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Abstract. Achieving climate targets requires mitigation against climate change, but also understanding of the response of land

and ocean carbon systems. In this context, global soil carbon stocks and its response to environmental changes is key. This

paper quantifies the global soil carbon feedbacks due to changes in atmospheric CO2, and associated climate changes, for Earth

system models (ESMs) in CMIP6. A standard approach is used to calculate carbon cycle feedbacks, defined here as soil carbon-

concentration (βs) and carbon-climate (γs) feedback parameters, which are also broken down into processes which drive soil5

carbon change. The sensitivity to CO2 is shown to dominate soil carbon changes at least up to a doubling of atmospheric CO2.

However, the sensitivity of soil carbon to climate change is found to become an increasingly important source of uncertainty

under higher atmospheric CO2 concentrations.

1 Introduction

Global soil carbon stocks contain at least twice as much carbon than is stored in the world’s vegetation, making soils the10

largest active store of carbon on the land surface of Earth (Canadell et al., 2021). In the absence of human disturbance and

land-use change (Jones et al., 2018), future changes in soil carbon depend on the sensitivity to increases in atmospheric CO2

concentrations and the sensitivity to the associated impacts, such as increases to atmospheric temperatures and changes in

precipitation patterns (Varney et al., 2023; Todd-Brown et al., 2014). The quantification of such carbon cycle feedbacks is

required to determine the overall response of the climate system to given anthropogenic CO2 emissions and to help achieve15

Paris Agreement targets (Friedlingstein et al., 2022; Gregory et al., 2009).

Previous studies have defined land carbon cycle feedbacks within Earth system models (ESMs) from both CMIP6 and

CMIP5 ensembles (Arora et al., 2020, 2013). In general, the overall response of carbon stores is separated into those due to

changes in atmospheric CO2 (∆CO2) and those due to changes in global temperature (∆T ), with the latter assumed to repre-

sent the overall impacts of climate change on large spatial scales. These components of land carbon cycle feedbacks are called20

carbon-concentration feedbacks (βL) and carbon-climate feedbacks (γL), respectively (Friedlingstein et al., 2003, 2006). An
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advantage of using this formulation is that it allows for the quantification of the feedbacks for a given atmospheric CO2 concen-

tration, which can then be used as a simplified measure to compare amongst ESMs despite the increasing model complexities

(Arora et al., 2020, 2013; Gregory et al., 2009). For example, it provides a consistent metric to measure land carbon feedbacks

despite the differing climate sensitivities amongst ESMs (Boer and Arora, 2013).25

In this study, soil carbon driven feedbacks in ESMs are quantified using this βγ formulation (Friedlingstein et al., 2006).

Additionally, the βγ formulation is combined with the Varney et al. (2023) framework, which breakdowns future changes in soil

carbon (∆Cs) into individual processes which drive this response. This paper makes use of the latest generation of the Coupled

Model Intercomparison Project (CMIP6) used within the Intergovernmental Panel on Climate Change 6th Assessment Report

(IPCC AR6; IPCC (2021); Eyring et al. (2016)). To do this, soil carbon-concentration and carbon-climate feedback parameters30

are presented for CMIP6 ESMs, named βs and γs respectively, together with components which make up βs and γs due to

associated processes. The aim of this paper is to: (1) quantify the sensitivity of soil carbon to increased atmospheric CO2

concentrations and associated climate impacts by calculating βs and γs for CMIP6 ESMs; (2) investigate the linearity of future

soil carbon change at higher levels of atmospheric CO2 increase; and (3) identify the fraction of the land carbon response to

climate change that is due to global soils.35

2 Methods

2.1 C4MIP simulations

The Coupled Climate-Carbon Cycle Model Intercomparison Project (C4MIP) was set up to provide a common framework

to allow for comparison and consistent evaluation of carbon cycle feedbacks within ESMs (Friedlingstein et al., 2006) and

has been used across CMIP generations (Arora et al., 2013, 2020). This framework includes a set of idealised experiments40

to simplify and quantify the impact of increasing atmospheric CO2 on the climate system. In these experiments, additional

effects such as land-use change, aerosols and non-CO2 greenhouse gases are not included and nitrogen deposition is fixed at

pre-industrial values (Jones et al., 2016).

The control simulation is known as the 1% CO2 run (CMIP simulation 1pctCO2), where a consistent 1% increase in at-

mospheric CO2 per year is prescribed (referred to in this study as the full 1% CO2 simulation), starting from pre-industrial45

concentrations and running for 150 years. Additional experiments were designed to enable the CO2 and climate effects to be

isolated, these are known as: biogeochemically coupled (referred to here as the ‘BGC’ simulation) and radiatively coupled

(referred to here as the ‘RAD’ simulation) runs. In the BGC runs (CMIP6 simulation 1pctCO2-bgc and CMIP5 simulation

esmFixClim1), the 1% CO2 increase per year only affects the carbon cycle component of the ESM while the radiation code

continues to see pre-industrial CO2 values. Conversely, in the RAD runs (CMIP6 simulation 1pctCO2-rad and CMIP5 simu-50

lation esmFdbk1), the 1% CO2 increase per year affects only the radiation code, and the carbon cycle component of the ESM

continues to see just the pre-industrial CO2 value (285 ppm).

This study uses the full 1% CO2, BGC, and RAD C4MIP experiments with 10 CMIP6 ESMs (Eyring et al., 2016):

ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CESM2, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, MPI-ESM1-2-
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LR, NorESM2-LM and UKESM1-0-LL (see Table 1). For comparison, the soil carbon feedback parameters were calcu-55

lated using 6 CMIP5 ESMs (Taylor et al., 2012): CanESM2, GFDL-ESM2M, IPSL-CM5A-LR, MPI-ESM-LR, NorESM1-

ME and HadGEM2-ES (see Table A2). The ESMs included were chosen due to the availability of the data required at the

time of analysis (CMIP6: https://esgf-node.llnl.gov/search/cmip6/, last access: 4 February 2024, and CMIP5: https://esgf-

node.llnl.gov/search/cmip5/, last access: 6 February 2024).

