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Response of the authors to comments by Bob Yokelson on the manuscript: 
“Dynamic savanna burning emission factors based on satellite data using a 
machine learning approach”  
 
Roland Vernooij (corresponding author) on behalf of the authors:  
 
We sincerely appreciate the considerable time and effort spent in assessing our manuscript, and the detailed and 
constructive comments which helped to improve the quality of this paper. Please find below our point-to-point 
response to the review. The revised text and updated figures are included in the updated manuscript. A separate 
‘track-changes’ document is included to highlight the changes to the manuscript. Additional explanatory figures 
which we refer to in the answers are added to the bottom of this document.  
 
Reviewer 2, Bob Yokelson  
 
 
General comments Author’s response, reasoning and 

comments 
1/ A few more sentences describing the 
sampled fires and data reduction would be 
helpful. I glanced at the previous 
publications and did not quickly find all the 
common or potentially useful details. 
 
For instance:  
a/ Were the fires all prescribed?  
b/ How big were they?  
c/ Were they detected from space as hot-
spots or burned areas?  
d/ Were they all lit the same way? (In 
Brazil we noted that fires were often lit on 
opposing sides and the flame-fronts burned 
together. Fires were sometimes lit at night 
after wind died down.)  
e/ What, in a nutshell, was the sampling 
strategy?  
f/ Were RSC samples collected when 
relevant? 

We added the following lines to the 
methodology (P3 L32): “Fires were lit with 
the aim of being representative of EDS 
(often prescribed) fires and LDS non-
prescribed fires. Although some backfires 
were sampled during the initial phase of the 
fires, the majority of samples were obtained 
from the faster ‘head’ fires, which 
consumed most of the biomass. Fire sizes 
generally ranged between 2 to 10 hectares 
based on UAS drone imagery described by 
Eames et al. (2021), with exceptions of 
some fires that would not light and 
conversely, some fires that burned several 
hundred hectares. In the EDS, fire size was 
primarily limited by environmental 
conditions and fires ceased burning as 
humidity increased overnight whereas in 
the LDS, fire size was confined by low-fuel 
areas like burn scars, roads and prepared 
fire breaks. Particularly in the LDS, this 
means a limited fire size does not 
necessarily indicate limited fire intensity. 
Emissions were sampled at altitudes 
between 5-50 m depending on flame height 
for a duration of 35 seconds, resulting in 
0.7 litres per gas sample. On average, we 
took 35 samples per fire. The sampling 
methodology involved taking samples from 
a fire passing a certain point -while 
correcting for wind direction and severity- 
until no more visual smoke passed the 
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drone anymore. From earlier work 
(Vernooij et al., 2022a), where we 
compared the average of these 
measurements to results using continuous 
measurements taken at a mast, we have 
some confidence in the fidelity of this 
approach. “ 
 
Regarding point c, we added the following 
text to the discussion (P15 L19): “Of the 
UAS-measured fires in this study only 5 of 
the 45 EDS fires (11%) and 13 of the 65 
LDS fires (20%) were registered by 
MCD64A1 as burned area (while also 
accepting adjacent pixels and a 4-day time 
lag) and only 4 of the 45 EDS fires (9%) 
and 32 of the 65 LDS fires (49%) were 
registered by VIIRS S-NPP as thermal 
anomalies (with the center point of the 
hotspot (including a 1-day time lag) being 
within a 3.5 km radius of the sample). 
Depending on the spatiotemporal nature of 
these omissions, this may affect some of the 
results in this study concerning the effects 
of the EF dynamics on total emissions. 
Chen et al. (2023) indicate that in the 
savannas, disproportionately more burned 
area is added in higher tree-cover areas 
when using higher resolution satellite 
imagery. Giving more  significance to these 
areas would mean our savanna-wide 
effective EFs of CO, CH4 and N2O would 
increase, The LandSat and Sentinel based 
burned area product from (Roteta et al., 
2021) performed much better and registered 
8 of our 14 EDS fires (57%) and all of our 
16 LDS fires (100%) in Botswana and 
Mozambique in 2019 (while also accepting 
adjacent pixels and up to a 21-day time 
lag). Due to the fewer overpasses the 
temporal allocation of this product is less 
precise with an average time lag of 5.5 
days. Figure 10 shows the portion of our 
EDS and LDS fires that were detected by 
various satellite algorithms.” 
 
Figure 10 is also included at the bottom of 
this document.  
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How were the data processed into emission 
ratios (ERs) and EFs? To clarify last 
question, Yokelson et al., 1999 compared 
the impact of processing grab samples into 
ERs and EFs with several different 
justifiable approaches. Without proving one 
approach was best, they found only small 
differences among approaches. Similarly, 
regarding the authors work, I don’t plan to  
critique their approach, but it’s useful for 
posterity to specify the approach used (see 
below on RSC for more). 

The excess mixing ratios (EMR, sample 
minus background concentrations) of the 
GHG and aerosols were converted to EFs 
using the carbon mass balance method 
(Yokelson et al., 1999): 
 
𝐸𝐹! =	𝐹" 	× 	
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where  𝐸𝐹! is the emission factor of species 
𝑖 (usually reported in g kg-1) and 𝐹𝑐 is the 
fractional carbon content of the fuel by 
weight (estimated at 50% following Akagi 
et al., 2011). MWi is the molecular weight 
of species i which is divided by the atomic 
mass of carbon, AMc. 𝐶! 	 is the moles of 
carbon per mole of species i multiplied by 
the EMR of species i. 𝐶'(')* is the total 
number of moles of emitted carbon in all 
carbonaceous species. Because we did not 
measure the non-methane hydrocarbons and 
the chemical composition of carbonaceous 
particulates, the NMHC and the carbon 
content of the particulates were estimated 
based on literature values in order to 
estimate 𝐶'(')*; The total amount of carbon 
in non-methane hydrocarbons was 
estimated to be 3.5 times the ER(CH4/CO2) 
based on common ratios for savanna fires 
(Andreae, 2019; Yokelson et al., 2011, 
2013). For the bag and mast measurements, 
we used the PM to CO ratio based on 
AM520 and CRDS measurements, with 
carbon accounting for 68% of the PM-mass 
(Reid et al., 2005a). Overall, the carbon in 
PM and NMHC constitute respectively 
0.5−2% and 0.4−3% of the total emitted 
carbon. Therefore, the uncertainty from the 
effect this assumption on the EFs of 
gaseous species is limited. On average, the 
PM to CO ratio in our measurements was 
0.0946 ± 0.0218 which corresponds well 
with the 0.0969 ± 0.0403 average for 
savanna fires (Andreae, 2019).  

The paper would be easier to comprehend 
the first time thru with slightly more plain 
language and consistent terminology in 
describing the statistical analysis. 

We have added some clarifications to the 
text (particularly section 2.2.2) where we 
explain some of the terminology. These 
specific clarifications will be further 
discussed in the answers to the detailed 
comments below. 
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The discussion on possible future 
applications is nice. Perhaps one other 
addition would be to identify which 
environmental variables might be available 
in timely enough fashion and have enough 
predictive power to improve air quality 
forecasts. I.e. could current or forecast 
temperatures from the global weather 
services help predict how fires will burn in 
near real time? 

Supplementing the datasets on which the 
models are trained with alternative data 
always comes with uncertainty and 
consistency should be checked. However, 
we believe substituting for instance ERA5-
land temperature with ERA5 temperature to 
achieve more NRT, or even T predictions 
from CMIP projections can be useful. 
 
We added the following statement (P16 
L14): “The models are currently trained 
using meteorological features obtained 
from ERA5-Land (Muñoz-Sabater et al., 
2021) which is available from 1950 to 
present and has a 2- to 3-month delay. 
When interested in longer time periods or 
for near-real-time (NRT) applications these 
features may be substituted with ERA5 
(Hersbach et al., 2020) which is available 
from 1940 to present with a shorter latency 
period of 5 days, or even CMIP climate 
projections. Although supplementing the 
datasets on which the models are trained 
with alternative data always comes with 
additional uncertainty, we found 
meteorological parameters obtained from 
ERA5-Land to be in close accordance with 
ERA5, indicating the two may also be 
substituted. This means that the EFs 
computed using the methodology outlined 
in this paper can also be used to improve 
NRT biomass burning emission estimates 
like those from CAMS-GFAS (Andela et al., 
2015; Di Giuseppe et al., 2016).” 
 

Somewhat related to #3 above, can the 
computational burden be specified of using 
the author’s full-scale approach or partial 
implementation? How much easier and how 
relatively accurate is simply using EDS and 
LDS EFs?  
 

We found that a binary (EDS vs LDS EF) 
approach is not justified given the gradual 
changes over time we observed. To make 
sure data users are not burdened with an 
overload of information we will provide 
NetCDF files with daily savanna EFs for 
various species as well as MCE which will 
be part of the Global Fire Emissions 
Database version 5 we are currently 
working on. 

