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Abstract. Landscape fires, predominantly in the frequently burning global savannas, are a substantial source of 

greenhouse gases and aerosols. The impact of these fires on the atmospheric composition is partially determined 20 

by the chemical breakup of the constituents of the fuel into individual emitted chemical species, which is described 

by emission factors (EFs). These EFs are known to be dependent on, amongst other things, the type of fuel 

consumed, the moisture content of the fuel and the meteorological conditions during the fire, indicating that 

savanna EFs are temporally and spatially dynamic. Global emission inventories, however, rely on static biome-

averaged EFs which makes them ill-suited for the estimation of regional biomass burning (BB) emissions and for 25 

capturing the effects of shifts in fire regimes. In this study we explore the main drivers of EF-variability within 

the savanna biome and assess which geospatial proxies can be used to estimate dynamic EFs for global emission 

inventories. We made over 4500 bag measurements of CO2, CO, CH4 and N2O EFs using an unmanned aerial 

system (UAS), and also measured fuel parameters and fire severity proxies during 129 individual fires. The 

measurements cover a variety of savanna ecosystems under different seasonal conditions, sampled over the course 30 

of six fire seasons between 2017 and 2022. We complemented our own data with EFs from 85 fires with locations 

and dates provided in the literature. Based on the locations, dates and time of the fires we retrieved a variety of 

fuel-, weather- and fire severity proxies (i.e. possible predictors) using globally available satellite and reanalysis 

data. We then trained random forest (RF) regressors to estimate EFs for CO2, CO, CH4 and N2O at a spatial 

resolution of 0.25° and a monthly timestep. Using these modelled EFs, we calculated their spatiotemporal impact 35 

on BB emission estimates over the 2002-2016 period using the Global Fire Emissions Database version 4 with 

small fires (GFED4s). We found that the most important field indicators for the EFs of CO2, CO and CH4 were 

tree cover density, fuel moisture content and the grass to litter ratio. The grass to litter ratio and the nitrogen to 

carbon ratio were important indicators for N2O EFs. RF models using satellite observations performed well for 
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the prediction of EF variability in the measured fires with out-of-sample correlation coefficients between 0.80 and 

0.99, reducing the error between measured and modelled EFs by 60-85% compared to using the static biome 

average. Using dynamic EFs, total global savanna emission estimates for 2002-2016 were 1.8% higher for CO 

while CO2, CH4 and N2O emissions were respectively 0.2%, 5% and 18% lower compared to GFED4s. On a 

regional scale we found a spatial redistribution compared to GFED4s with higher CO, CH4 and N2O EFs in mesic 5 

regions and lower ones in xeric regions. Over the course of the fire season, drying resulted in gradually lower EFs 

of these species. Relatively speaking, the trend was stronger in open savannas than in woodlands where towards 

the end of the fire season they increased again. Contrary to the minor impact on annual average savanna fire 

emissions, the model predicts localized deviations from static averages of the EFs of CO, CH4 and N2O exceeding 

60% under seasonal conditions.  10 

1 Introduction 
Landscape fires emit substantial amounts of gases, including the greenhouse gases CO2, CH4, and N2O which 

affect the Earth’s climate. To quantify the impact of these fire emissions, and track the role of fire in the 

biogeochemical system, fire emission inventories like the Global Fire Emissions Database (GFED, van der Werf 

et al., 2017) and the Global Fire Assimilation System (GFAS, Kaiser et al., 2012) use satellite observations to 15 

monitor global landscape fires. They estimate that, due to their high burning frequency, savannas account for 

roughly 60% of the gross (i.e. not considering regrowth) global carbon emissions from biomass burning (BB). 

The impact of fire emissions on atmospheric radiative forcing is strongly dependent on the partitioning of 

consumed biomass into individual emission species, which in part depends on the combustion efficiency (often 

simplified as the CO2 emissions divided by the combined CO2 and CO emissions, referred to as the modified 20 

combustion efficiency or MCE) during the fire. For this partitioning, inventories currently use biome-specific 

emission factors (EFs), expressed in grams of a molecule emitted for each kilogram of dry matter (DM) burned. 

However, measurements from both laboratory and landscape fires indicate that important drivers of fire intensity 

and combustion efficiency, e.g. the moisture content of the fuel (Chen et al., 2010) and the curing state of grasses 

(Korontzi et al., 2003), are seasonal and that therefore EFs are both spatially and temporally dynamic. 25 

 

Earlier studies targeted a most representative EF for individual biomes. This single value was based on averaging 

numerous usually randomly sampled fires mostly from aircraft at the peak of fire season in the most active areas. 

These sophisticated measurements revealed much about the species that are emitted from fires but there is little 

opportunity for detailed measurements of the actual fire in this approach. Although they quantify overall 30 

variability (as summarized in for example Akagi et al., 2011 and Andreae, 2019), to date we cannot quantify how 

specific factors such as moisture content impact EFs (van Leeuwen and van der Werf, 2011). Thus, current global 

inventories are not designed to quantify any variation in emissions at local nor temporal scales. This results, for 

example, in the same EFs being assumed for a savanna woodland and an open grassland. Using historic averages 

also means that EFs do not dynamically change while fire regimes, weather patterns and environmental burning 35 

conditions can shift as a result of climate change or human interaction. One additional field of research that 

requires a better understanding of spatiotemporal dynamics involves fire management strategies in savannas to 

reduce fire-related greenhouse gas emissions, with the aim of mitigating climate change. Over the past decennium, 

significant efforts have been directed at shifting the temporal patterns of savanna fire regimes in order to make 
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them more sustainable and abate greenhouse gas emissions (e.g. Russell-Smith et al., 2013; Schmidt et al., 2018). 

EFs used for the accreditation of such projects currently assume a dichotomy of early- and late dry season 

averages, determined by a cut-off date. However, as discussed by Laris (2021), the fuel and meteorological 

conditions thought to drive EFs vary more gradually over the season and are subjected to substantial inter-annual 

and spatial variability. Incorporating spatiotemporal variability in inventories makes emission inventories more 5 

dynamic and better equipped for assessing seasonal fluctuations.  

 

Over the past six years (2017-2022), a series of savanna burning experiments measuring EFs using unmanned 

aerial systems (UAS) has resulted in a large amount of new data with broad spatiotemporal coverage (e.g. Vernooij 

et al., 2021, 2022; Russell-Smith et al., 2021). While lacking the extensive species coverage and precision of 10 

instruments found in advanced aircraft campaigns, these UAS measurements can effectively focus on particular 

vegetation types, facilitating the connection between ground conditions and emissions. In this study we describe 

the variability in over 4500 individual bag-measured EFs of CO2, CO, CH4 and N2O covering 129 fires. Combined 

with the EFs from fires already reported in literature, these new EF measurements allow us to study the variability 

in BB EFs in more detail by using unexplored non-linear statistical methods like decision-tree-based machine 15 

learning algorithms. The non-linear nature of these models makes them suitable to quantify distinctive dynamics 

under different conditions in complex natural processes such as landscape fires. This approach does require large 

datasets for training and validation which were not available until now. We first determine the dominant drivers 

of EF variability based on field measurements and then apply random forest regression methods to estimate 

dynamic EFs for the abovementioned species using globally available satellite data and geospatial reanalysis data. 20 

Depending on the application, these dynamic EFs can be computed at various spatiotemporal resolutions, limited 

by the resolution of the underlying features (i.e. starting from 500-meter and with hourly timesteps). Finally, we 

use GFED4s, in combination with the dynamic EFs –computed on a monthly basis at 0.25°– to estimate the 

emission dynamics over the 2002-2016 period.  

 25 

2 Methods 
The main objectives of this study are: (1) to identify the drivers of EF variability in the savanna biome and (2) to 

implement this variability into global emission inventories and assess the implications of using dynamic EFs 

instead of static ones. The first objective requires a large dataset of EFs and a thorough assessment of a wide range 

of possible drivers, including direct field measurements of vegetation composition, meteorological conditions and 30 

fire intensity dynamics. This is described in section 2.1. The second objective requires a more globalized approach 

which allows BB EFs to be predicted based on satellite and reanalysis data with broad spatiotemporal coverage, 

see sections 2.2 and 2.3.   

 

2.1 Field measurements 35 

2.1.1 Measurement setup 

Using a UAS-mounted sampling system we measured BB EFs of CO2, CO, CH4 and N2O in fresh smoke during 

savanna fires following the methodology described by Vernooij et al. (2021, 2022). Fires were lit with the aim of 
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being representative of early dry season (EDS, often prescribed) fires and late dry season (LDS) non-prescribed 

fires. Although some backing fires were sampled during the initial phase of the fires, the majority of samples were 

obtained from the faster heading fires, which consumed most of the biomass. Fire sizes generally ranged between 

2 to 10 hectares based on UAS drone imagery described by Eames et al. (2021), with exceptions of some fires 

that would not light and conversely, some fires that burned several hundred hectares. In the EDS, fire size was 5 

primarily limited by environmental conditions and fires ceased burning as humidity increased overnight whereas 

in the LDS, fire size was confined by low-fuel areas like burn scars, roads and prepared fire breaks. Particularly 

in the LDS, this means a limited fire size does not necessarily indicate limited fire intensity. Emissions were 

sampled at altitudes between 5-50 m depending on flame height for a duration of 35 seconds, resulting in 0.7 

litres per gas sample. On average, we took 35 samples per fire. The sampling methodology involved taking 10 

samples from a fire passing a certain point -while correcting for wind direction and severity- until no more visual 

smoke passed the drone anymore. From earlier work (Vernooij et al., 2022a), where we compared the average of 

these measurements to results using continuous measurements taken at a mast, we have some confidence in the 

fidelity of this approach. Within 12 hours, the samples were measured using cavity-ringdown spectroscopy for 

atmospheric mixing ratios of CO2 and CH4 (Los Gatos Research, Microportable gas analyser), and CO and N2O 15 

(Aeris Technologies, Pico series). We calculated EFs using the carbon mass balance method (Ward and Radke, 

1993), using ground measurements of the weighted average (WA) carbon content of the combusted fuel and 

emissions of CO2, CO, CH4 and N2O. The carbon emitted in non-methane hydrocarbons (NMHC) and particulates 

was estimated based on the linear relations with EFs of CO (for particulates) and CH4 (for NMHCs), which were 

derived from previous savanna literature (Andreae, 2019; Vernooij et al., 2022). EFs of N2O were calculated using 20 

CO2 as the co-emitted carbonaceous reference species.  

