Response of the authors to comments by the reviewers on the manuscript: "Dynamic savanna burning emission factors based on satellite data using a machine learning approach"

We would like to thank the editor, reviewers and commentator on their time and effort spent on reviewing, assessing and improving this manuscript. This document contains the point-bypoint answers to the reviewer comments. A separate 'track-changes' document is included to highlight the changes to the manuscript. Additional explanatory figures which we refer to in the answers are added to the bottom of each section of this document. As the upload requires a single document, the reviewer comments are combined into a single document. The answers to the individual reviewers start from the following pages:

Reviewer 1 (Bob Yokelson):Page 2Reviewer 2:Page 36Community comment 3 (Paul Laris):Page 43

1) Response of the authors to comments by Bob Yokelson

Roland Vernooij (corresponding author) on behalf of the authors:

We sincerely appreciate the considerable time and effort spent in assessing our manuscript, and the detailed and constructive comments which helped to improve the quality of this paper. Please find below our point-to-point response to the review. The revised text and updated figures are included in the updated manuscript.

General comments	Author's response, reasoning and
	comments
1/ A few more sentences describing the	We added the following lines to the
sampled fires and data reduction would be	methodology (P3 L32): "Fires were lit with
helpful. I glanced at the previous	the aim of being representative of EDS
publications and did not quickly find all the	(often prescribed) fires and LDS non-
common or potentially useful details.	prescribed fires. Although some backfires
	were sampled during the initial phase of the
For instance:	fires, the majority of samples were obtained
a/ Were the fires all prescribed?	from the faster 'head' fires, which
b/ How big were they?	consumed most of the biomass. Fire sizes
c/ Were they detected from space as hot-	generally ranged between 2 to 10 hectares
spots or burned areas?	based on UAS drone imagery described by
d/ Were they all lit the same way? (In	Eames et al. (2021), with exceptions of
Brazil we noted that fires were often lit on	some fires that would not light and
opposing sides and the flame-fronts burned	conversely, some fires that burned several
together. Fires were sometimes lit at night	hundred hectares. In the EDS, fire size was
after wind died down.)	primarily limited by environmental
e/ What, in a nutshell, was the sampling	conditions and fires ceased burning as
strategy?	humidity increased overnight whereas in
f/ Were RSC samples collected when	the LDS, fire size was confined by low-fuel
relevant?	areas like burn scars, roads and prepared
	fire breaks. Particularly in the LDS, this
	means a limited fire size does not
	necessarily indicate limited fire intensity.
	Emissions were sampled at altitudes
	between 5–50 m depending on flame height
	for a duration of 35 seconds, resulting in
	0.7 litres per gas sample. On average, we
	took 35 samples per fire. The sampling
	methodology involved taking samples from
	a fire passing a certain point –while
	correcting for wind direction and severity–
	until no more visual smoke passed the
	drone anymore. From earlier work
	(Vernooij et al., 2022a), where we
	compared the average of these
	measurements to results using continuous

	measurements taken at a mast, we have some confidence in the fidelity of this approach. " Regarding point c, we added the following text to the discussion (P15 L19): "Of the UAS-measured fires in this study only 5 of the 45 EDS fires (11%) and 13 of the 65 LDS fires (20%) were registered by MCD64A1 as burned area (while also accepting adjacent pixels and a 4-day time lag) and only 4 of the 45 EDS fires (9%) and 32 of the 65 LDS fires (49%) were registered by VIIRS S-NPP as thermal anomalies (with the center point of the hotspot (including a 1-day time lag) being within a 3.5 km radius of the sample). Depending on the spatiotemporal nature of these omissions, this may affect some of the results in this study concerning the effects
	Chen et al. (2023) indicate that in the savannas, disproportionately more burned area is added in higher tree-cover areas when using higher resolution satellite imagery. Giving more significance to these areas would mean our savanna-wide effective EFs of CO, CH ₄ and N ₂ O would increase, The LandSat and Sentinel based burned area product from (Roteta et al., 2021) performed much better and registered 8 of our 14 EDS fires (57%) and all of our 16 LDS fires (100%) in Botswana and Mozambique in 2019 (while also accepting adjacent pixels and up to a 21-day time
	lag). Due to the fewer overpasses the temporal allocation of this product is less precise with an average time lag of 5.5 days. Figure 10 shows the portion of our EDS and LDS fires that were detected by various satellite algorithms."Figure 10 is also included at the bottom of this document.
How were the data processed into emission ratios (ERs) and EFs? To clarify last question, Yokelson et al., 1999 compared the impact of processing grab samples into ERs and EFs with several different	The excess mixing ratios (EMR, sample minus background concentrations) of the GHG and aerosols were converted to EFs using the carbon mass balance method (Yokelson et al., 1999):

justifiable approaches. Without proving one
approach was best, they found only small
differences among approaches. Similarly,
regarding the authors work, I don't plan to
critique their approach, but it's useful for
posterity to specify the approach used (see
below on RSC for more).

describing the statistical analysis.

$$EF_i = F_c \times \frac{MW_i}{AM_c} \times \frac{C_i}{C_{total}}$$

where EF_i is the emission factor of species *i* (usually reported in g kg⁻¹) and Fc is the fractional carbon content of the fuel by weight (estimated at 50% following Akagi et al., 2011). MW_i is the molecular weight of species *i* which is divided by the atomic mass of carbon, AM_c . C_i is the moles of carbon per mole of species *i* multiplied by the EMR of species *i*. C_{total} is the total number of moles of emitted carbon in all carbonaceous species. Because we did not measure the non-methane hydrocarbons and the chemical composition of carbonaceous particulates, the NMHC and the carbon content of the particulates were estimated based on literature values in order to estimate *C_{total}*; The total amount of carbon in non-methane hydrocarbons was estimated to be 3.5 times the $ER(CH_4/CO_2)$ based on common ratios for savanna fires (Andreae, 2019; Yokelson et al., 2011, 2013). For the bag and mast measurements, we used the PM to CO ratio based on AM520 and CRDS measurements, with carbon accounting for 68% of the PM-mass (Reid et al., 2005a). Overall, the carbon in PM and NMHC constitute respectively 0.5-2% and 0.4-3% of the total emitted carbon. Therefore, the uncertainty from the effect this assumption on the EFs of gaseous species is limited. On average, the PM to CO ratio in our measurements was 0.0946 ± 0.0218 which corresponds well with the 0.0969 ± 0.0403 average for savanna fires (Andreae, 2019). The paper would be easier to comprehend We have added some clarifications to the the first time thru with slightly more plain text (particularly section 2.2.2) where we language and consistent terminology in explain some of the terminology. These specific clarifications will be further discussed in the answers to the detailed comments below. Supplementing the datasets on which the

predictive power to improve air quality forecasts. I.e. could current or forecast temperatures from the global weather services help predict how fires will burn in near real time?	land temperature with ERA5 temperature to achieve more NRT, or even T predictions from CMIP projections can be useful. We added the following statement (P16 L14): "The models are currently trained using meteorological features obtained from ERA5-Land (Muñoz-Sabater et al., 2021) which is available from 1950 to present and has a 2- to 3-month delay. When interested in longer time periods or for near-real-time (NRT) applications these features may be substituted with ERA5 (Hersbach et al., 2020) which is available from 1940 to present with a shorter latency period of 5 days, or even CMIP climate projections. Although supplementing the datasets on which the models are trained with alternative data always comes with additional uncertainty, we found meteorological parameters obtained from ERA5-Land to be in close accordance with ERA5, indicating the two may also be substituted. This means that the EFs
	substituted. This means that the EFs computed using the methodology outlined in this paper can also be used to improve NRT biomass burning emission estimates like those from CAMS-GFAS (Andela et al., 2015; Di Giuseppe et al., 2016)."
Somewhat related to #3 above, can the computational burden be specified of using the author's full-scale approach or partial implementation? How much easier and how relatively accurate is simply using EDS and LDS EFs?	We found that a binary (EDS vs LDS EF) approach is not justified given the gradual changes over time we observed. To make sure data users are not burdened with an overload of information we will provide NetCDF files with daily savanna EFs for various species as well as MCE which will be part of the Global Fire Emissions Database version 5 we are currently working on.
What is the error in the satellite proxies and how does propagated error in the dynamic EF compare to the impact of switching to dynamic EF?	The reviewer brings up a valid point; satellite proxies carry uncertainty and we do not account for this when building our models. We cannot provide a definitive answer but would like to note two things. First, we warn against substituting data sources to avoid biases in these to start playing an important role. Right now, if there is a bias in a dataset this will not matter. Clearly this does not count for

	misinterpretation or uncertainty in general.
	for large-scale modelling approaches and to
	some degree it is difficult to properly
	account for given that the uncertainty of the
	large scale datasets is uncertain. From our
	perspective, we feel the errors are small
	enough to be sure about the key findings
	such as lower EEs in dry regions and higher
	in wetter regions, but they clearly matter
	We have inserted a statement on this (P15
	I 32): "The meteorological parameters
	obtained from the ERA5-I and dataset carry
	uncertainty This uncertainty becomes
	higher when going back further in time due
	to a decrease in validation data. To what
	extent uncertainty propagates to the FF
	predictions varies depends mostly on
	whether there is a bias that was also present
	in the training data or misinterpretation or
	uncertainty in general. As this model is
	trained using specific datasets, these
	datasets should not be replaced by other
	sources without evaluating the consistency
	of that source with the training data. FTC
	and FBC, based on MOD44Bv006 were
	found to be strong predictors of BB EFs.
	However, intercomparison with Tropical
	Biomes in Transition (TROBIT) field sites
	in African, Brazilian and Australian
	savannas has shown that this product
	consistently underestimates canopy cover in
	tropical savannas by between 9 to 15%
	(Adzhar et al., 2021). Products based on
	higher-resolution satellite retrievals (e.g.
	LandSat and Sentinel) have the potential to
	further enhance the spatial resolution of the
	EF estimates to include small landscape
	features and thus become more
	representative. Although all satellite data
	comes with some uncertainty, we feel the
	errors are small enough to be sure about the
	key findings such as lower EFs in dry
	regions and higher in wetter regions, but
	they clearly matter."
During a recent field campaign, we found	We agree that there is much ambiguity on
that one of the global vegetation products	what constitutes "savanna". We also found
mapped a pine forest and an alpine	that some of the fires we lit in protected
TITTE TITTE TO	

wilderness area to savanna and agriculture respectively. Simple added info would be useful such as: do all the author's savanna fires show up as being in a savanna in the remote-sensing products?	areas got marked as "croplands" in the IGBP classification of the MCD12Q1 product. These classes are listed in column BC "MOD_vegtype" of the Excel sheet for each sample. When aggregating to larger pixels, the land use classification was based on the dominant type in the 0.25° grid cell, meaning some of the nuance is lost. An important side note –too often forgotten when upscaling to global models– is that most samples (whether they are EFs or fuel loads or combustion completeness), are obtained in protected and relatively undisturbed areas. However, most of the area classified as savanna is not. We added the following statement (P10 L33): "Using the IGBP classification, our samples were classified as "Woody savannas" (24%), "Savannas" (42%), "Open shrubland" (21%), "Grassland" (4%), "Cropland/Natural vegetation mosaic" (6%) and "Croplands" (1%). The latter two classes are misclassifications and were all situated in protected areas with no crops. These classes are listed in the accompanied dataset (Vernooij, 2023)."
There is also considerable difficulty/uncertainty in field-measured fuel consumption, etc. Easier than adding many columns for uncertainties would be at least generic uncertainties in the table explaining the data set. The error bars in the figures do look generous to the author's credit. Again, it might be worth stating how the local variability compares to full, propagated uncertainty?	Just as with the comment above, we agree but do not have a fully satisfying way forward. Some of these issues also play a role when building other components of GFED and in the end often an aggregated expert-judgement uncertainty estimate is used.
CH4 is exceptionally dependent on MCE, but not all important emissions are as seen	That is correct, in this paper we only present the results for the emission species
in Yokelson et al. (2003) and other work including Andreae 2019.	that were directly measured. However, as some species may be scaled using MCE as
	you show in Yokelson et al. (2003), we will also add MCE to the downloadable data
	files in the future.
time as local time	to the column name

