
Response of the authors to comments by reviewer 2 on the manuscript:  
“Dynamic savanna burning emission factors based on satellite data using a 
machine learning approach”  
 
General comments: 
 
This study collected a large dataset of savanna emission factors (EFs), including over 4500 
EF bag measurements of CO2, CO, CH4 and N20 during 129 individual fires from 2017 to 
2022. Based on this in-situ observations, the authors identified the drivers of EF variability 
and implemented this variability into global models through dynamic EFs. The optimized 
machine learning reduced the error in EF estimates by 60-85% compared to static biome 
averages. They also found seasonal drying resulted in a decrease of the EFs with the fire 
season progressing, with a stronger trend in open savannas than woodlands. Overall, this is an 
important study to understand the variability and mechanisms for biome-specific carbon 
emissions, particularly at the spatial scales. The generated global EF products can be used to 
better estimate fire-induced greenhouse gas emissions. However, I do have some concerns on 
the methodology parts, which may need to be addressed before publication. 
 
Roland Vernooij (corresponding author) on behalf of the authors:  
 
We sincerely thank the reviewer for the time and effort in assessing our manuscript, and the constructive 
comments which helped to improve the quality of this paper. Please find below our point-to-point response to 
the review. The revised text and updated figures are included in the updated manuscript. A separate ‘track-
changes’ document is included to highlight the changes to the manuscript. Tables and figures referred to in the 
answers are added at the bottom of this document.  
 
 

Reviewer 2, detailed comments Author’s response, reasoning and comments 

1). Biomass burning EFs are highly 
dynamic both at the spatial and temporal 
scales for a given fire. For example, EFs 
may differ a lot as the fire spreads across 
different vegetation covers and 
terrain/moisture gradients at the local scale. 
How well did the collected EF bag 
measurements represent the total or 
averaged EFs for each selected fire? Is 
there a consistent spatial-temporal 
framework to integrate the concrete EF 
measurements to reflect the total EFs for all 
involved fires? Such processing details 
need to be provided for better 
understanding the uncertainty of “in-situ” 
measurement itself. 
 

You raise a valid point which we can only 
address empirically. In Vernooij et al. 
(2022), we have described comparisons on 
EFs measured using a measurement mast 
and the UAS method (Figs 2 and 3). In this 
comparison we found that a limited amount 
of bag samples (8-12) resembled the fire-
averaged EFs of the mast relatively well 
considering the spatiotemporal 
heterogeneity. The strategy was therefore to 
take 8-12 samples at a location until visible 
smoke from both flaming and smouldering 
had passed the drone and continue to the 
next location. The fire-average EF of the 
individual fires is calculated by adding up 
the EMRs from all the individual bags and 
calculating the EFs based in that sum. This 
means samples with high EMRs have a 
stronger effect on the fire-average EF than 
low-EMR samples.  



 
To make sure the features are representative 
of the vegetation consumed in the fire, we 
tried to target larger homogenous areas. 
Rather than marking the fire with features 
from the entire fire scar, the features are 
assigned to the samples based on location 
and timestamp of the sample. The average 
of all the sample features is then assigned to 
the fire-WA EF, meaning we only assign 
data from when and where we sampled.  
 
It might be possible to better quantify the 
spatial and temporal variability within a fire 
when continuous measurements can be 
done while being airborne. Currently, 
however, the equipment is too heavy to be 
carried by the drone but this may change in 
the future and at that stage the reviewer’s 
question may be addressed better. 
 
We added the following text (P3 L32):  
“Fires were lit with the aim of being 
representative of early dry season (EDS, 
often prescribed) fires and late dry season 
(LDS) non-prescribed fires. Although some 
backfires were sampled during the initial 
phase of the fires, the majority of samples 
were obtained from the faster ‘head’ fires, 
which consumed most of the biomass. Fire 
sizes generally ranged between 2 to 10 
hectares based on UAS drone imagery 
described by Eames et al. (2021), with 
exceptions of some fires that would not 
light and conversely, some fires that burned 
several hundred hectares. In the EDS, fire 
size was primarily limited by 
environmental conditions and fires ceased 
burning as humidity increased overnight 
whereas in the LDS, fire size was confined 
by low-fuel areas like burn scars, roads and 
prepared fire breaks. Particularly in the 
LDS, this means a limited fire size does not 
necessarily indicate limited fire intensity. 
Emissions were sampled at altitudes 
between 5-50 m depending on flame height 
for a duration of 35 seconds, resulting in 
0.7 litres per gas sample. On average, we 
took 35 samples per fire. The sampling 
methodology involved taking samples from 



a fire passing a certain point -while 
correcting for wind direction and severity- 
until no more visual smoke passed the 
drone anymore. From earlier work 
(Vernooij et al., 2022a), where we 
compared the average of these 
measurements to results using continuous 
measurements taken at a mast, we have 
some confidence in the fidelity of this 
approach.” 
 