 

2.1.2 Sample coverage and literature studies 

The dataset obtained using the abovementioned UAS methodology includes both previously published data 

collected in Mozambique, South Africa, and Brazil (Russell-Smith et al., 2021; Vernooij et al., 2021, 2022) and 25 

new measurements from xeric and mesic savannas in Botswana, Zambia and Australia, measured during the fire 

seasons of 2021 and 2022. The measurements cover three continents and the full length of the dry season, ranging 

from early dry season (EDS) campaigns in which fuel conditions sometimes prevented successful ignition to late 

dry season (LDS) campaigns with high-intensity fires. The 129 fires that we measured using the abovementioned 

methodology were supplemented with 85 previous savanna fires for which EFs of the measured species were 30 

reported in the updated database by Andreae (2019). This literature compilation only includes samples taken 

within minutes after emission to avoid significant chemical changes during atmospheric aging. For the comparison 

with geospatial data, we only included fires for which the fire date and coordinates were provided, a prerequisite 

to get relevant satellite features. These criteria mean that laboratory studies, satellite studies covering wider 

regions, and most aircraft campaigns were excluded. Fig. 1 provides an overview of the UAS (red for previously 35 

published and orange for our new measurements), and literature (blue) sample locations included in the study.  

 

2.1.3 Fuel measurements 

During more recent fieldwork campaigns, we not only measured EFs but also other parameters including fuel 

characteristics and fire severity indicators. Before the fire, we collected fuel load and fuel composition from 40 
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various classes (e.g., grass, litter, coarse woody debris, shrubs and trees) and meteorological parameters. After the 

fire, we revisited the plots and recorded the combustion completeness of various fuel classes as well as fire 

intensity proxies (e.g. patchiness of the fire, and scorch and char heights) following the methodology outlined by 

Eames et al. (2021) and Russell-Smith et al. (2020). Table 1 lists the individual UAS EF-measurement campaigns, 

and whether fuel was collected following the abovementioned methodology. Fires were lit on the windward side 5 

of the plot and generally burned through 2-6 individual randomly scattered 50´10-meter fuel transects covering 

the fuel of a homogenous vegetation type and time since the last fire. We took the average of the affected fuel 

transects as the fire-averaged value, to correspond to the fire-averaged EF which is calculated over all the bag 

samples taken from that specific fire. Although the measurements were linearly correlated using the calibration 

bags for the individual fires, the standard deviations between the calibration samples were 2.58% for CO2, 7.06% 10 

for CO, 2.32% for CH4 and 4.04% for N2O, indicating larger measurement uncertainties than reported by the 

manufacturers, which possibly arises from the bag methodology. The difference in the mean calibration value 

compared to the calibration gasses was -4.75% for CO2, -1.32% for CO, -3.97% for CH4 and -1.28% for N2O. 

 

2.2 Regression analysis 15 

Field measurements provide the most accurate description of the vegetation conditions during the fire and yielded 

the most reliable insights in the drivers of EF dynamics. However, these measurements are sparse and thus 

unsuitable for spatiotemporal extrapolation. We therefore built machine learning algorithms, for which we 

selected a subset of satellite and reanalysis features with global coverage and temporal data availability for at least 

the past 20 years. 20 

 

2.2.1 Global feature selection 

To avoid the model becoming a black box, we did not include features with no intuitive significance or cogent 

link to EFs (e.g. individual satellite retrieval bands). Table 2 lists the different satellite and reanalysis products 

included in this study, along with the observed range for each feature over the included fires. We used remote 25 

sensing products based on retrievals and reanalysis data with sufficient spatial and temporal coverage, primarily 

using products based on the Moderate Resolution Imaging Spectroradiometer (MODIS). This meant that at this 

stage, we did not include data from VIIRS or geostationary satellites. Based on the coordinates of the individual 

samples we obtained a broad range of features which we then averaged over the samples from each individual fire 

in order to obtain the fire-averaged feature scores. As proxies for the vegetation conditions and landscape 30 

parameters prior to the fire we used Fractional Tree Cover (FTC) and Fractional Bare soil Cover (FBC) from 

MOD44BV006 (DiMiceli et al., 2015), the Fraction of absorbed Photosynthetically Active Radiation (FPAR) and 

the Leaf Area Index (LAI), which were retrieved from MCD15A2HC6 (Myneni et al., 2015). Based on 

MOD09GAC6 surface spectral reflectance (Vermote, 2015), we determined the Normalized Difference 

Vegetation Index (NDVI) before the fire and the Pgreen (calculated as NDVI before the fire minus the minimum 35 

NDVI of the previous year, divided by the total NDVI range of previous year (Korontzi, 2005)). 

 

To estimate the weather conditions during the fire, we used ERA5-land meteorological reanalysis data from the 

European Centre for Medium Range Weather Forecasts (ECMWF) (Muñoz-Sabater et al., 2021). Hourly 

meteorological data for air temperature, wind speed, relative humidity, evapotranspiration and potential 40 
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evapotranspiration were used to obtain the feature score at the UTC-corrected time stamp of each sample. Based 

on the timing of the sample, the feature value was obtained using linear temporal interpolation. Temperature and 

relative humidity were subsequently used to derive the Vapor Pressure Deficit (VPD, i.e. the difference between 

the saturation vapor pressure and the actual vapor pressure) following the method described by Tetens (1930). 

The Evaporative Stress Index (ESI) was calculated as the actual evapotranspiration divided by the potential 5 

evapotranspiration (Anderson et al., 2007). We used ERA5-land monthly average rainfall data to estimate the 

mean annual rainfall (MAR) over the 1990-2022 period, as well as the cumulative rainfall in the 12 months prior 

to the fire.  

 

Fire weather comprises combinations of weather and fuel parameters that determine the risk and behaviour of 10 

wildfires. Indices like the globally available Fire Weather Index (FWI) have been developed with the aim of 

estimating the risk of wildfires (De Groot, 1987; Van Wagner, 1987) and are based on global reanalysis data. In 

this assessment we have included the daily FWI along with some of the intermediate parameters used to calculate 

the FWI. These intermediate parameters include: (1) the Fine Fuel Moisture Code (FFMC), designed to capture 

changes in the moisture content of fine fuels and leaf litter, (2) the Drought Code (DC), which captures the 15 

moisture content of deep, compacted organic soils and heavy surface fuels, (3) the Build-up Index (BUI) which 

represents the total fuel availability, and (4) the Initial Spread Index (ISI), which is driven by wind speed and the 

FFMC, and represents the ability of a fire to spread immediately after ignition. We used the global fire weather 

indices based on ERA5 (Hersbach et al., 2020) with a 0.25 spatial resolution and 1950-present temporal coverage 

(Vitolo et al., 2020) that are calculated as part of the European Forest Fire Information System (EFFIS). Global 20 

fire weather indices based on ERA5 (Vitolo et al., 2020) showed significant inconsistencies compared to fire 

weather indices based on GEOS-5 and MERRA-2 obtained from the Global Fire Weather Database (GFWED; 

Field et al., 2015), meaning these data should not be used as substitutes. Because of the long temporal coverage 

and higher spatial resolution, we only included ERA5 in our analysis.  

 25 

For fire severity proxies we used the differential Normalized Burn Ratio (dNBR) and the differential Normalized 

Difference Vegetation Index (dNDVI) retrieved before and after the fire. These were based on the MODIS surface 

spectral reflectance, corrected for atmospheric conditions (MOD09GAV6; Vermote, 2015). If the scene before or 

after the fire was cloud-covered, the preceding or successive scene was used with a limit of 14 days before or after 

the fire. If no cloud-free scene was available in that time window, the fire was removed from the dataset. 30 

 

2.2.2 Machine learning methodology 

We tested a variety of different regression methodologies for the prediction of the fire-WA EFs based on the 

abovementioned satellite and reanalysis features. Using the Scikit-learn library in Python (Pedregosa et al., 2011), 

we trained multiple linear regression, decision tree-, random forest-, gradient boosting machine- and neural 35 

network regressors to predict the MCE and the EFs of CO, CO2, CH4 and N2O. Many of the meteorological and 

fuel characteristics follow seasonal patterns and exhibit strong co-variation. While this may be problematic for 

linear models, it should not negatively impact the decision-tree-based modes and therefore these features were 

included in the initial modelling stages. We trained the models to reconstruct the measured EF dynamics using 

the in-situ EF measurements (both ours and those from literature). We removed measurements with missing values 40 
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for any of the included features. The remaining data was divided into training (70%) and validation data (30%), 

and the training data was resampled using ten-fold cross validation. This means that the training dataset is divided 

into ten equal-sized parts or folds. The random forest model is trained and evaluated 10 times. In each iteration, 

one fold is used as the “temporary validation” set (different from the 30% which is not included in the training 

data), and the remaining nine folds are used as the training set. The folds are created while allowing sample 5 

replacement (i.e., bootstrap method), meaning that for each sample in the dataset, there is an equal chance of it 

being selected more than once or not selected at all. All regression methods were trained to maximize the 

explained variance in the data. The hyper parameters (model configurations like number of trees, minimum 

samples per leaf, maximum features, etc.) were tuned using the scikitlearn “GridsearchCV” algorithm (Pedregosa 

et al., 2011). Random Forest (RF) regressors gave the best results, closely followed by gradient boosting machine 10 

(GBM) regressors. We therefore decided to proceed using RF regressors to predict the MCE and the EFs of CO, 

CO2, CH4 and N2O.  

