2: Estimation of the CO EF at 500-meter resolution for MODIS tile “h20v10” on June 1st, 2019 (g), using 

a random forest regression based on (a) fractional tree cover (FTC), (b) fraction of absorbed photosynthetically 

active radiation (FPAR), (c) the fire weather index (FWI), (d) vapour pressure deficit (VPD) and (e) soil moisture. 

For grid cells containing other biomes than savanna (f), GFED4s static EFs for the respective biome were imposed 5 

replacing the savanna EFs. Sources of the individual features are listed in Table 2.   
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Figure 3: EFs (g kg DM-1) measured in the sampled vegetation types during the EDS and LDS as well as the EFs from 

savanna measurements listed in savanna literature based on the Andreae (2019) compilation. The green diamond 

represents the arithmetic mean, and the red cross represents the EMR-weighted average value. The colours correspond 

to the savanna subclasses on the bottom of the figure. Table 1 lists the timeframes of the individual field campaigns 5 
while Table A1 in the appendix provides a broad floristic description of the dominant vegetation types.  
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Figure 4. Left: Correlation of the predicted and measured fire-integrated weighted average MCE for the training 

(orange) and validation (blue) datasets. The vertical blue and orange lines represent the standard error of the mean 

within the respective fire. The red vertical line is the static MCE derived from the EFs used in GFED4s. The 

‘improvement’ refers to the reduced mean absolute error compared to prediction using this static (red line) MCE. 5 
Right: The remote sensing and reanalysis datasets used by the model and the feature importance (an indication of how 

strong each feature is used to differentiate the data) of the respective features. 
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Figure 5. Pearson correlation of the predicted and measured fire-integrated WA MCE (a), CH4 EF (b) N2O EF (c), and 

CO EF (d) for the training (orange) and validation (blue) datasets using a limited set of features. The boxes in the 

bottom right of the panels list the remote sensing and reanalysis datasets used by the model and the feature importance 

(an indication of how strong each feature is used to differentiate the data). The red line represents the static biome-5 
average used in GFED4s and ‘improvement’ refers to the reduced mean absolute error compared to this static average.  
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Figure 6: Difference in savanna and grassland fire emissions for CO (a), CH4 (b) and N2O (c) between emission 

computation using dynamic EFs versus static biome reference EFs (dynamic minus static), calculated using GFED4s 

for the 2002-2016 period.  
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Figure 7. Seasonality of fire carbon emissions (black) and the computed CO EF (orange) for different savanna 

subclasses in southern hemisphere Africa, averaged over the 2002-2016 period. The savanna classes are based on the 

International Geosphere-Biosphere Program (IGBP) classification (Loveland and Belward, 1997). The shaded areas 

represent the timing of our measurements in southern hemisphere African savannas, indicating that especially our 5 
LDS campaigns may not be representative for the bulk of the fires. The red horizontal bar on the right represents the 

static EF used for savannas by GFED4s.  

 
Figure 8: Relative difference in the landscape fire emissions of CO2, CO, CH4 and N2O for the 2002-2016 period when 

using dynamic EFs versus static EFs using GFED4s (dynamic minus static) over the different savanna-rich GFED 10 
regions. Note that many of these regions encompass both xeric and mesic savannas with contrasting patterns that 

balance each other out. On a regional scale differences may therefore be much larger.  
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Figure 9. The non-linear regression between the CH4 EF and the MCE for the individual bag samples. In the box on 

the bottom left, r refers to Spearman's rank correlation coefficient.  

Appendix 

 5 
Table A1: Floristic and geomorphological description of the different vegetation types measured in this study. 

Vegetation type 
(Fig. 3) Vegetation description1,2 Satellite value range 

in the plots 

Dambo grasslands 
Niassa Special 
reserve, 
Mozambique 

Landscape feature limited to more humid and fertile places, 
containing seasonally inundated grassland savanna dominated 
by perennial tussock grasses e.g. beard grass (Andropogon 
(PE)) and thatching grass (Hyparrhenia (A)) with sparse 
Bushwillow (Combretum (D)) trees and on clayey swales with 
highly variably water tables based on geomorphology and soil 
type (Mbanze et al. 2019). 
 