2.2 Defining soil carbon feedbacks60

2.2.1 Friedlingstein et al. (2006) βγ formulation

The standard formulation uses a linear approximation to estimate carbon cycle feedbacks under a changing climate (Friedling-

stein et al., 2003, 2006). The change in land carbon storage (∆CL, PgC) is approximated linearly using feedback parameters

which define separate sensitivities to changes in atmospheric CO2 (∆CO2, ppm) and changes in global temperatures (∆T ,
◦C), defined as the land carbon-concentration (βL, PgC ppm−1) and carbon-climate (γL, PgC ◦C−1) (Equation 1).65

∆CL ≈ βL∆CO2 + γL∆T (1)

The Friedlingstein et al. (2006) methodology uses time-integrated fluxes (NEP , PgC yr−1), which represent the total change

in size of the land carbon pool (∆CL). This is presented for the full 1% CO2 simulation (Equation 2), BGC simulation (Equation

3), and RAD simulation (Equation 4) below, where ∆CL, ∆CBGC
L , and ∆CRAD

L are the changes in global land carbon pools

(PgC), and FL, FBGC
L , and FRAD

L are the net carbon fluxes to the land (PgC yr−1), for each simulation.70

∆CL =

∫
FL dt≈ βL∆CO2 + γL∆T (2)

∆CBGC
L =

∫
FBGC
L dt≈ βL∆CO2 + γL∆TBGC ≈ βL∆CO2 (3)

∆CRAD
L =

∫
FRAD
L dt≈ γL∆TRAD (4)

In these equations, ∆CO2(t) (ppm) is consistent between all scenarios. Within the RAD simulation however (Equation

4), the carbon cycle does not see an increased CO2 so the ∆CO2 is neglected and only found in the full 1% CO2 and BGC75

simulations (Equations 2 and 3, respectively). ∆T , ∆TBGC , and ∆TRAD (◦C) are the changes in global temperatures, in

the full 1% CO2, BGC, and RAD simulations, respectively. In Equation 3, ∆TBGC is assumed to be negligible, following

Friedlingstein et al. (2006). As the increased CO2 within the BGC simulation does not affect the radiation code, there is no

direct increase in atmospheric temperatures within the model. Arora et al. (2020) explain however, that local changes in the
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carbon cycle arising from increases in CO2 affect latent and sensible heat fluxes at the land surface, including: changes to80

evaporative fluxes from stomatal closure over land and changes in vegetation structure and coverage if dynamic vegetation is

included within the ESM (see Table 1). This study assumes that the global temperature changes in the BGC simulation are

negligible in the context of the βγ formulation (Fig. A1).

2.2.2 Soil carbon-concentration and carbon-climate feedbacks

Global ∆CL can be written as the sum of the changes in vegetation carbon (∆Cv) and changes in soil carbon (∆Cs). Following85

the βγ formulation, a similar breakdown of the land carbon-concentration and carbon-climate feedback parameters can be

derived, where βL = βv +βs and γL = γv + γs (Equation 5).

∆CL ≈ (βv +βs)∆CO2 +(γv + γs)∆T (5)

∆Cv ≈ βv∆CO2 + γv∆T (6)

∆Cs ≈ βs∆CO2 + γs∆T (7)90

Therefore, an equation for ∆Cs can be obtained, with soil specific carbon-concentration (βs) and carbon-climate (γs) feed-

back parameters, which represent the sensitivity of ∆Cs to CO2 and T, respectively (Equation 7).

2.3 Processes driving soil carbon change and relation to the βγ formulation

To isolate the processes which make up each soil carbon feedback, we follow the framework presented in Varney et al. (2023).

An equation for soil carbon (Equation 8) is derived using the definition of soil carbon turnover time (τs = Cs/Rh), which is95

defined as the ratio of soil carbon storage (Cs) to the carbon output flux from the soil (heterotrophic respiration, Rh; Varney

et al. (2020)). Future soil carbon can then be defined as initial soil carbon (Cs,0) plus a change in soil carbon (∆Cs), as shown

by Equation 9, where the subscript 0 denotes the initial state (decadal time-average at the start of C4MIP simulation). Equation

9 can be expanded to give Equation 10, which can be simplified to give Equation 11, as shown below.

Cs =Rhτs (8)100

Cs,0 +∆Cs = (Rh,0 +∆Rh)(τs,0 +∆τs) (9)
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Cs,0 +∆Cs =Rh,0τs + τs,0∆Rh +Rh,0∆τs +∆Rh∆τs (10)

∆Cs = τs,0∆Rh +Rh,0∆τs +∆Rh∆τs (11)

To consider the above and below ground effects on soil carbon separately, the effects due to changes vegetation productivity,

represented by Net Primary Productivity (NPP), and effects due to changes in soil carbon turnover time due to increased105

heterotrophic respiration (τs), are considered (Todd-Brown et al., 2014). However, due to the difference between the global

fluxes NPP and Rh in a transient climate, an additional term is included which is defined as Net Ecosystem Productivity

(NEP =NPP−Rh). Using the definition of NEP, this can be substituted into Equation 11 to give Equation 12, and expanded

to give an equation for ∆Cs in terms of NPP, NEP and τs (Equation 13).

∆Cs = τs,0∆(NPP −NEP )+ (NPP0 −NEP0)∆τs +∆(NPP −NEP )∆τs (12)110

∆Cs = τs,0∆NPP + NPP0∆τs + ∆NPP∆τs − τs,0∆NEP − NEP0∆τs − ∆NEP∆τs (13)

The individual terms in Equation 13 are: the change in soil carbon due to NPP changes (∆Cs,NPP ≈ τs,0∆NPP ), the

change in soil carbon due to the NEP transient term (∆Cs,NEP ≈−τs,0∆NEP ), the change in soil carbon due to τs changes

(∆Cs,τ ≈NPP0∆τs), as well as the transient effect on τs (∆Cs,τNEP
≈−NEP0∆τs). The two additional terms are the

non-linear term between NPP and τs (∆NPP∆τs) and the non-linear term between NEP and τs (∆NEP∆τs).115

Following on from this Varney et al. (2023) framework, the equation for ∆Cs (Equation 13) can also be defined for the

change in soil carbon in both the BGC simulations (∆CBGC
s , Equation 14) and RAD simulations (∆CRAD

s , Equation 15),

where the superscripts denotes the BGC and RAD simulations, respectively.

∆CBGC
s = τBGC

s,0 ∆NPPBGC + NPPBGC
0 ∆τBGC

s + ∆NPPBGC∆τBGC
s

− τBGC
s,0 ∆NEPBGC − NEPBGC

0 ∆τBGC
s − ∆NEPBGC∆τBGC

s (14)

∆CRAD
s = τRAD

s,0 ∆NPPRAD + NPPRAD
0 ∆τRAD

s + ∆NPPRAD∆τRAD
s

− τRAD
s,0 ∆NEPRAD − NEPRAD

0 ∆τRAD
s − ∆NEPRAD∆τRAD

s (15)120

These equations can be used to investigate the sensitivity of these isolated processes to changes in atmospheric CO2 and

global temperature (T), as shown by Equations 16 and 17. This is done by the explicit differentiation of Equations 14 and 15

with respect to CO2 and T , respectively.
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∆CBGC
s =

∂

∂CO2

[
∆CBGC

s

]
∆CO2 (16)

∆CRAD
s =

∂

∂T

[
∆CRAD

s

]
∆T (17)125

Equations 16 and 17 can be used to relate these CO2 and T sensitivities to the βγ formulation, where β is used to represent

the sensitivity to CO2 and γ is used to represent the sensitivity to T. Equation 7 which defines ∆Cs in terms of the soil carbon-

concentration (βs) and carbon-climate (γs) feedback parameters can be rewritten in terms of partial derivatives, as shown by

Equation 18.