 

2.3 Spatial extrapolation for global savanna emission estimates  
To assess the impact of EF dynamics on emission estimates, and study global spatiotemporal patterns, we 15 

developed gridded EF layers that can easily be incorporated into existing emission inventories. The remote-

sensing proxies (“features”) were resampled to the required spatial resolution by simply averaging the values of 

the relevant gridcells. For example, to compute the 0.25° fraction tree cover feature, we averaged the fraction tree 

cover of all 500-meter pixels classified as savanna or grassland. When computing to a higher resolution, e.g. 500-

meter EFs, only the higher resolution (MODIS-based) features exhibit pixel-to-pixel variability, while 20 

meteorological conditions (derived from ERA5-Land at 0.10° resolution) remain consistent across many adjacent 

500-meter pixels. However, due to MODIS-derived features like FTC EF estimates remain distinct between the 

grid cells. In contrast, temporal resolution within the models is more influenced by ERA5-Land-derived 

fluctuations. While FTC retrievals remain constant throughout the year, variations in factors like VPD, 

temperature, and FWI cause EF estimates to fluctuate on a daily basis.  25 

 

Figure 2 provides an example for the estimation of the CO EF at 500-meter resolution for MODIS tile “h20v10” 

(covering parts of Zambia, Botswana, Angola, Namibia, Zimbabwe, Mozambique and the Democratic Republic 

of the Congo) on June 1st, 2019, using the features shown in Fig 2a-e. The temporal resolution of the computed 

gridded EFs in the example of Fig. 2 is daily, in which the day-to-day EF dynamics are being driven by daily 30 

variations in VPD, FPAR, FWI and soil moisture. Burned area products cannot differentiate the time of the day 

at which a grid cell was burned. For features with a typical diurnal pattern, we therefore weighed the hourly 

meteorological data by the average diurnal fire profile for the grid cell in the respective month of the year. This 

diurnal fire profile was based on the three-hourly fractions of daily emissions obtained from GFED4.1s, which is 

based on the timing of active fire detections from both MODIS and geostationary satellites (Mu et al., 2011; van 35 

der Werf et al., 2017). To study the impact of EF dynamics in savannas, we calculated monthly global savanna 

emissions by multiplying the dynamic EFs computed by our models with dry matter consumption from GFED4s 
(Randerson et al., 2012; van der Werf et al., 2017) at 0.25° spatial resolution, for the 2002-2016 period (the period 

for which MCD64A1C5 as used in GFED4s was available). To classify the landcover type of the cell (Fig. 2f) we 

used the International Geosphere-Biosphere Program (IGBP) classification (Loveland and Belward, 1997), 40 
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obtained from the MODIS annual MCD12Q1C6 product (Friedl and Sulla-Menashe, 2019), where the savanna 

biome comprised land cover types classes 6-11. We then calculated the dynamic monthly MCE and the EFs for 

CO, CH4, N2O and CO2 at 0.25° spatial resolution for the savanna biome using the RF models. For burned grid 

cells that were partially classified as savanna, the EF of the cell was obtained by averaging the EFs of the different 

biomes in the underlying 500-meter grid cells, weighted by their dry matter consumption. We ran GFED4s using 5 

both static (original) and dynamic (this study) EFs for the savanna biome to determine the impact on seasonal and 

spatial emission patterns using our approach.   

3 Results 
3.1 Variability of savanna EF measurements 
During six fire seasons we have collected over 4500 bag samples containing emissions from 129 fires, in a variety 10 

of savanna ecosystems under different seasonal conditions. Figure 3 shows the range, averages (green diamond), 

and WA EFs (red crosses) measured during the campaigns listed in Table 1. For the calculation of the WA N2O 

EF we excluded samples which contained less than 10 moles of total carbon emissions following the findings 

described by Vernooij et al. (2021). Table A1 provides a short geomorphological and floristic description of the 

savanna ecosystems included in Fig. 3, including the seasonal behaviour of the dominant vegetation. The 15 

relatively small range in the boxplot describing previous savanna literature (Fig. 3, red box based on studies listed 

by Andreae (2019)) may be attributed to the fact that most studies report either fire-averages, vegetation type 

averages or even study averages, whereas the other boxplots based on our measurements show the variability 

observed between individual samples.  

 20 

We observed substantial variability within EF bag samples from different savanna ecosystems which was strongly 

linked to tree-cover density and mean annual rainfall. EFs of CO and CH4 were lower (i.e. higher MCE) in xeric 

open savannas compared to woodland savannas. Fire-WA EF measurements for CO, CH4 and N2O, using the UAS 

method were on average 13%, 29% and 44% lower than estimates listed in previous inventories. However, this 

may be largely attributable to the fact that xeric savannas were overly represented in our measurements in terms 25 

of annual biomass consumption (i.e. sample bias). Our measurements in higher rainfall savannas were much closer 

to the previous averages (Fig. 3). In humid areas like dambos (seasonally inundated grasslands) and riverine 

forests, we found large intra-seasonal differences in N2O, CO and CH4 EFs. Water availability in these landscape 

features is often strongly soil type and geomorphology related (Bullock, 1992; Gonçalves et al., 2022), making 

the correlation with seasonal rainfall less direct and drying patterns over the dry-season more diverse. The 30 

grasslands with the highest EFs (found in high-rainfall savanna Dambos) were uncharacteristically green for the 

time of the season, and under those conditions fires in these landscapes would therefore not be representative of 

more xeric grasslands.  

 

3.2 EF seasonality, fire intensity dynamics and fuel consumption in xeric and mesic savannas 35 

Table 3 lists the EDS and LDS pre- and post-fire fuel characteristics, averaged over all the transects we measured 

in the respective vegetation type and season. In both xeric- and mesic savannas, the moisture content of the fuel 

and the relative humidity were substantially lower in the LDS compared to the EDS. This resulted in increases in 
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fire intensity proxies over the dry season. Particularly during measurement campaigns in the Miombo woodlands 

in Mozambique and Zambia, the fine fuel in the EDS plots predominantly consisted of tree litter and became even 

more litter-dominated with the progression of the dry season. EDS fires were patchy, and generally did not 

consume coarse woody debris and shrubs. As the dry season progressed, there was a clear shift towards the 

combustion of more live foliage and Residual Smouldering Combustion (RSC)-prone fuels like coarse woody 5 

debris, stems and densely packed litter, which after months of drought have become more receptive to combustion. 

RSC occurs after the passage of a flame front and its emissions are not lofted by strong fire-induced convection 

(Bertschi et al., 2003). The increase in the consumption of live and course fuels towards the end of the dry season 

coincided with higher EFs for CO and CH4 in the LDS. This shift in combusted fuels also results in a seasonal 

increase in the WA carbon content of the consumed fuel of woody savannas (Table 3) which linearly scales the 10 

EFs of all measured species. For some characteristics (e.g., the total fuel load), it is important to note that the 

average time since the last fire was not necessarily equal between the listed vegetation types. The higher fuel loads 

we found in open savannas in Australian compared to Botswana, may be partially attributed to the longer fuel 

build-up.  

 15 

Overall, our measurements of CO and CH4 EFs in xeric, grass- and shrub dominated savannas (e.g., Australian 

spinifex grasslands and open savannas in the Kalahari) were slightly lower in the LDS compared to the EDS 

campaigns but much lower compared to woody savannas (Fig. 3). Contrary to the mesic savannas, where RSC-

prone fuel is readily available and becomes more flammable with the progression of the fire season, fires in xeric 

shrub and grasslands tended to consume much of the available fuel in the EDS (Table 3). Overall, the WA nitrogen 20 

content of the combusted fuel decreased with the progression of the dry season through curing of grasses and litter 

decomposition. This was somewhat compensated for by an influx of leaf litter and an increased combustion of 

live shrubs, which were richer in nitrogen than grasses (that had commodiously already cured in the EDS). Overall, 

fires that consumed more litter emitted more N2O than grass-dominated fires. Between individual fires, the curing 

stage of the grasses affected the N2O EF, with green seasonally-inundated grasslands emitting more N2O 25 

compared to fully cured grasslands. In some miombo woodland fires in Kafue, which were measured in November 

when the vegetation already carried its first green flush, we also measured relatively high N2O EFs.  

 

3.3 Estimation of BB EFs using random forest regression based on satellite proxies 
To extrapolate these relations for use in global emission inventories we correlated the field measurements to 30 

satellite products. Table 4 lists the correlations of the individual field-measured ecosystem attributes to the MCE 

and fire-averaged EF measurements, as well as global satellite proxies. Direct correlations between fire-averaged 

EF measurements and global satellite proxies as well as intercorrelations between the satellite and reanalysis 

proxies are listed in Table A2. The strongest predictors for the MCE and the CO and CH4 EF were the tree density 

in the plots, the grass to litter ratio, the combustion completeness and the WA moisture content of the consumed 35 

fuel (Table 4). In turn, these parameters were best correlated to the remotely sensed FTC, FBC, VPD and the FWI. 

EFs for CO and CH4 are primarily proportionate to the inverse combustion efficiency (i.e. the not fully oxidized 

compounds) which had a standard deviation of 90% relative to the mean. CO2, on the other hand is proportionate 

to the fully combusted carbon fraction which is much larger and more stable with a relative standard deviation of 

4.5% compared to its mean. Therefore, the carbon content of the fuel -with a standard deviation of roughly 5%- 40 
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becomes a dominant factor explaining the variability in CO2 EFs. The features that most strongly correlated with 

the N2O EF were the nitrogen to carbon ratio in the combusted fuel and the percentage of grass in the fine fuel 

(consisting of grass, litter and course woody debris), which in turn correlated with the FBC and the VPD. 

 

For the global estimation of MCE and EFs, we found that RF models performed well with respective out-of-5 

sample correlation coefficients ranging between 0.80 and 0.99. In Figures 4 and 5, feature importance represents 

the mean accumulation of the impurity decrease within each tree and is an indication of how much the variability 

in each feature is used as a split criteria by the models to explain the variability in the EF data. The average MCE 

in the measurements was slightly higher compared to earlier assessments which were used by GFED4s (red line 

in Figure 4), which may again be attributable to the dominance of relatively dry savannas. Overall, we found that 10 

using only globally available features covering a large (>20 year) timespan, we could estimate the field-measured 

MCE of the fires in the validation set with a mean absolute error (MAE) of 0.006. Using the static MCE in GFED4 

(MAE of 0.015 compared to the measurements) as a baseline, this meant a MAE reduction of 60%.  

 

Although the features listed in Fig. 4 all have sufficient spatiotemporal coverage for global emission modelling, 15 

some features exhibited strong co-variation. Other retrievals were hampered by LDS cloud-cover (e.g., dNBR and 

Pgreen), which meant we could not use consistent quality retrievals or had to remove samples from the data. 

Further simplification using a subset of features that are not directly correlated, reduced the data dependency and 

computational intensity of the model as well as the loss of training data due to cloud cover, without losing much 

explained variance. When using a 5-feature subset, we found that RF regressors still predicted much of the 20 

variability in the MCE and EFs. Figure 5a shows the predictive performance of a RF regression model that uses 

VPD, FTC, FWI, FPAR and soil moisture (SM) to estimate the MCE, which was relatively similar to the model 

predicting MCE using all features (r of 0.80 vs. 0.86).  

