
  1 

Response of the authors to comments by the reviewers on the manuscript: 

“Dynamic savanna burning emission factors based on satellite data using a 

machine learning approach” 
 

We would like to thank the editor, reviewers and commentator on their time and effort spent 

on reviewing, assessing and improving this manuscript. This document contains the point-by-

point answers to the reviewer comments. A separate ‘track-changes’ document is included to 

highlight the changes to the manuscript. Additional explanatory figures which we refer to in 

the answers are added to the bottom of each section of this document. As the upload requires 

a single document, the reviewer comments are combined into a single document. The 

answers to the individual reviewers start from the following pages:  

 

Reviewer 1 (Bob Yokelson):  Page 2 

Reviewer 2:      Page 36 

Community comment 3 (Paul Laris): Page 43   
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1) Response of the authors to comments by Bob Yokelson  

 
Roland Vernooij (corresponding author) on behalf of the authors:  
 

We sincerely appreciate the considerable time and effort spent in assessing our manuscript, 

and the detailed and constructive comments which helped to improve the quality of this 

paper. Please find below our point-to-point response to the review. The revised text and 

updated figures are included in the updated manuscript.  

 
 

General comments Author’s response, reasoning and 

comments 

1/ A few more sentences describing the 

sampled fires and data reduction would be 

helpful. I glanced at the previous 

publications and did not quickly find all the 

common or potentially useful details. 

 

For instance:  

a/ Were the fires all prescribed?  

b/ How big were they?  

c/ Were they detected from space as hot-

spots or burned areas?  

d/ Were they all lit the same way? (In 

Brazil we noted that fires were often lit on 

opposing sides and the flame-fronts burned 

together. Fires were sometimes lit at night 

after wind died down.)  

e/ What, in a nutshell, was the sampling 

strategy?  

f/ Were RSC samples collected when 

relevant? 

We added the following lines to the 

methodology (P3 L32): “Fires were lit with 

the aim of being representative of EDS 

(often prescribed) fires and LDS non-

prescribed fires. Although some backfires 

were sampled during the initial phase of the 

fires, the majority of samples were obtained 

from the faster ‘head’ fires, which 

consumed most of the biomass. Fire sizes 

generally ranged between 2 to 10 hectares 

based on UAS drone imagery described by 

Eames et al. (2021), with exceptions of 

some fires that would not light and 

conversely, some fires that burned several 

hundred hectares. In the EDS, fire size was 

primarily limited by environmental 

conditions and fires ceased burning as 

humidity increased overnight whereas in 

the LDS, fire size was confined by low-fuel 

areas like burn scars, roads and prepared 

fire breaks. Particularly in the LDS, this 

means a limited fire size does not 

necessarily indicate limited fire intensity. 

Emissions were sampled at altitudes 

between 5−50 m depending on flame height 

for a duration of 35 seconds, resulting in 

0.7 litres per gas sample. On average, we 

took 35 samples per fire. The sampling 

methodology involved taking samples from 

a fire passing a certain point −while 

correcting for wind direction and severity− 

until no more visual smoke passed the 

drone anymore. From earlier work 

(Vernooij et al., 2022a), where we 

compared the average of these 

measurements to results using continuous 
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measurements taken at a mast, we have 

some confidence in the fidelity of this 

approach. “ 

 

Regarding point c, we added the following 

text to the discussion (P15 L19): “Of the 

UAS-measured fires in this study only 5 of 

the 45 EDS fires (11%) and 13 of the 65 

LDS fires (20%) were registered by 

MCD64A1 as burned area (while also 

accepting adjacent pixels and a 4-day time 

lag) and only 4 of the 45 EDS fires (9%) 

and 32 of the 65 LDS fires (49%) were 

registered by VIIRS S-NPP as thermal 

anomalies (with the center point of the 

hotspot (including a 1-day time lag) being 

within a 3.5 km radius of the sample). 

Depending on the spatiotemporal nature of 

these omissions, this may affect some of the 

results in this study concerning the effects 

of the EF dynamics on total emissions. 

Chen et al. (2023) indicate that in the 

savannas, disproportionately more burned 

area is added in higher tree-cover areas 

when using higher resolution satellite 

imagery. Giving more  significance to these 

areas would mean our savanna-wide 

effective EFs of CO, CH4 and N2O would 

increase, The LandSat and Sentinel based 

burned area product from (Roteta et al., 

2021) performed much better and registered 

8 of our 14 EDS fires (57%) and all of our 

16 LDS fires (100%) in Botswana and 

Mozambique in 2019 (while also accepting 

adjacent pixels and up to a 21-day time 

lag). Due to the fewer overpasses the 

temporal allocation of this product is less 

precise with an average time lag of 5.5 

days. Figure 10 shows the portion of our 

EDS and LDS fires that were detected by 

various satellite algorithms.” 

 

Figure 10 is also included at the bottom of 

this document.  

 

How were the data processed into emission 

ratios (ERs) and EFs? To clarify last 

question, Yokelson et al., 1999 compared 

the impact of processing grab samples into 

ERs and EFs with several different 

The excess mixing ratios (EMR, sample 

minus background concentrations) of the 

GHG and aerosols were converted to EFs 

using the carbon mass balance method 

(Yokelson et al., 1999): 
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justifiable approaches. Without proving one 

approach was best, they found only small 

differences among approaches. Similarly, 

regarding the authors work, I don’t plan to  

critique their approach, but it’s useful for 

posterity to specify the approach used (see 

below on RSC for more). 

 

𝐸𝐹𝑖 =  𝐹𝑐  ×  
𝑀𝑊𝑖

𝐴𝑀𝑐
 ×  

𝐶𝑖

𝐶𝑡𝑜𝑡𝑎𝑙
  

where  𝐸𝐹𝑖 is the emission factor of species 

𝑖 (usually reported in g kg-1) and 𝐹𝑐 is the 

fractional carbon content of the fuel by 

weight (estimated at 50% following Akagi 

et al., 2011). MWi is the molecular weight 

of species i which is divided by the atomic 

mass of carbon, AMc. 𝐶𝑖   is the moles of 

carbon per mole of species i multiplied by 

the EMR of species i. 𝐶𝑡𝑜𝑡𝑎𝑙 is the total 

number of moles of emitted carbon in all 

carbonaceous species. Because we did not 

measure the non-methane hydrocarbons and 

the chemical composition of carbonaceous 

particulates, the NMHC and the carbon 

content of the particulates were estimated 

based on literature values in order to 

estimate 𝐶𝑡𝑜𝑡𝑎𝑙; The total amount of carbon 

in non-methane hydrocarbons was 

estimated to be 3.5 times the ER(CH4/CO2) 

based on common ratios for savanna fires 

(Andreae, 2019; Yokelson et al., 2011, 

2013). For the bag and mast measurements, 

we used the PM to CO ratio based on 

AM520 and CRDS measurements, with 

carbon accounting for 68% of the PM-mass 

(Reid et al., 2005a). Overall, the carbon in 

PM and NMHC constitute respectively 

0.5−2% and 0.4−3% of the total emitted 

carbon. Therefore, the uncertainty from the 

effect this assumption on the EFs of 

gaseous species is limited. On average, the 

PM to CO ratio in our measurements was 

0.0946 ± 0.0218 which corresponds well 

with the 0.0969 ± 0.0403 average for 

savanna fires (Andreae, 2019).  

The paper would be easier to comprehend 

the first time thru with slightly more plain 

language and consistent terminology in 

describing the statistical analysis. 

We have added some clarifications to the 

text (particularly section 2.2.2) where we 

explain some of the terminology. These 

specific clarifications will be further 

discussed in the answers to the detailed 

comments below. 

The discussion on possible future 

applications is nice. Perhaps one other 

addition would be to identify which 

environmental variables might be available 

in timely enough fashion and have enough 

Supplementing the datasets on which the 

models are trained with alternative data 

always comes with uncertainty and 

consistency should be checked. However, 

we believe substituting for instance ERA5-
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predictive power to improve air quality 

forecasts. I.e. could current or forecast 

temperatures from the global weather 

services help predict how fires will burn in 

near real time? 

land temperature with ERA5 temperature to 

achieve more NRT, or even T predictions 

from CMIP projections can be useful. 

 

We added the following statement (P16 

L14): “The models are currently trained 

using meteorological features obtained 

from ERA5-Land (Muñoz-Sabater et al., 

2021) which is available from 1950 to 

present and has a 2- to 3-month delay. 

When interested in longer time periods or 

for near-real-time (NRT) applications these 

features may be substituted with ERA5 

(Hersbach et al., 2020) which is available 

from 1940 to present with a shorter latency 

period of 5 days, or even CMIP climate 

projections. Although supplementing the 

datasets on which the models are trained 

with alternative data always comes with 

additional uncertainty, we found 

meteorological parameters obtained from 

ERA5-Land to be in close accordance with 

ERA5, indicating the two may also be 

substituted. This means that the EFs 

computed using the methodology outlined 

in this paper can also be used to improve 

NRT biomass burning emission estimates 

like those from CAMS-GFAS (Andela et al., 

2015; Di Giuseppe et al., 2016).” 

 

Somewhat related to #3 above, can the 

computational burden be specified of using 

the author’s full-scale approach or partial 

implementation? How much easier and how 

relatively accurate is simply using EDS and 

LDS EFs?  

 

We found that a binary (EDS vs LDS EF) 

approach is not justified given the gradual 

changes over time we observed. To make 

sure data users are not burdened with an 

overload of information we will provide 

NetCDF files with daily savanna EFs for 

various species as well as MCE which will 

be part of the Global Fire Emissions 

Database version 5 we are currently 

working on. 

What is the error in the satellite proxies and 

how does propagated error in the dynamic 

EF compare to the impact of switching to 

dynamic EF?  

 

The reviewer brings up a valid point; 

satellite proxies carry uncertainty and we 

do not account for this when building our 

models. We cannot provide a definitive 

answer but would like to note two things. 

First, we warn against substituting data 

sources to avoid biases in these to start 

playing an important role. Right now, if 

there is a bias in a dataset this will not 

matter. Clearly this does not count for 
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misinterpretation or uncertainty in general. 

Second, we note that this issue is common 

for large-scale modelling approaches and to 

some degree it is difficult to properly 

account for given that the uncertainty of the 

large-scale datasets is uncertain. From our 

perspective, we feel the errors are small 

enough to be sure about the key findings 

such as lower EFs in dry regions and higher 

in wetter regions, but they clearly matter. 

We have inserted a statement on this (P15 

L32): “The meteorological parameters 

obtained from the ERA5-Land dataset carry 

uncertainty. This uncertainty becomes 

higher when going back further in time due 

to a decrease in validation data. To what 

extent uncertainty propagates to the EF 

predictions varies depends mostly on 

whether there is a bias that was also present 

in the training data or misinterpretation or 

uncertainty in general. As this model is 

trained using specific datasets, these 

datasets should not be replaced by other 

sources without evaluating the consistency 

of that source with the training data. FTC 

and FBC, based on MOD44Bv006 were 

found to be strong predictors of BB EFs. 

However, intercomparison with Tropical 

Biomes in Transition (TROBIT) field sites 

in African, Brazilian and Australian 

savannas has shown that this product 

consistently underestimates canopy cover in 

tropical savannas by between 9 to 15% 

(Adzhar et al., 2021). Products based on 

higher-resolution satellite retrievals (e.g. 

LandSat and Sentinel) have the potential to 

further enhance the spatial resolution of the 

EF estimates to include small landscape 

features and thus become more 

representative. Although all satellite data 

comes with some uncertainty, we feel the 

errors are small enough to be sure about the 

key findings such as lower EFs in dry 

regions and higher in wetter regions, but 

they clearly matter.” 

 

 

During a recent field campaign, we found 

that one of the global vegetation products 

mapped a pine forest and an alpine 

We agree that there is much ambiguity on 

what constitutes “savanna”. We also found 

that some of the fires we lit in protected 
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wilderness area to savanna and agriculture 

respectively. Simple added info would be 

useful such as: do all the author’s savanna 

fires show up as being in a savanna in the 

remote-sensing products?  

 

 

areas got marked as “croplands” in the 

IGBP classification of the MCD12Q1 

product. These classes are listed in column 

BC “MOD_vegtype” of the Excel sheet for 

each sample. When aggregating to larger 

pixels, the land use classification was based 

on the dominant type in the 0.25 grid cell, 

meaning some of the nuance is lost.  

