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Abstract. Aqueous-phase chemistry of glyoxal (GL) with reduced nitrogen compounds (RNCs) plays a significant source of 14 

secondary brown carbon (SBrC), which is one of the largest uncertainties in climate predictions. However, few studies have 15 

revealed that SBrC formation is affected by multifunctional RNCs, which has a non-negligible atmospheric abundance. Hence, 16 

we performed theoretical and experimental approaches to investigate the reaction mechanisms and kinetics of the mixtures for 17 

ammonium sulfate (AS), multifunctional amine (monoethanolamine, MEA) and GL. Our experiments indicate that the light-18 

absorption and the growth rate are enhanced in MEA-GL mixture relative to AS-GL and MEA-AS-GL mixtures, and MEA 19 

reactions of the chromophores by more efficiently than the analogous AS reactions. Quantum chemical calculations show that 20 

the formation and propagation of oligomers proceed via four-step nucleophilic addition reactions in three reaction systems. 21 

The presence of MEA provides the extra two branched chains to affect the natural charges and steric hindrance of intermediates, 22 

facilitated the formation of chromophores. Molecule dynamics simulations reveal that the interfacial and interior attraction on 23 

the aqueous aerosols with MEA is more pronounced for small α-dicarbonyls, to facilitate the further engagement in the 24 

aqueous-phase reactions. Our results show a possible missing source for SBrC formation on urban, regional and global scales. 25 

1 Introduction 26 

Brown carbon (BrC) represents the most important source of carbonaceous aerosols, with profound implications to the global 27 

climate, air quality and human health (Laskin et al., 2015; Marrero-Ortiz et al., 2018; Li et al., 2022; Yan et al., 2018; Yuan et 28 

al., 2023). Chemical transport models reveal that a non-negligible radiative forcing by BrC is range from 0.05 to 0.27 W m−2 29 

averaged globally (Tuccella et al., 2020; Wang et al., 2018; De Haan et al., 2020; Zhang et al., 2020; Laskin et al., 2015; Moise 30 

et al., 2015). Large differences in these estimated data result from the uncertainties of BrC on its formation mechanisms, 31 
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chemical composition and optical properties (An et al., 2019; Shi et al., 2020; Kasthuriarachchi et al., 2020; Corbin et al., 32 

2019). It affects understanding the radiative effect in current climate models (Liu et al., 2020; Zhang et al., 2020; Zhang et al., 33 

2023). Compared with primary BrC, sources and formation of secondary BrC (SBrC) are more complex and lack of 34 

understanding in detail (Lin et al., 2015; Yuan et al., 2020; Srivastava et al., 2022). Hence, in recent years, great efforts have 35 

been made to better understand the chemical composition and formation mechanisms of SBrC chromophores. 36 

There is compelling evidence that the heterogeneous reactions of reduced nitrogen compounds (RNCs) and small α-37 

dicarbonyls have been recognized as significant sources of SBrC (Hawkins et al., 2018; De Haan et al., 2018; George et al., 38 

2015). These SBrC chromophores are normally conjugated and possibly heteroaromatic species, such as imidazole (IML) and 39 

its derivatives (De Haan et al., 2009b; De Haan et al., 2009a; Yang et al., 2022). Numerous previous studies paid much attention 40 

to BrC from the secondary processes of small α-dicarbonyls with ammonium sulfate (AS) and methylamine (MA) (De Haan 41 

et al., 2020; De Haan et al., 2019; De Haan et al., 2009a; Lin et al., 2015). For example, nearly 30 chromophores were detected 42 

in AS-methylglyoxal (MG) mixture by HPLC/PDA/HRMS and nitrogen-containing compounds account for more than 70% 43 

of the overall light absorption within 300−500 nm range (Lin et al., 2015). Some studies have also revealed that the absorption 44 

of BrC generated in AS- or MA-MG mixture increases with pH value (Hawkins et al., 2018; Sedehi et al., 2013) Also, the 45 

iminium pathway is predominant while pH < 4 to form IML and its derivatives but is suppressed at pH 4.(Nozière et al., 2009; 46 

Sedehi et al., 2013; Yu et al., 2011). Hence, pH value has a large effect on the formation of SBrC chromophores, but the 47 

chemical mechanisms of BrC formation under the different pH values remain unclear, hindering a systematical understanding 48 

its integrated atmospheric chemistry and nonnegligible environmental impacts. 49 

On the other hand, multifunctional RNCs (such as ethanolamines and amino acids) display a strong atmospheric activity 50 

to the formation of SBrC with an unneglected atmospheric concentration (Huang et al., 2016; Ge et al., 2011; Powelson et al., 51 

2014b; Trainic et al., 2012; Laskin et al., 2015; Ning et al., 2022). For example, a rapid BrC formation was detected in glycine 52 

reactions with small α-dicarbonyls, and sub-micrometer amino acids particles exhibited a high growth upon exposure to small 53 