 

We found that spatial variability dominated the total variability in the MCE within the savanna biome with higher 25 

combustion efficiency in more xeric and open savannas. To isolate the effect of combustion efficiency in the 

prediction of individual species and make the model more transparent, we added the computed MCE to the 

predictor features. Both models that were trained using the full set of features in Table 1 and the 5-feature models 

identified the computed MCE as one of the primary features explaining of the variability in other EFs. The largest 

deviation from static EFs (vertical red line in Fig. 5d) was predicted for N2O. This is partially due to the large 30 

number of new fires which on average (vertical magenta line) were lower than the static reference used in 

GFED4s. The modelled MCE was the main predictor of the N2O EF, followed by the soil moisture in the top layer 

(0 - 7cm depth). Somewhat surprisingly, we found soil moisture to correlate more strongly with the tree density 

in the plot rather than the fuel moisture content (Table 4).  

 35 

3.4 Impact on global emission estimates using variable savanna emission factors 
Figure 6 shows the relative impact of using variable EFs on annual global savanna fire emissions of CO (a), CH4 

(b) and N2O (c), averaged over the 2002-2016 period based on GFED4s. The map only shows cells for which the 

partial coverage of savannas exceeds 50%. In grid cells that are partially (50-99%) covered by savanna, the total 

impact on emissions is to some degree diluted as the EFs of the non-savanna biomes remained constant. For CO 40 
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and CH4, the dominant effect is a spatial redistribution with higher CO and CH4 EFs in mesic, high-tree-cover 

savannas and lower EFs in xeric savannas compared to previous estimates. For CO2 (not shown), we find the 

opposite pattern to CO. Relatively speaking, however, changes in CO2 emission are much smaller because most 

carbon is emitted as CO2, even when MCE values are low. Although CO and CH4 followed the same spatial 

pattern, we found that MCE affected the CH4 EF more strongly than the CO EF which resulted in lower CH4 to 5 

MCE ratios in savannas with lower tree density. Global savanna emissions of CO were 2% higher compared to 

the GFED4s reference scenario whereas CO2, N2O and CH4 emissions were respectively 0.2%, 18% and 5% 

lower. N2O emissions were lower for the entire savanna biome (Fig. 6c).  

 

Figure 7 shows the seasonal patterns in the average CO EF for different savanna vegetation classes in southern 10 

hemisphere Africa. The IGBP savanna subclasses are only used here to indicate the average patterns and are not 

involved in the EF calculation. Using the IGBP classification, our samples were classified as “Woody savannas” 

(24%), “Savannas” (42%), “Open shrubland” (21%), “Grassland” (4%), “Cropland/Natural vegetation mosaic” 

(6%) and “Croplands” (1%). The latter two classes are misclassifications and were all situated in protected areas 

with no crops. These classes are listed in the accompanied dataset (Vernooij, 2023). We found a stronger and 15 

more persistent seasonal decline of the CO EF in xeric grass- and shrublands compared to woody savannas. N2O 

EFs showed a similar pattern characterised by a decline over the dry season in the more xeric grass and shrubland 

savannas while EFs in woody savannas are more stable. The model indicates a reversal of the seasonal trend in 

woody savannas around August-September, long before these rains start. The coloured areas represent the timing 

of our field campaigns in this region. Although LDS campaigns were conducted before the first seasonal rains, 20 

the graph indicates they may not be indicative of peak-season fires. Figure 8 shows an overview of the relative 

changes in emissions for the various savanna rich GFED regions. Many of these regions contain both xeric and 

mesic savannas with contrasting spatial patterns, meaning local differences may be much larger (Fig. 6).  

 

Both our measurements and the savanna biome averages in literature compilations (e.g. Akagi et al., 2011; 25 

Andreae, 2019) are subject to sampling bias when representing global savannas. A disproportionate number of 

field studies are clustered around reactively accessible locations with a well-developed research infrastructure, 

whereas other fire-prone areas lack direct field measurements. Rather than comparing the average of our savanna 

measurements to the literature averages, we computed the dynamic EFs globally using the RF model and 

subsequently calculated the emissions for the entire savanna biome. We then divided these annual emissions by 30 

the consumed biomass from GFED4s to get the annual consumed-biomass-weighted-average EFs, which we will 

further refer to as the “effective” EFs. Over the 2002-2016 period, the effective EFs over the savanna biome were 

1685 (± 5) for CO2, 64.3 (± 0.6) for CO, 1.9 (± 0.0) for CH4 and 0.16 (± 0.00) for N2O, with the number in the 

parentheses indicating the interannual standard deviation. In Table 4, we compare the effective average EFs over 

the 2002-2016 period calculated by our model to the static average EFs for savanna and grassland vegetation used 35 

by GFED4s and those suggested by Andreae (2019) and Wiedinmyer et al. (2023). Table 4 also lists the average 

EFs of the UAS measured fires and the average EFs of all included fires (including literature studies). Except for 

N2O, the differences between the effective EFs compared to more recently updated static EFs from Andreae 

(2019) were larger (+1.3% for CO2, -7.1% CO, -31.4% CH4 and -3.7%) than the differences compared to static 

EFs from GFED4s.  40 
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4 Discussion  
4.1 Comparison with previous studies 
The largest difference compared to previous savanna burning emission estimates is the reduction in N2O 

emissions. Rather than being the effect of including spatiotemporal dynamics, this reduction resulted from a 

substantial influx of new N2O EF measurements that exhibited significantly lower values than the averages found 5 

in EF compilations. Our field measurements yielded an average EF of 0.11 g kg-1, while EF compilations reported 

averages of 0.21 g kg-1 (Andreae and Merlet, 2001), 0.20 g kg-1 (Akagi et al., 2011), and 0.17 g kg-1 (Andreae, 

2019). However, in our measurements, xeric savannas are overrepresented. When using the global RF model to 

extrapolate the measurements over the entire savanna biome the “effective” average N2O EF –for savanna grid 

cells at the time of their burning– was 0.16 g kg-1, which is similar to the value listed in Andreae (2019). It is 10 

known that older studies might overestimate N2O, due to N2O formation in stainless steel sample containers 

(Muzio and Kramlich, 1988). Particularly compared to more recent studies, our EFs were in line with other 

savanna measurements from South America (0.05-0.07 g kg-1; Hao et al., 1991; Susott et al., 1996), Australia 

(0.07 – 0.12 g kg-1; Hurst et al., 1994; Meyer et al., 2012; Surawski et al., 2015) and Africa (0.16 g kg-1; Cofer et 

al., 1996). In accordance with Winter et al. (1999b), we found N2O EFs to be closely correlated with the nitrogen 15 

content of the fuel. Through this relation, we can explain both the spatial distribution observed in Fig. 6c and the 

different seasonal trends. In line with Susott et al. (1996) and Ward et al. (1992) we found that woody vegetation 

has higher nitrogen content contained in the foliage (Table 3), causing higher N2O emissions from tree dominated 

areas. We found relatively low nitrogen content for Australian open woodland savannas, which was in line with 

previous studies (Bustamante et al., 2006). The seasonal reduction in the nitrogen content of the fuel as the 20 

vegetation cures (Table 3) coincides with a reduction of the N2O EF over the dry season (Yokelson et al., 2011; 

Vernooij et al., 2021). This tends to happen quicker in xeric grass- and shrublands compared to more mesic and 

tree-covered areas. On the other hand, as fuels get more receptive over the dry season, fires consume increasingly 

more litter, coarse fuels and live foliage, provided these fuels are available (Table 3). This increases the WA 

carbon- and nitrogen contents of the fuel.  25 

 

For carbonaceous species our model predicts a spatial redistribution, characterized by higher combustion 

efficiency in lower tree-cover savannas and lower combustion efficiencies in more woody savannas. Previous 

research by van Leeuwen and van der Werf (2011) identified multi-linear correlations between EFs of CO2, CO 

and CH4 and environmental drivers resulting in coefficients of determination (r2) ranging from 0.48 to 0.62. In 30 

accordance with their study as well as many other field studies (e.g. Laris et al. (2021) and Sinha et al. (2004)), 

we found the FTC to be a strong predictor of the MCE and the EFs of CO and CH4 (Fig. 9). When denoted in 

grams per kilogram of dry biomass consumed, EFs of carbonaceous species are dependent on both the combustion 

efficiency and the carbon content of the fuel. The carbon content is often fixed in global studies of EFs (e.g. 45% 

in Andreae (2019) and Andreae and Merlet (2001) or 50% in Akagi et al. (2011)), with the latter forming the basis 35 

of the EFs used in GFED4s that represent the static EF references in this study. However, both the combustion 

efficiency and the carbon content have a spatial component with higher carbon contents in shrubs and trees 

compared to grasses (Table 3). For the studied fires, the WA carbon content of the fuel ranged from 40.3 to 49.3%, 

which linearly scales to a 22% difference in EFs between those extremes. In line with Andreae (2019), we assigned 

a carbon content of 45% to literature studies for which the carbon content was not reported which was close to 40 



 13 

our average measured value of 45.8 ± 2.3%. Contrary to previous research which indicated that dryer conditions 

in the LDS would lead to higher-MCE fires in both grasslands and savanna woodlands (Korontzi, 2005), we found 

lower MCE in these regions under late-LDS conditions (Fig. 3). One potential explanation is that although the 

LDS fires were more intense, they consumed much more RSC-prone fuels (Table 3), which may explain the higher 

CH4 and CO EFs. An alternative explanation to this fuel-driven MCE reduction is that in certain areas our 5 

measurement campaigns missed the peak-season when fires are driven by stronger winds (Laris et al., 2021; N’Dri 

et al., 2018), and that fire intensity and MCE in these areas would already be on the decline. Eck et al. (2013) 

studied seasonal changes of BB particles during 15 annual fire seasons in xeric (e.g. Etosha pan and Kruger 

national park) and mesic (e.g. Mongu) savannas in southern Africa using the Aerosol Robotic Network 

(AERONET). They found a linear trend of the single scattering albedo (SSA), increasing throughout the dry 10 

season, which would support a late dry season decrease in MCE (Liu et al., 2014; Pokhrel et al., 2016). We found 

that, in the xeric savannas, the composition of the fuel in LDS fires did not significantly differ from EDS fires, as 

most of the available fuel was consumed in both the EDS and LDS fires. In these areas, we did observe a slight 

seasonal decline in CO and CH4 EFs. 