 

An important side note −too often forgotten 

when upscaling to global models− is that 

most samples (whether they are EFs or fuel 

loads or combustion completeness), are 

obtained in protected and relatively 

undisturbed areas. However, most of the 

area classified as savanna is not.  

 

We added the following statement (P10 

L33): “Using the IGBP classification, our 

samples were classified as “Woody 

savannas” (24%), “Savannas” (42%), 

“Open shrubland” (21%), “Grassland” 

(4%), “Cropland/Natural vegetation 

mosaic” (6%) and “Croplands” (1%). The 

latter two classes are misclassifications and 

were all situated in protected areas with no 

crops. These classes are listed in the 

accompanied dataset (Vernooij, 2023).” 

 

There is also considerable 

difficulty/uncertainty in field-measured fuel 

consumption, etc. Easier than adding many 

columns for uncertainties would be at least 

generic uncertainties in the table explaining 

the data set. The error bars in the figures do 

look generous to the author’s credit. Again, 

it might be worth stating how the local 

variability compares to full, propagated 

uncertainty?  

 

Just as with the comment above, we agree 

but do not have a fully satisfying way 

forward. Some of these issues also play a 

role when building other components of 

GFED and in the end often an aggregated 

expert-judgement uncertainty estimate is 

used.  

CH4 is exceptionally dependent on MCE, 

but not all important emissions are as seen 

in Yokelson et al. (2003) and other work 

including Andreae 2019.  

That is correct, in this paper we only 

present the results for the emission species 

that were directly measured. However, as 

some species may be scaled using MCE as 

you show in Yokelson et al. (2003), we will 

also add MCE to the downloadable data 

files in the future.  

It seems the Excel spreadsheet is giving 

time as local time 

This is true. We have added “(local time)” 

to the column name 
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The spreadsheet seems not to include 

background samples. ERs and background 

values can be derived from slopes and 

intercepts, respectively. By subtraction of 

the “_em” column from the “_abs” column, 

it appears there was a fixed background for 

each fire. These backgrounds are interesting 

in themselves. For instance, one fire had a 

background of 0.17 ppm CO, which is 

pretty low compared to the 1-5 ppm CO 

background that can occur during regional 

smoke episodes during peak fire season.  

 

This is correct. Shortly before lighting the 

fire, four background samples were taken at 

15m. The average mixing ratio of these 

samples is then taken as the background for 

all the samples in that fire.  

 

In the revised Excel table (provided in the 

zenodo file) we have included the 

background values pre-fire in a separate 

sheet.  

 

Particularly for CO2 and N2O (mostly due 

to the low signal) they fluctuate 

significantly compared to the excess mixing 

ratios in the samples.  

As we also see by FTIR (but don’t report), 

there were negative  

N2O emissions and EF at times. How were 

these negative emissions handled in further 

data processing? 

We found that the Aeris Pico analyzer was 

less accurate at low concentrations due to 

temperature and pressure stabilization 

issues which are now addressed in the 

“Ultra” model which was not yet used in 

our work but will be in future work. In 

Vernooij et al. (2021)’s Figure 11 we show 

this issue is mainly important at low carbon 

EMRs where we find both high and low 

N2O EF extremities. As mentioned in P8 

L7, we excluded samples which contained 

less than 10 moles of total carbon emissions 

for the calculation of the WA N2O EF as 

we deemed these samples too uncertain.  

 

It is very interesting that you also find 

negative N2O emissions in your FTIR 

measurements. Besides measurement error, 

could N2O consumption in flaming 

combustion (Winter et al., 1999) be a 

cause? In our work we ignored this and 

assumed it is mostly a measurement error 

which cancels out when taking multiple 

samples. 

There are a number of non-physical values 

in the spreadsheet easily found by plotting 

the columns in a line chart. E.g., rows 

2209-2211, 2353, and especially 2382 and 

3116. These data were presumably not used 

in the training or validation and might be 

removed? 

Indeed, samples with negative emissions 

for CO2, CO or CH4 were omitted from the 

training and validation data for the further 

analysis. We have now deleted them from 

the spreadsheet to avoid confusion.  
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The letter and number convention for the 

sample names, does it have any 

significance that should be explained? 

These codes refer to flight and sample 

numbers of the individual bags. Although 

we used them to allocate times and 

coordinates and use comments, they do not 

have any further role in the analyses. 

 

In the “dataset explanatory table” provided 

in the zenodo link, we added a description 

of the letter and number convention of the 

sample and fire names. Since they combine 

with notes, photos, lab results, etc., they are 

mainly helpful for us if someone has 

questions regarding certain data.  

Why are EF calculated for the cals? This is indeed an error in the script. Since 

the calibration samples are filtered out for 

the statistical analysis, these EFs do not 

affect the models. In the new version we 

have removed EFs for the Cals.  

Why is no date/time given for the cals? The date and time in the sheet refer to the 

date and time of sampling which are logged 

by the sampling unit on the drone. Since the 

calibration gas bags are manually filled 

from a canister on the ground, sampling 

date and time are not logged. They were 

filled before starting the analyses around 

sunset on the same day of the fire.  

Why are the cals not all the same or nearly 

the same? Were there different calibration 

mixtures or does the scatter reflect the 

precision? 

There was indeed more scatter in the 

calibration samples than the measurement 

precision (provided by the manufacturers) 

indicates. To mimic the measurement 

method, we have first filled bags with the 

calibration gas and then fed them into the 

analyzer rather than straight from the 

canister. Uncertainties may thus relate to 

both the measurement precision and the 

sampling.  

 

Average calibration values ( std) 

measured in the field were:  

CO2:  4732  128 

CO:    102  7.3 

CH4: 15.1  0.36 

N2O: 1.14  0.047 

 

We have added the following to the 

discussion (P13 L17): “The difference in 

the mean calibration value compared to the 

calibration gasses was -4.75% for CO2, -
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1.32% for CO, -3.97% for CH4 and -1.28% 

for N2O. Although the measurements were 

linearly correlated using the calibration 

bags for the individual fires, the standard 

deviations between the calibration samples 

were 2.58% for CO2, 7.06% for CO, 2.32% 

for CH4 and 4.04% for N2O, indicating 

larger measurement uncertainties than 

reported by the manufacturers, which 

possibly arises from the bag methodology.”   

 

I was surprised that field-measured 

temperature had poor correlation with the 

satellite temperature in Table 4. Then I 

noticed in the spreadsheet that the 

temperatures measured on the drone 

correlate with CO2. In general, the 

temperature, RH, and VPD seem to be 

measured in the convection column at times 

where they would reflect the heat and water 

production of the fire, rather than an 

ambient air value that would influence fire 

behavior. If this is the case, I suggest 

replacing sample-specific values from the 

drone with one best ambient value per fire 

and (if not already done) seeing how that 

correlates with measured EF and remote-

sensing products. Or did the authors use 

pre-fire met data measured differently or on 

the drone during the pre-fire cal and that 

data is available somewhere else? 

 

For example. Picking one fire randomly, 

EDS19_3 on a June afternoon in 

Mozambique, one notices that Tsat is close 

to the climatological average high for June 

in Maputo (26 C), but is well below the 

lowest Tdrone (33.57 C). Is that a shade 

versus sun-exposed thing? Was there a 

Tdrone during a cal or background that is 

more appropriate? Further, VPDsat is only 

close to VPDdrone at minimum Tdrone 

suggesting combustion products make 

VPDdrone not representative of ambient 

VPD unless a VPDdrone measured in 

background air was actually used? 

Likewise the RH comparison reveals 

differences. 

That is correct, the values listed in this 

column were logged using a temperature 

sensor on the drone (a safety feature) and 

are in no way representative of the general 

conditions without fire. Although we at 

some point reprogrammed it to also log T 

and Rh after changing batteries this often 

occurred in still hot burn scars and we 

found these values were also not helpful.  

 

The only thing these values represent is the 

conditions under which the sample was 

collected. These values were not included 

as predictor features in the models. To 

avoid confusion, we will remove the 

columns from the data sheets.  
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In the LGR N2O-CO instrument, the N2O 

data needs to be corrected for CO and the 

correction only works up until 5ppm CO. 

This is because at high CO values, the CO 

line broadens enough to interfere with the 

N2O line. In general, the strongest N2O 

band is overlapped by water, CO2, and CO 

(and other gases). The CO values in the 

author’s spreadsheet are in the 100s. The 

manufacturer of the author’s N2O 

instrument (AERIS) product literature 

claims to use an interference-free, but 

unspecified, alternative spectral region and 

have an upper limit of 500 ppm for some 

unspecified molecule (probably CO?). 

Kudos to the authors for not using LGR for 

N2O, but I am curious if the authors have 

any evidence against or for CO interference 

in their N2O data? I am not assuming issues 

exist, but if they can be ruled out, it would 

be worth mentioning as N2O is an 

important, but undersampled fire emission 

To help address this concern, we contacted 

Dr. Jerome Thiebaud from AERIS, who 

explained it this way:  

 

The following statement may be true at the 

LGR wavelength in the near infrared, but 

not at the Aeris wavelength in the middle 

infrared: 

"This is because at high CO values, the CO 

line broadens enough to interfere with the 

N2O line. In general, the strongest N2O 

band is overlapped by water, CO2, and CO 

(and other gases)." 

 

The Aeris gas analyzer operates at low 

pressure to minimize spectral congestion 

and near a wavelength of 4.5 microns 

where N2O absorption lines free of any 

interference (including from water, CO2, 

and CO) can be measured in typical 

atmospheric gas mixtures. 

 

We did not find any evidence of 

interference. But unfortunately, we do not 

have access to calibration gases with known 

N2O mixing ratio and varying CO mixing 

ratios to test this.    

 
 

 

In the line-by-line comments, the table below only includes the comments that required some 

additional explanation or answer. In all other cases, we took over the reviewers’ suggestions 

which are revised accordingly in the ‘Track changes’ document.  
 

Reviewer 2, Bob Yokelson line by-line 

comments 

Author’s response, reasoning and 

comments 

2/1 Not 100% sure what is meant here. It 

almost reads like the biome average EF is 

60-85% off on average. I think you mean 

e.g. if a measured fire had an EF 10% 

below the biome average EF, the satellite-

based recalculation of the EF would be ~6-

8.5% below the biome average? 

Not entirely, what is meant is that in your 

example the absolute error would be 1.5 - 

4% (below or above average) instead of 

10%. We have changed the sentence to (P1 

L38): “RF models using satellite 

observations performed well for the 

prediction of EF variability in the measured 

fires with out-of-sample correlation 

coefficients between 0.80 and 0.99, 

reducing the error between measured and 

modelled EFs by 60−85% compared to 

using the static biome average.” 

2/3 change in CO2 totals? (expect small) The difference in CO2 emissions over the 

entire timeframe was -0.2% compared to 
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the static EF average. We added this to the 

text (P2 L3).  

2/2-3 It’s amazing that the global totals 

based on average biome EFs were within 

1.8 to 18% of global totals using dynamic 

EFs. The difference is much smaller than 

the uncertainty in almost any other thing. 

However, it should be clear what biome 

average EFs are employed here. Probably 

the old literature average? Also, is good 

agreement seen every year or just for the 14 

year total? 

This was indeed surprising to us, 

particularly since our measurement 

averages (overrepresented by xeric regions) 

suggested much larger deviations.  

 

The ‘static average’ we compare with are 

the GFED4s EFs which are not updated 

with current literature. However, for these 

species and savannas, these are similar to 

those proposed for FINN 2.5 (Wiedinmeijer 

et al. (2023) preprint).  

 

When comparing to the EFs suggested by 

Andreae (2019), the differences would be 

larger.  We added the following text (P11 

L7): “Both our measurements and the 

savanna biome averages in literature 

compilations (e.g. Akagi et al., 2011; 

Andreae, 2019) are subject to sampling bias 

when representing global savannas. A 

disproportionate number of field studies are 

clustered around reactively accessible 

locations with a well-developed research 

infrastructure, whereas other fire-prone 

areas lack direct field measurements. Rather 

than comparing the average of our savanna 

measurements to the literature averages, we 

computed the dynamic EFs globally using 

the RF model and subsequently calculated 

the emissions for the entire savanna biome. 