The spreadsheet seems not to include background samples. ERs and background values can be derived from slopes and intercepts, respectively. By subtraction of the "_em" column from the "_abs" column, it appears there was a fixed background for each fire. These backgrounds are interesting in themselves. For instance, one fire had a background of 0.17 ppm CO, which is pretty low compared to the 1-5 ppm CO background that can occur during regional smoke episodes during peak fire season.	This is correct. Shortly before lighting the fire, four background samples were taken at 15m. The average mixing ratio of these samples is then taken as the background for all the samples in that fire. In the revised Excel table (provided in the zenodo file) we have included the background values pre-fire in a separate sheet. Particularly for CO ₂ and N ₂ O (mostly due to the low signal) they fluctuate significantly compared to the excess mixing ratios in the samples.
As we also see by FTIR (but don't report), there were negative N2O emissions and EF at times. How were these negative emissions handled in further data processing?	We found that the Aeris Pico analyzer was less accurate at low concentrations due to temperature and pressure stabilization issues which are now addressed in the "Ultra" model which was not yet used in our work but will be in future work. In Vernooij et al. (2021)'s Figure 11 we show this issue is mainly important at low carbon EMRs where we find both high and low N ₂ O EF extremities. As mentioned in P8 L7, we excluded samples which contained less than 10 moles of total carbon emissions for the calculation of the WA N ₂ O EF as we deemed these samples too uncertain. It is very interesting that you also find negative N ₂ O emissions in your FTIR measurements. Besides measurement error, could N ₂ O consumption in flaming combustion (Winter et al., 1999) be a cause? In our work we ignored this and assumed it is mostly a measurement error which cancels out when taking multiple samples.
There are a number of non-physical values in the spreadsheet easily found by plotting the columns in a line chart. E.g., rows 2209-2211, 2353, and especially 2382 and 3116. These data were presumably not used in the training or validation and might be removed?	Indeed, samples with negative emissions for CO_2 , CO or CH_4 were omitted from the training and validation data for the further analysis. We have now deleted them from the spreadsheet to avoid confusion.

The letter and number convention for the sample names, does it have any significance that should be explained?	These codes refer to flight and sample numbers of the individual bags. Although we used them to allocate times and coordinates and use comments, they do not have any further role in the analyses. In the "dataset explanatory table" provided in the zenodo link, we added a description of the letter and number convention of the sample and fire names. Since they combine with notes, photos, lab results, etc., they are mainly helpful for us if someone has questions regarding certain data.
Why are EF calculated for the cals?	This is indeed an error in the script. Since the calibration samples are filtered out for the statistical analysis, these EFs do not affect the models. In the new version we have removed EFs for the Cals.
Why is no date/time given for the cals?	The date and time in the sheet refer to the date and time of sampling which are logged by the sampling unit on the drone. Since the calibration gas bags are manually filled from a canister on the ground, sampling date and time are not logged. They were filled before starting the analyses around sunset on the same day of the fire.
Why are the cals not all the same or nearly the same? Were there different calibration mixtures or does the scatter reflect the precision?	There was indeed more scatter in the calibration samples than the measurement precision (provided by the manufacturers) indicates. To mimic the measurement method, we have first filled bags with the calibration gas and then fed them into the analyzer rather than straight from the canister. Uncertainties may thus relate to both the measurement precision and the sampling. Average calibration values (\pm std) measured in the field were: CO ₂ : 4732 \pm 128 CO: 102 \pm 7.3 CH ₄ : 15.1 \pm 0.36 N ₂ O: 1.14 \pm 0.047 We have added the following to the discussion (P13 L17): "The difference in the mean calibration value compared to the

	1.32% for CO, -3.97% for CH ₄ and -1.28% for N ₂ O. Although the measurements were linearly correlated using the calibration bags for the individual fires, the standard deviations between the calibration samples were 2.58% for CO ₂ , 7.06% for CO, 2.32% for CH ₄ and 4.04% for N ₂ O, indicating larger measurement uncertainties than reported by the manufacturers, which possibly arises from the bag methodology."
I was surprised that field-measured temperature had poor correlation with the satellite temperature in Table 4. Then I noticed in the spreadsheet that the temperatures measured on the drone correlate with CO2. In general, the temperature, RH, and VPD seem to be measured in the convection column at times where they would reflect the heat and water production of the fire, rather than an ambient air value that would influence fire behavior. If this is the case, I suggest replacing sample-specific values from the drone with one best ambient value per fire and (if not already done) seeing how that correlates with measured EF and remote- sensing products. Or did the authors use pre-fire met data measured differently or on the drone during the pre-fire cal and that data is available somewhere else? For example. Picking one fire randomly, EDS19_3 on a June afternoon in Mozambique, one notices that Tsat is close to the climatological average high for June in Maputo (26 C), but is well below the lowest Tdrone (33.57 C). Is that a shade versus sun-exposed thing? Was there a Tdrone during a cal or background that is more appropriate? Further, VPDsat is only close to VPDdrone at minimum Tdrone suggesting combustion products make VPDdrone not representative of ambient VPD unless a VPDdrone measured in background air was actually used? Likewise the RH comparison reveals differences.	That is correct, the values listed in this column were logged using a temperature sensor on the drone (a safety feature) and are in no way representative of the general conditions without fire. Although we at some point reprogrammed it to also log T and Rh after changing batteries this often occurred in still hot burn scars and we found these values were also not helpful. The only thing these values represent is the conditions under which the sample was collected. These values were not included as predictor features in the models. To avoid confusion, we will remove the columns from the data sheets.

In the LGR N2O-CO instrument, the N2O	To help address this concern, we contacted
data needs to be corrected for CO and the	Dr. Jerome Thiebaud from AERIS, who
correction only works up until 5ppm CO.	explained it this way:
This is because at high CO values, the CO	
line broadens enough to interfere with the	The following statement may be true at the
N2O line. In general, the strongest N2O	LGR wavelength in the near infrared, but
band is overlapped by water, CO2, and CO	not at the Aeris wavelength in the middle
(and other gases). The CO values in the	infrared:
author's spreadsheet are in the 100s. The	"This is because at high CO values, the CO
manufacturer of the author's N2O	line broadens enough to interfere with the
instrument (AERIS) product literature	N ₂ O line. In general, the strongest N ₂ O
claims to use an interference-free, but	band is overlapped by water, CO ₂ , and CO
unspecified, alternative spectral region and	(and other gases)."
have an upper limit of 500 ppm for some	
unspecified molecule (probably CO?).	The Aeris gas analyzer operates at low
Kudos to the authors for not using LGR for	pressure to minimize spectral congestion
N2O, but I am curious if the authors have	and near a wavelength of 4.5 microns
any evidence against or for CO interference	where N ₂ O absorption lines free of any
in their N2O data? I am not assuming issues	interference (including from water, CO ₂ ,
exist, but if they can be ruled out, it would	and CO) can be measured in typical
be worth mentioning as N2O is an	atmospheric gas mixtures.
important, but undersampled fire emission	
	We did not find any evidence of
	interference. But unfortunately, we do not
	have access to calibration gases with known
	N ₂ O mixing ratio and varying CO mixing
	ratios to test this.

In the line-by-line comments, the table below only includes the comments that required some additional explanation or answer. In all other cases, we took over the reviewers' suggestions which are revised accordingly in the 'Track changes' document.

Reviewer 2, Bob Yokelson line by-line	Author's response, reasoning and
comments	comments
2/1 Not 100% sure what is meant here. It	Not entirely, what is meant is that in your
almost reads like the biome average EF is	example the absolute error would be 1.5 -
60-85% off on average. I think you mean	4% (below or above average) instead of
e.g. if a measured fire had an EF 10%	10%. We have changed the sentence to (P1
below the biome average EF, the satellite-	L38): "RF models using satellite
based recalculation of the EF would be ~6-	observations performed well for the
8.5% below the biome average?	prediction of EF variability in the measured
	fires with out-of-sample correlation
	coefficients between 0.80 and 0.99,
	reducing the error between measured and
	modelled EFs by 60-85% compared to
	using the static biome average."
2/3 change in CO2 totals? (expect small)	The difference in CO ₂ emissions over the
	entire timeframe was -0.2% compared to

	the static EF average. We added this to the
	text (P2 L3).
2/2-3 It's amazing that the global totals	This was indeed surprising to us,
based on average biome EFs were within	particularly since our measurement
1.8 to 18% of global totals using dynamic	averages (overrepresented by xeric regions)
EFs. The difference is much smaller than	suggested much larger deviations.
the uncertainty in almost any other thing.	
However, it should be clear what biome	The 'static average' we compare with are
average EFs are employed here. Probably	the GFED4s EFs which are not updated
the old literature average? Also, is good	with current literature. However, for these
agreement seen every year or just for the 14	species and savannas, these are similar to
year total?	those proposed for FINN 2.5 (Wiedinmeijer
	et al. (2023) preprint).
	When comparing to the EFs suggested by
	Andreae (2019), the differences would be
	larger. We added the following text (P11
	L7): "Both our measurements and the
	savanna biome averages in literature
	compilations (e.g. Akagi et al., 2011;
	Andreae, 2019) are subject to sampling bias
	when representing global savannas. A
	disproportionate number of field studies are
	clustered around reactively accessible
	locations with a well-developed research
	infrastructure, whereas other fire-prone
	areas lack direct field measurements. Rather
	than comparing the average of our savanna
	measurements to the literature averages, we
	the DE model and subsequently coloulated
	the emissions for the entire sevence hieres
	We then divided these annual emissions by
	the consumed biomass from GEEDAs to get
	the appual consumed biomass weighted
	average EEs, which we will further refer to
	average Ers, which we will further fefer to as the "effective" EFs. Over the 2002 2016
	period the effective EEs over the savanna
	biome were 1685 ± 5 for CO ₂ 64.3 ± 0.6
	for CO 1.0 ± 0.0 for CH, and 0.16 ± 0.00
	for N ₂ O with the number in the parentheses
	indicating the interannual standard
	deviation In Table 4 we compare the
	effective average EFs over the 2002-2016
	period calculated by our model to the static
	average EFs for savanna and grassland
	vegetation used by GFED4s and those
	suggested by Andreae (2019) and
	Wiedinmver et al. (2023). Table 4 also lists
	the average EFs of the UAS measured fires