∆Cs =
∂Cs

∂CO2
∆CO2 +

∂Cs

∂T
∆T, where, βs = ∂Cs/∂CO2 and γs = ∂Cs/∂T. (18)130

Then, Equations 16 and 17 can be used together with Equation 18 to combine the βγ formulation with the (Varney et al.,

2023) framework. In this case, therefore βs and γs can be defined as the contributions to ∆Cs based on the individual sensitiv-

ities of the soil carbon controls to CO2 and T (by substituting Equations 14 and 15 into Equations 16 and 17, respectively), as

shown by Equations 20 and 21.

∆Cs =
∂

∂CO2

[
∆CBGC

s

]
∆CO2 +

∂

∂T

[
∆CRAD

s

]
∆T (19)135

Where,

βs = τBGC
s,0

∂NPPBGC

∂CO2
+ NPPBGC

0

∂τBGC
s

∂CO2
+

∂∆NPPBGC∆τBGC
s

∂CO2

− τBGC
s,0

∂NEPBGC

∂CO2
− NEPBGC

0

∂τBGC
s

∂CO2

− ∂∆NEPBGC∆τBGC
s

∂CO2
(20)

γs = τRAD
s,0

∂NPPRAD

∂T
+ NPPRAD

0

∂τRAD
s

∂T
+

∂∆NPPRAD∆τRAD
s

∂T

− τRAD
,0s

∂NEPRAD

∂T
− NEPRAD

0

∂τRAD
s

∂T

− ∂∆NEPRAD∆τRAD
s

∂T
(21)

Equations 20 and 21 can be rewritten by defining βs and γs contribution terms, where each component of the equations

make up the total βs and γs sensitivities. As shown below for βs (Equation 22) and γs (Equation 23).140

6



βs = βNPP + βτ + β∆NPP∆τ − βNEP − βNEPτ
− β∆NEP∆τ (22)

γs = γNPP + γτ + γ∆NPP∆τ − γNEP − γNEPτ − γ∆NEP∆τ (23)

Where, βNPP and γNPP are the βγ contributions due to ∆NPP, βτ and γτ are the βγ contributions due to ∆τs, βNEP and

γNEP are the βγ contributions due to the transient NEP term, including βNEPτ and γNEPτ representing the βγ contributions

due to the transient NEP term on ∆τs, and then β∆NPP∆τ , β∆NEP∆τ , γ∆NPP∆τ and γ∆NEP∆τ are the non-linear effects145

on βγ.

2.4 Calculation of feedback parameters

2.4.1 Defining climate variables

For each of the CMIP6 ESMs, the CMIP output variables: cSoil, cLitter, and cVeg are considered in the land carbon storage

analysis. Soil carbon (Cs) is defined as the sum of carbon stored in soils and the carbon stored in the litter (CMIP variable150

cSoil + CMIP variable cLitter), allowing for a more consistent comparison between the models despite differences in how soil

carbon and litter carbon are simulated (Varney et al., 2022; Todd-Brown et al., 2013). For models that do not report a separate

litter carbon pool (CMIP variable cLitter), soil carbon is taken to be simply the CMIP variable cSoil (UKESM1-0-LL). Land

carbon (CL) is defined as the sum of carbon stored in soil + litter (Cs), plus the carbon stored in vegetation (Cv , CMIP variable

cVeg). Global total values for Cs and CL (PgC) are calculated using an area weighted sum (using the model land surface155

fraction, CMIP variable sftlf ).

In the breakdown analysis of the βγ feedbacks, Net Primary Productivity (NPP, CMIP variable npp) is defined as the net

carbon assimilated by plants via photosynthesis minus loss due to plant respiration and is used to represent the net carbon input

flux to the system. Heterotrophic Respiration (Rh, CMIP variable rh) is defined as the microbial respiration within global soils

and is used to define an effective global soil carbon turnover time (τs). τs (years) is defined as the ratio of mean soil carbon160

to annual mean heterotrophic respiration, given as τs = Cs/Rh (where the mean represents an area weighted global average).

Carbon fluxes (NPP and Rh) in the calculation of feedback contributions are considered as area weighted global totals in units

of PgC yr−1 (using the model land surface fraction, CMIP variable sftlf ).

Increases in global temperatures (∆T ) are considered using CMIP variable tas, which is defined as the change in near-

surface air temperature (◦C). To calculate changes in atmospheric CO2 (∆CO2) in the C4MIP 1% CO2 simulations, initial165

pre-industrial CO2 concentrations are assumed to be 285 ppm, and then cumulatively increased by 1% each year, for 70 years

(approximately 2xCO2) or 140 years (approximately 4xCO2).
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2.4.2 Carbon-concentration feedback parameter (β)

To calculate the soil carbon-concentration feedback parameter (βs), the BGC run was used. For each ESM, the change in

soil carbon in the BGC run (∆CBGC
s , PgC) was divided by the change in CO2 concentration (ppm) up to that point in time170

(expressed in units of carbon uptake or release per unit change in CO2, PgC ppm−1). For this study, βs was calculated at the

time of 2xCO2 and 4xCO2. To calculate the land carbon-concentration feedback parameter (βL), the same method was used

but replacing CBGC
s with CBGC

L .

2.4.3 Carbon-climate feedback parameter (γ)

To calculate the soil carbon-climate feedback parameter (γs), the RAD run was used. For each ESM, the change in soil carbon175

in the RAD run (∆CRAD
s , PgC) was divided by the change in temperature T (◦C) up to that point in time (expressed in units of

carbon uptake or release per unit change in temperature, PgC ◦C−1). For this study, γs was calculated at 2xCO2 and 4xCO2.

To calculate the land carbon-climate feedback parameter (γL), the same method was used but replacing CRAD
s with CRAD

L .

2.4.4 Feedback parameter contributions

To calculate the isolated contributions which make up β and γ, as shown in Equations 22 and 23, again the BGC and RAD180

simulations are used for each CMIP6 ESM. To calculate gradients with respect to CO2 and T, the methodology presented above

is used, but with the relevant component against CO2 or T, such as NPP or τs. The βs contributions are expressed in units of

carbon uptake or release per unit change in CO2 (PgC ppm−1) and the γs contributions are expressed in units of carbon uptake

or release per unit change in temperature (PgC ◦C−1), using the definitions presented in Equations 22 and 23.