We then divided these annual emissions by 

the consumed biomass from GFED4s to get 

the annual consumed-biomass-weighted-

average EFs, which we will further refer to 

as the “effective” EFs. Over the 2002-2016 

period, the effective EFs over the savanna 

biome were 1685  5 for CO2, 64.3  0.6 

for CO, 1.9  0.0 for CH4 and 0.16  0.00 

for N2O, with the number in the parentheses 

indicating the interannual standard 

deviation. In Table 4, we compare the 

effective average EFs over the 2002-2016 

period calculated by our model to the static 

average EFs for savanna and grassland 

vegetation used by GFED4s and those 

suggested by Andreae (2019) and 

Wiedinmyer et al. (2023). Table 4 also lists 

the average EFs of the UAS measured fires 
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and the average EFs of all included fires 

(including literature studies). Except for 

N2O, the differences between the effective 

EFs compared to more recently updated 

static EFs from Andreae (2019) were larger 

(+1.3% for CO2, -7.1% CO, -31.4% CH4 

and -3.7%) than the differences compared 

to static EFs from GFED4s. 

 

Ultimately, the paper could compare the old 

literature average EFs to the evolved 

literature average EFs that include the 

author’s new data, and the average EFs 

based on just the authors new work. I.e. 

how much impact does this study have on 

averages? Finally, in addition to predicting 

measured EF better, it would be interesting 

to know if the use of dynamic EFs also 

better predicts downwind impacts, but that 

might be another paper. 

Many thanks for the great suggestions. As 

mentioned in the paper, the averages of our 

own measurements deviated more from the 

previous static averages than the ‘effective 

EFs’ listed above. This is mainly because a 

disproportionate number of our 

measurements were done in Xeric savannas. 

We feel this sampling bias makes it unwise 

to add our samples to the biome average 

without weighing (i.e. the effective savanna 

EF). Given the comments above about 

uncertainty we are also more careful now in 

stating the the biome-average values is 

different. 

 

Upon request these effective EF averages 

can also be calculated for individual regions 

or timeframes (e.g. EDS vs LDS). We hope 

that our work will encourage researchers to 

step away from using average values. 

 

These emission factors have been used in a 

paper which compares bottom-up and top-

down (TROPOMI) data which provides 

encouraging results (Van der Velde et al., in 

preparation) and will become part of 

GFED5   

2/5-6 Did not the authors observe that CO 

and CH4 EFs decreased with drying in 

xeric grasslands, but increased with drying 

in mesic woody savannas? Also “… annual 

average savanna fire …” 

That is indeed the case, we changed the 

sentence to (P2 L5): “Over the course of the 

fire season, drying resulted in gradually 

lower EFs of these species. Relatively 

speaking, the trend was stronger in open 

savannas than in woodlands where towards 

the end of the fire season they increased 

again.” 
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2/7 Are there just reductions? There is good 

agreement on totals so there should also be 

localized increases. In general, from the 1-

sigma standard deviation in literature EFs 

we expect +/- 40% variation in EFs fire-to 

fire 1-sigma. 

Indeed, the models also predicted increases. 

Since average CH4 and particularly N2O 

EFs were lower, the largest localized 

deviations were reductions. 

 

We changed the text to (P2 L7): “Contrary 

to the minor impact on annual average 

savanna fire emissions, the model predicts 

localized deviations from static averages of 

the EFs of CO, CH4 and N2O exceeding 

60% under seasonal conditions.” 

2/15 60% of net emissions? Could 

deforestation and peat be more important in 

the C-cycle if minimal regrowth? 

We clarified the text (P2 L15): “They 

estimate that, due to their high burning 

frequency, savannas account for roughly 

60% of the gross (i.e. not considering 

regrowth) global carbon emissions from 

biomass burning (BB).” 

2/26-28 There are many direct field 

measurements and they quantify overall 

variability, but previously we could not 

account for the total variability with 

quantitative contributions from very many 

specific factors. Previous studies targeted 

the average and variability, but not the 

causes of variability. 

We changed the text to (P2 L26): 

“Although there are many direct field 

measurements and they quantify overall 

variability (as summarized in for example 

Akagi et al., 2011 and Andreae, 2019), to 

date we cannot quantify how specific 

factors such as moisture content impact EFs 

(van Leeuwen and van der Werf, 2011).” 

3/25-26 Could other real-time data besides 

that from satellites be useful? 

Our aim, for the implementation in global 

emission inventories, was to have a global 

coverage over a considerable timespan (at 

least the MODIS era). Any dataset with a 

record long enough to train models and 

NRT availability can be useful.  

 

Supplementing the datasets on which the 

models are trained with alternative data 

should be done carefully to avoid biases. 

However, substituting for instance ERA5-

land temperature with ERA5 temperature to 

achieve NRT capacity, or even T 

predictions from CMIP5 projections as you 

suggested can be useful for NRT 

applications.  

 

4/23 The pre-fire met data mentioned here, 

where is it? The spreadsheet has non-useful 

met data collected in the fire convection 

column. 

That is correct, the pre-fire conditions were 

logged in a similar fashion but using the 

background measurements before the fire 

was lit. Although we started logging the 

windspeed, temperature and relative 

humidity using a Kestrel fire weather 

sensor, that was only true for the very last 
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experiments and not useful to analyze the 

full record.  

 

In the revised Excel sheet, we added the 

background data including the relative 

humidity and temperature when available.  

4/35 One naturally wonders here if the 

authors field environmental data can be 

used for insight into the accuracy of the 

global satellite products and were their fires 

detected by the satellite products GFED4s 

uses? 

As previously stated, we added the 

following text (P15 L17): “Of the UAS-

measured fires in this study only 5 of the 45 

EDS fires (11%) and 13 of the 65 LDS fires 

(20%) were registered by MCD64A1 as 

burned area (including adjacent pixels and a 

4-day time lag) and only 4 of the 45 EDS 

fires (9%) and 32 of the 65 LDS fires (49%) 

were registered by VIIRS S-NPP as thermal 

anomalies (with the center point of the 

hotspot (including a 1-day time lag) being 

within a 3.5 km radius of the sample). 

Depending on the spatiotemporal nature of 

these omissions, this may affect some of the 

results in this study concerning the effects 

of the EF dynamics on total emissions. 

Chen et al. (2023) indicate that in the 

savannas, disproportionately more burned 

area is added in higher tree-cover areas 

when using higher resolution satellite 

imagery. Giving more weight to these areas 

would mean our savanna-wide effective 

EFs of CO, CH4 and N2O would increase. 

The Sentinel-2 based burned area product 

from Roteta et al. (2021) performed much 

better and registered 8 of our 14 EDS fires 

(57%) and all of our 16 LDS fires (100%) 

in Botswana and Mozambique in 2019 

(including adjacent pixels and up to a 21-

day time lag). Due to the fewer overpasses 

the temporal allocation of this product is 

less precise with an average time lag of 5.5 

days. Figure 10 shows the portion of our 

EDS and LDS fires that were detected by 

various satellite algorithms.” 

5/7 Impressive set of products. Is it easy to 

explain why no VIIRS or geostationary? 

Not available as long? Useful going 

forward? 

Our aim was to have a global coverage for 

the implementation in global emission 

inventories (using a uniform approach) 

while covering at least the MODIS era to 

look at global trends. Therefore, we did not 

consider geostationary satellites at this 

stage.  
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However, since all our own measurements 

are from the VIIRS era the models can be 

trained using VIIRS data as well going 

forward. As only 4 of the 45 EDS fires 

(9%) and 32 of the 65 LDS fires (49%) 

were registered by VIIRS S-NPP as thermal 

anomalies, including VIIRS as a feature 

would therefore result in a lot of missing 

values which then have to be removed from 

the training data. We added a sentence to 

the text (P5 L15): “We used remote sensing 

products based on retrievals and reanalysis 

data with sufficient spatial and temporal 

coverage, primarily using products based on 

the Moderate Resolution Imaging 

Spectroradiometer (MODIS). This meant 

that at this stage, we did not include data 

from VIIRS or geostationary satellites.” 

5/8 Were all the samples of a fire usually in 

the same feature pixel? 

For the courser features like ERA5-land this 

was the case, although feature values may 

differ between samples based on their 

timestamp. For the MODIS derived features 

the samples of the individual fires covered 

1 – 13 pixels with an average of 2.5 pixels 

per fire.   

5,/15 Is it easy to explain why not using 

historic NDVI range? 

We are not sure whether we fully 

understand the question, but we focused on 

Pgreen. Pgreen is the NDVI before the fire, 

relative to the NDVI range of the pixel 

throughout the year. As further explained 

later, the reason this did show us as a strong 

indicator may be the pixel 

misrepresentation of the actual burned 

vegetation.  

5, 25-26, TRMM useful for rainfall? Since TRMM was in operation from 1997 

to 2015 and our measurements are done 

between 2017 and 2022, TRMM rainfall 

cannot be used to train our models.  

 

We have experimented using IMERG data 

for rainfall but decided to use ERA-land as 

we were more interested in consistency for 

broader patterns than highly accurate 

readings.  

5/30-31 risk or behavior or both? Are any 

ideas in the “hot dry windy index” useful as 

predictors here? 

Many thanks for the suggestion. We were 

not familiar with this product and will 

surely include it in updates. The individual 

parameters that go into the DHW (VPD and 

windspeed) were included in training the 
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models and were (not surprisingly) found to 

be strong predictors. 

5/34-35 Is the daily cycle of fine fuel 

moisture captured? Was FFMC compared 

to the author’s field-measured fine-fuel 

moisture data? 

No, although we did include the diurnal 

cycle of VPD, ESI, T, WS and RH. 

However, FFMC was obtained from EFFIS 

CEMS, at a daily resolution.  

 

The FFMC compared very poorly to our 

measured weighted average fine fuel 

moisture content with a Pearson correlation 

coefficient of -0.36. This may explain why 

in itself (not as part of FWI), the FFMC was 

never assigned as one of the main EF 

predictors by the models.  

6/6 How does spatial resolution of the fire 

severity proxies (dNDVI etc.) compare to the 

size of fires? If the fire is smaller, then is the 

signal diluted? Would a small severe fire look 

like a larger less severe fire? Did the authors 

expect better correlation of scorch and char 

height with the severity proxies? 

Mismatch of the burned vegetation and the 

pixel retrieval is indeed an issue for these 

features.  

 

We added the following text to the 

discussion (P15 L2): “Fire intensity proxies 

(dNDVI and dNBR from MODIS) were 

poor predictors for the EFs. A potential 

explanation is that these features were at 

times heavily diluted, as many of the 

measured fires only affected part of the 

pixel. Similar misrepresentation errors can 

be expected for the NDVI before the fire, 

FPAR and the Pgreen. Particularly in the 

LDS, we were often limited to areas that 

were enclosed by recent fire scars (0-2 

years) or other non-flammable boundaries. 

Although these areas were sizable (several 

hectares) many of the retrievals in these 

pixels may poorly represent the burned 

vegetation. Along with inconsistent 

retrievals related to cloud cover, this may 

be an important reason why these features 

were deemed poor predictors by the models 

while seen as strong predictors in previous 

research (Korontzi et al., 2004). Higher 

resolution features may increase the 

representativeness of the pixels for the 

actual burned vegetation.” 

 

6/19-20 What is “a measurement with a 

missing value of an included feature”? Do 

you mean you did not use EF measurements 

if even a single associated satellite product 

out of the whole set was missing? 

That is indeed what we meant. The models 

cannot deal with missing values. We 

decided to drop those measurements rather 

than using average feature values as this 

could distort the relations. This was only an 

issue when including the full set of features 
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to decide the most important predictors. For 

training the eventual models we used a 

subset of five features. This had both the 

benefit of reducing the requirements for 

data availability and computational 

demands. These features did not have 

missing values.  

6/21-22 What does “resampled using ten-fold 

cross validation while allowing sample 

replacement (i.e., bootstrap method)” mean? 

Can a simple plain language explanation be 

added? 

Ten-fold cross-validation is a technique 

used to evaluate the performance of a 

random forest model by splitting the 

training data into multiple subsets or 

"folds". The entire dataset is divided into 

ten equal-sized parts or folds. The random 

forest model is trained and evaluated 10 

times. In each iteration, one fold is used as 

the validation set, and the remaining 9 folds 

are used as the training set. 