	and the average EFs of all included fires (including literature studies). Except for N ₂ O, the differences between the effective EFs compared to more recently updated static EFs from Andreae (2019) were larger (+1.3% for CO ₂ , -7.1% CO, -31.4% CH ₄ and -3.7%) than the differences compared to static EFs from GFED4s.
Ultimately, the paper could compare the old literature average EFs to the evolved literature average EFs that include the author's new data, and the average EFs based on just the authors new work. I.e. how much impact does this study have on averages? Finally, in addition to predicting measured EF better, it would be interesting to know if the use of dynamic EFs also better predicts downwind impacts, but that might be another paper.	Many thanks for the great suggestions. As mentioned in the paper, the averages of our own measurements deviated more from the previous static averages than the 'effective EFs' listed above. This is mainly because a disproportionate number of our measurements were done in Xeric savannas. We feel this sampling bias makes it unwise to add our samples to the biome average without weighing (i.e. the effective savanna EF). Given the comments above about uncertainty we are also more careful now in stating the the biome-average values is different.
	Upon request these effective EF averages can also be calculated for individual regions or timeframes (e.g. EDS vs LDS). We hope that our work will encourage researchers to step away from using average values.
	These emission factors have been used in a paper which compares bottom-up and top- down (TROPOMI) data which provides encouraging results (Van der Velde et al., in preparation) and will become part of GFED5
2/5-6 Did not the authors observe that CO and CH4 EFs decreased with drying in xeric grasslands, but increased with drying in mesic woody savannas? Also " annual average savanna fire"	That is indeed the case, we changed the sentence to (P2 L5): "Over the course of the fire season, drying resulted in gradually lower EFs of these species. Relatively speaking, the trend was stronger in open savannas than in woodlands where towards the end of the fire season they increased

2/7 Are there just reductions? There is good	Indeed, the models also predicted increases.
agreement on totals so there should also be	Since average CH ₄ and particularly N ₂ O
localized increases. In general, from the 1-	EFs were lower, the largest localized
sigma standard deviation in literature EFs	deviations were reductions.
we expect +/- 40% variation in EFs fire-to	
fire 1-sigma.	We changed the text to (P2 L7): "Contrary
	to the minor impact on annual average
	savanna fire emissions, the model predicts
	localized deviations from static averages of
	the FFs of CO CH_4 and N ₂ O exceeding
	60% under seasonal conditions "
2/15 60% of net emissions? Could	We clarified the text (P2 I 15): "They
deforestation and peat he more important in	estimate that due to their high burning
the C sycle if minimal regrowth?	frequency, savennes account for roughly
the C-cycle if infinitial regiowin?	60% of the group (i.e. not considering
	60% of the gross (i.e. not considering
	regrowth) global carbon emissions from
	biomass burning (BB)."
2/26-28 There are many direct field	We changed the text to (P2 L26):
measurements and they quantify overall	"Although there are many direct field
variability, but previously we could not	measurements and they quantify overall
account for the total variability with	variability (as summarized in for example
quantitative contributions from very many	Akagi et al., 2011 and Andreae, 2019), to
specific factors. Previous studies targeted	date we cannot quantify how specific
the average and variability, but not the	factors such as moisture content impact EFs
causes of variability.	(van Leeuwen and van der Werf, 2011)."
3/25-26 Could other real-time data besides	Our aim, for the implementation in global
that from satellites be useful?	emission inventories, was to have a global
	coverage over a considerable timespan (at
	least the MODIS era). Any dataset with a
	record long enough to train models and
	NRT availability can be useful.
	Supplementing the datasets on which the
	models are trained with alternative data
	should be done carefully to avoid biases.
	However, substituting for instance ERA5-
	land temperature with ERA5 temperature to
	achieve NRT capacity, or even T
	predictions from CMIP5 projections as you
	suggested can be useful for NRT
	applications.
4/23 The pre-fire met data mentioned here,	That is correct, the pre-fire conditions were
where is it? The spreadsheet has non-useful	logged in a similar fashion but using the
met data collected in the fire convection	background measurements before the fire
column.	was lit. Although we started logging the
	windspeed, temperature and relative
	humidity using a Kestrel fire weather
	sensor, that was only true for the very last

	experiments and not useful to analyze the full record.
	In the revised Excel sheet, we added the
	background data including the relative
	humidity and temperature when available.
4/35 One naturally wonders here if the	As previously stated, we added the
authors field environmental data can be	following text (P15 L17): "Of the UAS-
used for insight into the accuracy of the	measured fires in this study only 5 of the 45
global satellite products and were their fires	EDS fires (11%) and 13 of the 65 LDS fires
detected by the satellite products GFED4s	(20%) were registered by MCD64A1 as
uses?	burned area (including adjacent pixels and a
	4-day time lag) and only 4 of the 45 EDS
	fires (9%) and 32 of the 65 LDS fires (49%)
	were registered by vIIRS S-NPP as thermal
	hotspot (including a 1-day time lag) being
	within a 3.5 km radius of the sample).
	Depending on the spatiotemporal nature of
	these omissions, this may affect some of the
	results in this study concerning the effects
	of the EF dynamics on total emissions.
	Chen et al. (2023) indicate that in the
	savannas, disproportionately more burned
	area is added in higher tree-cover areas
	imagery Giving more weight to these areas
	would mean our savanna-wide effective
	EFs of CO, CH_4 and N_2O would increase.
	The Sentinel-2 based burned area product
	from Roteta et al. (2021) performed much
	better and registered 8 of our 14 EDS fires
	(57%) and all of our 16 LDS fires (100%)
	in Botswana and Mozambique in 2019
	(including adjacent pixels and up to a 21-
	the temporal allocation of this product is
	less precise with an average time lag of 5.5
	days Figure 10 shows the portion of our
	EDS and LDS fires that were detected by
	various satellite algorithms."
5/7 Impressive set of products. Is it easy to	Our aim was to have a global coverage for
explain why no VIIRS or geostationary?	the implementation in global emission
Not available as long? Useful going	inventories (using a uniform approach)
forward?	while covering at least the MODIS era to
	look at global trends. Therefore, we did not
	stage
	54450.

	However, since all our own measurements are from the VIIRS era the models can be trained using VIIRS data as well going forward. As only 4 of the 45 EDS fires (9%) and 32 of the 65 LDS fires (49%) were registered by VIIRS S-NPP as thermal anomalies, including VIIRS as a feature would therefore result in a lot of missing values which then have to be removed from the training data. We added a sentence to the text (P5 L15): "We used remote sensing products based on retrievals and reanalysis data with sufficient spatial and temporal coverage, primarily using products based on the Moderate Resolution Imaging Spectroradiometer (MODIS). This meant that at this stage, we did not include data
5/8 Were all the samples of a fire usually in the same feature pixel?	For the courser features like ERA5-land this was the case, although feature values may differ between samples based on their timestamp. For the MODIS derived features the samples of the individual fires covered 1 - 13 pixels with an average of 2.5 pixels per fire.
5,/15 Is it easy to explain why not using historic NDVI range?	We are not sure whether we fully understand the question, but we focused on Pgreen. Pgreen is the NDVI before the fire, relative to the NDVI range of the pixel throughout the year. As further explained later, the reason this did show us as a strong indicator may be the pixel misrepresentation of the actual burned vegetation.
5, 25-26, TRMM useful for rainfall?	Since TRMM was in operation from 1997 to 2015 and our measurements are done between 2017 and 2022, TRMM rainfall cannot be used to train our models. We have experimented using IMERG data for rainfall but decided to use ERA-land as we were more interested in consistency for broader patterns than highly accurate readings.
5/30-31 risk or behavior or both? Are any ideas in the "hot dry windy index" useful as predictors here?	Many thanks for the suggestion. We were not familiar with this product and will surely include it in updates. The individual parameters that go into the DHW (VPD and windspeed) were included in training the

	models and were (not surprisingly) found to be strong predictors.
5/34-35 Is the daily cycle of fine fuel moisture captured? Was FFMC compared to the author's field-measured fine-fuel moisture data?	No, although we did include the diurnal cycle of VPD, ESI, T, WS and RH. However, FFMC was obtained from EFFIS CEMS, at a daily resolution. The FFMC compared very poorly to our measured weighted average fine fuel
	moisture content with a Pearson correlation coefficient of -0.36. This may explain why in itself (not as part of FWI), the FFMC was never assigned as one of the main EF predictors by the models.
6/6 How does spatial resolution of the fire severity proxies (dNDVI etc.) compare to the size of fires? If the fire is smaller, then is the signal diluted? Would a small severe fire look	Mismatch of the burned vegetation and the pixel retrieval is indeed an issue for these features.
6/10. 20 What is "a management with a	We added the following text to the discussion (P15 L2): "Fire intensity proxies (dNDVI and dNBR from MODIS) were poor predictors for the EFs. A potential explanation is that these features were at times heavily diluted, as many of the measured fires only affected part of the pixel. Similar misrepresentation errors can be expected for the NDVI before the fire, FPAR and the Pgreen. Particularly in the LDS, we were often limited to areas that were enclosed by recent fire scars (0-2 years) or other non-flammable boundaries. Although these areas were sizable (several hectares) many of the retrievals in these pixels may poorly represent the burned vegetation. Along with inconsistent retrievals related to cloud cover, this may be an important reason why these features were deemed poor predictors by the models while seen as strong predictors in previous research (Korontzi et al., 2004). Higher resolution features may increase the representativeness of the pixels for the actual burned vegetation."
6/19-20 What is "a measurement with a missing value of an included feature"? Do you mean you did not use EF measurements if even a single associated satellite product out of the whole set was missing?	That is indeed what we meant. The models cannot deal with missing values. We decided to drop those measurements rather than using average feature values as this could distort the relations. This was only an issue when including the full set of features

	to decide the most important predictors. For training the eventual models we used a subset of five features. This had both the benefit of reducing the requirements for data availability and computational demands. These features did not have missing values.
6/21-22 What does "resampled using ten-fold cross validation while allowing sample replacement (i.e., bootstrap method)" mean? Can a simple plain language explanation be added?	Ten-fold cross-validation is a technique used to evaluate the performance of a random forest model by splitting the training data into multiple subsets or "folds". The entire dataset is divided into ten equal-sized parts or folds. The random forest model is trained and evaluated 10 times. In each iteration, one fold is used as the validation set, and the remaining 9 folds are used as the training set.
	By using ten-fold cross-validation, we can get a more robust estimation of how well the random forest model performs on unseen data. It helps to reduce the bias that may arise from using a single train-test split and provides a better understanding of the model's generalization capabilities.
	Random forests are ensemble models that combine multiple decision trees to make predictions. The bootstrap method starts by randomly sampling the original dataset with replacement. This means that for each sample in the dataset, there is an equal chance of it being selected more than once or not selected at all in the bootstrap sample. This also helps to create an ensemble of diverse decision trees and contributes to the model's robustness and generalization capabilities.
	We changed the text to (P6 L31): "We removed measurements with missing values for any of the included features. The remaining data was divided into training (70%) and validation data (30%), and the training data was resampled using ten-fold cross validation. This means that the training dataset is divided into ten equal- sized parts or folds. The random forest model is trained and evaluated 10 times. In each iteration, one fold is used as the