What is the error in the satellite proxies and 
how does propagated error in the dynamic 
EF compare to the impact of switching to 
dynamic EF?  
 

The reviewer brings up a valid point; 
satellite proxies carry uncertainty and we 
do not account for this when building our 
models. We cannot provide a definitive 
answer but would like to note two things. 
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First, we warn against substituting data 
sources to avoid biases in these to start 
playing an important role. Right now, if 
there is a bias in a dataset this will not 
matter. Clearly this does not count for 
misinterpretation or uncertainty in general. 
Second, we note that this issue is common 
for large-scale modelling approaches and to 
some degree it is difficult to properly 
account for given that the uncertainty of the 
large-scale datasets is uncertain. From our 
perspective, we feel the errors are small 
enough to be sure about the key findings 
such as lower EFs in dry regions and higher 
in wetter regions, but they clearly matter. 
We have inserted a statement on this (P15 
L32): “The meteorological parameters 
obtained from the ERA5-Land dataset carry 
uncertainty. This uncertainty becomes 
higher when going back further in time due 
to a decrease in validation data. To what 
extent uncertainty propagates to the EF 
predictions varies depends mostly on 
whether there is a bias that was also present 
in the training data or misinterpretation or 
uncertainty in general. As this model is 
trained using specific datasets, these 
datasets should not be replaced by other 
sources without evaluating the consistency 
of that source with the training data. FTC 
and FBC, based on MOD44Bv006 were 
found to be strong predictors of BB EFs. 
However, intercomparison with Tropical 
Biomes in Transition (TROBIT) field sites 
in African, Brazilian and Australian 
savannas has shown that this product 
consistently underestimates canopy cover in 
tropical savannas by between 9 to 15% 
(Adzhar et al., 2021). Products based on 
higher-resolution satellite retrievals (e.g. 
LandSat and Sentinel) have the potential to 
further enhance the spatial resolution of the 
EF estimates to include small landscape 
features and thus become more 
representative. Although all satellite data 
comes with some uncertainty, we feel the 
errors are small enough to be sure about the 
key findings such as lower EFs in dry 
regions and higher in wetter regions, but 
they clearly matter.” 
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During a recent field campaign, we found 
that one of the global vegetation products 
mapped a pine forest and an alpine 
wilderness area to savanna and agriculture 
respectively. Simple added info would be 
useful such as: do all the author’s savanna 
fires show up as being in a savanna in the 
remote-sensing products?  
 
 

We agree that there is much ambiguity on 
what constitutes “savanna”. We also found 
that some of the fires we lit in protected 
areas got marked as “croplands” in the 
IGBP classification of the MCD12Q1 
product. These classes are listed in column 
BC “MOD_vegtype” of the Excel sheet for 
each sample. When aggregating to larger 
pixels, the land use classification was based 
on the dominant type in the 0.25° grid cell, 
meaning some of the nuance is lost.  
 
An important side note -too often forgotten 
when upscaling to global models- is that 
most samples (whether they are EFs or fuel 
loads or combustion completeness), are 
obtained in protected and relatively 
undisturbed areas. However, most of the 
area classified as savanna is not.  
 
We added the following statement (P10 
L33): “Using the IGBP classification, our 
samples were classified as “Woody 
savannas” (24%), “Savannas” (42%), 
“Open shrubland” (21%), “Grassland” 
(4%), “Cropland/Natural vegetation 
mosaic” (6%) and “Croplands” (1%). The 
latter two classes are misclassifications and 
were all situated in protected areas with no 
crops. These classes are listed in the 
accompanied dataset (Vernooij, 2023).” 
 

There is also considerable 
difficulty/uncertainty in field-measured fuel 
consumption, etc. Easier than adding many 
columns for uncertainties would be at least 
generic uncertainties in the table explaining 
the data set. The error bars in the figures do 
look generous to the author’s credit. Again, 
it might be worth stating how the local 
variability compares to full, propagated 
uncertainty?  
 

Just as with the comment above, we agree 
but do not have a fully satisfying way 
forward. Some of these issues also play a 
role when building other components of 
GFED and in the end often an aggregated 
expert-judgement uncertainty estimate is 
used.  

CH4 is exceptionally dependent on MCE, 
but not all important emissions are as seen 
in Yokelson et al. (2003) and other work 
including Andreae 2019.  

That is correct, in this paper we only 
present the results for the emission species 
that were directly measured. However, as 
some species may be scaled using MCE as 
you show in Yokelson et al. (2003), we will 
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also add MCE to the downloadable data 
files in the future.  

It seems the Excel spreadsheet is giving 
time as local time 

This is true. We have added “(local time)” 
to the column name 

The spreadsheet seems not to include 
background samples. ERs and background 
values can be derived from slopes and 
intercepts, respectively. By subtraction of 
the “_em” column from the “_abs” column, 
it appears there was a fixed background for 
each fire. These backgrounds are interesting 
in themselves. For instance, one fire had a 
background of 0.17 ppm CO, which is 
pretty low compared to the 1-5 ppm CO 
background that can occur during regional 
smoke episodes during peak fire season.  
 

This is correct. Shortly before lighting the 
fire, four background samples were taken at 
15m. The average mixing ratio of these 
samples is then taken as the background for 
all the samples in that fire.  
 
In the revised Excel table (provided in the 
zenodo file) we have included the 
background values pre-fire in a separate 
sheet.  
 
Particularly for CO2 and N2O (mostly due 
to the low signal) they fluctuate 
significantly compared to the excess mixing 
ratios in the samples.  

As we also see by FTIR (but don’t report), 
there were negative  
N2O emissions and EF at times. How were 
these negative emissions handled in further 
data processing? 

We found that the Aeris Pico analyzer was 
less accurate at low concentrations due to 
temperature and pressure stabilization 
issues which are now addressed in the 
“Ultra” model which was not yet used in 
our work but will be in future work. In 
Vernooij et al. (2021)’s Figure 11 we show 
this issue is mainly important at low carbon 
EMRs where we find both high and low 
N2O EF extremities. As mentioned in P8 
L7, we excluded samples which contained 
less than 10 moles of total carbon emissions 
for the calculation of the WA N2O EF as 
we deemed these samples too uncertain.  
 
It is very interesting that you also find 
negative N2O emissions in your FTIR 
measurements. Besides measurement error, 
could N2O consumption in flaming 
combustion (Winter et al., 1999) be a 
cause? In our work we ignored this and 
assumed it is mostly a measurement error 
which cancels out when taking multiple 
samples. 

There are a number of non-physical values 
in the spreadsheet easily found by plotting 
the columns in a line chart. E.g., rows 
2209-2211, 2353, and especially 2382 and 
3116. These data were presumably not used 
in the training or validation and might be 
removed? 

Indeed, samples with negative emissions 
for CO2, CO or CH4 were omitted from the 
training and validation data for the further 
analysis. We have now deleted them from 
the spreadsheet to avoid confusion.  
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The letter and number convention for the 
sample names, does it have any 
significance that should be explained? 

These codes refer to flight and sample 
numbers of the individual bags. Although 
we used them to allocate times and 
coordinates and use comments, they do not 
have any further role in the analyses. 
 
In the “dataset explanatory table” provided 
in the zenodo link, we added a description 
of the letter and number convention of the 
sample and fire names. Since they combine 
with notes, photos, lab results, etc., they are 
mainly helpful for us if someone has 
questions regarding certain data.  

Why are EF calculated for the cals? This is indeed an error in the script. Since 
the calibration samples are filtered out for 
the statistical analysis, these EFs do not 
affect the models. In the new version we 
have removed EFs for the Cals.  

Why is no date/time given for the cals? The date and time in the sheet refer to the 
date and time of sampling which are logged 
by the sampling unit on the drone. Since the 
calibration gas bags are manually filled 
from a canister on the ground, sampling 
date and time are not logged. They were 
filled before starting the analyses around 
sunset on the same day of the fire.  

Why are the cals not all the same or nearly 
the same? Were there different calibration 
mixtures or does the scatter reflect the 
precision? 

There was indeed more scatter in the 
calibration samples than the measurement 
precision (provided by the manufacturers) 
indicates. To mimic the measurement 
method, we have first filled bags with the 
calibration gas and then fed them into the 
analyzer rather than straight from the 
canister. Uncertainties may thus relate to 
both the measurement precision and the 
sampling.  
 