 

By using ten-fold cross-validation, we can 

get a more robust estimation of how well 

the random forest model performs on 

unseen data. It helps to reduce the bias that 

may arise from using a single train-test split 

and provides a better understanding of the 

model's generalization capabilities. 

 

Random forests are ensemble models that 

combine multiple decision trees to make 

predictions. The bootstrap method starts by 

randomly sampling the original dataset with 

replacement. This means that for each 

sample in the dataset, there is an equal 

chance of it being selected more than once 

or not selected at all in the bootstrap 

sample. This also helps to create an 

ensemble of diverse decision trees and 

contributes to the model's robustness and 

generalization capabilities. 

 

We changed the text to (P6 L31): “We 

removed measurements with missing values 

for any of the included features. The 

remaining data was divided into training 

(70%) and validation data (30%), and the 

training data was resampled using ten-fold 

cross validation. This means that the 

training dataset is divided into ten equal-

sized parts or folds. The random forest 

model is trained and evaluated 10 times. In 

each iteration, one fold is used as the 
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“temporary validation” set (different from 

the 30% which is not included in the 

training data), and the remaining nine folds 

are used as the training set. The folds are 

created while allowing sample replacement 

(i.e., bootstrap method), meaning that for 

each sample in the dataset, there is an equal 

chance of it being selected more than once 

or not selected at all.” 

6/22-23 Explain that “hyper parameter” refers 

to the most influential parameters? 
Hyperparameters refer to the settings or 

configurations that determine how the 

random forest algorithm operates. These 

parameters are not learned from the data but 

are predefined by the user before training 

the model. These are for instance the 

number of trees, tree depth and number of 

features per split. These features depend on 

the amount and variability in the data and 

are used to avoid overfitting.   

 

We changed the text to (P6 L39): “The 

hyper parameters (model configurations 

like number of trees, minimum samples per 

leaf, maximum features, etc.) were tuned 

using the scikitlearn “GridsearchCV” 

algorithm (Pedregosa et al., 2011).” 

 

 

6/28-30 This is hard to follow. How would an 

EF require a resolution and how would that 

be computed? Overlap is within or between 

features? Do you mean some fires were 

bigger than or occupied more than one grid 

cell in the original feature (note we have 

slipped into calling remote-sensing proxies 

“features” for short), so you averaged, or 

extrapolated, or built a new grid for each fire 

such that the fire was centered in a single grid 

cell? Sometimes a few extra words can help a 

lot! 

We rewrote this section to make it easier to 

follow (P7 L6): “To assess the impact of EF 

dynamics on emission estimates, and study 

global spatiotemporal patterns, we 

developed gridded EF layers that can easily 

be incorporated into existing emission 

inventories. The remote-sensing proxies 

(“features”) were resampled to the required 

spatial resolution by simply averaging the 

values of the relevant gridcells. For 

example, to compute the 0.25 fraction tree 

cover feature, we averaged the fraction tree 

cover of all 500-meter pixels classified as 

savanna or grassland.”  

 

6/32 How can an EF have a temporal 

resolution? Are the EFs referred to fire-

average or sample-specific? Is the daily cycle 

in RH and fine fuel moisture considered? 

This refers to the gridded product. We 

clarified the text to (P7 L14): “The 

temporal resolution of the computed 

gridded EFs in the example of Fig. 2 is 

daily, in which the day-to-day EF dynamics 

are being driven by daily variations in VPD, 

FPAR, FWI and soil moisture.” 
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The BA data we used to calculate global 

emissions using GFED4 is daily. Therefore, 

it did not make sense to calculate our EFs at 

higher temporal resolution.  

 

However, in calculating the daily EFs, we 

did consider the daily cycle for RH, VPD 

and T. As we state later in the text (P7 

L17): “For features with a typical diurnal 

pattern, we therefore weighed the hourly 

meteorological data by the average diurnal 

fire profile in the respective month for the 

grid cell. This diurnal fire profile was based 

on the three-hourly fractions of daily 

emissions obtained from GFED4.1s, which 

is based on the timing of active fire 

detections from both MODIS and 

geostationary satellites (Mu et al., 2011; 

van der Werf et al., 2017).” 

 

This means rather than taking the average 

daily average, the daily averages were 

weighed by when fires in the grid cell 

typically occur at that time of the year.  

 

6/40 “… savanna fire emissions …” Were the 

dynamic EFs calculated using global products 

and RF? 

Correct, we changed the text to (P7 L21): 

“To study the impact of EF dynamics in 

savannas, we calculated monthly global 

savanna emissions by multiplying the 

dynamic EFs computed by our models with 

dry matter consumption from GFED4s 
(Randerson et al., 2012; van der Werf et al., 

2017) at 0.25 spatial resolution, for the 

2002-2016 period (the period for which 

MCD64AC5 as used in GFED4s was 

available).” 

7/15-16 How were samples with negative 

N2O emissions treated when calculating fire-

average N2O emissions? 

For samples with a total increase in carbon 

below 10 moles, the increase was calculated 

as: 

 

 ∆𝐶 =  ∫
𝐸𝑀𝑅𝐶𝑂2

𝑀𝑀𝐶𝑂2

+
𝐸𝑀𝑅𝐶𝑂

𝑀𝑀𝐶𝑂
+  

𝐸𝑀𝑅𝐶𝐻4

𝑀𝑀𝐶𝐻4

 

 

We did this to avoid the (assumed) 

measurement error found in very low signal 

samples following Vernooij et al. (2021).  

 

Because these samples had low EMRs and 

the fire-averages are calculated over the 

cumulative EMR in all the bags, their 
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omission did not significantly affect the 

fire-averaged N2O emissions.  

   

7/19-20 Clarify this is the Andreae 2019 

average and not the average of the 85 

measurements used from other groups? 

Otherwise, how do you get locations for 

study-average or vegetation average 

emissions (unless one fire in study)? 

That is correct. We changed the text to (P8 

L2): “The relatively small range in the 

boxplot describing previous savanna 

literature (Fig. 3, red box based on studies 

listed by Andreae (2019)) may be attributed 

to the fact that most studies report either 

fire-averages, vegetation type averages or 

even study averages, whereas the other 

boxplots based on our measurements show 

the variability observed between individual 

samples.” 

7/23 substantial variability in fire-averages or 

samples? 
The boxplots represent the variability in the 

individual samples. To some extent, this 

variability also translated to fire averages 

but that is not shown here. To prevent 

confusion, we changed the text to (P8 L8): 

“We observed substantial variability within 

EF bag samples from different savanna 

ecosystems.” 

7/24-25 The higher CO and CH4 EFs in 

woody savanna is supported in previous 

literature at least once, e.g. Sinha et al., 

(2004).  

 

 

FWIW, the Miombo fire was included in the 

tropical dry forest category in Akagi et al, but 

it was also a small part of a savanna fire 

study-average used in the savanna category. 

Thanks for pointing this out. The higher CO 

and CH4 EFs were indeed in line with 

previous literature and expectations. We 

added the reference to the discussion.  

7/25 Taking this to mean the authors study-

averages were lower than previous literature 

averages. 

Correct, that is the average of all our 

measured fires. It should be noted that the 

aim of our campaigns was to cover 

spatiotemporal variability rather than 

getting a representative average of all fires 

in the savanna biome. The biome-average is 

not the same as our sampling average 

because we oversampled xeric regions. The 

relatively low EFs we measured are 

therefore to be expected. The issue with 

sampling bias is also true when taking study 

averages like Andreae (2019).  

7/29 by “seasonally inundated grasslands” do 

you mean aka dambos? 
Correct, we changed the text to (P8 L14): 

“In humid areas like dambos (seasonally 

inundated grasslands) and riverine forests, 

….” 

8/2-3 Any benefit to comparing the authors 

fuel measurements to similar measurements 
The fuel measurements are definitely very 

interesting in itself and will be further 
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by Shea et al (1996) and Hoffa et al (1999) 

and others?  

 

Shea, R. W., Shea, B. W., Kauffman, J. B., 

Ward, D. E., Haskins, C. I., and Scholes, M. 

C.: Fuel biomass and combustion factors 

associated with fires in savanna ecosystems 

of South Africa and Zambia, J. Geophys Res., 

101(D19), 23551–23568, 1996. 

studied, and used in different applications 

(e.g. to inform DGVMs and emission 

inventories). In this paper, however, the 

goal was not to look at fuel in detail but 

rather to use those measurements to explain 

patterns in EFs and EF-satellite 

correlations, so we only discuss them 

briefly. 

 

We added the following text (P13 L34): 

“Measurements of fuel loads were higher 

than previous measurements from African 

savannas described by Shea et al. (1996). 

They found average fine fuel loads (litter 

and grass) of 3.8 tonne ha-1 in moist 

Miombo woodland. In semiarid Miombo 

woodland they found 3.1 tonne ha-1, In 

comparison we found 5.6 tonne ha-1 in 

Mozambican Miombo woodland and 5.6 

tonne ha-1 in Zambian Miombo woodland. 

The percentage of grasses in these fuels was 

similar; Shea et al. (1996) reported 24% in 

moist Miombo woodland and 18% in semi-

arid Miombo woodland whereas we found 

37% in Mozambican and 18% in Zambian 

Miombo woodlands. The combustion 

completeness of these fuels was slightly 

lower in our fires at 50-80% versus 80-92% 

reported by (Shea et al., 1996), albeit that 

the lower values in this range occurred in 

the EDS. Combustion completeness of 

shrub leaves and course woody debris were 

in the same range. For dambo grasslands 

our fuel loads were also much higher at 6.2 

(2.16) tonne ha-1 of which 99% grass 

versus 3.1 tonne ha-1 from Shea et al. 

(1996). Although these differences are 

large, they may be attributed to the 

significant natural variability in 

productivity and decay related to water 

availability, fire frequency, and termite and 

grazing activities in these natural 

landscapes.” 

 

8/4 What is meant by “corresponding 

mixtures of fuel age”? In Table 3, why was a 

higher percent of the heavy fuels consumed in 

the EDS in Australia, unlike elsewhere; 

maybe lit more aggressively? 

By “the columns do not necessarily 

represent corresponding mixtures of fuel 

age” we mean that for some vegetation 

types or season, we may have more 

measurements of older fuels than for others. 

This may affect things such as litter load, 
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nitrogen content, etc. regardless of the 

seasonal effects. We changed the text to (P8 

L32): “For some characteristics (e.g., the 

total fuel load), it is important to note that 

the measurements in the different 

vegetation types do not necessarily 

represent identical mixtures of fuel age. The 

higher fuel loads open savannas in 

Australian compared to Botswana, may be 

partially attributed to the longer fuel build-

up.” 

 

We also added the average time since the 

last fire to Table 3.  

 

Fires were lit in similar fashion in the 

different vegetation types, including those 

listed in Table 3. In the Australian sites, 

grasses were very dominant and abundant 

and heavy fuels were scarce. The sample 

size of heavy fuels being very low may also 

explain why this deviated so much from the 

other areas.  

8/10-13 I’m pretty sure that increased RSC 

and increased CO and CH4 EFs in the LDS in 

wooded savannas is already in the literature 

but haven’t found the reference. Maybe Hoffa 

or Korontzi? 

The measurements described by Hoffa et al. 

(1999) are all performed between June 5th 

and August 6th and therefore miss the 

period we refer to. Korontzi (2005) does 

indeed predict a slight increase (recovery) 

in CO and CH4 EFs from September to 

October (Fig. 11) for both woodlands and 

grasslands. This increase, however, is very 

small compared to the overall pattern and EFs 

are still much lower compared to EDS values. 

Contrarily, we found EFs that were higher in 

LDS woodland fires compared to EDS fires. 

8/32 For Table 4, clarify which field-

measured met data were compared to satellite 

met data, preferably NOT drone data in fire-

processed air! However, Table 4 seems to 

specify that T and RH from the drone were 

used, which could be okay if NOT when 

drone was above the fire, but instead in 

ambient (background) air. Then again, 

currently, it’s odd that the satellite 

temperature and drone temperature are 

weakly positively correlated at 0.18 while 

satellite temperature is most strongly 

correlated with field measured nitrogen 

content in the grass (perhaps a seasonal 

coincidence?). 