	"temporary validation" set (different from the 30% which is not included in the training data), and the remaining nine folds are used as the training set. The folds are created while allowing sample replacement (i.e., bootstrap method), meaning that for each sample in the dataset, there is an equal chance of it being selected more than once or not selected at all."
6/22-23 Explain that "hyper parameter" refers to the most influential parameters?	Hyperparameters refer to the settings or configurations that determine how the random forest algorithm operates. These parameters are not learned from the data but are predefined by the user before training the model. These are for instance the number of trees, tree depth and number of features per split. These features depend on the amount and variability in the data and are used to avoid overfitting.
	We changed the text to (P6 L39): "The hyper parameters (model configurations like number of trees, minimum samples per leaf, maximum features, etc.) were tuned using the scikitlearn "GridsearchCV" algorithm (Pedregosa et al., 2011)."
6/28-30 This is hard to follow. How would an EF require a resolution and how would that be computed? Overlap is within or between features? Do you mean some fires were bigger than or occupied more than one grid cell in the original feature (note we have slipped into calling remote-sensing proxies "features" for short), so you averaged, or extrapolated, or built a new grid for each fire such that the fire was centered in a single grid cell? Sometimes a few extra words can help a lot!	We rewrote this section to make it easier to follow (P7 L6): "To assess the impact of EF dynamics on emission estimates, and study global spatiotemporal patterns, we developed gridded EF layers that can easily be incorporated into existing emission inventories. The remote-sensing proxies ("features") were resampled to the required spatial resolution by simply averaging the values of the relevant gridcells. For example, to compute the 0.25° fraction tree cover feature, we averaged the fraction tree cover of all 500-meter pixels classified as savanna or grassland."
6/32 How can an EF have a temporal resolution? Are the EFs referred to fire- average or sample-specific? Is the daily cycle in RH and fine fuel moisture considered?	This refers to the gridded product. We clarified the text to (P7 L14): "The temporal resolution of the computed gridded EFs in the example of Fig. 2 is daily, in which the day-to-day EF dynamics are being driven by daily variations in VPD, FPAR, FWI and soil moisture."

	The BA data we used to calculate global emissions using GFED4 is daily. Therefore, it did not make sense to calculate our EFs at higher temporal resolution.
	However, in calculating the daily EFs, we did consider the daily cycle for RH, VPD and T. As we state later in the text (P7 L17): "For features with a typical diurnal pattern, we therefore weighed the hourly meteorological data by the average diurnal fire profile in the respective month for the grid cell. This diurnal fire profile was based on the three-hourly fractions of daily emissions obtained from GFED4.1s, which is based on the timing of active fire detections from both MODIS and geostationary satellites (Mu et al., 2011; van der Werf et al., 2017)."
	This means rather than taking the average daily average, the daily averages were weighed by when fires in the grid cell typically occur at that time of the year.
6/40 " savanna fire emissions" Were the dynamic EFs calculated using global products and RF?	Correct, we changed the text to (P7 L21): "To study the impact of EF dynamics in savannas, we calculated monthly global savanna emissions by multiplying the dynamic EFs computed by our models with dry matter consumption from GFED4s (Randerson et al., 2012; van der Werf et al., 2017) at 0.25° spatial resolution, for the 2002-2016 period (the period for which MCD64AC5 as used in GFED4s was available)."
7/15-16 How were samples with negative N2O emissions treated when calculating fire- average N2O emissions?	For samples with a total increase in carbon below 10 moles, the increase was calculated as: $AC = \int_{0}^{EMR_{CO_2}} e^{EMR_{CO_3}} e^{EMR_{CH_4}}$
	$\Delta C = \int \frac{MM_{CO_2}}{MM_{CO_2}} + \frac{MM_{CO}}{MM_{CO}} + \frac{MM_{CH_4}}{MM_{CH_4}}$ We did this to avoid the (assumed) measurement error found in very low signal samples following Vernooij et al. (2021).
	Because these samples had low EMRs and the fire-averages are calculated over the cumulative EMR in all the bags, their

	omission did not significantly affect the
	fire-averaged N ₂ O emissions.
7/19-20 Clarify this is the Andreae 2019	That is correct. We changed the text to (P8
average and not the average of the 85	[1.2.): "The relatively small range in the
measurements used from other groups?	boxplot describing previous savanna
Otherwise, how do you get locations for	literature (Fig. 3 red box based on studies
study-average or vegetation average	listed by Andreae (2019)) may be attributed
emissions (unless one fire in study)?	to the fact that most studies report either
	fire-averages vegetation type averages or
	even study everyges, whereas the other
	boxplots based on our measurements show
	the verificity observed between individual
	the variability observed between individual
	samples.
//23 substantial variability in fire-averages or	The boxplots represent the variability in the
samples?	individual samples. To some extent, this
	variability also translated to fire averages
	but that is not shown here. To prevent
	confusion, we changed the text to (P8 L8):
	We observed substantial variability within
	EF bag samples from different savanna
	ecosystems."
7/24-25 The higher CO and CH4 EFs in	Thanks for pointing this out. The higher CO
woody savanna is supported in previous	and CH ₄ EFs were indeed in line with
(2004)	previous literature and expectations. We
(2004).	added the reference to the discussion.
FWIW the Miombo fire was included in the	
tropical dry forest category in Akagi et al but	
it was also a small part of a savanna fire	
study-average used in the savanna category.	
7/25 Taking this to mean the authors study-	Correct, that is the average of all our
averages were lower than previous literature	measured fires. It should be noted that the
averages.	aim of our campaigns was to cover
	spatiotemporal variability rather than
	getting a representative average of all fires
	in the savanna biome. The biome-average is
	not the same as our sampling average
	because we oversampled xeric regions. The
	relatively low EFs we measured are
	therefore to be expected. The issue with
	sampling bias is also true when taking study
	averages like Andreae (2019).
7/29 by "seasonally inundated grasslands" do	Correct, we changed the text to (P8 L14):
you mean aka dambos?	"In humid areas like dambos (seasonally
	inundated grasslands) and riverine forests,
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
8/2-3 Any benefit to comparing the authors	The fuel measurements are definitely very
fuel measurements to similar measurements	interesting in itself and will be further

by Shea et al (1996) and Hoffa et al (1999) and others? Shea, R. W., Shea, B. W., Kauffman, J. B., Ward, D. E., Haskins, C. I., and Scholes, M. C.: Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys Res., 101(D19), 23551–23568, 1996.	studied, and used in different applications (e.g. to inform DGVMs and emission inventories). In this paper, however, the goal was not to look at fuel in detail but rather to use those measurements to explain patterns in EFs and EF-satellite correlations, so we only discuss them briefly. We added the following text (P13 L34):
	We added the following text (P13 L34): "Measurements of fuel loads were higher than previous measurements from African savannas described by Shea et al. (1996). They found average fine fuel loads (litter and grass) of 3.8 tonne ha ⁻¹ in moist Miombo woodland. In semiarid Miombo woodland they found 3.1 tonne ha ⁻¹ , In comparison we found 5.6 tonne ha ⁻¹ in Mozambican Miombo woodland and 5.6 tonne ha ⁻¹ in Zambian Miombo woodland. The percentage of grasses in these fuels was similar; Shea et al. (1996) reported 24% in moist Miombo woodland and 18% in semi- arid Miombo woodland whereas we found 37% in Mozambican and 18% in Zambian Miombo woodlands. The combustion completeness of these fuels was slightly lower in our fires at 50-80% versus 80-92% reported by (Shea et al., 1996), albeit that
	the lower values in this range occurred in the EDS. Combustion completeness of shrub leaves and course woody debris were in the same range. For dambo grasslands our fuel loads were also much higher at 6.2 (± 2.16) tonne ha ⁻¹ of which 99% grass versus 3.1 tonne ha ⁻¹ from Shea et al. (1996). Although these differences are large, they may be attributed to the significant natural variability in productivity and decay related to water availability, fire frequency, and termite and grazing activities in these natural landscapes."
8/4 What is meant by "corresponding mixtures of fuel age"? In Table 3, why was a higher percent of the heavy fuels consumed in the EDS in Australia, unlike elsewhere; maybe lit more aggressively?	By "the columns do not necessarily represent corresponding mixtures of fuel age" we mean that for some vegetation types or season, we may have more measurements of older fuels than for others. This may affect things such as litter load,

	nitrogen content, etc. regardless of the seasonal effects. We changed the text to (P8 L32): "For some characteristics (e.g., the total fuel load), it is important to note that the measurements in the different vegetation types do not necessarily represent identical mixtures of fuel age. The higher fuel loads open savannas in Australian compared to Botswana, may be partially attributed to the longer fuel build- up."
	We also added the average time since the last fire to Table 3.
	Fires were lit in similar fashion in the different vegetation types, including those listed in Table 3. In the Australian sites, grasses were very dominant and abundant and heavy fuels were scarce. The sample size of heavy fuels being very low may also explain why this deviated so much from the other areas.
8/10-13 I'm pretty sure that increased RSC and increased CO and CH4 EFs in the LDS in wooded savannas is already in the literature but haven't found the reference. Maybe Hoffa or Korontzi?	The measurements described by Hoffa et al. (1999) are all performed between June 5 th and August 6 th and therefore miss the period we refer to. Korontzi (2005) does indeed predict a slight increase (recovery) in CO and CH4 EFs from September to October (Fig. 11) for both woodlands and grasslands. This increase, however, is very small compared to the overall pattern and EFs are still much lower compared to EDS values. Contrarily, we found EFs that were higher in LDS woodland fires compared to EDS fires.
8/32 For Table 4, clarify which field- measured met data were compared to satellite met data, preferably NOT drone data in fire- processed air! However, Table 4 seems to specify that T and RH from the drone were used, which could be okay if NOT when drone was above the fire, but instead in	The drone data during the fire are indeed not indicative of environmental conditions, but rather sampling conditions. In Table 4, we replaced the temperature and relative humidity with the values taken while making background measurements.
ambient (background) air. Then again, currently, it's odd that the satellite temperature and drone temperature are weakly positively correlated at 0.18 while satellite temperature is most strongly correlated with field measured nitrogen content in the grass (perhaps a seasonal coincidence?).	Background measurements were obtained before the fire which can be several hours earlier than the latest samples. As both T and Rh are strongly diurnal, these values may not always represent the environmental conditions during the fire. With respective spearman correlation coefficients of 0.21 and 0.45 for T and Rh compared to their