3 Results185

3.1 Projections of soil carbon change

Projections of soil carbon change in CMIP6 ESMs for the full 1% CO2 (∆Cs), BGC (∆CBGC
s ) and RAD (∆CRAD

s ) sim-

ulations are presented in Fig. 1. Soil carbon is projected to increase in the full 1% CO2 simulation amongst CMIP6 ESMs

(ensemble mean 88.2 ± 40.4 PgC at 2xCO2 and 177 ± 141 PgC at 4xCO2). However, the magnitude of the increase varies

amongst the ESMs, with a range of 38 PgC (NorESM2-LM) to 145 PgC (BCC-CSM2-MR) at 2xCO2, and a range of 15 PgC190

(ACCESS-ESM1-5) to 502 PgC (CanESM5) at 4xCO2. Six of the ESMs (CanESM5, CESM2, GFDL-ESM4, MIROC-ES2L,

MPI-ESM1-2-LR, NorESM2-LM) see an increased ∆Cs value with increasing climate forcing, however the remaining four

ESMs (ACCESS-ESM1-5, BCC-CSM2-MR, IPSL-CM6A-LR, UKESM1-0-LL) see a saturation to the rate of increase, or

even a turning point where carbon starts to decrease again, from 70 years (≈ 2xCO2) in the simulation (Fig. 1(a)).

The projected increase in soil carbon can be approximated by the increases projected in the BGC run (∆CBGC
s ; ensemble195

mean 132 ± 66.5 PgC at 2xCO2 and 348 ± 203 PgC at 4xCO2, Fig. 1(b)) and the decreases projected in the RAD run

(∆CRAD
s ; ensemble mean -45.5 ± 22.9 PgC at 2xCO2 and -170 ± 94.7 PgC at 4xCO2, Fig. 1(c)). The response due to
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increases in atmospheric CO2 (BGC simulation) are found to dominate the overall response (full 1% CO2 simulation) in the

majority of models, where greater magnitudes of change are seen compared to the RAD simulation (exception ACCESS-

ESM1-5). The BGC simulation also sees a greater spread in projected ∆Cs, with a range of 218 PgC at 2xCO2 and 603 PgC200

at 4xCO2 (∆CBGC
s ), compared to ranges of 68 PgC at 2xCO2 and 312 PgC at 4xCO2 in the RAD simulation (∆CRAD

s ).

Fig. 2 shows patterns of soil carbon changes at 4xCO2 for the full 1% CO2 (∆Cs), BGC (∆CBGC
s ) and RAD (∆CRAD

s ). In

the BGC simulation, increases in ∆CBGC
s are seen across the majority of regions within CMIP6 ESMs, though exceptions are

found in the northern latitudes for two ESMs (CanESM5 and NorESM2-LM). Across the ensemble, the projected increases in

∆CBGC
s have spatially varying magnitudes, where generally the greatest increases are seen in the tropical regions. Conversely,205

the RAD simulation generally sees reductions in ∆CRAD
s globally, with the greatest reductions seen in the tropical regions.

However, disagreement is seen in the northern latitudes, where four models (ACCESS-ESM1-5, CanESM5, MIROC-ES2L,

UKESM1-0-LL) see an increased ∆CRAD
s and three models (BCC-CSM2-MR, CESM2, NorESM2-LM) see a decreased

∆CRAD
s . The overall ∆Cs values seen in the full 1% CO2 simulation are again found to be mostly dominated by the BGC

simulation (Fig. 2), though exceptions are seen where the RAD simulation is shown to dominate the response for certain210

regions. Specifically, the reduced ∆Cs within the RAD simulation dominates the net response in the northern latitudes of three

ESMs (BCC-CSM2-MR, CESM2, and NorESM2-LM; the only models where decreases where seen), as well as in the tropical

regions of a different three ESMs (ACCESS-ESM1-5, GFDL-ESM4, and UKESM1-0-LL).

3.2 Soil carbon-concentration and carbon-climate feedback parameters

The calculated βs and γs values for CMIP6 ESMs are presented in Table 2. Values for βs are found to be positive amongst the215

CMIP6 ESMs which is consistent with increased Cs with increasing CO2, and values for γs are found to be negative which is

consistent with decreased Cs with increasing temperature (Fig. 3). The magnitude of the feedback parameters (βs and γs) are

found to vary amongst the CMIP6 ensemble, suggesting uncertainty in the magnitude of the soil carbon response to climate

change. Generally, models with higher sensitivities to CO2 (βs), also have higher sensitivities to temperature (γs), where a

r2 values of 0.64 (2xCO2) and 0.60 (4xCO2) are found between the βs and γs values (Table 2). The range in projected βs220

parameters are found to be relatively consistent between 2xCO2 and 4xCO2 (where a small decrease is seen), with a range of

0.704 PgC ppm−1 and range of 0.636 PgC ppm−1 respectively. Conversely, the range of calculated γs parameters are found

to be less consistent between 2xCO2 and 4xCO2 (increasing range with increased global warming), with ranges of 42.7 PgC
◦C−1 and 68.0 PgC ◦C−1 respectively (Table 2).

The linearity of future soil carbon changes can be investigated by comparing the 2xCO2 and 4xCO2 lines for βs and γs in225

Fig. 3. A future linear response is shown to be a good approximation, however the figure suggests a slight non-linearity in the

soil carbon response to both CO2 (∆CBGC
s ) and temperature (∆CRAD

s ) in the majority of ESMs. The BGC simulation gen-

erally sees greater consistency between 2xCO2 and 4xCO2 βs values, for example in the CESM2 and NorESM2-LM models.

However, the majority of ESMs (ACCESS-ESM1-5, BCC-CSM2-MR, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, MPI-

ESM1-2-LR, and UKESM1-0-LL) see a reduction in βs and a saturation to the sensitivity with greater CO2 levels (Fig. 3(a)).230

In the RAD simulation, generally inconsistencies are seen between 2xCO2 and 4xCO2 (exception MPI-ESM1-2-LR) and an
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increased sensitivity of CRAD
s to temperature (T) with increased climate forcing is suggested by the majority of CMIP6 ESMs

(Fig. 3(b)). As an example, in CESM2 where one of the lowest sensitivities to T at 2xCO2 is seen, the ESM see an approximate

50% increase in γs by 4xCO2 (Table 2).

The βs and γs values were also calculated for CMIP5 ESMs (Table A3), which can be compared with a subset of genera-235

tionally related CMIP6 ESMs considered in this study (Fig. A3). The CMIP6 ensemble means for both βs and γs parameters

are found to be lower compared with the CMIP5 ensemble means (Table 2 and Table A3). The relationship of βs and γs values

between CMIP5 and CMIP6 however, is not found to be consistent amongst the ensembles. For βs, reductions are seen in

4 ESMs (GFDL-ESM2M Vs GFDL-ESM4, IPSL-CM5A-LR Vs IPSL-CM6A-LR, MPI-ESM-LR Vs MPI-ESM1-2-LR, and

HadGEM2-ES Vs UKESM1-0-LL), compared to increases in the remaining 2 (CanESM2 Vs CanESM5 and NorESM1-ME240

Vs NorESM2-LM). For γs, a greater value (closer to 0) is seen in 4 ESMs (CanESM2 Vs CanESM5, GFDL-ESM2M Vs

GFDL-ESM4, IPSL-CM5A-LR Vs IPSL-CM6A-LR, and MPI-ESM-LR Vs MPI-ESM1-2-LR), compared to a lower value

(greater negative) is seen in the remaining 2 ESMs (NorESM1-ME Vs NorESM2-LM and HadGEM2-ES Vs UKESM1-0-LL).