The drone data during the fire are indeed 

not indicative of environmental conditions, 

but rather sampling conditions. In Table 4, 

we replaced the temperature and relative 

humidity with the values taken while 

making background measurements.  

 

Background measurements were obtained 

before the fire which can be several hours 

earlier than the latest samples. As both T 

and Rh are strongly diurnal, these values 

may not always represent the environmental 

conditions during the fire. With respective 

spearman correlation coefficients of 0.21 

and 0.45 for T and Rh compared to their 
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ERA5-Land counterparts, correlation was 

slightly higher but still not great.  

8/31-33 This text and Table 4 could be 

clarified with slightly more precise and 

consistent terminology. I think Tab 4 shows 

how the field measured-ecosystem attributes 

correlate with the field-measured MCE and 

EFs and also how the field-measured 

ecosystem attributes correlate with the 

satellite products, but NOT how satellite 

products correlate with field-measured EF or 

how anything correlates with model-

calculated EF? At this point in the paper, 

evidently, calculated EFs vs measured EFs 

and the sensitivity of calculated EFs will be 

discussed elsewhere. 

We changed the title of Table 4 to: “Table 

4. Spearman correlation matrix for the 

field-measured-ecosystem attributes and the 

fire-averaged emission factors and MCE as 

well as the satellite products used in the 

study. Positive correlations are presented in 

blue while negative correlations are 

presented in red.” 

 

Also, we added Table A2 to the appendix 

(Table 1, in this document below) which 

shows how satellite products correlate with 

field-measured EF or how anything correlates 

with model-calculated EF.  

9/4-5 I’m taking this to mean that 70% of 

field-measured EF were used with “features” 

to train the RF model and the RF model then 

used features to predict EF for the other 30% 

of field measured EF (out of sample means 

fires not in training set) and performed well in 

terms of r-squared. Could give the slope too? 

Is the training set randomly selected or varied 

run to run? 

Correct. The out of sample performance 

refers to the comparison of the 30% 

validation data against the modelled EFs 

based on the validation data features. These 

data were not included in training the 

model.  

 

The train-test split was randomly selected 

although the “random state” was then fixed. 

Rather than to optimize the results, this is 

done to make sure the models can be 

reproduced.  

9/5-7 Is there a simple way to connect feature 

importance and the concept of hyper 

parameters? Is “impurity decrease” 

essentially a fraction of total variability? 

The feature importance is calculated as the 

total reduction in the node impurity that a 

feature contributes to when it is used for 

splitting in all the individual decision trees. 

This impurity is calculated as the 

probability of misclassifying a randomly 

chosen data point within that node. The 

feature importance provides an overall 

measure of how much each feature 

contributes to the predictive power of the 

entire RF model. 

 

Hyperparameters are unrelated to the 

features used as predictors or the feature 

importance but refer to the settings or 

configurations that determine how the 

random forest algorithm operates. 

 

9/8 The red line in Fig 4 is useful for 

comparing the range of EF to the old 

literature average. But later in paper, the 

effect of dynamic EF should perhaps be 

You are correct. The effect is both the 

mismatch of our (xeric dominated) dataset 

to the savanna average and the effect of 

dynamic versus static. Moreover, in 



  25 

compared to the biome average based just on 

the field data used by the authors, which 

could be shown with a second vertical line. 

Then recalculate MAE and improvement %. 

Currently, the comparison is “apples to 

oranges” in that “improvement” is based on a 

difference resulting partly from incorporating 

new data and partly from a change in 

approach. 

particular for N2O, the older “static 

average” represented by the red vertical line 

is not up to date. Andreae (2019), which 

includes more recent studies, reports a 

savanna N2O EF of 0.17 which would 

reduce these mismatches.    

 

In Fig 4 and 5, we have added a separate 

magenta vertical line representing the 

average of the input data.  

9/13-20 This is a nice exploration of 

simplifying the RF approach. Can the authors 

explain why VPD is the most important 

feature in the small subset of features, despite 

having a low rank in the full set of features? 

Any estimate of reduced computational 

burden? 

The VPD is strongly seasonal and correlates 

strongly to other features from the full set 

of features like temperature, relative 

humidity, soil moisture, and evaporative 

stress index. This means that similar 

decision trees can split the data similarly 

following any of these features, so in a way 

they are competing. This reduces the 

impurity reductions (and thus feature score) 

of those features.  

 

The smaller feature subset has several 

advantages, including reduced 

computational burden, less dependencies on 

underlying datasets, easier to make NRT 

data, and no data losses due to missing 

values.  

9/24-25. Does this mean you ran the RF 

model once to get MCE and then used the 

MCE as a new feature in a re-run of the RF 

model? 

That is correct. Thanks to your work we 

know that MCE is strongly correlated to the 

EFs of particularly CO2, CO and CH4. By 

first computing the MCE and then offering 

that as a feature, we can isolate the effect of 

MCE from other effects making it more 

informative. Also, we found that doing it 

this way improved the overall predictive 

performance of the models.  

9/35-38 It would be interesting to see the 

study-average EFs vs the former literature 

average EFs and then also what the new 

literature averages are including this study, all 

in a little 3x4 table. 

Previous studies have often used the 

average of all the available measurements 

as the savanna average EF. However, in 

selecting our field campaigns, we were 

interested in capturing variability and 

dynamics, rather than determining a 

representative savanna average EF. Many 

of our measurements target les fire prone 

conditions and, for instance, from a 

representability perspective oversample the 

EDS and xeric savannas.  

 

For those interested in a single number for 

savannas, we would suggest taking the 
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effective EFs rather than the average of the 

samples. These values represent the average 

modelled EFs weighted by the consumed 

dry matter from GFED4s. This means they 

only include EFs at the time and location 

that the savanna fires occurred (according 

to MCD64A1), which eliminates the 

sampling bias in global measurements. 

 

As requested, we added Table 4. We also 

added the following text (P11 L17): “In 

Table 4, we compare the effective average 

EFs over the 2002-2016 period calculated 

by our model to the static average EFs for 

savanna and grassland vegetation used by 

GFED4s and those suggested by Andreae 

(2019) and Wiedinmyer et al. (2023). Table 

4 also lists the average EFs of the UAS 

measured fires and the average EFs of all 

included fires (including literature studies). 

Except for N2O, the differences between the 

effective EFs compared to more recently 

updated static EFs from Andreae (2019) 

were larger (+1.3% for CO2, -7.1% CO, -

31.4% CH4 and -3.7%) than the differences 

compared to static EFs from GFED4s.” 

 

10/2 How common are mixed biome grid 

cells? Percentage of total? Is the most 

common type of mix with tropical dry forest? 

Is there a percent tree cover or canopy closure 

that defines the boundary between what the 

authors consider savanna and something else? 

 

This depends on the resolution desired for 

the model. In this study, we aggregated the 

data to 0.25-degree grid cells meaning 

mixed grid cells were quite common. For 

the biome classification, we used the biome 

classification from GFED4s, which is based 

on the annual International Geosphere-

Biosphere Programme (IGBP) classification 

and obtained from MCD12Q1, in which 

classes 5-10 make up our “savannas and 

grasslands”. This means we did not have a 

“tropical dry forest” class. The IGBP 

classification uses a FTC cut-off of 60% to 

distinguish the “woody savanna” and 

“forest” classes.  

10/11-12 What is “annual effective EF”? An 

annual global savanna-fire average EF for 

each compound? This is also saying the year 

to year variation in global average EFs is 

small? 

That is correct, the “annual effective EF” 

was calculated by multiplying all the 

GFED4s biomass consumption by the 

dynamic EFs at the time and location of 

burning, and then dividing these annually 

integrated annual emissions by the 

integrated annual biomass consumption. 
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This way we get a savanna EF weighted by 

the time and places that burned.  

 

𝐸𝑓𝑓.  𝐸𝐹𝑥 (𝑦𝑒𝑎𝑟) =

 
∑ ∑  (𝐵𝐶 (𝑑𝑎𝑦,𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙) ×𝐸𝐹𝑥 (𝑑𝑎𝑦,𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙)𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠𝑑𝑎𝑦𝑠 

∑ ∑  𝐵𝐶 (𝑑𝑎𝑦,𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙)𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠𝑑𝑎𝑦𝑠

      (1) 

 

We clarified the text (P11 L11): “Rather 

than comparing the average of our savanna 

measurements to the literature averages, we 

computed the dynamic EFs globally using 

the RF model and subsequently calculated 

the emissions for the entire savanna biome. 

We then divided these annual emissions by 

the consumed biomass from GFED4s to get 

the annual consumed-biomass-weighted-

average EFs, which we will further refer to 

as the “effective” EFs. Over the 2002-2016 

period, the effective EFs over the savanna 

biome were 1685  5 for CO2, 64.3  0.6 

for CO, 1.9  0.0 for CH4 and 0.16  0.00 

for N2O, with the number in the parentheses 

indicating the interannual standard 

deviation.” 

 

10/14-15 averaged over what time and space? 

I.e. the daily average over all areas occupied 

by the indicated vegetation class? Fig 7 

doesn’t seem to show much or any EFCO 

increase in woody savanna as the fire season 

progresses? Does this figure clash with 

previous text? What is “typical savanna”? 

The graph contains monthly CO EFs 

averaged over the 2002-2016 timeframe, for 

all the areas occupied by the indicated 

vegetation class. The vegetation classes are 

based on the IGBP classes. We have changed 

“Typical savanna” to “Savanna” (referring to 

tropical regions with Tree cover 10-30% 

(canopy >2m).  

 

We agree that in the graph, the upward 

trend is not as evident for savanna and 

woody savanna as the measurements seem 

to indicate. Although we did focus on 

southern hemisphere Africa in this graph, 

there are still some effects of temporal 

mismatched between east and west and 

north and south that may dilute these 

patterns. Also, as you mentioned earlier, 

these classifications are not always correct.  
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10/30-34 Interesting, shows the RF model 

may have value to at least partially correct 

sampling bias in a field campaign! 

Exactly!   

11/2 Just to be clear, the N is in the foliage of 

the trees, not the wood itself 
We changed the text to (P11 L39): “In line 

with Susott et al. (1996) and Ward et al. 

(1992) we found that woody vegetation has 

higher nitrogen content contained in the 

foliage (Table 3), causing higher N2O 

emissions from tree dominated areas.” 

11/24-26 Did Hoffa and Korontzi predict 

higher MCE in LDS? 
That is indeed incorrect. We changed the 

reference to Korontzi (2005), which is a 

temporal extrapolation through Pgreen (also 

assessed in this study) based on 

measurements from Hoffa. 

11/30 The Eck trend in SSA is averaging over 

all sub-Saharan Africa AERONET sites? 
It used three sites (in Etosha, Namibia), 

Kruger national park, South Africa, and 

Mongu, Zambia) which are discussed 

separately. While all sites show an 

increasing SSA trend over the dry season, 

the trend is strongest in Mongu where the 

signal is probably the most dominated by 

fires.  

11/32 References that support an increase in 

SSA as MCE decreases include Liu et al and 

Pokhrel et al and probably many others 

Thanks, we have added the references to the 

text.  

11/40-12/1 Not sure about the interpretation 

here. Does CH4/CO vary with MCE? CO is 

not technically independent of MCE since 

MCE has CO in its definition. 

Although the main point here is that this 

relation varies with FTC, you are correct. 

MCE and CO are linear. Therefore, the fact 

that the CH4 EF/MCE ratio varies with 

MCE also means that the CH4 EF/CO EF 

ratio varies with MCE.  
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12/5-9 This discussion could be misleading in 

a subtle way. I think the effect seen here is 

probably because the other studies compared 

to are plotting the fire-average EFCH4 versus 

the fire-average MCE, while the authors are 

plotting EFCH4 vs MCE for “snapshot grab 

samples” that could include samples during 

flaming that may have much higher MCE 

than the fire-average MCE for typical useful 

real-world fires. We’ve seen this often over 

the years. To illustrate we can revisit the 

comparison to the Selimovic et al lab fire 

study. If one plots the instantaneous EFCH4 

vs instantaneous MCE for these typical lab 

fires you often get “curvature” at high MCE 

values during “pure flaming” and other 

effects. The ERCH4 vs MCE can also be non-

linear at high MCE or have interesting other 

interesting patterns with time. The plots show 

this for the 1-s data from randomly selected 

Fire #74 on the NOAA FIREX-Firelab 

archive 

(https://esrl.noaa.gov/csd/groups/csd7/measur

ements/2016firex/FireLab/DataDownload/). 