Average calibration values (± std) 
measured in the field were:  
CO2:  4732 ± 128 
CO:    102 ± 7.3 
CH4: 15.1 ± 0.36 
N2O: 1.14 ± 0.047 
 
We have added the following to the 
discussion (P13 L17): “The difference in 
the mean calibration value compared to the 
calibration gasses was -4.75% for CO2, -
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1.32% for CO, -3.97% for CH4 and -1.28% 
for N2O. Although the measurements were 
linearly correlated using the calibration 
bags for the individual fires, the standard 
deviations between the calibration samples 
were 2.58% for CO2, 7.06% for CO, 2.32% 
for CH4 and 4.04% for N2O, indicating 
larger measurement uncertainties than 
reported by the manufacturers, which 
possibly arises from the bag methodology.”   
 

I was surprised that field-measured 
temperature had poor correlation with the 
satellite temperature in Table 4. Then I 
noticed in the spreadsheet that the 
temperatures measured on the drone 
correlate with CO2. In general, the 
temperature, RH, and VPD seem to be 
measured in the convection column at times 
where they would reflect the heat and water 
production of the fire, rather than an 
ambient air value that would influence fire 
behavior. If this is the case, I suggest 
replacing sample-specific values from the 
drone with one best ambient value per fire 
and (if not already done) seeing how that 
correlates with measured EF and remote-
sensing products. Or did the authors use 
pre-fire met data measured differently or on 
the drone during the pre-fire cal and that 
data is available somewhere else? 
 
For example. Picking one fire randomly, 
EDS19_3 on a June afternoon in 
Mozambique, one notices that Tsat is close 
to the climatological average high for June 
in Maputo (26 C), but is well below the 
lowest Tdrone (33.57 C). Is that a shade 
versus sun-exposed thing? Was there a 
Tdrone during a cal or background that is 
more appropriate? Further, VPDsat is only 
close to VPDdrone at minimum Tdrone 
suggesting combustion products make 
VPDdrone not representative of ambient 
VPD unless a VPDdrone measured in 
background air was actually used? 
Likewise the RH comparison reveals 
differences. 

That is correct, the values listed in this 
column were logged using a temperature 
sensor on the drone (a safety feature) and 
are in no way representative of the general 
conditions without fire. Although we at 
some point reprogrammed it to also log T 
and Rh after changing batteries this often 
occurred in still hot burn scars and we 
found these values were also not helpful.  
 
The only thing these values represent is the 
conditions under which the sample was 
collected. These values were not included 
as predictor features in the models. To 
avoid confusion, we will remove the 
columns from the data sheets.  
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In the LGR N2O-CO instrument, the N2O 
data needs to be corrected for CO and the 
correction only works up until 5ppm CO. 
This is because at high CO values, the CO 
line broadens enough to interfere with the 
N2O line. In general, the strongest N2O 
band is overlapped by water, CO2, and CO 
(and other gases). The CO values in the 
author’s spreadsheet are in the 100s. The 
manufacturer of the author’s N2O 
instrument (AERIS) product literature 
claims to use an interference-free, but 
unspecified, alternative spectral region and 
have an upper limit of 500 ppm for some 
unspecified molecule (probably CO?). 
Kudos to the authors for not using LGR for 
N2O, but I am curious if the authors have 
any evidence against or for CO interference 
in their N2O data? I am not assuming issues 
exist, but if they can be ruled out, it would 
be worth mentioning as N2O is an 
important, but undersampled fire emission 

To help address this concern, we contacted 
Dr. Jerome Thiebaud from AERIS, who 
explained it this way:  
 
The following statement may be true at the 
LGR wavelength in the near infrared, but 
not at the Aeris wavelength in the middle 
infrared: 
"This is because at high CO values, the CO 
line broadens enough to interfere with the 
N2O line. In general, the strongest N2O 
band is overlapped by water, CO2, and CO 
(and other gases)." 
 
The Aeris gas analyzer operates at low 
pressure to minimize spectral congestion 
and near a wavelength of 4.5 microns 
where N2O absorption lines free of any 
interference (including from water, CO2, 
and CO) can be measured in typical 
atmospheric gas mixtures. 
 
We did not find any evidence of 
interference. But unfortunately, we do not 
have access to calibration gases with known 
N2O mixing ratio and varying CO mixing 
ratios to test this.    
 

 
 
In the line-by-line comments, the table below only includes the comments that required some 
additional explanation or answer. In all other cases, we took over the reviewers’ suggestions 
which are revised accordingly in the ‘Track changes’ document.  
 
Reviewer 2, Bob Yokelson line by-line 
comments 

Author’s response, reasoning and 
comments 

2/1 Not 100% sure what is meant here. It 
almost reads like the biome average EF is 
60-85% off on average. I think you mean 
e.g. if a measured fire had an EF 10% 
below the biome average EF, the satellite-
based recalculation of the EF would be ~6-
8.5% below the biome average? 

Not entirely, what is meant is that in your 
example the absolute error would be 1.5 - 
4% (below or above average) instead of 
10%. We have changed the sentence to (P1 
L38): “RF models using satellite 
observations performed well for the 
prediction of EF variability in the measured 
fires with out-of-sample correlation 
coefficients between 0.80 and 0.99, 
reducing the error between measured and 
modelled EFs by 60-85% compared to 
using the static biome average.” 

2/3 change in CO2 totals? (expect small) The difference in CO2 emissions over the 
entire timeframe was -0.2% compared to 
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the static EF average. We added this to the 
text (P2 L3).  

2/2-3 It’s amazing that the global totals 
based on average biome EFs were within 
1.8 to 18% of global totals using dynamic 
EFs. The difference is much smaller than 
the uncertainty in almost any other thing. 
However, it should be clear what biome 
average EFs are employed here. Probably 
the old literature average? Also, is good 
agreement seen every year or just for the 14 
year total? 

This was indeed surprising to us, 
particularly since our measurement 
averages (overrepresented by xeric regions) 
suggested much larger deviations.  
 
The ‘static average’ we compare with are 
the GFED4s EFs which are not updated 
with current literature. However, for these 
species and savannas, these are similar to 
those proposed for FINN 2.5 (Wiedinmeijer 
et al. (2023) preprint).  
 
When comparing to the EFs suggested by 
Andreae (2019), the differences would be 
larger.  We added the following text (P11 
L7): “Both our measurements and the 
savanna biome averages in literature 
compilations (e.g. Akagi et al., 2011; 
Andreae, 2019) are subject to sampling bias 
when representing global savannas. A 
disproportionate number of field studies are 
clustered around reactively accessible 
locations with a well-developed research 
infrastructure, whereas other fire-prone 
areas lack direct field measurements. Rather 
than comparing the average of our savanna 
measurements to the literature averages, we 
computed the dynamic EFs globally using 
the RF model and subsequently calculated 
the emissions for the entire savanna biome. 
We then divided these annual emissions by 
the consumed biomass from GFED4s to get 
the annual consumed-biomass-weighted-
average EFs, which we will further refer to 
as the “effective” EFs. Over the 2002-2016 
period, the effective EFs over the savanna 
biome were 1685 ± 5 for CO2, 64.3 ± 0.6 
for CO, 1.9 ± 0.0 for CH4 and 0.16 ± 0.00 
for N2O, with the number in the parentheses 
indicating the interannual standard 
deviation. In Table 4, we compare the 
effective average EFs over the 2002-2016 
period calculated by our model to the static 
average EFs for savanna and grassland 
vegetation used by GFED4s and those 
suggested by Andreae (2019) and 
Wiedinmyer et al. (2023). Table 4 also lists 
the average EFs of the UAS measured fires 
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and the average EFs of all included fires 
(including literature studies). Except for 
N2O, the differences between the effective 
EFs compared to more recently updated 
static EFs from Andreae (2019) were larger 
(+1.3% for CO2, -7.1% CO, -31.4% CH4 
and -3.7%) than the differences compared 
to static EFs from GFED4s. 
 

Ultimately, the paper could compare the old 
literature average EFs to the evolved 
literature average EFs that include the 
author’s new data, and the average EFs 
based on just the authors new work. I.e. 
how much impact does this study have on 
averages? Finally, in addition to predicting 
measured EF better, it would be interesting 
to know if the use of dynamic EFs also 
better predicts downwind impacts, but that 
might be another paper. 

Many thanks for the great suggestions. As 
mentioned in the paper, the averages of our 
own measurements deviated more from the 
previous static averages than the ‘effective 
EFs’ listed above. This is mainly because a 
disproportionate number of our 
measurements were done in Xeric savannas. 
We feel this sampling bias makes it unwise 
to add our samples to the biome average 
without weighing (i.e. the effective savanna 
EF). Given the comments above about 
uncertainty we are also more careful now in 
stating the the biome-average values is 
different. 
 
Upon request these effective EF averages 
can also be calculated for individual regions 
or timeframes (e.g. EDS vs LDS). We hope 
that our work will encourage researchers to 
step away from using average values. 
 