α-dicarbonyls (Powelson et al., 2014b; Sedehi et al., 2013; De Haan et al., 2009b; Trainic et al., 2012). On the other hand, 54 

monoethanolamine (MEA) is an amine-based solvent for post-combustion CO2 capture (PCCC) technology with a relatively 55 

high vapor pressure, emitting 80 tons per year into the atmosphere for each 1 million tons of CO2 removed per year (Karl et 56 

al., 2011; Puxty et al., 2009; Shen et al., 2019). Recent field measurement has shown that MEA is the second most abundant 57 

organic amine in PM2.5 in Shanghai besides MA (Huang et al., 2016). However, to the best of our knowledge, few previous 58 

results are available on the participation of MEA in the SBrC formation with small α-dicarbonyls and its potential role in the 59 

atmosphere and human health were also not attempted. 60 

Hence, we elucidated the chemical mechanisms of BrC chromophores from the mixtures of typical reaction of RCNs (i.e., 61 

MEA and AS) with small α-dicarbonyls using combined theoretical and experimental methods. Herein, glyoxal (GL) is selected 62 

as the representative of small α-dicarbonyls due to its high global emissions and significant contribution to BrC (Fu et al., 63 

2008; Myriokefalitakis et al., 2008; Shi et al., 2020; Nie et al., 2022; Gomez et al., 2015). The chemical composition of the 64 

BrC chromophores was characterized by mass spectrometry in different initial pH values, and the optical properties were 65 
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measured using UV-Vis spectrophotometry. Possible pathways were calculated using density functional theory, and the 66 

mechanism of BrC chromophore formation was also simulated. The effects of multifunctional amine in formation of SBrC 67 

chromophores were elaborated further. Additionally, the potential implications of multifunctional amine on climate radiative 68 

forcing were stated and discussed briefly. 69 

2 Experimental methods and theoretical calculations 70 

2.1 Experimental section 71 

The procedures of each experiment are summarized in Fig. S1. All reagents were used as described in Supporting Information 72 

(SI). Three mixtures were prepared under atmospheric relevant aqueous conditions to generate SBrC: AS-GL, MEA-GL and 73 

MEA-AS-GL. Briefly, AS-GL (1 M) mixture was prepared by adding AS to aqueous GL (in ultrapure water) for a final 74 

concentration of 1 M of each reactant in the volumetric flasks. For the two MEA-containing mixtures, MEA was acidified with 75 

diluted sulfuric acid (20%) to prevent GL from reacting with MEA in alkaline condition. The acidified MEA was then combined 76 

with aqueous GL similar to that described for the AS-GL (1 M) mixture. All three solutions mentioned above were then diluted 77 

to reach a final concentration of 1 M in three 50mL volumetric flasks. To explore the effects of pH values, three mixtures were 78 

prepared with an initial pH values of 3 or 4 via addition of sulfuric acid (20%) or sodium hydroxide solution (2 M) prior to the 79 

mixing of RNCs and GL (Kampf et al., 2016; Yu et al., 2011). Each mixture was transported into brown vials, which has been 80 

proven to avoid the photolysis and light-induced reactions of light-absorbing products (Kampf et al., 2012), to guarantee 81 

efficiently produce chromophores in droplet evaporation collecting on the timescales of seconds (Zhao et al., 2015; Lee et al., 82 

2014). 83 

The absorption spectra of all mixtures were recorded by using an UV-Vis spectrophotometer (Agilent Cary 300, USA). 84 

All experimental solutions were diluted by a factor of 200 or 400 before each measurement to avoid saturation of the absorption 85 

peaks. The diluted samples were added into a quartz cuvette with 1 cm optical path length right away to prevent the diluted 86 

samples from photolysis. The spectra recorded between 200 – 500 nm were shown in Fig. 1. And the blank experiments of GL 87 

and RNCs solution were performed and presented in Fig. S2. The absorption spectra of all samples were measured with three 88 

times. The wavelength-dependent mass absorption coefficients (MACs) of experimental solutions were calculated from initial 89 

base-10 absorbance (A10),  90 

MAC(λ) = 
A10

solution(λ) × ln (10)

b × Cmass

 91 

where Cmass is the mass concentration of reactants and b is path length (Aiona et al., 2017; Chen and Bond, 2010). The different 92 

dilution factors were normalized by using MAC formula. 93 

Samples used for mass spectrometry analysis were diluted by a factor of 800 or 1000 followed by syringe filtration. The 94 

filters were stored in brown chromatography injection vials to block the light. Ultra-performance liquid chromatography 95 

coupled to hybrid Quadrupole-Exactive Orbitrap mass spectrometry (UPLC-Q-Orbitrap HRMS, Thermo ScientificTM, USA) 96 
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(Wang et al., 2017) was employed to obtain structural data of chromophores in this study. MS2 analysis were used for all 97 

chromophores with a weight error of less than 10 ppm compared with the theoretical mass to obtain fragments information for 98 

the identification of structure analysis. Detailed description of the mass spectrometry and chromatographic conditions are all 99 

described in SI. 100 

2.2 Quantum calculations and molecular dynamics simulations 101 

Quantum chemical calculations were performed using the Gaussian 09 package (M. J.Frisch, 2013). Structures for all 102 