 15 

In accordance with previous studies (e.g. Korontzi et al., 2003b; van Leeuwen and van der Werf, 2011; Barker et 

al., 2020), we found steeper CH4 EF to MCE regression slopes in woodlands compared to grasslands. Our data 

indicated a positive correlation of the CH4 EF to MCE slope with the FTC based on MOD44Bv006. The MCE is 

a simplified form of the combustion efficiency and only calculated using CO and CO2 emissions. Being less 

oxidized than CO (which is still common in flaming combustion), CH4 emissions have a stronger dependency on 20 

the actual combustion efficiency (CO2 divided by all carbon emissions). While most studies describe the 

relationship between the CH4 EF and the MCE as being linear (Korontzi et al., 2003; van Leeuwen and van der 

Werf, 2011; Selimovic et al., 2018; Yokelson et al., 2003), we found that for individual bag samples it was better 

described using a nonlinear function (Fig. 9), in line with findings by Meyer et al. (2012) for Australian savanna 

measurements. Figure 9 represents individual bag measurements rather than fire averages (for which the spread 25 

in MCE is much lower). Laboratory experiments described by Selimovic et al. (2018) and others showed that the 

CH4 to CO ratio is more complex and variable in real-time than at the fire-average level. Individual bag samples 

sampled over a concise 35-second timeframe thus exhibit a broader range and more pronounced variation in 

comparison to fire averages. Stable carbon isotopes also point to CH4 emissions being more depleted in heavy 

carbon (13C) compared to CO in both mixed (C3 and C4) and single-fuel-type experiments using wooden logs, 30 

indicating a stronger dominance of RSC and the pyrolysis of lignin in its total emissions (Vernooij et al. 2022b). 

Mainly within woody savannas, this clarifies why studies focused on either smouldering or flaming phase 

emissions exhibit diverse slopes for CH4 EF to MCE when employing linear regressions. Additionally, this 

phenomenon accounts for the inclination of the slope to intensify in fueltypes characterized by higher lignin 

content. 35 

 

Although the measurements were linearly correlated using the calibration bags for the individual fires, the 

standard deviations between the calibration samples were 2.58% for CO2, 7.06% for CO, 2.32% for CH4 and 

4.04% for N2O, indicating larger measurement uncertainties than reported by the manufacturers, which possibly 
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arises from the bag methodology.  The difference in the mean calibration value compared to the calibration gasses 

was -4.75% for CO2, -1.32% for CO, -3.97% for CH4 and -1.28% for N2O.  

Although higher MAR generally coincides with high FTC, this was not the case for our measurements from Brazil. 

The measured areas in the Estação Ecológica Serra Geral do Tocantins (EESGT) received relatively high MAR 

(1250–1600 mm yr-1) compared to 850–1250 mm yr-1 for Zambian and 890–1100 mm yr-1 for Mozambican 5 

Miombo woodlands. Nonetheless, although being strictly protected from logging and other land clearing practices, 

the MOD44BV006 FTC in the measured areas in EESGT was very low (1-10%, with an average of 2%) compared 

to 7-32% with an average of 19% for Zambian-, and 3-43% with an average of 22% for Mozambican miombo 

woodlands. That our measurements in the EESGT were skewed towards open savannas (that typically burn with 

higher MCE), may explain the relatively low CH4 EF to MCE slope discussed in Vernooij et al. (2021). For the 10 

whole Cerrado, the average MOD44BV006 FTC is 17%, indicating that the measurements in EESGT may be 

underestimating the MCE in other parts of the Cerrado. According to its classification, MCD44BV006 FTC only 

includes canopies of trees exceeding 5m in height (Adzhar et al., 2021) which may be why some common Cerrado 

species are classified as shrubs. However, the EFs observed from these areas were similar to those observed in 

low tree-cover savannas.   15 

 

Measurements of fuel loads were higher than previous measurements from African savannas described by Shea 

et al. (1996). They found average fine fuel loads (litter and grass) of 3.8 tonne ha-1 in moist Miombo woodland. 

In semiarid Miombo woodland they found 3.1 tonne ha-1, In comparison we found 5.6 tonne ha-1 in Mozambican 

Miombo woodland and 5.6 tonne ha-1 in Zambian Miombo woodland. The percentage of grasses in these fuels 20 

was similar; Shea et al. (1996) reported 24% in moist Miombo woodland and 18% in semi-arid Miombo woodland 

whereas we found 37% in Mozambican and 18% in Zambian Miombo woodlands. The combustion completeness 

of these fuels was slightly lower in our fires at 50-80% versus 80-92% reported by (Shea et al., 1996), albeit that 

the lower values in this range occurred in the EDS. Combustion completeness of shrub leaves and course woody 

debris were in the same range. For dambo grasslands our fuel loads were also much higher at 6.2 (± 2.16) tonne 25 

ha-1 of which 99% was grass versus 3.1 tonne ha-1 from Shea et al. (1996). Although these differences are large, 

they may be attributed to the significant natural variability in productivity and decay related to water availability, 

fire frequency, and termite and grazing activities in these natural landscapes.  

 

4.2 Model representativeness 30 

This is the first study to quantify the spatial distribution of GHG EFs over the entire savanna biome using field 

measurements from a variety of savanna ecosystems and their relation to global data mainly from satellites. 

Although spatiotemporal coverage has improved, there are still many understudied savanna and grassland areas 

for which we have derived EFs based on our model. Figure 1 clearly illustrates the gaps in the spatial distribution 

of the training data. Particularly savannas bordering the tropical rainforest, northern hemisphere Africa, meso 35 

America, south-east Asia as well as temperate grassland ecosystems are understudied. Due to the lack of 

measurements in these ecosystems, EFs are presently computed based on measurements primarily taken in 

southern hemisphere Africa. Nevertheless, EF trends in other regions might considerably differ from those 

observed in extensively studied savannas. To guarantee the model's relevance to specific regions, it remains 

essential to calibrate and evaluate the model using supplementary in-situ emission factor measurements. 40 
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Most of the fires used to train the models were prescribed fires set by scientists or park rangers in protected areas 

in order to facilitate collection of data pre and post burn on site. It is common practice to extrapolate these 

measurements in relatively undisturbed savanna vegetation to the wider savanna. Even though these protected 

natural areas tend to burn more frequently, they represent a minority of the area that is currently modelled using 5 

savanna and grassland emission factors by global inventories (e.g. Fig.1). Most of this area is to some degree 

affected by humans though cattle ranging, wood harvesting, slash and burn agriculture, etc. This means fires in 

this study may not always represent the burning practices by local farmers, and representativeness of our work 

for the larger savanna area remains therefore uncertain. The samples were predominantly collected over heading 

fires, which in the measured fires typically represented most of the burned area. A common approach for 10 

prescribed fires is burning against the wind (backing fire), to minimise both the impact on vegetation and risk of 

spread. In a heading fire, RSC can be increased because the high rate of spread and patchiness leaves fuels 

smouldering further from the convection associated with the advancing flame front. In accordance with Wooster 

et al. (2011) and Laris et al. (2021), we found higher MCE in samples from backing fires, indicating less RSC and 

thus CH4 and CO emissions in these types of fires. Another possible explanation for the higher MCE in the backing 15 

fire samples is that slower lofting RSC smoke does not mix with the flaming combustion emissions in these 

measurements, like it does in heading fires. 

 

4.3 Spatial resolution and model considerations 

For this research, we computed the average attributes within the 0.25° grid cell before calculating the savanna EF. 20 

This spatial resolution was selected because GFED4s burned area data, including assumptions for small fires, 

being generated at a 0.25° resolution. Nonetheless, there are potential advantages to future EF estimations at 

greater spatial resolutions. Recent studies indicate that higher resolution modelling yield different emissions than 

those based on aggregated data due, in part, to improved representation of landscape heterogeneity (van Wees and 

van der Werf, 2019). Enhancing the resolution of meteorological data would further amplify the precision of these 25 

models. These advancements anticipate that future global emission inventories will adopt higher spatial 

resolutions, enabling better representation of local or regional dynamics. We found the highest variability of EFs 

within smaller landscape features that are bound to geomorphological niches, typically along rivers and valleys. 

While these features are likely to have low significance for global emission patterns, they represent vital 

ecosystems that may require special fire protection. In its current form, the model may not always pick up on 30 

those landscape features. High-resolution modelling allows for a better understanding of localized fire regimes, 

especially in areas with relatively heterogeneous landcover.  
 

The model is limited by the accuracy and spatial resolution of the underlying products. Using the features included 

in the current models, EFs can be calculated up to the native spatial resolution of the included MODIS-based 35 

products (500×500m), which is also the resolution of globally available burned area products. New high-

resolution burned area products, however, indicate that these global products, including the GFED4s data used 

for global emission  analyses in this study, grossly underestimate burned area due to omission of small fires (Chen 

et al., 2023; Roteta et al., 2021; Roy et al., 2019). This also pertains to a substantial proportion of the fires we 

measured. Of the UAS-measured fires in this study only 5 of the 45 EDS fires (11%) and 13 of the 65 LDS fires 40 
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(20%) were registered by MCD64A1 as burned area (including adjacent pixels and a 4-day time lag). Out of the 

45 EDS fires, only 4 (9%), and among the 65 LDS fires, just 32 (49%), were detected by VIIRS S-NPP as thermal 

anomalies, with the hotspot's center point (accounting for a 1-day time lag) falling within a 3.5 km radius of the 

sample. Depending on the spatiotemporal nature of these omissions, this may affect some of the results in this 

study concerning the effects of the EF dynamics on total emissions. Chen et al. (2023) indicate that in the savannas, 5 

disproportionately more burned area is added in higher tree-cover areas when using higher resolution satellite 

imagery. Giving more weight to these areas would mean our savanna-wide effective EFs of CO, CH4 and N2O 

would increase. The Sentinel-2 based burned area product from Roteta et al. (2021) performed much better and 

registered 8 of our 14 EDS fires (57%) and all of our 16 LDS fires (100%) in Botswana and Mozambique in 2019 

(including adjacent pixels and up to a 21-day time lag). Due to the fewer overpasses the temporal allocation of 10 

this product is less precise with an average time lag of 5.5 days. Figure 10 shows the portion of our EDS and LDS 

fires that were detected by various satellite algorithms.   