These emission factors have been used in a 
paper which compares bottom-up and top-
down (TROPOMI) data which provides 
encouraging results (Van der Velde et al., in 
preparation) and will become part of 
GFED5   

2/5-6 Did not the authors observe that CO 
and CH4 EFs decreased with drying in 
xeric grasslands, but increased with drying 
in mesic woody savannas? Also “… annual 
average savanna fire …” 

That is indeed the case, we changed the 
sentence to (P2 L5): “Over the course of the 
fire season, drying resulted in gradually 
lower EFs of these species. Relatively 
speaking, the trend was stronger in open 
savannas than in woodlands where towards 
the end of the fire season they increased 
again.” 
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2/7 Are there just reductions? There is good 
agreement on totals so there should also be 
localized increases. In general, from the 1-
sigma standard deviation in literature EFs 
we expect +/- 40% variation in EFs fire-to 
fire 1-sigma. 

Indeed, the models also predicted increases. 
Since average CH4 and particularly N2O 
EFs were lower, the largest localized 
deviations were reductions. 
 
We changed the text to (P2 L7): “Contrary 
to the minor impact on annual average 
savanna fire emissions, the model predicts 
localized deviations from static averages of 
the EFs of CO, CH4 and N2O exceeding 
60% under seasonal conditions.” 

2/15 60% of net emissions? Could 
deforestation and peat be more important in 
the C-cycle if minimal regrowth? 

We clarified the text (P2 L15): “They 
estimate that, due to their high burning 
frequency, savannas account for roughly 
60% of the gross (i.e. not considering 
regrowth) global carbon emissions from 
biomass burning (BB).” 

2/26-28 There are many direct field 
measurements and they quantify overall 
variability, but previously we could not 
account for the total variability with 
quantitative contributions from very many 
specific factors. Previous studies targeted 
the average and variability, but not the 
causes of variability. 

We changed the text to (P2 L26): 
“Although there are many direct field 
measurements and they quantify overall 
variability (as summarized in for example 
Akagi et al., 2011 and Andreae, 2019), to 
date we cannot quantify how specific 
factors such as moisture content impact EFs 
(van Leeuwen and van der Werf, 2011).” 

3/25-26 Could other real-time data besides 
that from satellites be useful? 

Our aim, for the implementation in global 
emission inventories, was to have a global 
coverage over a considerable timespan (at 
least the MODIS era). Any dataset with a 
record long enough to train models and 
NRT availability can be useful.  
 
Supplementing the datasets on which the 
models are trained with alternative data 
should be done carefully to avoid biases. 
However, substituting for instance ERA5-
land temperature with ERA5 temperature to 
achieve NRT capacity, or even T 
predictions from CMIP5 projections as you 
suggested can be useful for NRT 
applications.  
 

4/23 The pre-fire met data mentioned here, 
where is it? The spreadsheet has non-useful 
met data collected in the fire convection 
column. 

That is correct, the pre-fire conditions were 
logged in a similar fashion but using the 
background measurements before the fire 
was lit. Although we started logging the 
windspeed, temperature and relative 
humidity using a Kestrel fire weather 
sensor, that was only true for the very last 
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experiments and not useful to analyze the 
full record.  
 
In the revised Excel sheet, we added the 
background data including the relative 
humidity and temperature when available.  

4/35 One naturally wonders here if the 
authors field environmental data can be 
used for insight into the accuracy of the 
global satellite products and were their fires 
detected by the satellite products GFED4s 
uses? 

As previously stated, we added the 
following text (P15 L17): “Of the UAS-
measured fires in this study only 5 of the 45 
EDS fires (11%) and 13 of the 65 LDS fires 
(20%) were registered by MCD64A1 as 
burned area (including adjacent pixels and a 
4-day time lag) and only 4 of the 45 EDS 
fires (9%) and 32 of the 65 LDS fires (49%) 
were registered by VIIRS S-NPP as thermal 
anomalies (with the center point of the 
hotspot (including a 1-day time lag) being 
within a 3.5 km radius of the sample). 
Depending on the spatiotemporal nature of 
these omissions, this may affect some of the 
results in this study concerning the effects 
of the EF dynamics on total emissions. 
Chen et al. (2023) indicate that in the 
savannas, disproportionately more burned 
area is added in higher tree-cover areas 
when using higher resolution satellite 
imagery. Giving more weight to these areas 
would mean our savanna-wide effective 
EFs of CO, CH4 and N2O would increase. 
The Sentinel-2 based burned area product 
from Roteta et al. (2021) performed much 
better and registered 8 of our 14 EDS fires 
(57%) and all of our 16 LDS fires (100%) 
in Botswana and Mozambique in 2019 
(including adjacent pixels and up to a 21-
day time lag). Due to the fewer overpasses 
the temporal allocation of this product is 
less precise with an average time lag of 5.5 
days. Figure 10 shows the portion of our 
EDS and LDS fires that were detected by 
various satellite algorithms.” 

5/7 Impressive set of products. Is it easy to 
explain why no VIIRS or geostationary? 
Not available as long? Useful going 
forward? 

Our aim was to have a global coverage for 
the implementation in global emission 
inventories (using a uniform approach) 
while covering at least the MODIS era to 
look at global trends. Therefore, we did not 
consider geostationary satellites at this 
stage.  
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However, since all our own measurements 
are from the VIIRS era the models can be 
trained using VIIRS data as well going 
forward. As only 4 of the 45 EDS fires 
(9%) and 32 of the 65 LDS fires (49%) 
were registered by VIIRS S-NPP as thermal 
anomalies, including VIIRS as a feature 
would therefore result in a lot of missing 
values which then have to be removed from 
the training data. We added a sentence to 
the text (P5 L15): “We used remote sensing 
products based on retrievals and reanalysis 
data with sufficient spatial and temporal 
coverage, primarily using products based on 
the Moderate Resolution Imaging 
Spectroradiometer (MODIS). This meant 
that at this stage, we did not include data 
from VIIRS or geostationary satellites.” 

5/8 Were all the samples of a fire usually in 
the same feature pixel? 

For the courser features like ERA5-land this 
was the case, although feature values may 
differ between samples based on their 
timestamp. For the MODIS derived features 
the samples of the individual fires covered 
1 – 13 pixels with an average of 2.5 pixels 
per fire.   

5,/15 Is it easy to explain why not using 
historic NDVI range? 

We are not sure whether we fully 
understand the question, but we focused on 
Pgreen. Pgreen is the NDVI before the fire, 
relative to the NDVI range of the pixel 
throughout the year. As further explained 
later, the reason this did show us as a strong 
indicator may be the pixel 
misrepresentation of the actual burned 
vegetation.  

5, 25-26, TRMM useful for rainfall? Since TRMM was in operation from 1997 
to 2015 and our measurements are done 
between 2017 and 2022, TRMM rainfall 
cannot be used to train our models.  
 
We have experimented using IMERG data 
for rainfall but decided to use ERA-land as 
we were more interested in consistency for 
broader patterns than highly accurate 
readings.  

5/30-31 risk or behavior or both? Are any 
ideas in the “hot dry windy index” useful as 
predictors here? 

Many thanks for the suggestion. We were 
not familiar with this product and will 
surely include it in updates. The individual 
parameters that go into the DHW (VPD and 
windspeed) were included in training the 
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models and were (not surprisingly) found to 
be strong predictors. 

5/34-35 Is the daily cycle of fine fuel 
moisture captured? Was FFMC compared 
to the author’s field-measured fine-fuel 
moisture data? 

No, although we did include the diurnal 
cycle of VPD, ESI, T, WS and RH. 
However, FFMC was obtained from EFFIS 
CEMS, at a daily resolution.  
 
The FFMC compared very poorly to our 
measured weighted average fine fuel 
moisture content with a Pearson correlation 
coefficient of -0.36. This may explain why 
in itself (not as part of FWI), the FFMC was 
never assigned as one of the main EF 
predictors by the models.  

6/6 How does spatial resolution of the fire 
severity proxies (dNDVI etc.) compare to the 
size of fires? If the fire is smaller, then is the 
signal diluted? Would a small severe fire look 
like a larger less severe fire? Did the authors 
expect better correlation of scorch and char 
height with the severity proxies? 

Mismatch of the burned vegetation and the 
pixel retrieval is indeed an issue for these 
features.  
 
We added the following text to the 
discussion (P15 L2): “Fire intensity proxies 
(dNDVI and dNBR from MODIS) were 
poor predictors for the EFs. A potential 
explanation is that these features were at 
times heavily diluted, as many of the 
measured fires only affected part of the 
pixel. Similar misrepresentation errors can 
be expected for the NDVI before the fire, 
FPAR and the Pgreen. Particularly in the 
LDS, we were often limited to areas that 
were enclosed by recent fire scars (0-2 
years) or other non-flammable boundaries. 
Although these areas were sizable (several 
hectares) many of the retrievals in these 
pixels may poorly represent the burned 
vegetation. Along with inconsistent 
retrievals related to cloud cover, this may 
be an important reason why these features 
were deemed poor predictors by the models 
while seen as strong predictors in previous 
research (Korontzi et al., 2004). Higher 
resolution features may increase the 
representativeness of the pixels for the 
actual burned vegetation.” 
 