	ERA5-Land counterparts, correlation was slightly higher but still not great.
8/31-33 This text and Table 4 could be clarified with slightly more precise and consistent terminology. I think Tab 4 shows how the <i>field measured-ecosystem attributes</i> correlate with the field-measured MCE and EFs and also how the <i>field-measured</i> <i>ecosystem attributes</i> correlate with the satellite products, but NOT how satellite products correlate with field-measured EF or how anything correlates with model- calculated EF? At this point in the paper, evidently, calculated EFs vs measured EFs and the sensitivity of calculated EFs will be discussed elsewhere.	We changed the title of Table 4 to: "Table 4. Spearman correlation matrix for the field-measured-ecosystem attributes and the fire-averaged emission factors and MCE as well as the satellite products used in the study. Positive correlations are presented in blue while negative correlations are presented in red." Also, we added Table A2 to the appendix (Table 1, in this document below) which shows how satellite products correlate with field-measured EF or how anything correlates with model-calculated EF.
9/4-5 I'm taking this to mean that 70% of field-measured EF were used with "features" to train the RF model and the RF model then used features to predict EF for the other 30% of field measured EF (out of sample means fires not in training set) and performed well in terms of r-squared. Could give the slope too? Is the training set randomly selected or varied run to run?	Correct. The out of sample performance refers to the comparison of the 30% validation data against the modelled EFs based on the validation data features. These data were not included in training the model. The train-test split was randomly selected although the "random state" was then fixed. Rather than to optimize the results, this is done to make sure the models can be reproduced
9/5-7 Is there a simple way to connect feature importance and the concept of hyper parameters? Is "impurity decrease" essentially a fraction of total variability?	The feature importance is calculated as the total reduction in the node impurity that a feature contributes to when it is used for splitting in all the individual decision trees. This impurity is calculated as the probability of misclassifying a randomly chosen data point within that node. The feature importance provides an overall measure of how much each feature contributes to the predictive power of the entire RF model. Hyperparameters are unrelated to the features used as predictors or the feature importance but refer to the settings or configurations that determine how the random forest algorithm operates.
9/8 The red line in Fig 4 is useful for comparing the range of EF to the old literature average. But later in paper, the effect of dynamic EF should perhaps be	You are correct. The effect is both the mismatch of our (xeric dominated) dataset to the savanna average and the effect of dynamic versus static. Moreover, in

compared to the biome average based just on the field data used by the authors, which could be shown with a second vertical line. Then recalculate MAE and improvement %. Currently, the comparison is "apples to oranges" in that "improvement" is based on a difference resulting partly from incorporating new data and partly from a change in approach.	 particular for N₂O, the older "static average" represented by the red vertical line is not up to date. Andreae (2019), which includes more recent studies, reports a savanna N₂O EF of 0.17 which would reduce these mismatches. In Fig 4 and 5, we have added a separate magenta vertical line representing the average of the input data.
9/13-20 This is a nice exploration of simplifying the RF approach. Can the authors explain why VPD is the most important feature in the small subset of features, despite having a low rank in the full set of features? Any estimate of reduced computational burden?	The VPD is strongly seasonal and correlates strongly to other features from the full set of features like temperature, relative humidity, soil moisture, and evaporative stress index. This means that similar decision trees can split the data similarly following any of these features, so in a way they are competing. This reduces the impurity reductions (and thus feature score) of those features. The smaller feature subset has several advantages, including reduced computational burden, less dependencies on underlying datasets, easier to make NRT data, and no data losses due to missing values
9/24-25. Does this mean you ran the RF model once to get MCE and then used the MCE as a new feature in a re-run of the RF model?	That is correct. Thanks to your work we know that MCE is strongly correlated to the EFs of particularly CO_2 , CO and CH_4 . By first computing the MCE and then offering that as a feature, we can isolate the effect of MCE from other effects making it more informative. Also, we found that doing it this way improved the overall predictive performance of the models.
9/35-38 It would be interesting to see the study-average EFs vs the former literature average EFs and then also what the new literature averages are including this study, all in a little 3x4 table.	Previous studies have often used the average of all the available measurements as the savanna average EF. However, in selecting our field campaigns, we were interested in capturing variability and dynamics, rather than determining a representative savanna average EF. Many of our measurements target les fire prone conditions and, for instance, from a representability perspective oversample the EDS and xeric savannas.

	effective EFs rather than the average of the samples. These values represent the average modelled EFs weighted by the consumed dry matter from GFED4s. This means they only include EFs at the time and location that the savanna fires occurred (according to MCD64A1), which eliminates the sampling bias in global measurements.
	As requested, we added Table 4. We also added the following text (P11 L17): "In Table 4, we compare the effective average EFs over the 2002-2016 period calculated by our model to the static average EFs for savanna and grassland vegetation used by GFED4s and those suggested by Andreae (2019) and Wiedinmyer et al. (2023). Table 4 also lists the average EFs of the UAS measured fires and the average EFs of all included fires (including literature studies). Except for N ₂ O, the differences between the effective EFs compared to more recently updated static EFs from Andreae (2019) were larger (+1.3% for CO ₂ , -7.1% CO, - 31.4% CH ₄ and -3.7%) than the differences compared to static EFs from GFED4s."
10/2 How common are mixed biome grid cells? Percentage of total? Is the most common type of mix with tropical dry forest? Is there a percent tree cover or canopy closure that defines the boundary between what the authors consider savanna and something else?	This depends on the resolution desired for the model. In this study, we aggregated the data to 0.25-degree grid cells meaning mixed grid cells were quite common. For the biome classification, we used the biome classification from GFED4s, which is based on the annual International Geosphere- Biosphere Programme (IGBP) classification and obtained from MCD12Q1, in which classes 5-10 make up our "savannas and grasslands". This means we did not have a "tropical dry forest" class. The IGBP classification uses a FTC cut-off of 60% to distinguish the "woody savanna" and "forest" classes.
10/11-12 What is "annual effective EF"? An annual global savanna-fire average EF for each compound? This is also saying the year to year variation in global average EFs is small?	That is correct, the "annual effective EF" was calculated by multiplying all the GFED4s biomass consumption by the dynamic EFs at the time and location of burning, and then dividing these annually integrated annual emissions by the integrated annual biomass consumption.

	This way we get a savanna EF weighted by the time and places that burned.
	$Eff. \ EF_{x} (year) = \frac{\sum_{days} \sum_{grid \ cells} (BC \ (day, grid \ cell) \times EF_{x} \ (day, grid \ cell)}{\sum_{days} \sum_{grid \ cells} BC \ (day, grid \ cell)} $ (1)
	We clarified the text (P11 L11): "Rather than comparing the average of our savanna measurements to the literature averages, we computed the dynamic EFs globally using the RF model and subsequently calculated the emissions for the entire savanna biome. We then divided these annual emissions by the consumed biomass from GFED4s to get the annual consumed-biomass-weighted- average EFs, which we will further refer to as the "effective" EFs. Over the 2002-2016 period, the effective EFs over the savanna biome were 1685 ± 5 for CO ₂ , 64.3 ± 0.6 for CO, 1.9 ± 0.0 for CH ₄ and 0.16 ± 0.00 for N ₂ O, with the number in the parentheses indicating the interannual standard deviation."
10/14-15 averaged over what time and space? I.e. the daily average over all areas occupied by the indicated vegetation class? Fig 7 doesn't seem to show much or any EFCO increase in woody savanna as the fire season progresses? Does this figure clash with previous text? What is "typical savanna"?	The graph contains monthly CO EFs averaged over the 2002-2016 timeframe, for all the areas occupied by the indicated vegetation class. The vegetation classes are based on the IGBP classes. We have changed "Typical savanna" to "Savanna" (referring to tropical regions with Tree cover 10-30% (canopy >2m). We agree that in the graph, the upward trend is not as evident for savanna and
	woody savanna as the measurements seem to indicate. Although we did focus on southern hemisphere Africa in this graph, there are still some effects of temporal mismatched between east and west and north and south that may dilute these patterns. Also, as you mentioned earlier, these classifications are not always correct.

10/30-34 Interesting, shows the RF model may have value to at least partially correct sampling bias in a field campaign!	Exactly!
11/2 Just to be clear, the N is in the foliage of	We changed the text to (P11 L39): "In line
the trees, not the wood itself	with Susott et al. (1996) and Ward et al.
	(1992) we found that woody vegetation has
	higher nitrogen content contained in the
	foliage (Table 3), causing higher N ₂ O
	emissions from tree dominated areas."
11/24-26 Did Hoffa and Korontzi predict	That is indeed incorrect. We changed the
higher MCE in LDS?	reference to Korontzi (2005), which is a
	temporal extrapolation through Pgreen (also
	assessed in this study) based on
	measurements from Hoffa.
11/30 The Eck trend in SSA is averaging over	It used three sites (in Etosha, Namibia),
all sub-Saharan Africa AERONET sites?	Kruger national park, South Africa, and
	Mongu, Zambia) which are discussed
	separately. While all sites show an
	increasing SSA trend over the dry season,
	the trend is strongest in Mongu where the
	signal is probably the most dominated by
	fires.
11/32 References that support an increase in	Thanks, we have added the references to the
SSA as MCE decreases include Liu et al and	text.
Pokhrel et al and probably many others	
11/40-12/1 Not sure about the interpretation	Although the main point here is that this
here. Does CH4/CO vary with MCE? CO is	relation varies with FTC, you are correct.
not technically independent of MCE since	MCE and CO are linear. Therefore, the fact
MCE has CO in its definition.	that the CH ₄ EF/MCE ratio varies with
	MCE also means that the CH ₄ EF/CO EF
	ratio varies with MCE.