2). How did the fire induced EFs match the 
possible drivers at the spatial scale? Are 
they overlayed by the actual size of each 
fire, or just at the grid size of 0.25 degree? 
The latter may introduce large 
uncertainties. 

For the training data we assigned the 
features to the fire using the highest 
resolution available. For instance, the 
fractional tree cover (FTC) would be 
assigned based on the 500 x 500-meter 
pixel value (or the weighted average of 
several of these pixels). For features with a 
strong diurnal pattern (e.g. VPD, RH or 
temperature) we took the hourly data, and 
interpolated this to assign the feature value 
at the minute of sampling. However, the 
spatial resolution of these datasets is 
typically relatively coarse (0.1°) 
introducing uncertainty.  
 
In our global analysis we indeed averaged 
out feature data over the 0.25° grid cell 
(filtering out non-savanna vegetation), and 
subsequently computed the EFs. This was 
done to match the spatial resolution of 
GFED4 and analyze global patterns. When 
looking at smaller regions, using the native 
resolution of the features (e.g. Figure 2) 
may reduce these uncertainties but we 
expect our data to be used mostly within 
coarse-scale applications.   
 

3). The authors tested a series of machine 
learning methods and concluded that 
random forest performed best. Such a part 
may need data support. Past experiences 
suggest that the gradient boost MLs such as 
lightGBM and Xgboost tend to be better 
than random forest. 

We appreciate the advice; We did not use 
the tools you mention but will include this 
in future work to test whether the results 
improve further. 
 
When we started this research we have used 
a suite of approaches (using the scy-kit 
learn “GradientBoostingRegressor()” 
function and GridSearchCV 
hyperparameter tuning) and actually found 
that the RFs performed slightly better than 
GBMs, although the difference was very 



small. In comparison, we also tried 
multilinear regressions, single decision 
trees and a simple neural network which all 
performed worse than RFs and GBMs. 
Since we include the MCE (which is often 
used as the sole predictor of EFs) from our 
RF model into the EF models as a 
predictor, one could argue that the EF 
models have a sort of gradient boosting step 
on that RF MCE model.  
 
Table 1 (bottom of this document) lists the 
RMSE and R2 for different model runs (in 
which “All data” includes field 
observations, “Sat data includes Landsat 
and lower resolution >500m satellite data 
and “LR satellite data” only includes 
>500m resolution data). The random forest 
models have improved after this initial 
assessment. However, in line with your 
comment, we also found that in various 
runs the GBM regressor outperformed the 
RF regressor. 

4). To predict BB EFs, the authors included 
a series of factors for each group driver 
(seen in Table 2). However, it seems that 
some of them are highly correlated, e.g., 
NDVI VS LAI VS FPAR, VPD VS 
evaporative stress index VS Relative 
humidity. The rationale for including these 
redundant factors may need to be clarified. 
In addition, given the potential uncertainty 
in remote sensing and reanalysis data, it 
may not be wise to include all predictors 
without doing a feature selection. One way 
to include a specific driver or not is to 
compare its effect with a randomly 
generated variable. If its effect is equal or 
worse than the random variable, it may not 
be included in the final training. 

We fully agree; many of the features from 
the full set of features (Table 2) are strongly 
seasonal and therefore correlated strongly 
to other features, or even calculated based 
on one another. The analyses using the full 
set was mainly to detect which performed 
better. We then did a feature selection 
going from a broader set of features (e.g. 
Fig. 4), to the five features that explained 
most of the observed variability (Fig. 5, 
listed in the bottom right box of the panels). 
The eventual models are trained based on 
only these features.  
 