6/19-20 What is “a measurement with a 
missing value of an included feature”? Do 
you mean you did not use EF measurements 
if even a single associated satellite product 
out of the whole set was missing? 

That is indeed what we meant. The models 
cannot deal with missing values. We 
decided to drop those measurements rather 
than using average feature values as this 
could distort the relations. This was only an 
issue when including the full set of features 
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to decide the most important predictors. For 
training the eventual models we used a 
subset of five features. This had both the 
benefit of reducing the requirements for 
data availability and computational 
demands. These features did not have 
missing values.  

6/21-22 What does “resampled using ten-fold 
cross validation while allowing sample 
replacement (i.e., bootstrap method)” mean? 
Can a simple plain language explanation be 
added? 

Ten-fold cross-validation is a technique 
used to evaluate the performance of a 
random forest model by splitting the 
training data into multiple subsets or 
"folds". The entire dataset is divided into 
ten equal-sized parts or folds. The random 
forest model is trained and evaluated 10 
times. In each iteration, one fold is used as 
the validation set, and the remaining 9 folds 
are used as the training set. 
 
By using ten-fold cross-validation, we can 
get a more robust estimation of how well 
the random forest model performs on 
unseen data. It helps to reduce the bias that 
may arise from using a single train-test split 
and provides a better understanding of the 
model's generalization capabilities. 
 
Random forests are ensemble models that 
combine multiple decision trees to make 
predictions. The bootstrap method starts by 
randomly sampling the original dataset with 
replacement. This means that for each 
sample in the dataset, there is an equal 
chance of it being selected more than once 
or not selected at all in the bootstrap 
sample. This also helps to create an 
ensemble of diverse decision trees and 
contributes to the model's robustness and 
generalization capabilities. 
 
We changed the text to (P6 L31): “We 
removed measurements with missing values 
for any of the included features. The 
remaining data was divided into training 
(70%) and validation data (30%), and the 
training data was resampled using ten-fold 
cross validation. This means that the 
training dataset is divided into ten equal-
sized parts or folds. The random forest 
model is trained and evaluated 10 times. In 
each iteration, one fold is used as the 
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“temporary validation” set (different from 
the 30% which is not included in the 
training data), and the remaining nine folds 
are used as the training set. The folds are 
created while allowing sample replacement 
(i.e., bootstrap method), meaning that for 
each sample in the dataset, there is an equal 
chance of it being selected more than once 
or not selected at all.” 

6/22-23 Explain that “hyper parameter” refers 
to the most influential parameters? 

Hyperparameters refer to the settings or 
configurations that determine how the 
random forest algorithm operates. These 
parameters are not learned from the data but 
are predefined by the user before training 
the model. These are for instance the 
number of trees, tree depth and number of 
features per split. These features depend on 
the amount and variability in the data and 
are used to avoid overfitting.   
 
We changed the text to (P6 L39): “The 
hyper parameters (model configurations 
like number of trees, minimum samples per 
leaf, maximum features, etc.) were tuned 
using the scikitlearn “GridsearchCV” 
algorithm (Pedregosa et al., 2011).” 
 

 
6/28-30 This is hard to follow. How would an 
EF require a resolution and how would that 
be computed? Overlap is within or between 
features? Do you mean some fires were 
bigger than or occupied more than one grid 
cell in the original feature (note we have 
slipped into calling remote-sensing proxies 
“features” for short), so you averaged, or 
extrapolated, or built a new grid for each fire 
such that the fire was centered in a single grid 
cell? Sometimes a few extra words can help a 
lot! 

We rewrote this section to make it easier to 
follow (P7 L6): “To assess the impact of EF 
dynamics on emission estimates, and study 
global spatiotemporal patterns, we 
developed gridded EF layers that can easily 
be incorporated into existing emission 
inventories. The remote-sensing proxies 
(“features”) were resampled to the required 
spatial resolution by simply averaging the 
values of the relevant gridcells. For 
example, to compute the 0.25° fraction tree 
cover feature, we averaged the fraction tree 
cover of all 500-meter pixels classified as 
savanna or grassland.”  
 

6/32 How can an EF have a temporal 
resolution? Are the EFs referred to fire-
average or sample-specific? Is the daily cycle 
in RH and fine fuel moisture considered? 

This refers to the gridded product. We 
clarified the text to (P7 L14): “The 
temporal resolution of the computed 
gridded EFs in the example of Fig. 2 is 
daily, in which the day-to-day EF dynamics 
are being driven by daily variations in VPD, 
FPAR, FWI and soil moisture.” 
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The BA data we used to calculate global 
emissions using GFED4 is daily. Therefore, 
it did not make sense to calculate our EFs at 
higher temporal resolution.  
 
However, in calculating the daily EFs, we 
did consider the daily cycle for RH, VPD 
and T. As we state later in the text (P7 
L17): “For features with a typical diurnal 
pattern, we therefore weighed the hourly 
meteorological data by the average diurnal 
fire profile in the respective month for the 
grid cell. This diurnal fire profile was based 
on the three-hourly fractions of daily 
emissions obtained from GFED4.1s, which 
is based on the timing of active fire 
detections from both MODIS and 
geostationary satellites (Mu et al., 2011; 
van der Werf et al., 2017).” 
 
This means rather than taking the average 
daily average, the daily averages were 
weighed by when fires in the grid cell 
typically occur at that time of the year.  
 

6/40 “… savanna fire emissions …” Were the 
dynamic EFs calculated using global products 
and RF? 

Correct, we changed the text to (P7 L21): 
“To study the impact of EF dynamics in 
savannas, we calculated monthly global 
savanna emissions by multiplying the 
dynamic EFs computed by our models with 
dry matter consumption from GFED4s 
(Randerson et al., 2012; van der Werf et al., 
2017) at 0.25° spatial resolution, for the 
2002-2016 period (the period for which 
MCD64AC5 as used in GFED4s was 
available).” 

7/15-16 How were samples with negative 
N2O emissions treated when calculating fire-
average N2O emissions? 

For samples with a total increase in carbon 
below 10 moles, the increase was calculated 
as: 
 
 ∆𝐶 = 	∫
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We did this to avoid the (assumed) 
measurement error found in very low signal 
samples following Vernooij et al. (2021).  
 
Because these samples had low EMRs and 
the fire-averages are calculated over the 
cumulative EMR in all the bags, their 
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omission did not significantly affect the 
fire-averaged N2O emissions.  
   

7/19-20 Clarify this is the Andreae 2019 
average and not the average of the 85 
measurements used from other groups? 
Otherwise, how do you get locations for 
study-average or vegetation average 
emissions (unless one fire in study)? 

That is correct. We changed the text to (P8 
L2): “The relatively small range in the 
boxplot describing previous savanna 
literature (Fig. 3, red box based on studies 
listed by Andreae (2019)) may be attributed 
to the fact that most studies report either 
fire-averages, vegetation type averages or 
even study averages, whereas the other 
boxplots based on our measurements show 
the variability observed between individual 
samples.” 

7/23 substantial variability in fire-averages or 
samples? 

The boxplots represent the variability in the 
individual samples. To some extent, this 
variability also translated to fire averages 
but that is not shown here. To prevent 
confusion, we changed the text to (P8 L8): 
“We observed substantial variability within 
EF bag samples from different savanna 
ecosystems.” 

7/24-25 The higher CO and CH4 EFs in 
woody savanna is supported in previous 
literature at least once, e.g. Sinha et al., 
(2004).  
 
 
FWIW, the Miombo fire was included in the 
tropical dry forest category in Akagi et al, but 
it was also a small part of a savanna fire 
study-average used in the savanna category. 

Thanks for pointing this out. The higher CO 
and CH4 EFs were indeed in line with 
previous literature and expectations. We 
added the reference to the discussion.  

7/25 Taking this to mean the authors study-
averages were lower than previous literature 
averages. 

Correct, that is the average of all our 
measured fires. It should be noted that the 
aim of our campaigns was to cover 
spatiotemporal variability rather than 
getting a representative average of all fires 
in the savanna biome. The biome-average is 
not the same as our sampling average 
because we oversampled xeric regions. The 
relatively low EFs we measured are 
therefore to be expected. The issue with 
sampling bias is also true when taking study 
averages like Andreae (2019).  

7/29 by “seasonally inundated grasslands” do 
you mean aka dambos? 

Correct, we changed the text to (P8 L14): 
“In humid areas like dambos (seasonally 
inundated grasslands) and riverine forests, 
….” 