12/5-9 This discussion could be misleading in a subtle way. I think the effect seen here is probably because the other studies compared to are plotting the fire-average EFCH4 versus the fire-average MCE, while the authors are plotting EFCH4 vs MCE for "snapshot grab samples" that could include samples during flaming that may have much higher MCE than the fire-average MCE for typical useful real-world fires. We've seen this often over the years. To illustrate we can revisit the comparison to the Selimovic et al lab fire study. If one plots the instantaneous EFCH4 vs instantaneous MCE for these typical lab fires you often get "curvature" at high MCE values during "pure flaming" and other effects. The ERCH4 vs MCE can also be nonlinear at high MCE or have interesting other interesting patterns with time. The plots show this for the 1-s data from randomly selected Fire #74 on the NOAA FIREX-Firelab archive

(https://esrl.noaa.gov/csd/groups/csd7/measur ements/2016firex/FireLab/DataDownload/). Fire #74 is one of the fires in the linear plot of fire-integrated EFCH4 vs MCE in Selimovic et al. (2018). Interesting topic but variability during a fire is a level of detail large-scale models can't cope with yet. Thus, in providing guidance for large-scale models it may be best to stick to fire-average data. Many thanks for this clarification. We agree that this effect is much smaller in fire averages due to the limited range in MCE and behaves linearly. In Figure 1 (below this table) we have added the fireaverages and linear regression based on those averages. It shows a similar pattern for fires with exceptionally low MCE. Your graph indicated the eventual fire-average CH₄/CO ratio (and thus the CH₄ EF/MCE ratio) is dependent on the ratio between smouldering and flaming combustion in the fire, which may be expected to correlate with FTC. Therefore, while the pattern is certainly more pertinent in individual bag samples, it may also hold for fire-averages.

We feel the main point of this text, that studies that disproportionately target smouldering or flaming emissions would reach different linear CH₄ EF/MCE slopes, is still true and confirmed by the graph.

We therefore changed the text to (P12 L37): "In accordance with previous studies (e.g. Korontzi et al., 2003b; van Leeuwen and van der Werf, 2011; Barker et al., 2020), we found steeper CH₄ EF to MCE regression slopes in woodlands compared to grasslands. Our data indicated a positive correlation of the CH₄ EF to MCE slope with the FTC based on MOD44Bv006. The MCE is a simplified form of the combustion efficiency and only calculated using CO and CO₂ emissions. Being less oxidized than CO (which is still common in flaming combustion), CH₄ emissions have a stronger dependency on the actual combustion efficiency (CO₂ divided by all carbon emissions). While most studies describe the relationship between the CH₄ EF and the MCE as being linear (Korontzi et al., 2003; van Leeuwen and van der Werf, 2011; Selimovic et al., 2018; Yokelson et al., 2003), we found that for individual bag samples it was better described using a nonlinear function (Fig. 9), in line with findings by Meyer et al. (2012) for Australian savanna measurements. Figure 9 represents

12/25-26 Think you mean "This is the first	individual bag measurements rather than fire averages (for which the spread in MCE is much lower). Laboratory experiments described by Selimovic et al. (2018) showed that the CH ₄ to CO ratio is strongly dependent on flaming or smouldering phases if the fire. Individual bag samples –which often hold emission from a single phase– therefore show much more variation compared to fire averages. Stable carbon isotopes also point to CH ₄ emissions being more depleted in heavy carbon (¹³ C) compared to CO in both mixed (C3 and C4) and single-fuel-type experiments, indicating a stronger dominance of RSC and the pyrolysis of lignin in its total emissions (Vernooij et al. 2022b). This explains both why studies that are skewed towards either smouldering or flaming phase emissions find different CH ₄ EF to MCE slopes using linear regressions and why this slope varies with FTC. "
12/25-26 Think you mean "This is the first study to quantify the spatial distribution of GHG EFs over the entire savanna biome by using both field measurements from a variety of savanna ecosystems and their relation to global data mainly from satellites". I.e. the field measurements have gaps as explained in the following lines, but by connecting the measurements to features you have a new way to get a useful global savanna estimate!	As suggested, we have changed the text to (P14 L9): "This is the first study to quantify the spatial distribution of GHG EFs over the entire savanna biome using field measurements from a variety of savanna ecosystems and their relation to global data mainly from satellites."
13/11 The idea of a gross underestimate here is worrisome. How well do the authors think GFED4s accounts for fires too small to show up in their burned area product? Worth mentioning here?	The 'gross underestimate' is compared to the GFED4s burned area used in this study. To clarify this we changed the sentence to (P15 L16): "New high-resolution burned area products, however, indicate that these global products, including the GFED4s data used for global emission analyses in this study, grossly underestimate burned area due to omission of small fires (Chen et al., 2023; Roteta et al., 2021; Roy et al., 2019). This also refers to a significant portion of our measured fires. Of the UAS-measured fires in this study only 5 of the 45 EDS fires (11%) and 13 of the 65 LDS fires (20%) were registered by MCD64A1 as burned area (including adjacent pixels and a 4-day time lag) and only 4 of the 45 EDS fires

	(9%) and 32 of the 65 LDS fires (49%) were registered by VIIRS S-NPP as thermal anomalies (with the center point of the hotspot (including a 1-day time lag) being within a 3.5 km radius of the sample). Depending on the spatiotemporal nature of these omissions, this may affect some of the results in this study concerning the effects of the EF dynamics on total emissions. Chen et al. (2023) indicate that in the savannas, disproportionately more burned area is added in higher tree-cover areas when using higher resolution satellite imagery. Giving more weight to these areas would mean our savanna-wide effective EFs of CO, CH ₄ and N ₂ O would increase."
14/10 Here I think it's important to preserve the idea that you have not concluded the biome averages have large errors, just that fire to fire variability is large and is better accounted for by using a more sophisticated model. Also + and – local errors tend to cancel. It worries me that someone reading quickly may think you mean that global CO and CO2 emissions from savanna fires are off by ~80%.	We agree that particularly compared to errors in other model aspects like BA and fuel load these errors are limited. We changed the text to (P17 L7): "The model- produced data resulted in significant fire- specific improvements compared to static biome-averaged EFs, reducing the mean absolute error in the modelled versus measured predictions by 63% for CH ₄ , 57% for N ₂ O, 81% for CO and 79% for CO ₂ . Except for N ₂ O EFs, our study does not indicate that savanna averages have large errors, but rather that fire to fire variability is large and is better accounted for by using a more sophisticated model."
14/31 I did not check the zenodo link. If it is different from spreadsheet, I could check it by request.	The data is indeed the same as the spreadsheet provided.
Fig 7. Why do "typical savanna" fire emissions peak earlier than all the subtypes?	This may be an artifact of the spatial distribution of the different savanna classes. In general, but particularly for woody savannas, there is a trend in the SHAF region with western areas burning sooner in the year than eastern savannas. In figure 2 (below) you can see that the frequently burning "savanna" class areas are more situated in the western part of the region. Another possible explanation would be more fire suppression in shrublands and grasslands.

Table 4: Emission	factor averages	of	this
-------------------	-----------------	----	------

EF Specie	GFED4s	Andreae (2019)	Wiedinmeijer et al. (2023)	Sample data avg. ¹	Training data avg. ²	Effective EF (Eq. 1) ³
CO ₂	1686	1660	1686	1637	1670	1685
СО	63	69	63	55	61	64
CH_4	1.94	2.70	2.00	1.38	1.61	1.85
N_2O	0.20	0.17		0.12	0.12	0.16

¹Average over the fires measured using the drone methodology (skewed towards xeric savannas)

²Average over the fires measured using the drone methodology and the included literature studies.

³Dynamic EFs weighted by the consumed biomass at time and location of fires as calculated using GFED4s.

 Table A2. Spearman correlation matrix for the field measurements and the globally available satellite products.

 Positive correlations are presented in blue while negative correlations are presented in red.

Figure 1. The non-linear regression between the CH₄ EF and the MCE for the individual bag samples. In the box on the bottom left, ρ refers to Spearman's rank correlation coefficient measured in the bag samples. The orange linear regression line is the linear regression of fire-averages.

Figure 2. Distribution of the IGBP landcover classes used in figure 7 of the main text.

Figure 10. Detection of the fires measured using the UAS-methodology by different satellite algorithms in the EDS (green) and LDS (orange). The darker area represents the cases where a fire was observed in the actual pixel within the listed timeframe. The lighter areas represent fires that were not detected in the same pixel as the samples but were detected in adjacent pixels. Timeframes are listed below the product labels. For the VIIRS detections the distance limits between the detection point and closest sample of the fire were 1km for the darker shaded area and 3.5 km for the lighter shaded area.

2) Response of the authors to comments by reviewer 2

General comments:

This study collected a large dataset of savanna emission factors (EFs), including over 4500 EF bag measurements of CO₂, CO, CH₄ and N₂0 during 129 individual fires from 2017 to 2022. Based on this in-situ observations, the authors identified the drivers of EF variability and implemented this variability into global models through dynamic EFs. The optimized machine learning reduced the error in EF estimates by 60-85% compared to static biome averages. They also found seasonal drying resulted in a decrease of the EFs with the fire season progressing, with a stronger trend in open savannas than woodlands. Overall, this is an important study to understand the variability and mechanisms for biome-specific carbon emissions, particularly at the spatial scales. The generated global EF products can be used to better estimate fire-induced greenhouse gas emissions. However, I do have some concerns on the methodology parts, which may need to be addressed before publication.

Roland Vernooij (corresponding author) on behalf of the authors:

We sincerely thank the reviewer for the time and effort in assessing our manuscript, and the constructive comments which helped to improve the quality of this paper. Please find below our point-to-point response to the review. The revised text and updated figures are included in the updated manuscript. A separate 'track-changes' document is included to highlight the changes to the manuscript. Tables and figures referred to in the answers are added at the bottom of this document.

Reviewer 2, detailed comments	Author's response, reasoning and comments
1). Biomass burning EFs are highly dynamic both at the spatial and temporal scales for a given fire. For example, EFs may differ a lot as the fire spreads across different vegetation covers and terrain/moisture gradients at the local scale. How well did the collected EF bag measurements represent the total or averaged EFs for each selected fire? Is there a consistent spatial-temporal framework to integrate the concrete EF measurements to reflect the total EFs for all involved fires? Such processing details need to be provided for better understanding the uncertainty of "in-situ" measurement itself.	You raise a valid point which we can only address empirically. In Vernooij et al. (2022), we have described comparisons on EFs measured using a measurement mast and the UAS method (Figs 2 and 3). In this comparison we found that a limited amount of bag samples (8-12) resembled the fire- averaged EFs of the mast relatively well considering the spatiotemporal heterogeneity. The strategy was therefore to take 8-12 samples at a location until visible smoke from both flaming and smouldering had passed the drone and continue to the next location. The fire-average EF of the individual fires is calculated by adding up the EMRs from all the individual bags and calculating the EFs based in that sum. This means samples with high EMRs have a stronger effect on the fire-average EF than low-EMR samples.