3.3 Breakdown of the feedback parameters into soil carbon drivers

In this section, βs and γs are broken down into the individual sensitivities of drivers of soil carbon change which make up245

the net response. As shown in Fig. 4, the total soil carbon sensitivities (βs and γs, blue bars) can be considered as a sum of

the sensitivity due to ∆NPP (βNPP and γNPP , green bars), the sensitivity due to ∆τs (βτ and γτ , red bars), and additional

terms due to the transient land carbon sink, such as NEP (βNEP and γNEP , light green bars) and the NEP effect on τs (βτNEP

and γτNEP
, pink bars). Additionally, there are non-negligible contributions due to non-linear sensitivities between NPP and τs

(β∆NPP∆τ and γ∆NPP∆τ , black bars) and a small contribution from non-linear sensitivities between NEP and τs (β∆NEP∆τ250

and γ∆NEP∆τ , grey bars).

Investigating the sensitivity of soil carbon to ∆NPP, βNPP is found to be positive amongst CMIP6 ESMs (Fig. 4). At

2xCO2, βNPP ranges from 0.567 PgC ppm−1 (ACCESS-ESM1-5) to 5.62 PgC ppm−1 (BCC-CSM2-MR), with an ensemble

mean of 2.37 ± 1.37 PgC ppm−1. There is some evidence of a saturation of global NPP at higher CO2, with the sensitivity

of NPP to CO2 (βNPP ) decreasing at 4xCO2 to an ensemble mean of 1.44 ± 0.933 PgC ppm−1. The sensitivity of NPP to255

global temperature changes (γNPP ) is found to be more variable amongst the ensemble. The majority of models find γNPP

to be negative, however it is found to be positive in two ESMs (CanESM5 and MPI-ESM1-2-LR). The sensitivity of NPP to

temperature (γNPP ) is found to be more consistent with climate change than the sensitivity to CO2 (βNPP ), where the γNPP

ensemble mean changes from -29.4 ± 40.1 PgC ◦C−1 at 2xCO2 to -35.3 ± 33.1 PgC ◦C−1 at 4xCO2 (Fig. 4). At 4xCO2, the

lowest sensitivity of NPP to temperature is seen in CanESM5 (3.95 PgC ◦C−1), and the greatest sensitivity in BCC-CSM2-MR260

(-90.8 PgC ◦C−1).

Investigating the sensitivity of soil carbon to ∆τs, negative βτ and γτ values are mostly found amongst the CMIP6 models

(Fig. 4). An anomaly is found where τs is found to increase with temperature in the ACCESS-ESM1-5 model, where the reason

for this is unclear (Fig. A2). The sensitivity of τs to T (γτ ) is also found to be more consistent with increasing climate change

than the sensitivity to CO2, where an ensemble mean of -25.2 ± 27.9 PgC ◦C−1 at 2xCO2 and -20.5 ± 29.5 PgC ◦C−1 at265
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4xCO2 is seen. At 4xCO2, the greatest sensitivity of τs to temperature is seen in the MIROC-ES2L model (-54.6 PgC ◦C−1)

and the lowest sensitivity is seen in the NorESM2-LM model (-2.80 PgC ◦C−1). τs is found to decrease non-linearly with

increasing CO2 (βτ ). At 2xCO2, βτ ranges from -0.329 PgC ppm−1 (ACCESS-ESM1-5) to -1.90 PgC ppm−1 (BCC-CSM2-

MR), with an ensemble mean of -0.900 ± 0.574 PgC ppm−1. Due to the non-linearity, a reduced ensemble mean of -0.450 ±
0.359 PgC ppm−1 is found at 4xCO2 compared with 2xCO2 (Fig. 4).270

It is apparent from Fig. 4 that the sensitivities of NPP and τs to both CO2 and T must be accounted for to understand and

quantify the sensitivities of soil carbon. The magnitude of βτ is found to be approximately a third of the magnitude of βNPP at

both 2xCO2 and 4xCO2, but with counteracting signs of change. Models with the lowest βNPP sensitivities also see the lowest

βτ sensitivities (e.g. ACCESS-ESM1-5), and via versa. The magnitude of γNPP is generally found to be greater across the

ensemble compared with γτ , however with a greater range of sensitivities. Additionally, the apparent sensitivity of soil carbon275

to CO2 is less then the individual sensitivities of NPP and τs, due to a cancellation effect from opposing signs, leading to a

lower apparent βs. The magnitudes of βNPP and βτ are lower at 4xCO2 than 2xCO2, which means a reduced sensitivity of

NPP and τs to CO2 at greater levels of climate change, However, due to this cancellation effect the same reduced sensitivity

is not seen in βs. Conversely, a reduced sensitivity of NPP and τs to temperature is not suggested under increasing climate

forcing. No clear relationship between γNPP and γτ is seen amongst the CMIP6 ESMs (Fig. 4).280

The contribution of the non-linearity between NPP and τs to the net soil carbon sensitivity is also investigated (β∆NPP∆τ

and γ∆NPP∆τ ). Fig. 4 suggests that the non-linearity between NPP and τs is more robustly projected to result from increasing

CO2 (βs), however non-linearities in γs are also seen in the models which the greatest temperature sensitivities. The ensemble

mean predicted β∆NPP∆τ is found to be -0.462 ± 0.462 at 2xCO2 and -0.463 ± 0.468 PgC ppm−1 at 4xCO2. As expected

from Fig. 4, predicted γ∆NPP∆τ is found to have a low sensitivity, where the ensemble means of -0.374 ± 3.12 at 2xCO2 and285

-0.0478 ± 7.42 PgC ◦C−1 at 4xCO2 are found. Additionally, the NEP terms (βNEP and γNEP ) are shown to contribute to

both CO2 and T sensitivities (Fig. 4), due to the disequilibrium of land carbon changes under 1% increasing CO2.