8/2-3 Any benefit to comparing the authors 
fuel measurements to similar measurements 

The fuel measurements are definitely very 
interesting in itself and will be further 
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by Shea et al (1996) and Hoffa et al (1999) 
and others?  
 
Shea, R. W., Shea, B. W., Kauffman, J. B., 
Ward, D. E., Haskins, C. I., and Scholes, M. 
C.: Fuel biomass and combustion factors 
associated with fires in savanna ecosystems 
of South Africa and Zambia, J. Geophys Res., 
101(D19), 23551–23568, 1996. 

studied, and used in different applications 
(e.g. to inform DGVMs and emission 
inventories). In this paper, however, the 
goal was not to look at fuel in detail but 
rather to use those measurements to explain 
patterns in EFs and EF-satellite 
correlations, so we only discuss them 
briefly. 
 
We added the following text (P13 L34): 
“Measurements of fuel loads were higher 
than previous measurements from African 
savannas described by Shea et al. (1996). 
They found average fine fuel loads (litter 
and grass) of 3.8 tonne ha-1 in moist 
Miombo woodland. In semiarid Miombo 
woodland they found 3.1 tonne ha-1, In 
comparison we found 5.6 tonne ha-1 in 
Mozambican Miombo woodland and 5.6 
tonne ha-1 in Zambian Miombo woodland. 
The percentage of grasses in these fuels was 
similar; Shea et al. (1996) reported 24% in 
moist Miombo woodland and 18% in semi-
arid Miombo woodland whereas we found 
37% in Mozambican and 18% in Zambian 
Miombo woodlands. The combustion 
completeness of these fuels was slightly 
lower in our fires at 50-80% versus 80-92% 
reported by (Shea et al., 1996), albeit that 
the lower values in this range occurred in 
the EDS. Combustion completeness of 
shrub leaves and course woody debris were 
in the same range. For dambo grasslands 
our fuel loads were also much higher at 6.2 
(±2.16) tonne ha-1 of which 99% grass 
versus 3.1 tonne ha-1 from Shea et al. 
(1996). Although these differences are 
large, they may be attributed to the 
significant natural variability in 
productivity and decay related to water 
availability, fire frequency, and termite and 
grazing activities in these natural 
landscapes.” 
 

8/4 What is meant by “corresponding 
mixtures of fuel age”? In Table 3, why was a 
higher percent of the heavy fuels consumed in 
the EDS in Australia, unlike elsewhere; 
maybe lit more aggressively? 

By “the columns do not necessarily 
represent corresponding mixtures of fuel 
age” we mean that for some vegetation 
types or season, we may have more 
measurements of older fuels than for others. 
This may affect things such as litter load, 
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nitrogen content, etc. regardless of the 
seasonal effects. We changed the text to (P8 
L32): “For some characteristics (e.g., the 
total fuel load), it is important to note that 
the measurements in the different 
vegetation types do not necessarily 
represent identical mixtures of fuel age. The 
higher fuel loads open savannas in 
Australian compared to Botswana, may be 
partially attributed to the longer fuel build-
up.” 
 
We also added the average time since the 
last fire to Table 3.  
 
Fires were lit in similar fashion in the 
different vegetation types, including those 
listed in Table 3. In the Australian sites, 
grasses were very dominant and abundant 
and heavy fuels were scarce. The sample 
size of heavy fuels being very low may also 
explain why this deviated so much from the 
other areas.  

8/10-13 I’m pretty sure that increased RSC 
and increased CO and CH4 EFs in the LDS in 
wooded savannas is already in the literature 
but haven’t found the reference. Maybe Hoffa 
or Korontzi? 

The measurements described by Hoffa et al. 
(1999) are all performed between June 5th 
and August 6th and therefore miss the 
period we refer to. Korontzi (2005) does 
indeed predict a slight increase (recovery) 
in CO and CH4 EFs from September to 
October (Fig. 11) for both woodlands and 
grasslands. This increase, however, is very 
small compared to the overall pattern and EFs 
are still much lower compared to EDS values. 
Contrarily, we found EFs that were higher in 
LDS woodland fires compared to EDS fires. 

8/32 For Table 4, clarify which field-
measured met data were compared to satellite 
met data, preferably NOT drone data in fire-
processed air! However, Table 4 seems to 
specify that T and RH from the drone were 
used, which could be okay if NOT when 
drone was above the fire, but instead in 
ambient (background) air. Then again, 
currently, it’s odd that the satellite 
temperature and drone temperature are 
weakly positively correlated at 0.18 while 
satellite temperature is most strongly 
correlated with field measured nitrogen 
content in the grass (perhaps a seasonal 
coincidence?). 

The drone data during the fire are indeed 
not indicative of environmental conditions, 
but rather sampling conditions. In Table 4, 
we replaced the temperature and relative 
humidity with the values taken while 
making background measurements.  
 
Background measurements were obtained 
before the fire which can be several hours 
earlier than the latest samples. As both T 
and Rh are strongly diurnal, these values 
may not always represent the environmental 
conditions during the fire. With respective 
spearman correlation coefficients of 0.21 
and 0.45 for T and Rh compared to their 
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ERA5-Land counterparts, correlation was 
slightly higher but still not great.  

8/31-33 This text and Table 4 could be 
clarified with slightly more precise and 
consistent terminology. I think Tab 4 shows 
how the field measured-ecosystem attributes 
correlate with the field-measured MCE and 
EFs and also how the field-measured 
ecosystem attributes correlate with the 
satellite products, but NOT how satellite 
products correlate with field-measured EF or 
how anything correlates with model-
calculated EF? At this point in the paper, 
evidently, calculated EFs vs measured EFs 
and the sensitivity of calculated EFs will be 
discussed elsewhere. 

We changed the title of Table 4 to: “Table 
4. Spearman correlation matrix for the 
field-measured-ecosystem attributes and the 
fire-averaged emission factors and MCE as 
well as the satellite products used in the 
study. Positive correlations are presented in 
blue while negative correlations are 
presented in red.” 
 
Also, we added Table A2 to the appendix 
(Table 1, in this document below) which 
shows how satellite products correlate with 
field-measured EF or how anything correlates 
with model-calculated EF.  

9/4-5 I’m taking this to mean that 70% of 
field-measured EF were used with “features” 
to train the RF model and the RF model then 
used features to predict EF for the other 30% 
of field measured EF (out of sample means 
fires not in training set) and performed well in 
terms of r-squared. Could give the slope too? 
Is the training set randomly selected or varied 
run to run? 

Correct. The out of sample performance 
refers to the comparison of the 30% 
validation data against the modelled EFs 
based on the validation data features. These 
data were not included in training the 
model.  
 
The train-test split was randomly selected 
although the “random state” was then fixed. 
Rather than to optimize the results, this is 
done to make sure the models can be 
reproduced.  

9/5-7 Is there a simple way to connect feature 
importance and the concept of hyper 
parameters? Is “impurity decrease” 
essentially a fraction of total variability? 

The feature importance is calculated as the 
total reduction in the node impurity that a 
feature contributes to when it is used for 
splitting in all the individual decision trees. 
This impurity is calculated as the 
probability of misclassifying a randomly 
chosen data point within that node. The 
feature importance provides an overall 
measure of how much each feature 
contributes to the predictive power of the 
entire RF model. 
 
Hyperparameters are unrelated to the 
features used as predictors or the feature 
importance but refer to the settings or 
configurations that determine how the 
random forest algorithm operates. 
 

9/8 The red line in Fig 4 is useful for 
comparing the range of EF to the old 
literature average. But later in paper, the 
effect of dynamic EF should perhaps be 

You are correct. The effect is both the 
mismatch of our (xeric dominated) dataset 
to the savanna average and the effect of 
dynamic versus static. Moreover, in 
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compared to the biome average based just on 
the field data used by the authors, which 
could be shown with a second vertical line. 
Then recalculate MAE and improvement %. 
Currently, the comparison is “apples to 
oranges” in that “improvement” is based on a 
difference resulting partly from incorporating 
new data and partly from a change in 
approach. 

particular for N2O, the older “static 
average” represented by the red vertical line 
is not up to date. Andreae (2019), which 
includes more recent studies, reports a 
savanna N2O EF of 0.17 which would 
reduce these mismatches.    
 
In Fig 4 and 5, we have added a separate 
magenta vertical line representing the 
average of the input data.  

9/13-20 This is a nice exploration of 
simplifying the RF approach. Can the authors 
explain why VPD is the most important 
feature in the small subset of features, despite 
having a low rank in the full set of features? 
Any estimate of reduced computational 
burden? 