To make sure the features are representative of the vegetation consumed in the fire, we tried to target larger homogenous areas. Rather than marking the fire with features from the entire fire scar, the features are assigned to the samples based on location and timestamp of the sample. The average of all the sample features is then assigned to the fire-WA EF, meaning we only assign data from when and where we sampled.
It might be possible to better quantify the spatial and temporal variability within a fire when continuous measurements can be done while being airborne. Currently, however, the equipment is too heavy to be carried by the drone but this may change in the future and at that stage the reviewer's question may be addressed better.
We added the following text (P3 L32): "Fires were lit with the aim of being representative of early dry season (EDS, often prescribed) fires and late dry season (LDS) non-prescribed fires. Although some backfires were sampled during the initial phase of the fires, the majority of samples were obtained from the faster 'head' fires, which consumed most of the biomass. Fire sizes generally ranged between 2 to 10 hectares based on UAS drone imagery described by Eames et al. (2021), with exceptions of some fires that would not light and conversely, some fires that burned
several hundred hectares. In the EDS, fire size was primarily limited by environmental conditions and fires ceased burning as humidity increased overnight whereas in the LDS, fire size was confined by low-fuel areas like burn scars, roads and prepared fire breaks. Particularly in the LDS, this means a limited fire size does not necessarily indicate limited fire intensity. Emissions were sampled at altitudes between 5–50 m depending on flame height for a duration of 35 seconds, resulting in 0.7 litres per gas sample. On average, we took 35 samples per fire. The sampling methodology involved taking samples from

	correcting for wind direction and severity– until no more visual smoke passed the drone anymore. From earlier work (Vernooij et al., 2022a), where we compared the average of these measurements to results using continuous measurements taken at a mast, we have some confidence in the fidelity of this approach."
2). How did the fire induced EFs match the possible drivers at the spatial scale? Are they overlayed by the actual size of each fire, or just at the grid size of 0.25 degree? The latter may introduce large uncertainties.	For the training data we assigned the features to the fire using the highest resolution available. For instance, the fractional tree cover (FTC) would be assigned based on the 500 x 500-meter pixel value (or the weighted average of several of these pixels). For features with a strong diurnal pattern (e.g. VPD, RH or temperature) we took the hourly data, and interpolated this to assign the feature value at the minute of sampling. However, the spatial resolution of these datasets is typically relatively coarse (0.1°) introducing uncertainty.
	In our global analysis we indeed averaged out feature data over the 0.25° grid cell (filtering out non-savanna vegetation), and subsequently computed the EFs. This was done to match the spatial resolution of GFED4 and analyze global patterns. When looking at smaller regions, using the native resolution of the features (e.g. Figure 2) may reduce these uncertainties but we expect our data to be used mostly within coarse-scale applications.
3). The authors tested a series of machine learning methods and concluded that random forest performed best. Such a part may need data support. Past experiences	We appreciate the advice; We did not use the tools you mention but will include this in future work to test whether the results improve further.
lightGBM and Xgboost tend to be better than random forest.	When we started this research we have used a suite of approaches (using the scy-kit learn "GradientBoostingRegressor()" function and GridSearchCV hyperparameter tuning) and actually found that the RFs performed slightly better than GBMs, although the difference was very small. In comparison, we also tried

	multilinear regressions, single decision trees and a simple neural network which all performed worse than RFs and GBMs. Since we include the MCE (which is often used as the sole predictor of EFs) from our RF model into the EF models as a predictor, one could argue that the EF models have a sort of gradient boosting step on that RF MCE model.
	Table 1 (bottom of this document) lists the RMSE and R ² for different model runs (in which "All data" includes field observations, "Sat data includes Landsat and lower resolution >500m satellite data and "LR satellite data" only includes >500m resolution data). The random forest models have improved after this initial assessment. However, in line with your comment, we also found that in various runs the GBM regressor outperformed the RF regressor.
4). To predict BB EFs, the authors included a series of factors for each group driver (seen in Table 2). However, it seems that some of them are highly correlated, e.g., NDVI VS LAI VS FPAR, VPD VS evaporative stress index VS Relative humidity. The rationale for including these redundant factors may need to be clarified. In addition, given the potential uncertainty in remote sensing and reanalysis data, it may not be wise to include all predictors without doing a feature selection. One way to include a specific driver or not is to compare its effect with a randomly	We fully agree; many of the features from the full set of features (Table 2) are strongly seasonal and therefore correlated strongly to other features, or even calculated based on one another. The analyses using the full set was mainly to detect which performed better. We then did a feature selection going from a broader set of features (e.g. Fig. 4), to the five features that explained most of the observed variability (Fig. 5, listed in the bottom right box of the panels). The eventual models are trained based on only these features.
generated variable. If its effect is equal or worse than the random variable, it may not be included in the final training.	In the discussion we state (P16 L8): "Cross- correlation between the features meant that feature importance scores (Fig. 4) varied over various model runs based on the test- train data split and bootstrap resampling. For example, a decision tree split based on VPD is most likely very similar to soil moisture or RH, and FTC in national parks is often closely correlated to the MAR, with our measurement sites in Brazil being the notable exception. Although we conducted model runs for various feature-subsets and selected the best, different features may also perform well in explaining much of the

	variability. For features with very high co- variation (e.g., FPAR and LAI or FWI and ISI), this meant only one feature was selected for the trimmed-down model even when both features scored high on the initial assessment." Rather than taking the features with the highest feature scores, we realize that many of the features are correlated and therefore explain the same variability. We took the correlation between features into account when selecting the features for the final models. We added a Pearson correlation matrix (below this table, and as table A2 in the appendix of the manuscript) that lists the correlation between satellite features as well as the direct correlations of satellite features with the target variables.
5). Satellite data over tropical regions usually suffers from the contamination of clouds. When deriving the global EFs, how the authors gap-filled relevant remote sensing data is not clear.	Indeed, particularly in the late dry season we found that cloudiness was a problem, especially for retrievals like NDVI before fire, dNDVI, dNBR, etc. If the scene before or after the fire was cloud-covered, the preceding or successive scene was used with a limit of 14 days before or after the fire. If no cloud-free scene was available in that time window, the fire was removed from the dataset.
	For the features included in the final models, this was less of an issue given that the meteorological reanalysis data from ERA5-land is not impacted. Fractional tree and non-tree vegetation (MOD44bv006) as well as landcover classification (MCD12Q1C6) are annual while FPAR is based on an 8-day composite meaning the risk of no signal are much lower. When aggregated to 0.25 degree (while using a savanna mask to only take the average of the savanna classified pixels), there were no longer missing values.
	We added the following sentence to the text (P9 L40): "Further simplification using a subset of features that are not directly correlated, reduced the data dependency and computational demands of the model as

well as the loss of training data due to cloud
cover, without losing much explained
variance."

Table 1: Performance of various regression methods during our initial assessment. This assessment only included our own data. In the variable categories "All data" includes field observations, "Sat data includes Landsat and lower resolution >500m satellite data and "LR satellite data" only includes >500m resolution data.

		MCE		$CH_{4\text{EF}}$		$N_2O_{\ EF}$	
Method	Variables	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2	RMSE	\mathbb{R}^2
Multilinear regressor	All data: Sat data: LR Sat data:	0.03 0.03 0.03	0.56 0.46 0.46	1.45 1.36 1.43	0.66 0.59 0.55	0.13 0.28 0.35	0.19 0.18 0.16
Decision tree regressor	All data: Sat data: LR Sat data:	0.031 0.023 0.022	0.70 0.61 0.66	1.38 1.05 1.00	0.76 0.71 0.70	0.05 0.08 0.07	0.21 0.40 0.59
Random forest regressor	All data: Sat data: LR Sat data:	0.026 0.027 0.021	0.80 0.70 0.70	1.16 0.98 0.88	0.87 0.65 0.76	0.04 0.06 0.06	0.47 0.65 0.64
Gradient boosting machine regressor	All data: Sat data: LR Sat data:	0.023 0.028 0.021	0.78 0.67 0.70	1.13 1.00 0.90	0.85 0.67 0.75	0.04 0.06 0.07	0.30 0.58 0.56
Neural network regressor	All data: Sat data: LR Sat data:	0.035 0.021 0.022	0.73 0.62 0.61	1.16 1.09 1.05	0.84 0.69 0.65	0.04 0.07 0.06	0.50 0.59 0.60

 Table A2. Spearman correlation matrix for the field measurements and the globally available satellite products.

 Positive correlations are presented in blue while negative correlations are presented in red.

3) Response of the authors to comments by Paul Laris

Roland Vernooij (corresponding author) on behalf of the authors:

We sincerely thank Paul Laris for taking the time and effort to read and comment on our manuscript, and the detailed and constructive comments both on this platform and in earlier conversations, which helped to improve the quality of this paper. Please find below our point-to-point response to the review. The revised text and updated figures are included in the updated manuscript. A separate 'track-changes' document is included to highlight the changes we made to the manuscript.

Detailed comments	Author's response, reasoning and
	comments
Can you clarify that these fires were all "head" fires as opposed to backfires? And, if so, can you comment on why the following dimensions are adequate? We question wether 10m is wide enough for head fires to fully develop. This width is fine for backfires. Also, if only head fires were examined, can you justify given that many fires are purposefully set as backfires in Africa. Headfires have long been used in research on African fires, yet research finds more backfires are set.	While it is indeed correct that most of the measurements have been taken during 'headfires' and 'sideward propagating' fires we also measured backfires. We tried to obtain measurements proportionately to the area burned by the different types within these fires. However, we did also conduct measurements where we tried to distinguish the different fire propagation directions, which in a changing wind regime was much more challenging than we previously anticipated. Individual 35-second bag samples more often than not contained smoke from multiple changing wind directions. In agreement with the findings by Wooster et al. (2011) and Laris et al. (2021) we found "back" fire samples to have slightly higher combustion completeness compared to "head" fire samples. A possible explanation being that slower lofting smoke from the residual smouldering does not mix with the flaming emissions in these measurements, like it does in head fires. There was no significant difference between head and sideward propagating fires
	The early dry season fires were all lit by land managers under the guidance of prescribed burning experts. This meant that head fires were only used if the conditions allowed them (which was most often the case), to prevent runaway fires. Although these experts deemed the measured EDS fires representative of prescribed fires, you

are correct that pure backfires may burn
more efficiently.

To clarify this in the text, we have added the following in (P3 L32): "Fires were lit with the aim of being representative of early dry season (EDS, often prescribed) fires and late dry season (LDS) nonprescribed fires. Although some backfires were sampled during the initial phase of the fires, the majority of samples were obtained from the faster 'head' fires, which consumed most of the biomass. Fire sizes generally ranged between 2 to 10 hectares based on UAS drone imagery described by Eames et al. (2021), with exceptions of some fires that would not light and conversely, some fires that burned several hundred hectares. In the EDS, fire size was primarily limited by environmental conditions and fires ceased burning as humidity increased overnight whereas in the LDS, fire size was confined by low-fuel areas like burn scars, roads and prepared fire breaks. Particularly in the LDS, this means a limited fire size does not necessarily indicate limited fire intensity. Emissions were sampled at altitudes between 5–50 m depending on flame height for a duration of 35 seconds, resulting in 0.7 litres per gas sample. On average, we took 35 samples per fire. The sampling methodology involved taking samples from a fire passing a certain point –while correcting for wind direction and severityuntil no more visual smoke passed the drone anymore. From earlier work (Vernooij et al., 2022a), where we compared the average of these measurements to results using continuous measurements taken at a mast, we have some confidence in the fidelity of this approach."