3.4 Investigating robustness of the ∆Cs approximation

Projections of ∆Cs in ESMs in the full 1% CO2 simulation was compared with the estimated ∆Cs derived using Equation

7, which uses the derived βs and γs feedback parameters together with model specific ∆T and estimates for ∆CO2 (Fig. 5).290

This investigates the approximation that changes in the full 1% CO2 simulation is equal to the sum of changes in the BGC and

RAD simulations. At 2xCO2, the approximation is found to predict ∆Cs within 20% of the actual projected values in the 1%

CO2 simulation for 7 out of the 10 CMIP6 ESMs (BCC-CSM2-MR, CESM2, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L,

MPI-ESM1-2-LR and UKESM1-0-LL). At 4xCO2, the robustness of the assumption between the BGC and RAD simulations

reduces for future changes in soil carbon. However, βs∆CO2 + γs∆T is within 20% of the projected ∆Cs for 5 out of the295

10 ESMs (GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, MPI-ESM1-2-LR and UKESM1-0-LL). The models where the

approximation is the least consistent with projected ∆Cs are ACCESS-ESM1-5 and BCC-CSM2-MR, where at 4xCO2 the

greatest non-linearities are present between BGC and RAD simulations (Fig. 5).
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3.5 Comparisons between soil and land feedback parameters

The contribution of the sensitivity of soil carbon stocks (Cs) to the total sensitivity of land carbon stocks (CL) was investigated300

by comparing the β and γ feedback parameters for land (Table A1) and soil (Table 2), for both 2xCO2 and 4xCO2 in CMIP6

ESMs (Fig. 6). Here, the assumption from Equation 5 is followed that the land sensitivity is made up of the sum of the soil

and vegetation responses. For the carbon-concentration feedback (β), the portion of the land sensitivity to CO2 (βL) that is

due to global soils (βs) ranges from 19% (NorESM2-LM) to 53% (BCC-CSM2-MR), with a mean of 38 ± 11 % seen across

the CMIP6 ESMs at 2xCO2 (Fig. 6(a)). Similar proportions are found at 4xCO2, ranging from 22% (NorESM2-LM) to 58%305

(MIROC-ES2-L), with a mean of 42 ± 12 % seen across the CMIP6 ESMs (Fig. 6(b)). The portion of βL due to βs is estimated

to be close to half the total land response. For the carbon-climate feedback (γ), the portion of the land sensitivity to climate

(γL) that is due to global soils (γs) ranges from approximately 42% (CESM2) to 147% (MPI-ESM1-2-LM), with a mean of 75

± 30 % seen across the CMIP6 ESMs at 2xCO2 (Fig. 6(a)), and at 4xCO2 the ranges is from 48% (ACCESS-ESM1-5) to 157%

(MPI-ESM1-2-LM), with a mean of 75 ± 31 % seen across the CMIP6 ESMs (Fig. 6(b)). Therefore, the portion of γL due to310

γs is estimated to be the majority of the sensitivity, suggesting that soil dominates the response of land carbon to climate. Note

that the MPI-ESM1-2-LR model sees a greater γs value compared with γL, resulting in the percentage of the land response

attributed to soil being greater than 100%. This suggests a positive γv response in this model, meaning a predicted increased

vegetation carbon globally with global warming.

4 Discussion315

Quantifying the future sensitivity of global soil carbon stocks to anthropogenic CO2 emissions and their role within future

land carbon storage is vital in order to understand future changes in the Earth’s climate system (Canadell et al., 2021). Global

changes in soil carbon (∆Cs), in the absence of human disturbance and land-use change, will result from responses due to

changes in atmospheric CO2 and associated changes in global temperatures (T), which is used to represent climate effects on a

global scale. By separating the sensitivities due to increasing CO2 and T, the idealised C4MIP ESM simulations allows for these320

effects on soil carbon to be examined individually and the use of the βγ formulation allows these sensitivities to be quantified

and compared for CMIP6 ESMs (Jones et al., 2016; Friedlingstein et al., 2006). Further, combining the βγ formulation with

the Varney et al. (2023) ∆Cs framework, allows us to isolate the sensitivities of soil carbon processes which influence βs and

γs within models.

Across CMIP6 ESMs, soil carbon is projected to increase in the BGC simulation (‘CO2 only’) and decrease in the RAD325

simulation (‘climate only’), consistent with projections of the overall land carbon response (Arora et al., 2020). The BGC

simulation has been used to quantify the sensitivity of soil carbon to ∆CO2 (βs), where positive βs values were defined due

to the projected increase in soil carbon with increased atmospheric CO2 (Fig. 1(b)). The positive βs has been shown here

to mostly be a result of a positive βNPP term (Fig. 4), which represents the increased CO2 fertilisation effect describing an

increased vegetation productivity under higher atmospheric CO2 concentrations, which leads to an increased input of litter330

carbon into soil carbon pools (Schimel et al., 2015; Koven et al., 2015). A negative contribution of βτ on βs is also shown (Fig.
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4). Previously, Varney et al. (2023) presented a transient reduction in τs in CMIP6 ESMs due to an increased rate of carbon

input into the soil (i.e. negative βτ due to positive βNPP ); a phenomenon known as false priming (Koven et al., 2015). However,

it can be seen that the magnitude of this effect is small compared to the CO2 fertilisation effect across the ESMs (βτ Vs βNPP ,

Fig. 4). Despite agreement on a net increase in soil carbon stocks globally (positive βs), this study highlights uncertainty on335

the projected magnitude of this sensitivity amongst the CMIP6 models, which is seen to be driven by uncertainties in βNPP

(Fig. 4).

The RAD simulation has been used to quantify the sensitivity of soil carbon to changes in climate (∆T; γs), where negative

γs values were defined due to the projected decrease in soil carbon with global warming (Fig. 1(c)). The negative γs term has

been shown here to be a result of negative γτ , and in many cases negative γNPP (Fig. 4). The negative sensitivity of τs to global340

warming (negative γτ ) is known to be due to an increased rate of heterotrophic respiration (Rh) under warmer temperatures

as a result of increased microbial activity (Varney et al., 2020; Crowther et al., 2016). The global sensitivity of NPP to climate

changes (γNPP ) is less certain where both negative and positive values are seen across the CMIP6 ESMs (Fig. 4). This is likely

due to more spatially varying responses, where the resultant ∆Cs can be seen in Fig. 2. For example, increased temperatures

in northern latitudes could result in the northward expansion of boreal forests (Pugh et al., 2018), which would increase forest345

productivity and subsequently carbon storage in these regions. However, future changes in precipitation patterns could lead

to regions with reduced soil moisture, which would conversely lead to reduced vegetation productivity and carbon uptake

(Green et al., 2019). The uncertainties associated with projected spatial changes (γNPP ), together with the uncertainties in the

magnitude of carbon turnover times within the soil (γτ ; Varney et al. (2020); Koven et al. (2017)), results in uncertainties in

the sensitivity of soil carbon to climate changes (γs) amongst the CMIP6 models.350

This paper highlights the importance of soils within the land carbon response to global warming (Fig. 6). Despite the

∆Cs sensitivity to CO2 dominating net soil carbon changes (βs), it could be argued that the significance of the ∆Cs climate

sensitivity (γs) will increase under more extreme levels of climate change. This is suggested by both a projected saturation of

βs and an increase in γs between 2xCO2 and 4xCO2 shown in the CMIP6 ensemble means (Table 2). The saturation, or reduced

rate of increase, in βs seen in CMIP6 is likely due to a limit of the CO2 fertilisation effect, based on the reduced βNPP values355

between 2xCO2 and 4xCO2 (Fig. 4). The rate of CO2 fertilisation in the future is expected to be limited by nutrient availability

(Wieder et al., 2015), which in CMIP6 is now more explicitly represented by the inclusion of an interactive nitrogen cycle in

multiple models (see Table 1). This implementation is expected to limit the increased productivity from CO2 fertilisation within

ESMs (Davies-Barnard et al., 2020), and has previously been found to lower the magnitude of the land feedback parameters

(Arora et al., 2020). However, it is noted that warming within the soil could accelerate nutrient mineralisation, which could360

result in a liberation of nitrogen due to increased microbial breakdown of plant litter, alleviating the nutrient limitation in plants

(Todd-Brown et al., 2014).