The VPD is strongly seasonal and correlates 
strongly to other features from the full set 
of features like temperature, relative 
humidity, soil moisture, and evaporative 
stress index. This means that similar 
decision trees can split the data similarly 
following any of these features, so in a way 
they are competing. This reduces the 
impurity reductions (and thus feature score) 
of those features.  
 
The smaller feature subset has several 
advantages, including reduced 
computational burden, less dependencies on 
underlying datasets, easier to make NRT 
data, and no data losses due to missing 
values.  

9/24-25. Does this mean you ran the RF 
model once to get MCE and then used the 
MCE as a new feature in a re-run of the RF 
model? 

That is correct. Thanks to your work we 
know that MCE is strongly correlated to the 
EFs of particularly CO2, CO and CH4. By 
first computing the MCE and then offering 
that as a feature, we can isolate the effect of 
MCE from other effects making it more 
informative. Also, we found that doing it 
this way improved the overall predictive 
performance of the models.  

9/35-38 It would be interesting to see the 
study-average EFs vs the former literature 
average EFs and then also what the new 
literature averages are including this study, all 
in a little 3x4 table. 

Previous studies have often used the 
average of all the available measurements 
as the savanna average EF. However, in 
selecting our field campaigns, we were 
interested in capturing variability and 
dynamics, rather than determining a 
representative savanna average EF. Many 
of our measurements target les fire prone 
conditions and, for instance, from a 
representability perspective oversample the 
EDS and xeric savannas.  
 
For those interested in a single number for 
savannas, we would suggest taking the 
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effective EFs rather than the average of the 
samples. These values represent the average 
modelled EFs weighted by the consumed 
dry matter from GFED4s. This means they 
only include EFs at the time and location 
that the savanna fires occurred (according 
to MCD64A1), which eliminates the 
sampling bias in global measurements. 
 
As requested, we added Table 4. We also 
added the following text (P11 L17): “In 
Table 4, we compare the effective average 
EFs over the 2002-2016 period calculated 
by our model to the static average EFs for 
savanna and grassland vegetation used by 
GFED4s and those suggested by Andreae 
(2019) and Wiedinmyer et al. (2023). Table 
4 also lists the average EFs of the UAS 
measured fires and the average EFs of all 
included fires (including literature studies). 
Except for N2O, the differences between the 
effective EFs compared to more recently 
updated static EFs from Andreae (2019) 
were larger (+1.3% for CO2, -7.1% CO, -
31.4% CH4 and -3.7%) than the differences 
compared to static EFs from GFED4s.” 
 

10/2 How common are mixed biome grid 
cells? Percentage of total? Is the most 
common type of mix with tropical dry forest? 
Is there a percent tree cover or canopy closure 
that defines the boundary between what the 
authors consider savanna and something else? 
 

This depends on the resolution desired for 
the model. In this study, we aggregated the 
data to 0.25-degree grid cells meaning 
mixed grid cells were quite common. For 
the biome classification, we used the biome 
classification from GFED4s, which is based 
on the annual International Geosphere-
Biosphere Programme (IGBP) classification 
and obtained from MCD12Q1, in which 
classes 5-10 make up our “savannas and 
grasslands”. This means we did not have a 
“tropical dry forest” class. The IGBP 
classification uses a FTC cut-off of 60% to 
distinguish the “woody savanna” and 
“forest” classes.  

10/11-12 What is “annual effective EF”? An 
annual global savanna-fire average EF for 
each compound? This is also saying the year 
to year variation in global average EFs is 
small? 

That is correct, the “annual effective EF” 
was calculated by multiplying all the 
GFED4s biomass consumption by the 
dynamic EFs at the time and location of 
burning, and then dividing these annually 
integrated annual emissions by the 
integrated annual biomass consumption. 
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This way we get a savanna EF weighted by 
the time and places that burned.  
 

𝐸𝑓𝑓.		𝐸𝐹𝑥	(𝑦𝑒𝑎𝑟) =

	∑ ∑ 	(𝐵𝐶	(𝑑𝑎𝑦,𝑔𝑟𝑖𝑑	𝑐𝑒𝑙𝑙)	×𝐸𝐹𝑥	(𝑑𝑎𝑦,𝑔𝑟𝑖𝑑	𝑐𝑒𝑙𝑙)𝑔𝑟𝑖𝑑	𝑐𝑒𝑙𝑙𝑠𝑑𝑎𝑦𝑠	
∑ ∑ 	𝐵𝐶	(𝑑𝑎𝑦,𝑔𝑟𝑖𝑑	𝑐𝑒𝑙𝑙)𝑔𝑟𝑖𝑑	𝑐𝑒𝑙𝑙𝑠𝑑𝑎𝑦𝑠

      (1) 

 
We clarified the text (P11 L11): “Rather 
than comparing the average of our savanna 
measurements to the literature averages, we 
computed the dynamic EFs globally using 
the RF model and subsequently calculated 
the emissions for the entire savanna biome. 
We then divided these annual emissions by 
the consumed biomass from GFED4s to get 
the annual consumed-biomass-weighted-
average EFs, which we will further refer to 
as the “effective” EFs. Over the 2002-2016 
period, the effective EFs over the savanna 
biome were 1685 ± 5 for CO2, 64.3 ± 0.6 
for CO, 1.9 ± 0.0 for CH4 and 0.16 ± 0.00 
for N2O, with the number in the parentheses 
indicating the interannual standard 
deviation.” 
 

10/14-15 averaged over what time and space? 
I.e. the daily average over all areas occupied 
by the indicated vegetation class? Fig 7 
doesn’t seem to show much or any EFCO 
increase in woody savanna as the fire season 
progresses? Does this figure clash with 
previous text? What is “typical savanna”? 

The graph contains monthly CO EFs 
averaged over the 2002-2016 timeframe, for 
all the areas occupied by the indicated 
vegetation class. The vegetation classes are 
based on the IGBP classes. We have changed 
“Typical savanna” to “Savanna” (referring to 
tropical regions with Tree cover 10-30% 
(canopy >2m).  
 
We agree that in the graph, the upward 
trend is not as evident for savanna and 
woody savanna as the measurements seem 
to indicate. Although we did focus on 
southern hemisphere Africa in this graph, 
there are still some effects of temporal 
mismatched between east and west and 
north and south that may dilute these 
patterns. Also, as you mentioned earlier, 
these classifications are not always correct.  



  27 

10/30-34 Interesting, shows the RF model 
may have value to at least partially correct 
sampling bias in a field campaign! 

Exactly!   

11/2 Just to be clear, the N is in the foliage of 
the trees, not the wood itself 

We changed the text to (P11 L39): “In line 
with Susott et al. (1996) and Ward et al. 
(1992) we found that woody vegetation has 
higher nitrogen content contained in the 
foliage (Table 3), causing higher N2O 
emissions from tree dominated areas.” 

11/24-26 Did Hoffa and Korontzi predict 
higher MCE in LDS? 

That is indeed incorrect. We changed the 
reference to Korontzi (2005), which is a 
temporal extrapolation through Pgreen (also 
assessed in this study) based on 
measurements from Hoffa. 

11/30 The Eck trend in SSA is averaging over 
all sub-Saharan Africa AERONET sites? 

It used three sites (in Etosha, Namibia), 
Kruger national park, South Africa, and 
Mongu, Zambia) which are discussed 
separately. While all sites show an 
increasing SSA trend over the dry season, 
the trend is strongest in Mongu where the 
signal is probably the most dominated by 
fires.  

11/32 References that support an increase in 
SSA as MCE decreases include Liu et al and 
Pokhrel et al and probably many others 

Thanks, we have added the references to the 
text.  

11/40-12/1 Not sure about the interpretation 
here. Does CH4/CO vary with MCE? CO is 
not technically independent of MCE since 
MCE has CO in its definition. 

Although the main point here is that this 
relation varies with FTC, you are correct. 
MCE and CO are linear. Therefore, the fact 
that the CH4 EF/MCE ratio varies with 
MCE also means that the CH4 EF/CO EF 
ratio varies with MCE.  
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12/5-9 This discussion could be misleading in 
a subtle way. I think the effect seen here is 
probably because the other studies compared 
to are plotting the fire-average EFCH4 versus 
the fire-average MCE, while the authors are 
plotting EFCH4 vs MCE for “snapshot grab 
samples” that could include samples during 
flaming that may have much higher MCE 
than the fire-average MCE for typical useful 
real-world fires. We’ve seen this often over 
the years. To illustrate we can revisit the 
comparison to the Selimovic et al lab fire 
study. If one plots the instantaneous EFCH4 
vs instantaneous MCE for these typical lab 
fires you often get “curvature” at high MCE 
values during “pure flaming” and other 
effects. The ERCH4 vs MCE can also be non-
linear at high MCE or have interesting other 
interesting patterns with time. The plots show 
this for the 1-s data from randomly selected 
Fire #74 on the NOAA FIREX-Firelab 
archive 
(https://esrl.noaa.gov/csd/groups/csd7/measur
ements/2016firex/FireLab/DataDownload/). 
Fire #74 is one of the fires in the linear plot of 
fire-integrated EFCH4 vs MCE in Selimovic 
et al. (2018). Interesting topic but variability 
during a fire is a level of detail large-scale 
models can’t cope with yet. Thus, in 
providing guidance for large-scale models it 
may be best to stick to fire-average data. 