Fire #74 is one of the fires in the linear plot of 

fire-integrated EFCH4 vs MCE in Selimovic 

et al. (2018). Interesting topic but variability 

during a fire is a level of detail large-scale 

models can’t cope with yet. Thus, in 

providing guidance for large-scale models it 

may be best to stick to fire-average data. 

Many thanks for this clarification. 

We agree that this effect is much smaller in 

fire averages due to the limited range in 

MCE and behaves linearly. In Figure 1 

(below this table) we have added the fire-

averages and linear regression based on 

those averages. It shows a similar pattern 

for fires with exceptionally low MCE. Your 

graph indicated the eventual fire-average 

CH4/CO ratio (and thus the CH4 EF/MCE 

ratio) is dependent on the ratio between 

smouldering and flaming combustion in the 

fire, which may be expected to correlate 

with FTC. Therefore, while the pattern is 

certainly more pertinent in individual bag 

samples, it may also hold for fire-averages. 

 

We feel the main point of this text, that 

studies that disproportionately target 

smouldering or flaming emissions would 

reach different linear CH4 EF/MCE slopes, 

is still true and confirmed by the graph.  

 

We therefore changed the text to (P12 L37): 

“In accordance with previous studies (e.g. 

Korontzi et al., 2003b; van Leeuwen and 

van der Werf, 2011; Barker et al., 2020), we 

found steeper CH4 EF to MCE regression 

slopes in woodlands compared to 

grasslands. Our data indicated a positive 

correlation of the CH4 EF to MCE slope 

with the FTC based on MOD44Bv006. The 

MCE is a simplified form of the 

combustion efficiency and only calculated 

using CO and CO2 emissions. Being less 

oxidized than CO (which is still common in 

flaming combustion), CH4 emissions have a 

stronger dependency on the actual 

combustion efficiency (CO2 divided by all 

carbon emissions). While most studies 

describe the relationship between the CH4 

EF and the MCE as being linear (Korontzi 

et al., 2003; van Leeuwen and van der 

Werf, 2011; Selimovic et al., 2018; 

Yokelson et al., 2003), we found that for 

individual bag samples it was better 

described using a nonlinear function (Fig. 

9), in line with findings by Meyer et al. 

(2012) for Australian savanna 

measurements. Figure 9 represents 
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individual bag measurements rather than 

fire averages (for which the spread in MCE 

is much lower). Laboratory experiments 

described by Selimovic et al. (2018) 

showed that the CH4 to CO ratio is strongly 

dependent on flaming or smouldering 

phases if the fire. Individual bag samples 

−which often hold emission from a single 

phase−  therefore show much more 

variation compared to fire averages. Stable 

carbon isotopes also point to CH4 emissions 

being more depleted in heavy carbon (13C) 

compared to CO in both mixed (C3 and C4) 

and single-fuel-type experiments, indicating 

a stronger dominance of RSC and the 

pyrolysis of lignin in its total emissions 

(Vernooij et al. 2022b). This explains both 

why studies that are skewed towards either 

smouldering or flaming phase emissions 

find different CH4 EF to MCE slopes using 

linear regressions and why this slope varies 

with FTC. ” 

12/25-26 Think you mean “This is the first 

study to quantify the spatial distribution of 

GHG EFs over the entire savanna biome by 

using both field measurements from a variety 

of savanna ecosystems and their relation to 

global data mainly from satellites”. I.e. the 

field measurements  

have gaps as explained in the following lines, 

but by connecting the measurements to 

features you have a new way to get a useful 

global savanna estimate! 

As suggested, we have changed the text to 

(P14 L9): “This is the first study to quantify 

the spatial distribution of GHG EFs over 

the entire savanna biome using field 

measurements from a variety of savanna 

ecosystems and their relation to global data 

mainly from satellites.” 

13/11 The idea of a gross underestimate here 

is worrisome. How well do the authors think 

GFED4s accounts for fires too small to show 

up in their burned area product? Worth 

mentioning here? 

The ‘gross underestimate’ is compared to 

the GFED4s burned area used in this study. 

To clarify this we changed the sentence to 

(P15 L16): “New high-resolution burned 

area products, however, indicate that these 

global products, including the GFED4s data 

used for global emission  analyses in this 

study, grossly underestimate burned area 

due to omission of small fires (Chen et al., 

2023; Roteta et al., 2021; Roy et al., 2019). 

This also refers to a significant portion of 

our measured fires. Of the UAS-measured 

fires in this study only 5 of the 45 EDS fires 

(11%) and 13 of the 65 LDS fires (20%) 

were registered by MCD64A1 as burned 

area (including adjacent pixels and a 4-day 

time lag) and only 4 of the 45 EDS fires 
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(9%) and 32 of the 65 LDS fires (49%) 

were registered by VIIRS S-NPP as thermal 

anomalies (with the center point of the 

hotspot (including a 1-day time lag) being 

within a 3.5 km radius of the sample). 

Depending on the spatiotemporal nature of 

these omissions, this may affect some of the 

results in this study concerning the effects 

of the EF dynamics on total emissions. 

Chen et al. (2023) indicate that in the 

savannas, disproportionately more burned 

area is added in higher tree-cover areas 

when using higher resolution satellite 

imagery. Giving more weight to these areas 

would mean our savanna-wide effective 

EFs of CO, CH4 and N2O would increase.” 

 

14/10 Here I think it’s important to preserve 

the idea that you have not concluded the 

biome averages have large errors, just that 

fire to fire variability is large and is better 

accounted for by using a more sophisticated 

model. Also + and – local errors tend to 

cancel. It worries me that someone reading 

quickly may think you mean that global CO 

and CO2 emissions from savanna fires are off 

by ~80%. 

We agree that particularly compared to 

errors in other model aspects like BA and 

fuel load these errors are limited. We 

changed the text to (P17 L7): “The model-

produced data resulted in significant fire-

specific improvements compared to static 

biome-averaged EFs, reducing the mean 

absolute error in the modelled versus 

measured predictions by 63% for CH4, 57% 

for N2O, 81% for CO and 79% for CO2. 

Except for N2O EFs, our study does not 

indicate that savanna averages have large 

errors, but rather that fire to fire variability 

is large and is better accounted for by using 

a more sophisticated model.” 

14/31 I did not check the zenodo link. If it is 

different from spreadsheet, I could check it by 

request. 

The data is indeed the same as the 

spreadsheet provided.  

Fig 7. Why do “typical savanna” fire 

emissions peak earlier than all the subtypes? 
This may be an artifact of the spatial 

distribution of the different savanna classes.  

In general, but particularly for woody 

savannas, there is a trend in the SHAF 

region with western areas burning sooner in 

the year than eastern savannas. In figure 2 

(below) you can see that the frequently 

burning “savanna” class areas are more 

situated in the western part of the region. 

 

Another possible explanation would be 

more fire suppression in shrublands and 

grasslands.  
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Table 4: Emission factor averages of this  

EF 

Specie 
GFED4s 

Andreae 
(2019) 

Wiedinmeijer 
et al. 

 (2023) 

Sample 
data 
avg.1 

Training 
data 
avg.2 

Effective 
EF 

(Eq. 1)3 

CO2 1686 1660 1686 1637 1670 1685 

CO 63 69 63 55 61 64 

CH4 1.94 2.70 2.00 1.38 1.61 1.85 

N2O 0.20 0.17  0.12 0.12 0.16 
1Average over the fires measured using the drone methodology (skewed towards xeric savannas) 
2Average over the fires measured using the drone methodology and the included literature studies.  
3Dynamic EFs weighted by the consumed biomass at time and location of fires as calculated using GFED4s.  

 

 

Table A2. Spearman correlation matrix for the field measurements and the globally available satellite products. 

Positive correlations are presented in blue while negative correlations are presented in red.  
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Figure 1. The non-linear regression between the CH4 EF and the MCE for the individual bag samples. In the box on 

the bottom left,  refers to Spearman's rank correlation coefficient measured in the bag samples. The orange linear 

regression line is the linear regression of fire-averages.   
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Figure 2. Distribution of the IGBP landcover classes used in figure 7 of the main text.  
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Figure 10. Detection of the fires measured using the UAS-methodology by different satellite algorithms in the EDS 

(green) and LDS (orange). The darker area represents the cases where a fire was observed in the actual pixel within 

the listed timeframe. The lighter areas represent fires that were not detected in the same pixel as the samples but were 

detected in adjacent pixels. Timeframes are listed below the product labels. For the VIIRS detections the distance limits 

between the detection point and closest sample of the fire were 1km for the darker shaded area and 3.5 km for the 

lighter shaded area. 
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2) Response of the authors to comments by reviewer 2  

 
General comments: 

 
This study collected a large dataset of savanna emission factors (EFs), including over 4500 

EF bag measurements of CO2, CO, CH4 and N20 during 129 individual fires from 2017 to 

2022. Based on this in-situ observations, the authors identified the drivers of EF variability 

and implemented this variability into global models through dynamic EFs. The optimized 

machine learning reduced the error in EF estimates by 60-85% compared to static biome 

averages. They also found seasonal drying resulted in a decrease of the EFs with the fire 

season progressing, with a stronger trend in open savannas than woodlands. Overall, this is an 

important study to understand the variability and mechanisms for biome-specific carbon 

emissions, particularly at the spatial scales. The generated global EF products can be used to 

better estimate fire-induced greenhouse gas emissions. However, I do have some concerns on 

the methodology parts, which may need to be addressed before publication. 

 
Roland Vernooij (corresponding author) on behalf of the authors:  
 

We sincerely thank the reviewer for the time and effort in assessing our manuscript, and the 

constructive comments which helped to improve the quality of this paper. Please find below 

our point-to-point response to the review. The revised text and updated figures are included 

in the updated manuscript. A separate ‘track-changes’ document is included to highlight the 

changes to the manuscript. Tables and figures referred to in the answers are added at the 

bottom of this document.  
 

 

Reviewer 2, detailed comments Author’s response, reasoning and comments 

1). Biomass burning EFs are highly 

dynamic both at the spatial and temporal 

scales for a given fire. For example, EFs 

may differ a lot as the fire spreads across 

different vegetation covers and 

terrain/moisture gradients at the local scale. 

How well did the collected EF bag 

measurements represent the total or 

averaged EFs for each selected fire? Is 

there a consistent spatial-temporal 

framework to integrate the concrete EF 

measurements to reflect the total EFs for all 

involved fires? Such processing details 

need to be provided for better 

understanding the uncertainty of “in-situ” 

measurement itself. 

 

You raise a valid point which we can only 

address empirically. In Vernooij et al. 

(2022), we have described comparisons on 

EFs measured using a measurement mast 

and the UAS method (Figs 2 and 3). In this 

comparison we found that a limited amount 

of bag samples (8-12) resembled the fire-

averaged EFs of the mast relatively well 

considering the spatiotemporal 

heterogeneity. The strategy was therefore to 

take 8-12 samples at a location until visible 

smoke from both flaming and smouldering 

had passed the drone and continue to the 

next location. The fire-average EF of the 

individual fires is calculated by adding up 

the EMRs from all the individual bags and 

calculating the EFs based in that sum. This 

means samples with high EMRs have a 

stronger effect on the fire-average EF than 

low-EMR samples.  
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To make sure the features are representative 

of the vegetation consumed in the fire, we 

tried to target larger homogenous areas. 

Rather than marking the fire with features 

from the entire fire scar, the features are 

assigned to the samples based on location 

and timestamp of the sample. The average 

of all the sample features is then assigned to 

the fire-WA EF, meaning we only assign 

data from when and where we sampled.  

 

It might be possible to better quantify the 

spatial and temporal variability within a fire 

when continuous measurements can be 

done while being airborne. Currently, 

however, the equipment is too heavy to be 

carried by the drone but this may change in 

the future and at that stage the reviewer’s 

question may be addressed better. 