 

Fire intensity proxies (dNDVI and dNBR from MODIS) were considered by the models to be poor predictors for 

the EFs. A potential explanation is that these features were not always representative, as many of the fires only 15 

affected part of the pixel. Similar misrepresentation errors can be expected for the NDVI before the fire, FPAR 

and the Pgreen. Particularly in the LDS, we were often limited to areas that were enclosed by recent fire scars (0-

2 years old) or other non-flammable boundaries like roads or bare areas. Although the burnt areas were sizable 

(several hectares), many of the retrievals in these pixels may poorly represent the burned vegetation. Along with 

inconsistent retrievals related to cloud cover, this may contribute to these features being deemed poor predictors 20 

by the models. Enhanced resolution features could improve the accuracy of pixel representations for the actual 

burned vegetation. 

 

The meteorological parameters obtained from the ERA5-Land dataset carry uncertainty. This uncertainty 

increases when examining earlier time periods or remote regions due to diminished validation data availability. 25 

To what extent uncertainty propagates to the EF predictions varies depends mostly on whether there is a bias that 

was also present in the training data or misinterpretation or uncertainty in general. As this model is trained using 

specific datasets, these datasets should not be replaced by other sources without evaluating the consistency of that 

source with the feature training data. FTC and FBC, based on MOD44Bv006 were found to be strong predictors 

of BB EFs. However, intercomparison with Tropical Biomes in Transition (TROBIT) field sites in African, 30 

Brazilian and Australian savannas has shown that this product consistently underestimates canopy cover in 

tropical savannas by between 9 to 15% (Adzhar et al., 2021). Products based on higher-resolution satellite 

retrievals (e.g. LandSat and Sentinel) have the potential to further enhance the spatial resolution of the EF 

estimates to include small landscape features and thus become more representative. Although all satellite data 

comes with some uncertainty, we feel the errors are small enough to have high confidence in the key findings 35 

such as lower EFs in dry regions and higher in wetter regions.  

 

The interdependence among features led to varying feature importance scores (depicted in Fig. 4) across different 

model runs, driven by the test-train data division and bootstrap resampling. For instance, a decision tree split 

based on VPD might closely resemble soil moisture or RH, and FTC in national parks often exhibits strong 40 
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correlation with the MAR, with the exception of our measurement sites in Brazil. While we conducted model runs 

considering different subsets of features and selected the optimal one, it is important to note that various features 

might also effectively account for a significant portion of the variance. In cases where features had substantial co-

variation (such as FPAR and LAI, or FWI and ISI), this resulted in the selection of only one feature for the 

simplified model, even if both features demonstrated high initial scores.  5 

 

The models are currently trained using meteorological features obtained from ERA5-Land (Muñoz-Sabater et al., 

2021) which is available from 1950 to present and has a 2- to 3-month delay. When interested in longer time 

periods or for near-real-time (NRT) applications these features may be substituted with ERA5 (Hersbach et al., 

2020) which is available from 1940 to present with a shorter latency period of 5 days, or even CMIP climate 10 

projections. Although supplementing the datasets on which the models are trained with alternative data always 

comes with additional uncertainty, we found meteorological parameters obtained from ERA5-Land to be in close 

accordance with ERA5, indicating the two may also be substituted. This means that the EFs computed using the 

methodology outlined in this paper could potentially also be used to improve NRT biomass burning emission 

estimates like those from CAMS-GFAS (Andela et al., 2015; Di Giuseppe et al., 2016).  15 

5 Conclusions 
Over the last decade, substantial progress has been made increasing the spatiotemporal coverage of savanna fire 

emission factor measurements (EFs). In this study we described the variability of GHG EFs measured during 18 

new field campaigns over the 2017-2022 period during which we sampled 129 fires in different parts of the 

savanna biome using a UAS platform. On average CO, CH4 and N2O EFs in these UAS measurements were 20 

respectively 13%, 29% and 44% lower compared to the biome-averaged EFs used in previous inventories. 

However, from a global savanna perspective, xeric savannas with relatively low EFs were over-represented in our 

measurements which could explain part of the mismatch. The measured fires were predominantly intentional 

burns conducted by scientists or park rangers in protected areas for data collection, and while these measurements 

are extended to undisturbed savanna, the majority of the broader savanna used in emission models is influenced 25 

by human activities such as cattle grazing and agriculture, raising some uncertainty about the representativeness 

of our findings for global savannas. Measurements of the pre and postfire fuel load and the fuel conditions during 

the fire indicated significant changes in fuel receptiveness resulting in increased fire intensity over the dry season. 

Particularly for mesic savannas, an increase in the combustion of RSC-prone fuels resulted in higher EFs of CO 

and CH4 during LDS fires. The main drivers of variability in CO and CH4 EFs were tree-cover, fuel moisture 30 

content and the prevalence of grasses while EFs for N2O strongly correlated with the nitrogen content of the fuel 

which, in turn, is strongly linked to the grass to litter ratio. Although these correlations are consistent with previous 

savanna EF studies, quantifying their impact on EFs for the use in global emission studies has so far been 

hampered by a lack of measurements.  

 35 

We developed a random forest regressor that estimates dynamic EFs (monthly EFs at 0.25°) based on satellite 

products to replace the use of static biome averaged EFs in global emission inventories, or the use of a dichotomy 

of EDS vs LDS EFs (based on a cut-off date). The model-produced data resulted in significant fire-specific 

improvements compared to static biome-averaged EFs, reducing the mean absolute error in the modelled versus 
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measured predictions by 64% for CH4, 58% for N2O, 85% for CO and 79% for CO2. Except for N2O EFs, our 

study does not indicate that savanna averages have large errors, but rather that temporal and especially spatial 

variability is large and is better accounted for by using a more sophisticated model. We used the dynamic EF 

models to calculate the emissions for global savanna emissions over the 2002-2016 period, which is more 

indicative of the “effective” EF differences. This resulted in a spatial redistribution of emissions over the savanna 5 

biome, characterized by increases of average annual emissions of CO, and CH4 in woody savannas and reductions 

in open savannas. While the model indicates an initial seasonal decrease in combustion efficiency as the vegetation 

dried out, there was a reversal for woody savannas towards the end of the dry season, occurring before the first 

seasonal rains. This shift coincides with the increased consumption of live vegetation and RSC-prone fuels like 

densely packed litter, coarse woody debris). Xeric savannas had much lower EFs with a longer and more profound 10 

seasonal decrease in CO and CH4. Although N2O EFs were lower for the entire savanna biome, they followed a 

similar spatiotemporal pattern.  

 

The proposed dynamic EF method resulted in a 18% reduction in the estimated annual global N2O emissions from 

savanna fires, compared to static averages, with emission reductions of up to 60% in xeric regions. The impact on 15 

the global savanna emission estimates for CO2 (decrease of 0.2%), CO (increase of 1.8%) and CH4 (decrease of 

2.1%) was low, indicating the use of static EFs did not lead to biases for studies focusing on global emissions. 

However, the regional impact on these EF estimates was as high as 60% and even 80% under extreme seasonal 

conditions, highlighting its variability at a more local level. Overall, the model results are a first step towards 

more dynamic and area specific emission inventories, which we plan to make available in monthly and daily 20 

resolution at 0.25° and will further improve as more measurements and better remote sensing products become 

available.  
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Tables 
Table 1: Measurement campaigns including the number of fires for which emission factors were measured as well as 

the number of corresponding fuel-transects.  

Area Timeframe # Fires # Fuel transects 

Kruger National Park, 

South Africa 

29.08.2017 – 02.09.2017 

22.04.2018 – 28.04.2018 

21.08.2018 – 31.08.2018 

22.10.2018 – 26.10.2018 

3 

3 

8 

6 

- 

- 

- 

- 

Estação Ecológica Serra 

Geral do Tocantins, Brazil 

10.09.2017 – 20.09.2017 

15.06.2018 – 30.06.2018 

21.09.2018 – 12.10.2018 

10 

11 

6 

- 

- 

- 

North-west Ngamiland, 

Botswana 

21.05.2019 – 08.06.2019 

04.09.2019 – 15.09.2019 

5 

6 

39 

37 

Niassa special reserve 

Mozambique 

19.06.2019 – 09.07.2019 

05.10.2019 – 20.10.2019 

10 

11 

20 

24 

Kasane Extension Forest 

Reserve, Botswana 
12.10.2021 – 20.10.2021 2 42 

Bovu Forest Reserve, 

Zambia 
22.10.2021 – 26.10.2021 3 9 

Kafue national park, 

Zambia 

30.10.2021 – 12.11.2021 

15.06.2022 – 20.06.2022 

6 

5 

54 

24 

Lualaba Forest Reserve, 

Zambia 
21.06.2022 – 25.06.2022 5 60 

Tanami desert, Australia 
20.04.2022 – 28.04.2022 

12.08.2022 – 05.09.2022 

10 

6 

90 

24 

 
 5 
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Table 2: Satellite reanalysis features assessed for the prediction of savanna biomass burning emission factors 

 
  

 Parameter Data source 
Product 
reference 

Spatial 
resolution 

Temporal 
resolution 

Feature  
range 

V
eg

et
at

io
n 

pa
ra

m
et

er
s  

Fraction tree cover (FTC, %) MODIS 
MOD44BV006  
(DiMiceli et al., 2015) 

500×500 
meter 

year-1 0 - 53% 

Fraction bare soil cover (FBC, %) MODIS 
MOD44BV006  
(DiMiceli et al., 2015) 

500×500 
meter 

year-1 1 - 88% 

Time since the last fire (years) MODIS 
MCD64A1C6 
(Giglio et al., 2018) 

500×500 
meter 

year-1 1 - >10 years 

Normalized difference vegetation index 
(NDVI) before fire 

MODIS 
MOD09GAC6  
(Vermote, 2015) 

500×500 
meter 

day-1 0.02 - 0.79 

Fraction of absorbed photosynthetically 
active radiation (FPAR)  

MODIS 
MCD15A2HC6 
(Myneni et al., 2015) 

500×500 
meter 

8 days-1 0.09 - 0.75 

Leaf area index (LAI)  MODIS 
MCD15A2HC6 
(Myneni et al., 2015) 