Many thanks for this clarification. 
We agree that this effect is much smaller in 
fire averages due to the limited range in 
MCE and behaves linearly. In Figure 1 
(below this table) we have added the fire-
averages and linear regression based on 
those averages. It shows a similar pattern 
for fires with exceptionally low MCE. Your 
graph indicated the eventual fire-average 
CH4/CO ratio (and thus the CH4 EF/MCE 
ratio) is dependent on the ratio between 
smouldering and flaming combustion in the 
fire, which may be expected to correlate 
with FTC. Therefore, while the pattern is 
certainly more pertinent in individual bag 
samples, it may also hold for fire-averages. 
 
We feel the main point of this text, that 
studies that disproportionately target 
smouldering or flaming emissions would 
reach different linear CH4 EF/MCE slopes, 
is still true and confirmed by the graph.  
 
We therefore changed the text to (P12 L37): 
“In accordance with previous studies (e.g. 
Korontzi et al., 2003b; van Leeuwen and 
van der Werf, 2011; Barker et al., 2020), we 
found steeper CH4 EF to MCE regression 
slopes in woodlands compared to 
grasslands. Our data indicated a positive 
correlation of the CH4 EF to MCE slope 
with the FTC based on MOD44Bv006. The 
MCE is a simplified form of the 
combustion efficiency and only calculated 
using CO and CO2 emissions. Being less 
oxidized than CO (which is still common in 
flaming combustion), CH4 emissions have a 
stronger dependency on the actual 
combustion efficiency (CO2 divided by all 
carbon emissions). While most studies 
describe the relationship between the CH4 
EF and the MCE as being linear (Korontzi 
et al., 2003; van Leeuwen and van der 
Werf, 2011; Selimovic et al., 2018; 
Yokelson et al., 2003), we found that for 
individual bag samples it was better 
described using a nonlinear function (Fig. 
9), in line with findings by Meyer et al. 
(2012) for Australian savanna 
measurements. Figure 9 represents 
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individual bag measurements rather than 
fire averages (for which the spread in MCE 
is much lower). Laboratory experiments 
described by Selimovic et al. (2018) 
showed that the CH4 to CO ratio is strongly 
dependent on flaming or smouldering 
phases if the fire. Individual bag samples 
-which often hold emission from a single 
phase-  therefore show much more 
variation compared to fire averages. Stable 
carbon isotopes also point to CH4 emissions 
being more depleted in heavy carbon (13C) 
compared to CO in both mixed (C3 and C4) 
and single-fuel-type experiments, indicating 
a stronger dominance of RSC and the 
pyrolysis of lignin in its total emissions 
(Vernooij et al. 2022b). This explains both 
why studies that are skewed towards either 
smouldering or flaming phase emissions 
find different CH4 EF to MCE slopes using 
linear regressions and why this slope varies 
with FTC. ” 

12/25-26 Think you mean “This is the first 
study to quantify the spatial distribution of 
GHG EFs over the entire savanna biome by 
using both field measurements from a variety 
of savanna ecosystems and their relation to 
global data mainly from satellites”. I.e. the 
field measurements  
have gaps as explained in the following lines, 
but by connecting the measurements to 
features you have a new way to get a useful 
global savanna estimate! 

As suggested, we have changed the text to 
(P14 L9): “This is the first study to quantify 
the spatial distribution of GHG EFs over 
the entire savanna biome using field 
measurements from a variety of savanna 
ecosystems and their relation to global data 
mainly from satellites.” 

13/11 The idea of a gross underestimate here 
is worrisome. How well do the authors think 
GFED4s accounts for fires too small to show 
up in their burned area product? Worth 
mentioning here? 

The ‘gross underestimate’ is compared to 
the GFED4s burned area used in this study. 
To clarify this we changed the sentence to 
(P15 L16): “New high-resolution burned 
area products, however, indicate that these 
global products, including the GFED4s data 
used for global emission  analyses in this 
study, grossly underestimate burned area 
due to omission of small fires (Chen et al., 
2023; Roteta et al., 2021; Roy et al., 2019). 
This also refers to a significant portion of 
our measured fires. Of the UAS-measured 
fires in this study only 5 of the 45 EDS fires 
(11%) and 13 of the 65 LDS fires (20%) 
were registered by MCD64A1 as burned 
area (including adjacent pixels and a 4-day 
time lag) and only 4 of the 45 EDS fires 
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(9%) and 32 of the 65 LDS fires (49%) 
were registered by VIIRS S-NPP as thermal 
anomalies (with the center point of the 
hotspot (including a 1-day time lag) being 
within a 3.5 km radius of the sample). 
Depending on the spatiotemporal nature of 
these omissions, this may affect some of the 
results in this study concerning the effects 
of the EF dynamics on total emissions. 
Chen et al. (2023) indicate that in the 
savannas, disproportionately more burned 
area is added in higher tree-cover areas 
when using higher resolution satellite 
imagery. Giving more weight to these areas 
would mean our savanna-wide effective 
EFs of CO, CH4 and N2O would increase.” 
 

14/10 Here I think it’s important to preserve 
the idea that you have not concluded the 
biome averages have large errors, just that 
fire to fire variability is large and is better 
accounted for by using a more sophisticated 
model. Also + and – local errors tend to 
cancel. It worries me that someone reading 
quickly may think you mean that global CO 
and CO2 emissions from savanna fires are off 
by ~80%. 

We agree that particularly compared to 
errors in other model aspects like BA and 
fuel load these errors are limited. We 
changed the text to (P17 L7): “The model-
produced data resulted in significant fire-
specific improvements compared to static 
biome-averaged EFs, reducing the mean 
absolute error in the modelled versus 
measured predictions by 63% for CH4, 57% 
for N2O, 81% for CO and 79% for CO2. 
Except for N2O EFs, our study does not 
indicate that savanna averages have large 
errors, but rather that fire to fire variability 
is large and is better accounted for by using 
a more sophisticated model.” 

14/31 I did not check the zenodo link. If it is 
different from spreadsheet, I could check it by 
request. 

The data is indeed the same as the 
spreadsheet provided.  

Fig 7. Why do “typical savanna” fire 
emissions peak earlier than all the subtypes? 

This may be an artifact of the spatial 
distribution of the different savanna classes.  
In general, but particularly for woody 
savannas, there is a trend in the SHAF 
region with western areas burning sooner in 
the year than eastern savannas. In figure 2 
(below) you can see that the frequently 
burning “savanna” class areas are more 
situated in the western part of the region. 
 
Another possible explanation would be 
more fire suppression in shrublands and 
grasslands.  
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Table 4: Emission factor averages of this  

EF 
Specie GFED4s Andreae 

(2019) 

Wiedinmeijer 
et al. 

 (2023) 

Sample 
data 
avg.1 

Training 
data 
avg.2 

Effective 
EF 

(Eq. 1)3 

CO2 1686 1660 1686 1637 1670 1685 
CO 63 69 63 55 61 64 
CH4 1.94 2.70 2.00 1.38 1.61 1.85 
N2O 0.20 0.17  0.12 0.12 0.16 

1Average over the fires measured using the drone methodology (skewed towards xeric savannas) 
2Average over the fires measured using the drone methodology and the included literature studies.  
3Dynamic EFs weighted by the consumed biomass at time and location of fires as calculated using GFED4s.  
 

 

Table A2. Spearman correlation matrix for the field measurements and the globally available satellite products. 

Positive correlations are presented in blue while negative correlations are presented in red.  
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Figure 1. The non-linear regression between the CH4 EF and the MCE for the individual bag samples. In the box on 

the bottom left, r refers to Spearman's rank correlation coefficient measured in the bag samples. The orange linear 

regression line is the linear regression of fire-averages.   
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Figure 2. Distribution of the IGBP landcover classes used in figure 7 of the main text.  
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Figure 10. Detection of the fires measured using the UAS-methodology by different satellite algorithms in the EDS 

(green) and LDS (orange). The darker area represents the cases where a fire was observed in the actual pixel within 

the listed timeframe. The lighter areas represent fires that were not detected in the same pixel as the samples but were 

detected in adjacent pixels. Timeframes are listed below the product labels. For the VIIRS detections the distance limits 

between the detection point and closest sample of the fire were 1km for the darker shaded area and 3.5 km for the 

lighter shaded area. 

 