MAR: 1000–1100mm 
FTC: 10 – 20% 
FBC: 10 – 30% 
 

Dry Miombo 
woodlands 
Niassa Special 
reserve, 
Mozambique 

Dry Miombo Woodland dominated by (5-15m) Semi-
deciduous Miombo (Brachystegia (SD)) and Mnondo 
(Julbernardia (D)) trees on sandy soils (Ribeiro et al., 2013, 
2008).   

MAR: 850 – 1100mm 
FTC: 15 – 30% 
FBC: 10 – 25% 

Wet Miombo 
woodlands, Kafue 
National Park, 
Zambia 

Savanna open forest dominated by (5-15m) Brachystegia 
(SD)), Julbernardia (D), and Isoberlinia (D) trees on sandy 
soils. 

MAR: 850 – 1300mm 
FTC: 10 – 35% 
FBC: 0 – 10% 

Sparse Miombo 
Woodlands, Bovu 
Forest reserve, 
Zambia 

Savanna open woodland containing perennial tussock grasses 
e.g. digitgrass (Digitaria (PE)) and Tangleheads 
(Heteropogon (A)) with (5-15m) Combretum (D), Albizia (D) 
and Diospyros (EG) trees on sandy soils. 

MAR: 800 – 900mm 
FTC: 5 – 15% 
FBC: 0 – 15% 

Baikea woodland, 
Kasane Extension 
Forest Reserve, 
Botswana  

Open woodland savanna dominated by tussock perennial 
grasses e.g. digitgrass (Digitaria eriantha (PE)) and sickle 
grass (Pogonarthria squarrosa(PE)) with scattered (5–15m) 
African teak (Baikiaea plurijuga (D)) and silver cluster-leaf 
(Terminalia sericea (D)) trees on sandy soils. 

MAR: 700 – 800mm 
FTC: 5 – 10% 
FBC: 5 – 20% 

Satara experimental 
burn plots, Kruger 
National Park, 
South Africa 

Grassland savanna dominated by perennial tussock grasses 
e.g. Sabi grass (Urochloa mosambicensis (PE)) and digitgrass 
(Digitaria eriantha (PE)) with scattered tall (10–15m) Marula 
(Sclerocarya birrea (D)) and knobthorn Acacia (Acacia 

MAR: 400 – 550mm 
FTC: 0 – 5% 
FBC: 10 – 30% 
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nigrescens (D)) trees on clay soils overlying basalt plains 
(Venter and Govender, 2012). 

Skukuza 
experimental burn 
plots, Kruger 
National Park, 
South Africa 

Savanna woodland dominated by dense Bushwillow 
(Combretum collinum (D)/ Combretum zeyheri (D)) trees on 
hydromorphic or duplex soils containing granite outcrops 
(Venter and Govender, 2012). 

MAR: 500 – 600mm 
FTC: 3 – 10% 
FBC: 25 – 30% 

Mopani 
experimental burn 
plots, Kruger 
National Park, 
South Africa 

Savanna shrubland dominated by dense low (1–4m) mopane 
(Colophospermum mopane (D)) shrubs on flat or slightly 
sloping clay soils. (Venter and Govender, 2012). 

MAR: 300 – 450mm 
FTC: 0 – 10% 
FBC: 30 – 50% 

Pretoriuskop 
experimental burn 
plots, Kruger 
National Park, 
South Africa 

Open forest savanna dominated by dense tall (10–15m) 
clusterleaf (Terminalia sericea (D)) and (5-10m) Sicklebush 
(Dichrostachys cinerea (SD)) trees on sandy soils. (Venter 
and Govender, 2012). 