Unlike the βs parameter, the sensitivity of soil carbon to climate changes (γs) has been shown to increase with global

warming amongst CMIP6. The greater γs values at 4xCO2 compared to 2xCO2 found here implies an increased rate of soil

carbon loss under increased amounts of global warming (Table 2). Additionally, it could be hypothesised that limitations within365

CMIP6 ESMs in the representation of soil carbon and related processes could lead to a potential underestimation of γs. In Fig.
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2, reductions in soil carbon stocks within the high northern latitudes are only seen in 3 models for the full 1% CO2 simulation

(BCC-CSM2-MR, CESM2, and NorESM2-LM). Varney et al. (2022) find that these CMIP6 models represent quantities of

northern latitude carbon stocks the most consistently with observational estimates, which could imply an increased likelihood

of soil carbon loss from the northern latitudes based on consistency with observations. It is noted however, that CESM2370

and NorESM2-LM contain the same land surface model so are expected to show similar results (Lawrence et al., 2019).

Furthermore, the majority of ESMs do not include explicit representation of permafrost carbon (Burke et al., 2020). Including

permafrost within ESMs would result in increased quantities of carbon within the soil known to be especially sensitive to global

warming (increased γs), which currently are not included in the calculation of these feedbacks (Schuur et al., 2015).

The βγ formulation has many benefits in allowing the quantification and comparison of land and soil carbon feedbacks375

amongst ESMs. However, one limitation is due to ∆Cs not being consistently linear with increasing CO2 and temperature (Fig.

3), so the parameter values depend on the point in time which they are calculated (for example, 2xCO2 or 4xCO2). This has

been shown to be due to non-linearities in the processes driving soil carbon feedbacks (Fig. 4), such as the discussed saturation

of the CO2 fertilisation effect (βNPP ; Wang et al. (2020)), and additionally a known Q10 dependence of heterotrophic (soil)

respiration to temperature (γτ ; Zhou et al. (2009)).380

Non-linearities between CO2 and T responses are also known and have previously been shown within ESMs in the future

land carbon responses (Schwinger et al., 2014; Zickfeld et al., 2011; Gregory et al., 2009). Zickfeld et al. (2011) suggest that

the non-linearity in the land response are due to significantly differing vegetation responses which depend on whether or not

climate effects are combined with the CO2 fertilisation effect; for example, forest dieback (Cox et al., 2004). However, this is

model dependent as not all models within CMIP6 simulate dynamic vegetation (Table 1). The spatial variations in the response385

of soil carbon to CO2 and climate that are seen in Fig. 2 could also contribute to the non-linearity. For example, a different

spatial pattern of soil carbon under elevated CO2 could lead to a different overall temperature response, e.g. if more carbon is

in the high latitudes where greater temperature changes are seen. Arora et al. (2020) find that climate responses in the BGC

simulation account for a difference of 1% - 5% in the calculation of the feedbacks, suggesting a small but non-negligible effect

of climate in the BGC runs. This response was shown to be dependent on the representation of vegetation within the model, as390

with the non-linearities found in Zickfeld et al. (2011). Despite this, isolating and quantifying the key sensitivities with the βγ

method provides a useful benchmark for feedbacks within CMIP.

5 Conclusions

The Friedlingstein et al. (2006) methodology adapted in this study suggests that βs and γs linearity is a valid assumption for

projected soil carbon changes in ESMs up until a doubling of CO2. However, under more extreme levels of climate change,395

the results here suggest the need for the non-linearity in feedbacks to be further investigated. Soil carbon is found to have a

greater impact on carbon-climate feedbacks than vegetation carbon responses, which means that the sensitivity of soil carbon to

changes in global temperature is the dominant response of the land carbon cycle when considering climate effects. Therefore,

further understanding and quantifying the sensitivity of global soils under global warming is necessary to quantify future
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changes in the climate system. Moreover, the sensitivity of soil carbon to temperature increases with increasing climate forcing,400

suggesting that soil carbon is particularly important in the long-term land carbon response under extreme levels of global

warming.
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Figure 1. Timeseries of projected changes in soil carbon (∆Cs) in CMIP6 ESMs, for the: (a) idealised 1% CO2 (left column), (b) biogeo-

chemically coupled 1% CO2 (BGC, middle column), and (c) radiatively coupled 1% CO2 (RAD, right column) simulations. This figure has

been adapted from Fig. A2 in Varney et al. (2023).
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Figure 2. Maps showing the changes in soil carbon (∆Cs) at 4xCO2 in CMIP6 ESMs, for the: (a) idealised simulations 1% CO2 (left

column), (b) biogeochemically coupled 1% CO2 (BGC, middle column), and (c) radiatively coupled 1% CO2 (RAD, right column).
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Figure 3. Timeseries plots used to calculate the soil feedback parameters. (a) Soil carbon in the BGC simulation (CBGC
s , PgC) Vs CO2

(ppm) for the carbon-concentration feedback parameters (βs, PgC ppm−1), and (b) Soil carbon in the RAD simulation (CRAD
s , PgC) Vs

temperature (T, ◦C) for the soil carbon-climate feedback parameters (γs, PgC ◦C−1), for each CMIP6 ESM. The lines show the gradients at

2xCO2 (lighter line) and 4xCO2 (darker line), respectively.
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Figure 4. Investigating the contribution of individual soil carbon drivers to the soil carbon-concentration (βs, top row) and carbon-climate