Also, in the discussion (P14 L19) we added: "The samples were predominantly collected over "head" fires, which in the measured fires typically represented most of the burned area. A common approach for prescribed fires is burning against the wind

	(backburning), to minimise both the impact on vegetation and risk of spread. In accordance with Wooster et al. (2011) and Laris et al. (2021), we found higher MCE in samples from backfires, which indicates these types of fires may emit less CH ₄ and CO. Another possible explanation is that slower lofting RSC smoke does not mix with the flaming combustion emissions in these measurements, like it does in "head" fires."
You do not appear to have published local or ground data on weather conditions. While T and H can be collected from regional weather stations, wind speed is critical to determining fire intensity and will influence MCE as well. Do you have wind data, it would seem critical for accurate fire intensity and MCE results.	Unfortunately, we have only started to log windspeed (from a Kestrel 5500FW Fire Weather Meter) in the very last campaigns. We agree that windspeed is most likely a more significant predictor that the models suggest based on the ERA5-land data. Note that although WS is not often seen as a major predictor, the FWI which contains WS is. While it would be very interesting to verify the windspeed from ERA5-land with the on-site windspeed, more accurate on- site windspeed measurements could not be used for the spatiotemporal extrapolation, and therefore would not improve the model.
I wonder about this comment: " The grasslands with the highest EFs (found in high-rainfall savanna Dambos) were " uncharacteristically green for the time of the season'' given that many fires are set to "green" grasses in African savannas, especially the perennials (See Le Page who documented this back in 2010 as well as many West African case studies).	The vegetation we refer to with this comment was highly limited in its spatial extent to relatively deep and clayey Dambos with widths often smaller than a 500-meter MODIS pixel. Since the water availability and grass curing state in these areas is highly dependent on soil type and geomorphology, these characteristics are poorly captured by the much coarser seasonal features (e.g. soil moisture and VPD). The Dambos where we measured the highest EFs (also in the LDS) had just fallen dry and were still very green, whereas other Dambos close by had already fully cured and showed very low EFs. By this statement we mean that because of the dominant role of soil type and geomorphology, the EFs measured in those Dambos were a poor indicator of the seasonal cycle in other grasslands.

	We added the following text to the
	we added the following text to the
	discussion (P14 L36): "Although burning
	grasslands under green conditions releases
	more CH ₄ and CO, there are valid reasons
	to do so. For example to remove moribund
	grass that remains after the dry season with
	minimal damage to the grass sward
	(Nieman et al., 2021; Le Page et al., 2010).
	In its current form, the model may not
	always pick up on those landscape
	features "
I think I aris at al found very similar results	We indeed find higher CH./MCE ratios in
to: "The strongest predictors for the MCE	trae dominated sevennes compared to
to: The strongest predictors for the MCE	tree-dominated savannas compared to
and the CO and CH4 EF were the tree	grass-dominated fires.
density in the plots, the grass to litter	
ratio, the combustion completeness and	In our previous work on isotopes, we found
the moisture content of the consumed fuel.	CH ₄ EFs to be more ¹³ C depleted compared
It might be useful to compare and to	to CO emissions when burning wooden
consider the hypothesis that burning of	logs. This may indicate CH ₄ is more RSC
green leaves on shrubs and trees vs. dried	driven than CO and possibly stronger
leaves on the ground may explain why EF	dominated by the pyrolysis of lignin rather
CH4 is not linerally related to MCE. This	than cellulose and hemicellulose.
reasoning may also explain the following	
finding "For CO and CH4 the dominant	In P12 I 37 we added the following text:
effect is a spatial redistribution with higher	"In accordance with previous studies (e.g.
CO and CH4 EFs in mesic high-tree cover	Korontzi et al. 2003b: van Leeuwen and
sayannas and lower FEs in veric sayannas	von der Worf 2011: Berker et al. 2020)
savalinas and lower Er's in Xeric savalinas	valider well, 2011, Barker et al., 2020),
Lisher CI14 EE in masia may well be a	we found steeper CH4 EF to MCE
fugiter CH4 EF III mesic may well be a	regression slopes in woodlands compared
function of leaf burning. This is logical	to grassiands. Our data indicated a positive
given the findings from Senegal research by	correlation of the CH ₄ EF to MCE slope
Barker finding burning trees emitted smoke	with the FTC based on MOD44Bv006. The
with the highest methane EF.	MCE is a simplified form of the
	combustion efficiency and only calculated
This needs further explanation: "Although	using CO and CO ₂ emissions. Being less
CO and CH4 followed the same spatial	oxidized than CO (which is still common in
pattern, we found that MCE affected the	flaming combustion), CH ₄ emissions have a
CH4 which resulted in lower CH4 to MCE	stronger dependency on the actual
ratios in open (lower tree density?)	combustion efficiency (CO ₂ divided by all
savannas Do you mean higher	carbon emissions). While most studies
CH4/MCE in wooded savannas as	describe the relationship between the CH ₄
compared to grass-dominated	EF and the MCE as being linear (Korontzi
ones? What is "open"? Clarify. Again.	et al., 2003: van Leeuwen and van der
see works in Mali and Senegal which agree	Werf, 2011: Selimovic et al., 2018:
with this finding	Yokelson et al. 2003) we found that for
	individual hag samples it was better
	described using a nonlinear function (Fig
	accention using a nonlinear function (Fig.
	(2012) for Australian sevenne
	(2012) 101 Australian Savanna monsuraments, Figure 0 represents
	measurements, Figure 9 represents

	individual bag measurements rather than fire averages (for which the spread in MCE is much lower). Laboratory experiments described by Selimovic et al. (2018) showed that the CH ₄ to CO ratio is strongly dependent on flaming or smouldering phases if the fire. Individual bag samples –which often hold emission from a single phase– therefore show much more variation compared to fire averages. Stable carbon isotopes also point to CH ₄ emissions being more depleted in heavy carbon (¹³ C) compared to CO in both mixed (C3 and C4) and single-fuel-type experiments, indicating a stronger dominance of RSC and the pyrolysis of lignin in its total emissions (Vernooij et al. 2022b). This explains both why studies that are skewed towards either smouldering or flaming phase emissions find different CH ₄ EF to MCE slopes using linear regressions and why this slope varies with FTC."
Not sure I agree with this logic: "Contrary to previous research which indicated that dryer conditions in the LDS would lead to higher-MCE fires late-LDS conditions (Fig. 3). In part, this may be because our measurement campaigns missed the peak-season fires when the fires may be hotter" Winds are the critical factor here. When do they peak in areas studied. High winds (especially if fires studied are head fires) result in higher intensity regardless of fuel moisture. Laris also found lower MCE in LDS due to leaf litter in the fuel load and lighter winds with much higher winds in MDS for the region studied. Note that these factors are key reasons why binary (LDS/EDS) is problematic for determining emissions.	 While we did not include windspeed in the field measurements and therefore in the intermediate explanatory field drivers. However, we agree that it is a very influential driver of fire behavior. In the future we will include windspeed measurements on the ground. Although this means we currently cannot correlate reliable measurements of the actual windspeed during the fire with satellite derived proxies, we do include windspeed proxies in the model. We added the following text (P12 L24): "Contrary to previous research which indicated that dryer conditions in the LDS would lead to higher-MCE fires in both grasslands and savanna woodlands (Korontzi, 2005), we found lower MCE in these regions under late-LDS conditions (Fig. 3). This may be because our

Again, see research in Mali and Senegal which support this finding: In accordance	measurement campaigns missed the peak- season fires when the fires may be hotter due to stronger winds (Laris et al., 2021; N'Dri et al., 2018)." We acknowledge that the binary (LDS/EDS) classification is in many ways flawed, as you rightfully point out in your earlier work. With this study, we hope to work towards getting rid of the EDS and LDS classes altogether when it comes to savanna EFs. In the introduction (P2 L37) we state: "EFs used for the accreditation of such projects currently assume a dichotomy of early- and late dry season averages, determined by a cut-off date. However, as discussed by Laris (2021), the fuel and meteorological conditions thought to drive EFs vary more gradually over the season and are subjected to substantial inter-annual and spatial variability. Incorporating spatiotemporal variability in inventories makes emission inventories more dynamic and better equipped for assessing seasonal fluctuations."
2003b; van Leeuwen and van der Werf, 2011), we found steeper CH4 EF to MCE regression slopes in woodlands compared to grasslands.	the classes and replaced those with rough FTC bands (0-2%, 2-10% and 10-50%)
Comments	
Figure 3. What is "typical savanna" there is no such thing.	
Also, use more specific terminology, what is "open"?	
This and other data rely on 500 x 500	That is indeed an issue and could be one of
MODIS is this relevant given efforts to	the main reasons why the models did not
burn patchy EDS fires which operate at	pick out any of these features as strong
a hectare level scale? Can you justify	indicators of the fire. Although not
using 500m data for the following? For	mentioned in the list of features, we also
fire severity proxies we used the differential	used Landsat retrievals for the

Normalized Burn Ratio (dNBR) and 5 the	abovementioned spectral indices. While the
Vegetation Index (dNDVI) natriaved hefere	spatial resolution is better, it goes at the
vegetation index (dND vi) retrieved before	cost longer intervals between cloud-free
and after the fire. These were based on the	scenes and just as with MODIS data our
MODIS surface spectral reflectance,	model did not find these features were
(MODOOCANG, Normata)	important.
(MOD09GAV6; Vermole)	In their evenuent forms these models were
	developed with the application of global
	modelling in mind. This means that using
	high resolution (e.g. I and sat and Sentinel)
	data becomes computationally heavy
	Although it could be possible to retrieve the
	training data at higher resolution and
	subsequently use courser products (e.g.
	MODIS) for the spatiotemporal
	extrapolation, using different data for
	training and final usage is risky as tree-
	based models use absolute split values.
	Therefore, the consistency of these datasets
	would have to be proven for the entire
	savanna biome first.
	We added the following text in the
	discussion (P15 L4): "Fire intensity proxies
	(dNDVI and dNBR from MODIS) were
	poor predictors for the EFs. A potential
	explanation is that these features were at
	times neavily diluted, as many of the
	nivel. Similar migraprocentation errors con
	be expected for the NDVI before the fire
	FPAR and the Poreen Particularly in the
	LDS we were often limited to areas that
	were enclosed by recent fire scars (0-?
	vears) or other non-flammable boundaries.
	Although these areas were sizable (several
	hectares) many of the retrievals in these
	pixels may poorly represent the burned
	vegetation. Along with inconsistent
	retrievals related to cloud cover, this may
	be an important reason why these features
	were deemed poor predictors by the models
	while seen as strong predictors in previous
	research (Korontzi et al., 2004). Higher
	resolution features may increase the
	representativeness of the pixels for the
	actual burned vegetation."