MAR: 800 – 900mm 
FTC: 0 – 20% 
FBC: 5 – 15% 

Mata galleria, 
EESGT, Brazil 

Riparian forest lining rivers dominated by palm trees e.g. 
Mauritia flexuosa with an undergrowth of perennial grasses 
e.g. bahiagrass (paspalum veredense (PE)) and Abolboda 
poarchon (PE) on gleysols that remain very humid for most 
of the year. 

MAR: 1400–1500mm 
FTC: 20 – 50% 
FBC: 20 – 25% 

Campo humido, 
Estação Ecológica 
Serra Geral do 
Tocantins, Brazil 

Seasonally inundated grasslands dominated by perennial 
grasses e.g. bahiagrass (paspalum veredense (PE)) and carpet 
grass (axonopus canescens (PE)) with sparse palm trees 
(Mauritia flexuosa) on gleysols that remain humid for most of 
the year. 

MAR: 1400–1500mm 
FTC: 5 – 10% 
FBC: 20 – 25% 

Campo limpo/ sujo, 
Estação Ecológica 
Serra Geral do 
Tocantins,  Brazil 

Grassland savannas dominated by perennial tussock grasses 
e.g. carpet grass (Axonopus (PE), bluestems (Schizachyrium 
(PE) and Crinkleawn grass (Trachypogon (PE) on sandy 
soils. 

MAR: 1300–1500mm 
FTC: 0 – 5% 
FBC:10 – 50% 

Cerrado ralo/ 
Cerrado tipico,  
Estação Ecológica 
Serra Geral do 
Tocantins, Brazil 

Open woodland savanna dominated by perennial tussock 
grasses e.g. carpet (Axonopus (PE), bluestems (Schizachyrium 
(PE) and Crinkleawn grass (Trachypogon (PE) with sparse 
overgrowth of pigeonwood (Hirtella ciliate (SD)), 
earringwood (Rourea induta (SD)) trees on deep sandy soils.   

MAR: 1300–1500mm 
FTC: 0 – 10% 
FBC:10 – 60% 

Kalahari open 
woodland,  
NW Ngamiland, 
Botswana 

Open woodland savanna dominated by tussock perennial 
grasses e.g. digitgrass (Digitaria eriantha (PE)) and sickle 
grass (Pogonarthria squarrosa (PE)) with scattered (5–15m) 
African teak (Baikiaea plurijuga (D)) and silver cluster-leaf 
(Terminalia sericea (D)) trees on sandy hills.  

MAR: 650 – 750mm  
FTC: 0 – 5% 
FBC: 20 – 35% 
 

Kalahari grassland, 
NW Ngamiland, 
Botswana 

Open grassland savanna dominated by tussock perennial e.g. 
Stipagrostis uniplumis (PE) and Eragrostis rigidior (PE) on 
clay soils.  

MAR: 700 – 750mm 
FTC: 0 – 2% 
FBC: 25 – 30% 

Great sandy desert, 
Ngurrara country, 
Western Australia  

Grasslands dominated by spinifex hummocks (Triodia (PE)) 
interspersed with open (5–10m) semi-evergreen Eucalypt 
(SE) woodlands and Acacia (D) shrubs on lateritic swales and 
red sand dunes. 

MAR: 400 – 450mm 
FTC: 0 – 1% 
FBC: 65 – 90% 

Tanami desert, 
Warlpiri country, 
Northern Territory, 
Australia 

Hummock-grass (Triodia spinifex (PE)) dominated grasslands 
interspersed with open (5–10m) semi-evergreen Eucalypt 
(SE) woodlands and Acacia (D) shrubs on sand plains. 

MAR: 500 – 600mm 
FTC: 1 – 3% 
FBC: 50 – 85% 

1 life cycle of the dominant grass species; PE: perennial > 2 years; AN: Annual grasses 
2 Deciduousness of the dominant trees; D: Deciduous, SD: Semi-deciduous, EG: Evergreen 
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