(γs, bottom row) feedback parameters, for each CMIP6 ESM, for (a) 2xCO2 and (b) 4xCO2. The figure shows soil carbon feedback parameter

contributions from NPP (βNPP and γNPP ), τs (βτ and γτ ), the non-linearity in NPP and τs (β∆NPP∆τ and γ∆NPP∆τ ), and the effect

from the non-equilibrium term NEP (βNEP , βτNEP , β∆NEP∆τ and γNEP , γτNEP , γ∆NEP∆τ ).
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Figure 5. Comparison of ∆Cs (PgC) in the full 1% CO2 simulation (x-axis) against the estimated ∆Cs using the calculated βs and γs

feedback parameters (y-axis), where estimated ∆Cs ≈ βs∆CO2 + γs∆T , for each CMIP6 ESM at (a) 2xCO2 and (b) 4xCO2.
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Figure 6. Comparison of the land carbon-concentration (βL) feedback parameters with the soil carbon-concentration (βs) feedback param-

eters (top row), and the land carbon-climate (γL) feedback parameters with the soil carbon-climate (γs) feedback parameters (bottom row),

for (a) 2xCO2 and (b) 4xCO2.
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Table 1. The CMIP6 Earth system models included in this study and the relevant features of associated land carbon cycle components:

simulation of interactive nitrogen, the inclusion of dynamic vegetation, representation of fire, and the soil decomposition functions used

(Varney et al., 2022; Arora et al., 2020). Explanations of the temperature and moisture functions used within ESMs are given in Varney et al.

(2022) and Todd-Brown et al. (2013).

Earth System Nitrogen Dynamic Fire Temperature & Moisture

Model Cycle Vegetation Functions

ACCESS-ESM1.5 Yes No No Arrhenius

& Hill

BCC-CSM2-MR No No No Hill

& Hill

CanESM5 No No No Q10

& Hill

CESM2 Yes No Yes Arrhenius

& Increasing

GFDL-ESM4 No Yes Yes Hill

& Increasing

IPSL-CM6A-LR No No No Q10

& Increasing

MIROC-ES2L Yes No No Arrhenius

& Increasing

MPI-ESM1.2-LR Yes Yes Yes Q10

& Increasing

NorESM2-LM Yes No Yes Arrhenius

& Increasing

UKESM1-0-LL Yes Yes No Q10

& Hill

25



Table 2. The soil carbon-concentration (βs, PgC ppm−1) and carbon-climate (γs, PgC ◦C−1) feedback parameters for 2xCO2 and 4xCO2

for the CMIP6 ESMs.

Earth System 2xCO2 4xCO2

Model βs γs βs γs

ACCESS-ESM1.5 0.242 -29.2 0.127 -37.3

BCC-CSM2-MR 0.861 -50.5 0.763 -83.1

CanESM5 0.544 -21.4 0.620 -31.8

CESM2 0.175 -7.67 0.183 -15.1

GFDL-ESM4 0.397 -25.0 0.371 -31.4

IPSL-CM6A-LR 0.357 -11.9 0.222 -15.3

MIROC-ES2L 0.684 -49.4 0.630 -63.1

MPI-ESM1-2-LR 0.494 -14.4 0.375 -15.6

NorESM2-LM 0.157 -12.0 0.161 -19.5

UKESM1-0-LL 0.351 -24.7 0.307 -32.7

Ensemble mean 0.426 -24.6 0.376 -34.5

Ensemble std ± 0.213 ± 14.2 ± 0.212 ± 21.3
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Figure A1. Timeseries of projected global mean temperature changes (∆T ) in CMIP6 ESMs for the idealised simulations 1% CO2 (left

column), biogeochemically coupled 1% CO2 (BGC, middle column) and radiatively coupled 1% CO2 (RAD, right column).
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Figure A2. Timeseries of projected changes in Net Primary Productivity (∆NPP, top row) and soil carbon turnover time (∆τs, bottom

row) in CMIP6 ESMs for the idealised simulations 1% CO2 (left column), biogeochemically coupled 1% CO2 (BGC, middle column) and

radiatively coupled 1% CO2 (RAD, right column). This figure has been adapted from Fig. A2 in Varney et al. (2023).
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Figure A3. Comparison of the soil carbon-concentration (βs) feedback parameters (top row) and the soil carbon-climate (γs) feedback

parameters (bottom row) from generationally related ESMs from CMIP5 and CMIP6, for (a) 2xCO2 and (b) 4xCO2.
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Table A1. The land carbon-concentration (βL, PgC ppm−1) and carbon-climate (γL, PgC ◦C−1) feedback parameters for 2xCO2 and 4xCO2

for the CMIP6 ESMs.

Earth System 2xCO2 4xCO2

Model βL γL βL γL

ACCESS-ESM1.5 0.624 -64.5 0.312 -77.7

BCC-CSM2-MR 1.63 -62.1 1.39 -98.0

CanESM5 1.34 -21.6 1.27 -36.9

CESM2 0.839 -18.3 0.787 -30.1

GFDL-ESM4 1.00 -42.3 0.891 -57.3

IPSL-CM6A-LR 1.05 -18.4 0.614 -24.5

MIROC-ES2L 1.34 -56.7 1.08 -74.0

MPI-ESM1-2-LR 1.03 -9.81 0.699 -9.98

NorESM2-LM 0.811 -22.2 0.740 -35.3

UKESM1-0-LL 1.00 -35.6 0.746 -52.4

Ensemble mean 1.07 -35.2 0.854 -49.6

Ensemble std ± 0.281 ± 19.1 ± 0.304 ± 26.0
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Table A2. The CMIP5 Earth system models included in this study and the relevant features of associated land carbon cycle components:

simulation of interactive nitrogen, the inclusion of dynamic vegetation, and the soil decomposition functions used (Varney et al., 2022; Arora

et al., 2013; Anav et al., 2013; Friedlingstein et al., 2014). Explanations of the temperature and moisture functions used within ESMs are

given in Varney et al. (2022) and Todd-Brown et al. (2013).

Earth System Nitrogen Dynamic Temperature & Moisture

Model Cycle Vegetation Functions

CanESM2 No No Q10

& Hill

GFDL-ESM2M No Yes Hill

& Increasing

IPSL-CM5A-LR No No Q10

& Increasing

MPI-ESM-LR No Yes Q10

& Increasing

NorESM1-ME Yes No Arrhenius

% Increasing

HadGEM2-ES No Yes Q10

& Hill
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Table A3. The soil carbon-concentration (βs, PgC ppm−1) and carbon-climate (γs, PgC ◦C−1) feedback parameters for 2xCO2 and 4xCO2

for the CMIP5 ESMs.

Earth System 2xCO2 4xCO2

Model βs γs βs γs

CanESM2 0.413 -39.4 0.463 -54.2

GFDL-ESM2M 0.421 -36.7 0.326 -73.5

IPSL-CM5A-LR 0.511 -28.3 0.410 -39.5

MPI-ESM-LR 1.02 -35.7 0.937 -63.6

NorESM1-ME 0.0281 -3.76 0.0287 -7.80

HadGEM2-ES 0.745 -12.9 0.729 -18.0

Ensemble mean 0.522 -26.1 0.482 -42.8

Ensemble std ± 0.306 ± 13.3 ± 0.290 ± 23.7
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