 

We added the following text (P3 L32):  

“Fires were lit with the aim of being 

representative of early dry season (EDS, 

often prescribed) fires and late dry season 

(LDS) non-prescribed fires. Although some 

backfires were sampled during the initial 

phase of the fires, the majority of samples 

were obtained from the faster ‘head’ fires, 

which consumed most of the biomass. Fire 

sizes generally ranged between 2 to 10 

hectares based on UAS drone imagery 

described by Eames et al. (2021), with 

exceptions of some fires that would not 

light and conversely, some fires that burned 

several hundred hectares. In the EDS, fire 

size was primarily limited by 

environmental conditions and fires ceased 

burning as humidity increased overnight 

whereas in the LDS, fire size was confined 

by low-fuel areas like burn scars, roads and 

prepared fire breaks. Particularly in the 

LDS, this means a limited fire size does not 

necessarily indicate limited fire intensity. 

Emissions were sampled at altitudes 

between 5−50 m depending on flame height 

for a duration of 35 seconds, resulting in 

0.7 litres per gas sample. On average, we 

took 35 samples per fire. The sampling 

methodology involved taking samples from 

a fire passing a certain point −while 
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correcting for wind direction and severity− 

until no more visual smoke passed the 

drone anymore. From earlier work 

(Vernooij et al., 2022a), where we 

compared the average of these 

measurements to results using continuous 

measurements taken at a mast, we have 

some confidence in the fidelity of this 

approach.” 

 

2). How did the fire induced EFs match the 

possible drivers at the spatial scale? Are 

they overlayed by the actual size of each 

fire, or just at the grid size of 0.25 degree? 

The latter may introduce large 

uncertainties. 

For the training data we assigned the 

features to the fire using the highest 

resolution available. For instance, the 

fractional tree cover (FTC) would be 

assigned based on the 500 x 500-meter 

pixel value (or the weighted average of 

several of these pixels). For features with a 

strong diurnal pattern (e.g. VPD, RH or 

temperature) we took the hourly data, and 

interpolated this to assign the feature value 

at the minute of sampling. However, the 

spatial resolution of these datasets is 

typically relatively coarse (0.1) 

introducing uncertainty.  

 

In our global analysis we indeed averaged 

out feature data over the 0.25 grid cell 

(filtering out non-savanna vegetation), and 

subsequently computed the EFs. This was 

done to match the spatial resolution of 

GFED4 and analyze global patterns. When 

looking at smaller regions, using the native 

resolution of the features (e.g. Figure 2) 

may reduce these uncertainties but we 

expect our data to be used mostly within 

coarse-scale applications.   

 

3). The authors tested a series of machine 

learning methods and concluded that 

random forest performed best. Such a part 

may need data support. Past experiences 

suggest that the gradient boost MLs such as 

lightGBM and Xgboost tend to be better 

than random forest. 

We appreciate the advice; We did not use 

the tools you mention but will include this 

in future work to test whether the results 

improve further. 

 

When we started this research we have used 

a suite of approaches (using the scy-kit 

learn “GradientBoostingRegressor()” 

function and GridSearchCV 

hyperparameter tuning) and actually found 

that the RFs performed slightly better than 

GBMs, although the difference was very 

small. In comparison, we also tried 
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multilinear regressions, single decision 

trees and a simple neural network which all 

performed worse than RFs and GBMs. 

Since we include the MCE (which is often 

used as the sole predictor of EFs) from our 

RF model into the EF models as a 

predictor, one could argue that the EF 

models have a sort of gradient boosting step 

on that RF MCE model.  
 

Table 1 (bottom of this document) lists the 

RMSE and R2 for different model runs (in 

which “All data” includes field 

observations, “Sat data includes Landsat 

and lower resolution >500m satellite data 

and “LR satellite data” only includes 

>500m resolution data). The random forest 

models have improved after this initial 

assessment. However, in line with your 

comment, we also found that in various 

runs the GBM regressor outperformed the 

RF regressor. 

4). To predict BB EFs, the authors included 

a series of factors for each group driver 

(seen in Table 2). However, it seems that 

some of them are highly correlated, e.g., 

NDVI VS LAI VS FPAR, VPD VS 

evaporative stress index VS Relative 

humidity. The rationale for including these 

redundant factors may need to be clarified. 

In addition, given the potential uncertainty 

in remote sensing and reanalysis data, it 

may not be wise to include all predictors 

without doing a feature selection. One way 

to include a specific driver or not is to 

compare its effect with a randomly 

generated variable. If its effect is equal or 

worse than the random variable, it may not 

be included in the final training. 

We fully agree; many of the features from 

the full set of features (Table 2) are strongly 

seasonal and therefore correlated strongly 

to other features, or even calculated based 

on one another. The analyses using the full 

set was mainly to detect which performed 

better. We then did a feature selection 

going from a broader set of features (e.g. 

Fig. 4), to the five features that explained 

most of the observed variability (Fig. 5, 

listed in the bottom right box of the panels). 

The eventual models are trained based on 

only these features.  

 

In the discussion we state (P16 L8): “Cross-

correlation between the features meant that 

feature importance scores (Fig. 4) varied 

over various model runs based on the test-

train data split and bootstrap resampling. 

For example, a decision tree split based on 

VPD is most likely very similar to soil 

moisture or RH, and FTC in national parks 

is often closely correlated to the MAR, with 

our measurement sites in Brazil being the 

notable exception. Although we conducted 

model runs for various feature-subsets and 

selected the best, different features may 

also perform well in explaining much of the 
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variability. For features with very high co-

variation (e.g., FPAR and LAI or FWI and 

ISI), this meant only one feature was 

selected for the trimmed-down model even 

when both features scored high on the 

initial assessment.”  

 

Rather than taking the features with the 

highest feature scores, we realize that many 

of the features are correlated and therefore 

explain the same variability. We took the 

correlation between features into account 

when selecting the features for the final 

models. We added a Pearson correlation 

matrix (below this table, and as table A2 in 

the appendix of the manuscript) that lists 

the correlation between satellite features as 

well as the direct correlations of satellite 

features with the target variables. 

 

5). Satellite data over tropical regions 

usually suffers from the contamination of 

clouds. When deriving the global EFs, how 

the authors gap-filled relevant remote 

sensing data is not clear. 

Indeed, particularly in the late dry season 

we found that cloudiness was a problem, 

especially for retrievals like NDVI before 

fire, dNDVI, dNBR, etc. If the scene before 

or after the fire was cloud-covered, the 

preceding or successive scene was used 

with a limit of 14 days before or after the 

fire. If no cloud-free scene was available in 

that time window, the fire was removed 

from the dataset. 

 

For the features included in the final 

models, this was less of an issue given that 

the meteorological reanalysis data from 

ERA5-land is not impacted. Fractional tree 

and non-tree vegetation (MOD44bv006) as 

well as landcover classification 

(MCD12Q1C6) are annual while FPAR is 

based on an 8-day composite meaning the 

risk of no signal are much lower. When 

aggregated to 0.25 degree (while using a 

savanna mask to only take the average of 

the savanna classified pixels), there were no 

longer missing values. 

 

We added the following sentence to the text 

(P9 L40): “Further simplification using a 

subset of features that are not directly 

correlated, reduced the data dependency 

and computational demands of the model as 
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well as the loss of training data due to cloud 

cover, without losing much explained 

variance.” 
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Table 1:  Performance of various regression methods during our initial assessment. This assessment only included our 

own data. In the variable categories “All data” includes field observations, “Sat data includes Landsat and lower 

resolution >500m satellite data and “LR satellite data” only includes >500m resolution data. 

 

 
MCE  CH4 EF  N2O EF 

Method Variables RMSE  R2 RMSE R2 RMSE  R2 

Multilinear  

regressor 

All data: 

Sat data: 

LR Sat data: 

0.03 

0.03 

0.03 

0.56 

0.46 

0.46 

1.45 

1.36 

1.43 

0.66 

0.59 

0.55 

0.13 

0.28 

0.35 

0.19 

0.18 

0.16 

Decision tree  

regressor 

All data: 

Sat data: 

LR Sat data: 

0.031 

0.023 

0.022 

0.70 

0.61 

0.66 

1.38 

1.05 

1.00 

0.76 

0.71 

0.70 

0.05 

0.08 

0.07 

0.21 

0.40 

0.59 

Random forest regressor 

All data: 

Sat data: 

LR Sat data: 

0.026 

0.027 

0.021 

0.80 

0.70 

0.70 

1.16 

0.98 

0.88 

0.87 

0.65 

0.76 

0.04 

0.06 

0.06 

0.47 

0.65 

0.64 

Gradient boosting machine 

regressor 

All data: 

Sat data: 

LR Sat data: 

0.023 

0.028 

0.021 

0.78 

0.67 

0.70 

1.13 

1.00 

0.90 

0.85 

0.67 

0.75 

0.04 

0.06 

0.07 

0.30 

0.58 

0.56 

Neural network regressor 

All data: 

Sat data: 

LR Sat data: 

0.035 

0.021 

0.022 

0.73 

0.62 

0.61 

1.16 

1.09 

1.05 

0.84 

0.69 

0.65 

0.04 

0.07 

0.06 

0.50 

0.59 

0.60 

 

 

Table A2. Spearman correlation matrix for the field measurements and the globally available satellite products. 

Positive correlations are presented in blue while negative correlations are presented in red.  
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3) Response of the authors to comments by Paul Laris   

 
Roland Vernooij (corresponding author) on behalf of the authors:  
 

We sincerely thank Paul Laris for taking the time and effort to read and comment on our 

manuscript, and the detailed and constructive comments both on this platform and in earlier 

conversations, which helped to improve the quality of this paper. Please find below our point-

to-point response to the review. The revised text and updated figures are included in the 

updated manuscript. A separate ‘track-changes’ document is included to highlight the 

changes we made to the manuscript.  
 

 

Detailed comments Author’s response, reasoning and 

comments 

Can you clarify that these fires were 

all "head" fires as opposed to 

backfires?  And, if so, can you comment on 

why the following dimensions are 

adequate?  We question wether 10m is wide 

enough for head fires to fully develop.  This 

width is fine for backfires. Also, if only 

head fires were examined, can you justify 

given that many fires are purposefully set 

as backfires in Africa. Headfires have long 

been used in research on African fires, yet 

research finds more backfires are set. 

 

While it is indeed correct that most of the 

measurements have been taken during 

‘headfires’ and ‘sideward propagating’ fires 

we also measured backfires. We tried to 

obtain measurements proportionately to the 

area burned by the different types within 

these fires. However, we did also conduct 

measurements where we tried to distinguish 

the different fire propagation directions, 

which in a changing wind regime was much 

more challenging than we previously 

anticipated. Individual 35-second bag 

samples more often than not contained 

smoke from multiple changing wind 

directions. In agreement with the findings 

by Wooster et al. (2011) and Laris et al. 

(2021) we found “back” fire  samples to 

have slightly higher combustion 

completeness compared to “head” fire 

samples. A possible explanation being that 

slower lofting smoke from the residual 

smouldering does not mix with the flaming 

emissions in these measurements, like it 

does in head fires. There was no significant 

difference between head and sideward 

propagating fires. 

 

The early dry season fires were all lit by 

land managers under the guidance of 

prescribed burning experts. This meant that 

head fires were only used if the conditions 

allowed them (which was most often the 

case), to prevent runaway fires. Although 

these experts deemed the measured EDS 

fires representative of prescribed fires, you 
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are correct that pure backfires may burn 

more efficiently.  

To clarify this in the text, we have added 

the following in (P3 L32): “Fires were lit 

with the aim of being representative of 

early dry season (EDS, often prescribed) 

fires and late dry season (LDS) non-

prescribed fires. Although some backfires 

were sampled during the initial phase of the 

fires, the majority of samples were obtained 

from the faster ‘head’ fires, which 

consumed most of the biomass. Fire sizes 

generally ranged between 2 to 10 hectares 

based on UAS drone imagery described by 

Eames et al. (2021), with exceptions of 

some fires that would not light and 

conversely, some fires that burned several 

hundred hectares. In the EDS, fire size was 

primarily limited by environmental 

conditions and fires ceased burning as 

humidity increased overnight whereas in 

the LDS, fire size was confined by low-fuel 

areas like burn scars, roads and prepared 

fire breaks. Particularly in the LDS, this 

means a limited fire size does not 

necessarily indicate limited fire intensity. 