In the discussion we state (P16 L8): “Cross-
correlation between the features meant that 
feature importance scores (Fig. 4) varied 
over various model runs based on the test-
train data split and bootstrap resampling. 
For example, a decision tree split based on 
VPD is most likely very similar to soil 
moisture or RH, and FTC in national parks 
is often closely correlated to the MAR, with 
our measurement sites in Brazil being the 
notable exception. Although we conducted 
model runs for various feature-subsets and 
selected the best, different features may 



also perform well in explaining much of the 
variability. For features with very high co-
variation (e.g., FPAR and LAI or FWI and 
ISI), this meant only one feature was 
selected for the trimmed-down model even 
when both features scored high on the 
initial assessment.”  
 
Rather than taking the features with the 
highest feature scores, we realize that many 
of the features are correlated and therefore 
explain the same variability. We took the 
correlation between features into account 
when selecting the features for the final 
models. We added a Pearson correlation 
matrix (below this table, and as table A2 in 
the appendix of the manuscript) that lists 
the correlation between satellite features as 
well as the direct correlations of satellite 
features with the target variables. 
 

5). Satellite data over tropical regions 
usually suffers from the contamination of 
clouds. When deriving the global EFs, how 
the authors gap-filled relevant remote 
sensing data is not clear. 

Indeed, particularly in the late dry season 
we found that cloudiness was a problem, 
especially for retrievals like NDVI before 
fire, dNDVI, dNBR, etc. If the scene before 
or after the fire was cloud-covered, the 
preceding or successive scene was used 
with a limit of 14 days before or after the 
fire. If no cloud-free scene was available in 
that time window, the fire was removed 
from the dataset. 
 
For the features included in the final 
models, this was less of an issue given that 
the meteorological reanalysis data from 
ERA5-land is not impacted. Fractional tree 
and non-tree vegetation (MOD44bv006) as 
well as landcover classification 
(MCD12Q1C6) are annual while FPAR is 
based on an 8-day composite meaning the 
risk of no signal are much lower. When 
aggregated to 0.25 degree (while using a 
savanna mask to only take the average of 
the savanna classified pixels), there were no 
longer missing values. 
 
We added the following sentence to the text 
(P9 L40): “Further simplification using a 
subset of features that are not directly 
correlated, reduced the data dependency 



and computational demands of the model as 
well as the loss of training data due to cloud 
cover, without losing much explained 
variance.” 

 

 

 

  



Table 1:  Performance of various regression methods during our initial assessment. This assessment only included our 

own data. In the variable categories “All data” includes field observations, “Sat data includes Landsat and lower 

resolution >500m satellite data and “LR satellite data” only includes >500m resolution data. 

 
 

MCE  CH4 EF  N2O EF 

Method Variables RMSE  R2 RMSE R2 RMSE  R2 

Multilinear  
regressor 

All data: 
Sat data: 
LR Sat data: 

0.03 
0.03 
0.03 

0.56 
0.46 
0.46 

1.45 
1.36 
1.43 

0.66 
0.59 
0.55 

0.13 
0.28 
0.35 

0.19 
0.18 
0.16 

Decision tree  
regressor 

All data: 
Sat data: 
LR Sat data: 

0.031 
0.023 
0.022 

0.70 
0.61 
0.66 

1.38 
1.05 
1.00 

0.76 
0.71 
0.70 

0.05 
0.08 
0.07 

0.21 
0.40 
0.59 

Random forest regressor 
All data: 
Sat data: 
LR Sat data: 

0.026 
0.027 
0.021 

0.80 
0.70 
0.70 

1.16 
0.98 
0.88 

0.87 
0.65 
0.76 

0.04 
0.06 
0.06 

0.47 
0.65 
0.64 

Gradient boosting machine 
regressor 

All data: 
Sat data: 
LR Sat data: 

0.023 
0.028 
0.021 

0.78 
0.67 
0.70 

1.13 
1.00 
0.90 

0.85 
0.67 
0.75 

0.04 
0.06 
0.07 

0.30 
0.58 
0.56 

Neural network regressor 
All data: 
Sat data: 
LR Sat data: 

0.035 
0.021 
0.022 

0.73 
0.62 
0.61 

1.16 
1.09 
1.05 

0.84 
0.69 
0.65 

0.04 
0.07 
0.06 

0.50 
0.59 
0.60 

 
 
Table A2. Spearman correlation matrix for the field measurements and the globally available satellite products. 

Positive correlations are presented in blue while negative correlations are presented in red.  

 