500×500 
meter 

8 days-1 2 - 30 

Leaf area index (LAI) 
Low vegetation 

Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

day-1 0.5 - 2.0 

Leaf area index (LAI) 
High vegetation 

Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

day-1 0.0 - 5.0 

Mean annual rainfall (MAR)(mm) Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

month-1 200 - 1550 

Se
as

on
al

 p
ar

am
et

er
s  

Rainfall in the last 12 months (mm) Reanalysis 
ERA5  
(Hersbach et al., 2020) 

0.25×0.25 
degree 

month-1 220 - 1550 

Rainfall since the last fire (mm) Reanalysis 
ERA5  
(Hersbach et al., 2020) 

0.25×0.25 
degree 

month-1 220 - 11300 

Percentage green vegetation (%)  
(Korontzi, 2005) 

MODIS 
MOD09GAC6  
(Vermote, 2015) 

500×500 
meter 

day-1 2  - 89 

Soil moisture content (m3 m-3)   
in the top layer (0 - 7cm depth) 

Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 0.01 - 0.43 

Vapor pressure deficit (mbar)  Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 8 - 51 

Evaporative stress index (index)  Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 0.02 - 0.73 

W
ea

th
er

 

Temperature at 2m (°C)  Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 16 - 36 

Windspeed (m sec-1) Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 0 - 11.2 

Relative humidity (%)  Reanalysis 
ERA5-Land 
(Muñoz-Sabater et al., 2021) 

0.1×0.1 
degree 

hour-1 8 - 71 

Canadian Fire Weather Index (FWI)  Reanalysis   
CEMS EFFIS 
(Vitolo et al., 2020)  

0.25×0.25 
degree 

day-1 10 - 102 

Fine Fuel Drought Code (FFDC)  Reanalysis   
CEMS EFFIS 
(Vitolo et al., 2020) 

0.25×0.25 
degree 

day-1 81 - 99 

Initial Spread Index (ISI)  
Reanalysis  
 

CEMS EFFIS 
(Vitolo et al., 2020) 

0.25×0.25 
degree 

day-1 1.9 - 47.5 

Fi
re

 in
te

ns
ity

 
in

di
ce

s 

Build up index (BUI)  
Reanalysis  
 

CEMS EFFIS 
(Vitolo et al., 2020) 

0.25×0.25 
degree 

day-1 64 - 624 

Differential normalized difference 
vegetation index (dNDVI) 

MODIS 
MOD09GAC6  
(Vermote, 2015) 

500×500 
meter 

day-1 -0.43 - 0.61 

Differential normalized burn ratio 
(dNBR) 

MODIS 
MOD09GAC6  
(Vermote, 2015) 

500×500 
meter 

day-1 -0.25 - 0.45 
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Table 3: Consumption of RSC-prone fuels in the EDS and LDS for xeric open savannas measured in Botswana and 

Australia and Miombo woodlands measured in Mozambique and Zambia.  

Field measurements  
before and after burning 

Xeric savannas 
(500 - 750 mm year-1 MAR) 

Mesic savannas 
(750 - 1500 mm year-1 MAR) 

 
Australian arid 
open woodland 

Kalahari  
open woodland 

Kafue woodland 
savanna 

Niassa woodland 
savanna  

EDS LDS EDS LDS EDS LDS EDS LDS  

Fine fuel load (tonne ha-1) 5.1 6.7 3.1 3.4 2.8 5.9 6.3 5.4 

Grass percentage of total fine 
fuel (i.e. grass, litter and coarse) 76% 79% 27% 25% 24% 17% 45% 35% 

Nitrogen to Carbon ratio1 1.0% 0.8% 2.3% 2.1% - 1.7% 1.3% 1.1% 

Time since last fire (years) 
Based on MCD64A1C5 6.7 6.0 2.9 2.8 1.7 1.6 1.7 1.3 

WA Carbon content1 45.2% 44.6% 49.1% 47.8% - 46.5% 43.5% 46.2% 
      Grass 45.1% 43.9% 47.6% 47.5% - 47.0% 43.0% 44.0% 
      Litter 45.2% 47.0% 50.1% 48.0% - 46.7% 43.2% 47.2% 
      Coarse woody debris 48.1% 48.0% 48.2% 47.7% - 44.7% 47.2% 47.8% 
      Shrub stems2 - 47.1% 47.9% - - 47.5% - 48.2% 
      Shrub foliage2 - 50.0% 50.3% -  51.6% - 50.7% 

WA Nitrogen content 0.45% 0.37% 1.11% 1.00% - 0.81% 0.55% 0.52% 
      Grass 0.46% 0.31% 1.06% 0.65% - 0.42% 0.34% 0.30% 
      Litter 0.43% 0.65% 1.22% 1.17% - 0.92% 0.73% 0.65% 
      Coarse woody debris 0.33% 0.48% 0.89% 0.69% - 0.61% 0.42% 0.48% 
      Shrub stems2  - 0.63% 1.10% - - 0.65% - 0.52% 
      Shrub foliage2 - 1.03% 2.55% -  2.02% - 1.13% 

Relative humidity (air) 18% 10% 13% 6% 22% 17% 24% 19% 

Fuel moisture content1 15.6% 8.6% 20.3% 8.7% 16.5% 6.5% 16.6% 8.8% 

Fine fuel combusted 93% 97% 69% 75% 58% 77% 60% 71% 

Coarse fuel combusted (Æ < 5cm) 21% 17% 21% 16% 4% 26% 2% 19% 

Heavy fuels combusted (Æ > 5cm) 76% 32% 3% 35% 0% 16% 2% 8% 

0-50 Cm shrubs combusted: 
      Leaves2 

      Stems 

 
72% 
60% 

 
86% 
65% 

 
50% 
38% 

 
60% 
88% 

 
17% 
1% 

 
79% 
44% 

 
20% 
24% 

 
71% 
40% 

50-100 Cm shrubs combusted: 
      Leaves2 

      Stems2 

 
51% 
60% 

 
78% 
65% 

 
26% 
19% 

 
48% 
8% 

 
7% 
0% 

 
43% 
15% 

 
46% 
3% 

 
55% 
20% 

100-200 Cm shrubs combusted: 
      Leaves 
      Stems 

 
26% 
7% 

 
69% 
13% 

 
22% 
4% 

 
31% 
3% 

 
0% 
0% 

 
47% 
5% 

 
20% 
4% 

 
35% 
11% 

>200 Cm shrubs combusted: 
      Leaves 
      Stems 

 
33% 
5% 

 
36% 
7% 

 
10% 
0% 

 
16% 
1% 

 
0% 
0% 

 
10% 
3% 

 
7% 
2% 

 
43% 
4% 

Scorch height (m) 2.0 m  2.2 m 0.4 m  0.4 m  0.3 m 10.3 m  0.5 m 1.7 m 

Char height (m) 0.9 m 1.1 m 0.2 m 0.3m 0.2 m 0.9 m 0.4 m 1.6 m 

Patchiness (% burned) 69% 94% 51% 72% 54% 99% 63% 95% 
1weighted average over the consumed contribution of each individual fuel subclass. 
2weighted average over the dominant shrub types found in the plots. 
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Table 4: Emission factor averages for the global savanna 

EF 
Specie GFED4s Andreae 

(2019) 

Wiedinmeijer 
et al. 

 (2023) 

Sample 
data 
avg.1 

Training 
data 
avg.2 

Effective 
EF 

(Eq. 1)3 

CO2 1686 1660 1686 1637 1670 1685 

CO 63 69 63 55 61 64 

CH4 1.94 2.70 2.00 1.38 1.61 1.85 

N2O 0.20 0.17 
 

0.12 0.12 0.16 
1Averaged over the fires measured using the drone methodology (skewed towards xeric savannas) 
2Averaged over the fires measured using the drone methodology and the included literature studies.  5 
3Dynamic EFs weighted by the consumed biomass at time and location of fires as calculated using GFED4s.  
 
  



 28 

 
Table 4. Spearman correlation matrix for the field-measured-ecosystem attributes and the fire-averaged emission 

factors and MCE as well as the satellite products used in the study. Positive correlations are presented in blue while 

negative correlations are presented in red.  

 5 
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Figures 

 
Figure 1. Overview of sampling locations used for the analysis. The previously published (red) and new (orange) UAS 

measurements as well as the locations of the included literature studies on savanna fire emission factors listed in 

Andreae, 2019 (blue). The green shaded area shows the distribution of savanna and grassland fires over the 2002-2016 5 
period according to GFED4s. 



 30 

 
Figure 2: Estimation of the CO EF at 500-meter resolution for MODIS tile “h20v10” on June 1st, 2019 (g), using a 

random forest regression based on (a) fractional tree cover (FTC), (b) fraction of absorbed photosynthetically active 

radiation (FPAR), (c) the fire weather index (FWI), (d) vapour pressure deficit (VPD) and (e) soil moisture. For grid 

cells containing other biomes than savanna (f), GFED4s static EFs for the respective biome were imposed replacing the 5 
savanna EFs. Sources of the individual features are listed in Table 2.   
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Figure 3: EFs (g kg DM-1) measured in the sampled vegetation types during the EDS and LDS as well as the EFs from 

savanna measurements listed in savanna literature based on the Andreae (2019) compilation. The green diamond 

represents the arithmetic mean, and the red cross represents the EMR-weighted average value. The colours correspond 

to the savanna subclasses on the bottom of the figure. Table 1 lists the timeframes of the individual field campaigns 5 
while Table A1 in the appendix provides a broad floristic description of the dominant vegetation types.  
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Figure 4. Left: Correlation of the predicted and measured fire-integrated weighted average MCE for the training 

(orange) and validation (blue) datasets. The vertical blue and orange lines represent the standard error of the mean 

within the respective fire. The red vertical line is the static MCE derived from the EFs used in GFED4s. The 

‘improvement’ refers to the reduced mean absolute error compared to prediction using this static GFED4 (red line) 5 
MCE and compared to the average of the input data (magenta line). Right: The remote sensing and reanalysis datasets 

used by the model and the feature importance (an indication of how strong each feature is used to differentiate the 

data) of the respective features. 
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Figure 5. Pearson correlation of the predicted and measured fire-integrated WA MCE (a), CH4 EF (b) N2O EF (c), and 

CO EF (d) for the training (orange) and validation (blue) datasets using a limited set of features. The boxes in the 

bottom right of the panels list the remote sensing and reanalysis datasets used by the model and the feature importance 

(an indication of how strong each feature is used to differentiate the data). The red line represents the static biome-5 
average used in GFED4s while the magenta line represents the average of the training and validation data. ‘improv. 