Emissions were sampled at altitudes 

between 5−50 m depending on flame height 

for a duration of 35 seconds, resulting in 

0.7 litres per gas sample. On average, we 

took 35 samples per fire. The sampling 

methodology involved taking samples from 

a fire passing a certain point −while 

correcting for wind direction and severity− 

until no more visual smoke passed the 

drone anymore. From earlier work 

(Vernooij et al., 2022a), where we 

compared the average of these 

measurements to results using continuous 

measurements taken at a mast, we have 

some confidence in the fidelity of this 

approach.” 

Also, in the discussion (P14 L19) we 

added: “The samples were predominantly 

collected over “head” fires, which in the 

measured fires typically represented most 

of the burned area. A common approach for 

prescribed fires is burning against the wind 
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(backburning), to minimise both the impact 

on vegetation and risk of spread. In 

accordance with Wooster et al. (2011) and 

Laris et al. (2021), we found higher MCE in 

samples from backfires, which indicates 

these types of fires may emit less CH4 and 

CO. Another possible explanation is that 

slower lofting RSC smoke does not mix 

with the flaming combustion emissions in 

these measurements, like it does in “head” 

fires.” 

 

You do not appear to have published local 

or ground data on weather conditions. 

While T and H can be collected from 

regional weather stations, wind speed is 

critical to determining fire intensity and 

will influence MCE as well. Do you have 

wind data, it would seem critical for 

accurate fire intensity and MCE results. 

 

Unfortunately, we have only started to log 

windspeed (from a Kestrel 5500FW Fire 

Weather Meter) in the very last campaigns. 

We agree that windspeed is most likely a 

more significant predictor that the models 

suggest based on the ERA5-land data. Note 

that although WS is not often seen as a 

major predictor, the FWI which contains 

WS is. While it would be very interesting to 

verify the windspeed from ERA5-land with 

the on-site windspeed, more accurate on-

site windspeed measurements could not be 

used for the spatiotemporal extrapolation, 

and therefore would not improve the model. 

 

I wonder about this comment: " 

The grasslands with the highest EFs (found 

in high-rainfall savanna Dambos) were 

"uncharacteristically green for the time 

of the season" given that many fires are set 

to "green" grasses in African savannas, 

especially the perennials (See Le Page who 

documented this back in 2010 as well as 

many West African case studies). 

 

The vegetation we refer to with this 

comment was highly limited in its spatial 

extent to relatively deep and clayey 

Dambos with widths often smaller than a 

500-meter MODIS pixel. Since the water 

availability and grass curing state in these 

areas is highly dependent on soil type and 

geomorphology, these characteristics are 

poorly captured by the much coarser 

seasonal features (e.g. soil moisture and 

VPD). The Dambos where we measured the 

highest EFs (also in the LDS) had just 

fallen dry and were still very green, 

whereas other Dambos close by had already 

fully cured and showed very low EFs. By 

this statement we mean that because of the 

dominant role of soil type and 

geomorphology, the EFs measured in those 

Dambos were a poor indicator of the 

seasonal cycle in other grasslands.  
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We added the following text to the 

discussion (P14 L36): “Although burning 

grasslands under green conditions releases 

more CH4 and CO, there are valid reasons 

to do so. For example to remove moribund 

grass that remains after the dry season with 

minimal damage to the grass sward 

(Nieman et al., 2021; Le Page et al., 2010). 

In its current form, the model may not 

always pick up on those landscape 

features.” 

I think Laris et al found very similar results 

to: "The strongest predictors for the MCE 

and the CO and CH4 EF were the tree 

density in the plots, the grass to litter 

ratio, the combustion completeness and 

the moisture content of the consumed fuel. 

It might be useful to compare and to 

consider the hypothesis that burning of 

green leaves on shrubs and trees vs. dried 

leaves on the ground may explain why EF 

CH4 is not linerally related to MCE. This 

reasoning may also explain the following 

finding, "For CO and CH4, the dominant 

effect is a spatial redistribution with higher 

CO and CH4 EFs in mesic, high-tree cover 

savannas and lower EFs in xeric savannas 

compared to previous estimates. The 

Higher CH4 EF in mesic may well be a 

function of leaf burning. This is logical 

given the findings from Senegal research by 

Barker finding burning trees emitted smoke 

with the highest methane EF. 

This needs further explanation: "Although 

CO and CH4 followed the same spatial 

pattern, we found that MCE affected the 

CH4 which resulted in lower CH4 to MCE 

ratios in open (lower tree density?) 

savannas…. Do you mean higher 

CH4/MCE in wooded savannas as 

compared to grass-dominated 

ones?  What is “open”? Clarify. Again, 

see works in Mali and Senegal which agree 

with this finding. 

 

We indeed find higher CH4/MCE ratios in 

tree-dominated savannas compared to 

grass-dominated fires.  

In our previous work on isotopes, we found 

CH4 EFs to be more 13C depleted compared 

to CO emissions when burning wooden 

logs. This may indicate CH4 is more RSC 

driven than CO and possibly stronger 

dominated by the pyrolysis of lignin rather 

than cellulose and hemicellulose.  

In P12 L37 we added the following text: 

“In accordance with previous studies (e.g. 

Korontzi et al., 2003b; van Leeuwen and 

van der Werf, 2011; Barker et al., 2020), 

we found steeper CH4 EF to MCE 

regression slopes in woodlands compared 

to grasslands. Our data indicated a positive 

correlation of the CH4 EF to MCE slope 

with the FTC based on MOD44Bv006. The 

MCE is a simplified form of the 

combustion efficiency and only calculated 

using CO and CO2 emissions. Being less 

oxidized than CO (which is still common in 

flaming combustion), CH4 emissions have a 

stronger dependency on the actual 

combustion efficiency (CO2 divided by all 

carbon emissions). While most studies 

describe the relationship between the CH4 

EF and the MCE as being linear (Korontzi 

et al., 2003; van Leeuwen and van der 

Werf, 2011; Selimovic et al., 2018; 

Yokelson et al., 2003), we found that for 

individual bag samples it was better 

described using a nonlinear function (Fig. 

9), in line with findings by Meyer et al. 

(2012) for Australian savanna 

measurements. Figure 9 represents 
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individual bag measurements rather than 

fire averages (for which the spread in MCE 

is much lower). Laboratory experiments 

described by Selimovic et al. (2018) 

showed that the CH4 to CO ratio is strongly 

dependent on flaming or smouldering 

phases if the fire. Individual bag samples 

−which often hold emission from a single 

phase−  therefore show much more 

variation compared to fire averages. Stable 

carbon isotopes also point to CH4 emissions 

being more depleted in heavy carbon (13C) 

compared to CO in both mixed (C3 and C4) 

and single-fuel-type experiments, indicating 

a stronger dominance of RSC and the 

pyrolysis of lignin in its total emissions 

(Vernooij et al. 2022b). This explains both 

why studies that are skewed towards either 

smouldering or flaming phase emissions 

find different CH4 EF to MCE slopes using 

linear regressions and why this slope varies 

with FTC.” 

 

With “Open savannas” we indeed meant 

lower tree density. To avoid this confusion, 

we changed the text to: ‘savannas with 

lower tree density’ 

 

 

Not sure I agree with this logic: 

"Contrary to previous research which 

indicated that dryer conditions in the LDS 

would lead to higher-MCE fires late-LDS 

conditions (Fig. 3). In part, this may be 

because our measurement campaigns 

missed the peak-season fires when the fires 

may be hotter..."  Winds are the critical 

factor here.  When do they peak in areas 

studied.  High winds (especially if fires 

studied are head fires) result in higher 

intensity regardless of fuel moisture. Laris 

also found lower MCE in LDS due to leaf 

litter in the fuel load and lighter winds with 

much higher winds in MDS for the region 

studied. Note that these factors are key 

reasons why binary (LDS/EDS) is 

problematic for determining emissions. 

 

While we did not include windspeed in the 

field measurements and therefore in the 

intermediate explanatory field drivers. 

However, we agree that it is a very 

influential driver of fire behavior. In the 

future we will include windspeed 

measurements on the ground. Although this 

means we currently cannot correlate 

reliable measurements of the actual 

windspeed during the fire with satellite 

derived proxies, we do include windspeed 

proxies in the model.  

 

We added the following text (P12 L24): 

“Contrary to previous research which 

indicated that dryer conditions in the LDS 

would lead to higher-MCE fires in both 

grasslands and savanna woodlands 

(Korontzi, 2005), we found lower MCE in 

these regions under late-LDS conditions 

(Fig. 3). This may be because our 
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measurement campaigns missed the peak-

season fires when the fires may be hotter 

due to stronger winds (Laris et al., 2021; 

N’Dri et al., 2018).”  

 

We acknowledge that the binary 

(LDS/EDS) classification is in many ways 

flawed, as you rightfully point out in your 

earlier work. With this study, we hope to 

work towards getting rid of the EDS and 

LDS classes altogether when it comes to 

savanna EFs.  

 

In the introduction (P2 L37) we state: “EFs 

used for the accreditation of such projects 

currently assume a dichotomy of early- and 

late dry season averages, determined by a 

cut-off date. However, as discussed by 

Laris (2021), the fuel and meteorological 

conditions thought to drive EFs vary more 

gradually over the season and are subjected 

to substantial inter-annual and spatial 

variability. Incorporating spatiotemporal 

variability in inventories makes emission 

inventories more dynamic and better 

equipped for assessing seasonal 

fluctuations.” 

Again, see research in Mali and Senegal 

which support this finding: In accordance 

with previous studies (e.g. Korontzi et al., 

2003b; van Leeuwen and van der Werf, 

2011), we found steeper CH4 EF to MCE 

regression slopes in woodlands compared 

to grasslands.   

Comments 

Figure 3. What is “typical savanna” there 

is no such thing. 

Also, use more specific terminology, what 

is "open"? 

 

These classes serve to indicate that the 

prevalence of trees was a useful feature for 

clustering the EFs. In Figure 3, we removed 

the classes and replaced those with rough 

FTC bands (0-2%, 2-10% and 10-50%)  

This and other data rely on 500 x 500 

MODIS is this relevant given efforts to 

burn patchy EDS fires which operate at 

a hectare level scale?  Can you justify 

using 500m data for the following? For 

fire severity proxies we used the differential 

That is indeed an issue and could be one of 

the main reasons why the models did not 

pick out any of these features as strong 

indicators of the fire. Although not 

mentioned in the list of features, we also 

used Landsat retrievals for the 
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Normalized Burn Ratio (dNBR) and 5 the 

differential Normalized Difference 

Vegetation Index (dNDVI) retrieved before 

and after the fire. These were based on the 

MODIS surface spectral reflectance, 

corrected for atmospheric conditions 

(MOD09GAV6; Vermote) 

 

abovementioned spectral indices. While the 

spatial resolution is better, it goes at the 

cost longer intervals between cloud-free 

scenes and just as with MODIS data our 

model did not find these features were 

important. 

In their current form these models were 

developed with the application of global 

modelling in mind. This means that using 

high resolution (e.g. Landsat and Sentinel) 

data becomes computationally heavy. 

Although it could be possible to retrieve the 

training data at higher resolution and 

subsequently use courser products (e.g. 

MODIS) for the spatiotemporal 

extrapolation, using different data for 

training and final usage is risky as tree-

based models use absolute split values. 

Therefore, the consistency of these datasets 

would have to be proven for the entire 

savanna biome first.  

We added the following text in the 

discussion (P15 L4): “Fire intensity proxies 

(dNDVI and dNBR from MODIS) were 

poor predictors for the EFs. A potential 

explanation is that these features were at 

times heavily diluted, as many of the 

measured fires only affected part of the 

pixel. Similar misrepresentation errors can 

be expected for the NDVI before the fire, 

FPAR and the Pgreen. Particularly in the 

LDS, we were often limited to areas that 

were enclosed by recent fire scars (0-2 

years) or other non-flammable boundaries. 

Although these areas were sizable (several 

hectares) many of the retrievals in these 

pixels may poorly represent the burned 

vegetation. Along with inconsistent 

retrievals related to cloud cover, this may 

be an important reason why these features 

were deemed poor predictors by the models 

while seen as strong predictors in previous 

research (Korontzi et al., 2004). Higher 

resolution features may increase the 

representativeness of the pixels for the 

actual burned vegetation.” 
 

 