GFED’ refers to the reduced mean absolute error compared to the static average used by GFED4s and the ‘improv. 

Avg.’ refers to the reduced mean absolute error compared to the static average of the input data.  
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Figure 6: Difference in savanna and grassland fire emissions for CO (a), CH4 (b) and N2O (c) between emission 

computation using dynamic EFs versus static biome reference EFs (dynamic minus static), calculated using GFED4s 

for the 2002-2016 period.  
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Figure 7. Seasonality of fire carbon emissions (black) and the computed CO EF (orange) for different savanna 

subclasses in southern hemisphere Africa, averaged over the 2002-2016 period. The savanna classes are based on the 

International Geosphere-Biosphere Program (IGBP) classification (Loveland and Belward, 1997). The shaded areas 

represent the timing of our measurements in southern hemisphere African savannas, indicating that especially our 5 
LDS campaigns may not be representative for the bulk of the fires. The red horizontal bar on the right represents the 

static EF used for savannas by GFED4s.  

 
Figure 8: Relative difference in the landscape fire emissions of CO2, CO, CH4 and N2O for the 2002-2016 period when 

using dynamic EFs versus static EFs using GFED4s (dynamic minus static) over the different savanna-rich GFED 10 
regions. Note that many of these regions encompass both xeric and mesic savannas with contrasting patterns that 

balance each other out. On a regional scale differences may therefore be much larger.  
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Figure 9. The non-linear regression between the CH4 EF and the MCE for the individual bag samples (green circles) 

and the fire averaged values (orange Diamonds) . In the box on the bottom left, r refers to Spearman's rank correlation 

coefficient for the bag samples.  

 5 
Figure 10. Detection rate of the fires measured using the UAS-methodology by different satellite algorithms in the EDS 

(green) and LDS (orange). The darker area represents the cases where a fire was observed in the actual pixel within 

the listed timeframe. The lighter areas represent fires that were not detected in the same pixel as the samples but were 

detected in adjacent pixels. Timeframes are listed below the product labels. For the VIIRS detections the distance limits 

between the detection point and closest sample of the fire were 1km for the darker shaded area and 3.5 km for the 10 
lighter shaded area. 

 

Appendix 
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Table A1: Floristic and geomorphological description of the different vegetation types measured in this study. 

Vegetation type 
(Fig. 3) Vegetation description1,2 Satellite value range 

in the plots 

Dambo grasslands 
Niassa Special 
reserve, 
Mozambique 

Landscape feature limited to more humid and fertile places, 
containing seasonally inundated grassland savanna dominated 
by perennial tussock grasses e.g. beard grass (Andropogon 
(PE)) and thatching grass (Hyparrhenia (A)) with sparse 
Bushwillow (Combretum (D)) trees and on clayey swales with 
highly variably water tables based on geomorphology and soil 
type (Mbanze et al. 2019). 
 

MAR: 1000–1100mm 
FTC: 10 – 20% 
FBC: 10 – 30% 
 

Dry Miombo 
woodlands 
Niassa Special 
reserve, 
Mozambique 

Dry Miombo Woodland dominated by (5-15m) Semi-
deciduous Miombo (Brachystegia (SD)) and Mnondo 
(Julbernardia (D)) trees on sandy soils (Ribeiro et al., 2013, 
2008).   

MAR: 850 – 1100mm 
FTC: 15 – 30% 
FBC: 10 – 25% 

Wet Miombo 
woodlands, Kafue 
National Park, 
Zambia 

Savanna open forest dominated by (5-15m) Brachystegia 
(SD)), Julbernardia (D), and Isoberlinia (D) trees on sandy 
soils. 

MAR: 850 – 1300mm 
FTC: 10 – 35% 
FBC: 0 – 10% 

Sparse Miombo 
Woodlands, Bovu 
Forest reserve, 
Zambia 

Savanna open woodland containing perennial tussock grasses 
e.g. digitgrass (Digitaria (PE)) and Tangleheads 
(Heteropogon (A)) with (5-15m) Combretum (D), Albizia (D) 
and Diospyros (EG) trees on sandy soils. 

MAR: 800 – 900mm 
FTC: 5 – 15% 
FBC: 0 – 15% 

Baikea woodland, 
Kasane Extension 
Forest Reserve, 
Botswana  

Open woodland savanna dominated by tussock perennial 
grasses e.g. digitgrass (Digitaria eriantha (PE)) and sickle 
grass (Pogonarthria squarrosa(PE)) with scattered (5–15m) 
African teak (Baikiaea plurijuga (D)) and silver cluster-leaf 
(Terminalia sericea (D)) trees on sandy soils. 

MAR: 700 – 800mm 
FTC: 5 – 10% 
FBC: 5 – 20% 

Satara experimental 
burn plots, Kruger 
National Park, 
South Africa 

Grassland savanna dominated by perennial tussock grasses 
e.g. Sabi grass (Urochloa mosambicensis (PE)) and digitgrass 
(Digitaria eriantha (PE)) with scattered tall (10–15m) Marula 
(Sclerocarya birrea (D)) and knobthorn Acacia (Acacia 
nigrescens (D)) trees on clay soils overlying basalt plains 
(Venter and Govender, 2012). 

MAR: 400 – 550mm 
FTC: 0 – 5% 
FBC: 10 – 30% 

Skukuza 
experimental burn 
plots, Kruger 
National Park, 
South Africa 

Savanna woodland dominated by dense Bushwillow 
(Combretum collinum (D)/ Combretum zeyheri (D)) trees on 
hydromorphic or duplex soils containing granite outcrops 
(Venter and Govender, 2012). 

MAR: 500 – 600mm 
FTC: 3 – 10% 
FBC: 25 – 30% 

Mopani 
experimental burn 
plots, Kruger 
National Park, 
South Africa 

Savanna shrubland dominated by dense low (1–4m) mopane 
(Colophospermum mopane (D)) shrubs on flat or slightly 
sloping clay soils. (Venter and Govender, 2012). 

MAR: 300 – 450mm 
FTC: 0 – 10% 
FBC: 30 – 50% 

Pretoriuskop 
experimental burn 
plots, Kruger 
National Park, 
South Africa 

Open forest savanna dominated by dense tall (10–15m) 
clusterleaf (Terminalia sericea (D)) and (5-10m) Sicklebush 
(Dichrostachys cinerea (SD)) trees on sandy soils. (Venter 
and Govender, 2012). 

MAR: 800 – 900mm 
FTC: 0 – 20% 
FBC: 5 – 15% 

Mata galleria, 
EESGT, Brazil 

Riparian forest lining rivers dominated by palm trees e.g. 
Mauritia flexuosa with an undergrowth of perennial grasses 
e.g. bahiagrass (paspalum veredense (PE)) and Abolboda 
poarchon (PE) on gleysols that remain very humid for most 
of the year. 

MAR: 1400–1500mm 
FTC: 20 – 50% 
FBC: 20 – 25% 

Campo humido, 
Estação Ecológica 
Serra Geral do 
Tocantins, Brazil 

Seasonally inundated grasslands dominated by perennial 
grasses e.g. bahiagrass (paspalum veredense (PE)) and carpet 
grass (axonopus canescens (PE)) with sparse palm trees 

MAR: 1400–1500mm 
FTC: 5 – 10% 
FBC: 20 – 25% 
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(Mauritia flexuosa) on gleysols that remain humid for most of 
the year. 

Campo limpo/ sujo, 
Estação Ecológica 
Serra Geral do 
Tocantins,  Brazil 

Grassland savannas dominated by perennial tussock grasses 
e.g. carpet grass (Axonopus (PE), bluestems (Schizachyrium 
(PE) and Crinkleawn grass (Trachypogon (PE) on sandy 
soils. 

MAR: 1300–1500mm 
FTC: 0 – 5% 
FBC:10 – 50% 

Cerrado ralo/ 
Cerrado tipico,  
Estação Ecológica 
Serra Geral do 
Tocantins, Brazil 

Open woodland savanna dominated by perennial tussock 
grasses e.g. carpet (Axonopus (PE), bluestems (Schizachyrium 
(PE) and Crinkleawn grass (Trachypogon (PE) with sparse 
overgrowth of pigeonwood (Hirtella ciliate (SD)), 
earringwood (Rourea induta (SD)) trees on deep sandy soils.   

MAR: 1300–1500mm 
FTC: 0 – 10% 
FBC:10 – 60% 

Kalahari open 
woodland,  
NW Ngamiland, 
Botswana 

Open woodland savanna dominated by tussock perennial 
grasses e.g. digitgrass (Digitaria eriantha (PE)) and sickle 
grass (Pogonarthria squarrosa (PE)) with scattered (5–15m) 
African teak (Baikiaea plurijuga (D)) and silver cluster-leaf 
(Terminalia sericea (D)) trees on sandy hills.  

MAR: 650 – 750mm  
FTC: 0 – 5% 
FBC: 20 – 35% 
 

Kalahari grassland, 
NW Ngamiland, 
Botswana 

Open grassland savanna dominated by tussock perennial e.g. 
Stipagrostis uniplumis (PE) and Eragrostis rigidior (PE) on 
clay soils.  

MAR: 700 – 750mm 
FTC: 0 – 2% 
FBC: 25 – 30% 

Great sandy desert, 
Ngurrara country, 
Western Australia  

Grasslands dominated by spinifex hummocks (Triodia (PE)) 
interspersed with open (5–10m) semi-evergreen Eucalypt 
(SE) woodlands and Acacia (D) shrubs on lateritic swales and 
red sand dunes. 

MAR: 400 – 450mm 
FTC: 0 – 1% 
FBC: 65 – 90% 

Tanami desert, 
Warlpiri country, 
Northern Territory, 
Australia 

Hummock-grass (Triodia spinifex (PE)) dominated grasslands 
interspersed with open (5–10m) semi-evergreen Eucalypt 
(SE) woodlands and Acacia (D) shrubs on sand plains. 

MAR: 500 – 600mm 
FTC: 1 – 3% 
FBC: 50 – 85% 

1 life cycle of the dominant grass species; PE: perennial > 2 years; AN: Annual grasses 
2 Deciduousness of the dominant trees; D: Deciduous, SD: Semi-deciduous, EG: Evergreen 
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Table A2. Spearman correlation matrix for the field measurements and the globally available satellite products. 

Positive correlations are presented in blue while negative correlations are presented in red.  

 

 
 5 

 