stationary points (SPs), including reactants, intermediates, transient states (TSs), and products, were optimized using the hybrid 103 

density functional of M06-2X method(Zhao and Truhlar, 2007) with 6-311G(d,p) basis set, i.e., at the M06-2X/6-311G(d,p) 104 

level (Ji et al., 2017). The solvent effect was considered using the solvation model based on density (SMD) to simulate the 105 

aqueous environment (Gao et al., 2016; Marenich et al., 2009). Harmonic frequency calculation was carried out at the same 106 

level as structural optimization to verify whether SP is a TS (with one and only imaginary frequency) or a minimum (without 107 

imaginary frequencies) (Ji et al., 2022). Intrinsic reaction coordinate calculation was performed to confirm that the TSs 108 

connected with the corresponding reactants and products. Single point energy (SPE) calculation was executed using the M06-109 

2X method with a more flexible 6-311+G(3df,3pd) basis set to obtain more accurate potential energy surfaces (PESs). For the 110 

pathways with TSs, the rate constants (k) were calculated via conventional transition state theory (TST) (Evans and Polanyi, 111 

1935; Eyring, 1935; Galano and Alvarez-Idaboy, 2009; Gao et al., 2014). To simulate real atmospheric conditions in the 112 

solution, the calculated k values were refined by solvent cage effects(Okuno, 1997) and diffusion-limited effects (Collins and 113 

Kimball, 1949), of which the calculation details of diffusion-limited rate constant kd can be seen in SI. For the pathways without 114 

TSs, the corresponding k values are predominated by the diffusion-limit effect which equal to the diffusion-limited rate 115 

constants. 116 

Classical molecular dynamics (MD) was performed using NAMD package (Phillips et al., 2005) to simulate the 117 

heterogeneous processes of GL from gas to the AS and MEA particles. The AS particle is composed of 39 SO4
2-, 78 NH4

+ and 118 

2046 H2O in a box size of 40 × 40 × 40 Å3, while the MEA particle consists of 39 MEA and 2036 H2O. The 5 ns equilibration 119 

at the time step of 1 fs was executed in the isothermal-isochoric (NVT) ensemble (T = 298 K) to ensure the thermodynamic 120 

equilibrium of particles (Shi et al., 2020; Zhang et al., 2019). The MD simulation of 2 ns is run via the NVT ensemble. MEA 121 

and GL were described using CHARMM force field (Jorgensen et al., 1996), and H2O using TIP3P model (Martins-Costa et 122 

al., 2012). The fixed charges on NH4
+ and SO4

2- are scaled by 0.75 to account for the electronic polarizability (Leontyev and 123 

Stuchebrukhov, 2011; Mosallanejad et al., 2020). The periodic boundary conditions were selected for three dimensions. In 124 

order to calculate the kinetic trajectories of GL from gas to two target particles, the free energy profile along the distance of 125 

the center of mass between each particle and GL was calculated via umbrella sampling (Torrie and Valleau, 1977) and 126 

weighted-histogram analysis method (Kumar et al., 1992) based on the above equilibrated molecular dynamics trajectories. 127 

The bias potential force constant was equal to 10 kcal mol-1 Å-2. 128 
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3 RESULTS AND DISCUSSION 129 

3.1 Mass absorption coefficients of BrC chromophores 130 

The mass absorption coefficients (MACs) identified in AS-GL, MEA-GL, and MEA-AS-GL mixtures at the initial pH of 3 131 

and 4 (denoted as pH = 3 and pH = 4) are shown in Fig. S3. The maximum adsorption peaks locate at 207, 212, and 209 nm 132 

for AS-GL, MEA-GL, and MEA-AS-GL mixtures at pH = 3, respectively, and the corresponding location is not changed at 133 

pH = 4. The MAC values of the maximum adsorption peaks are in the range of 1080−17909 cm2 g−1 for three mixtures. In 134 

addition, each mixture has an absorption peak between 285 - 324 nm (Fig. S4), with a range of 42 - 228 cm2 g-1, which are 135 

consistent with the MAC values measured by Powelson et al. at the reaction time of 4 days (Powelson et al., 2014a) but are 136 

smaller than the values measured by Zhao et al. with a long reaction time of 2 - 3 months (Zhao et al., 2015). The MAC values 137 

at 207 - 212 and 285 - 324 nm exhibit a similar trend (Fig. S4). Therefore, to easily compare the absorbance in three mixtures, 138 

we focus on the adsorption peaks in the range of 207 - 212 nm, which exhibits an obvious variation, and the effect of the initial 139 

pH on reaction systems is also discussed in this range. The MAC values at pH = 4 are higher than those at pH = 3 for three 140 

mixtures. For example, the MAC value in AS-GL mixture is 2037 cm2 g−1 at pH = 4, which is almost twice higher than that at 141 

pH = 3. Hence, the initial pH values of solution mainly affect the MAC values rather than the locations of absorption peaks. 142 

In order to explore the influence of the initial pH values on the MAC values, a comparison of MAC values at initial pH 3 143 

and 4 is performed for all three mixtures (Fig. 1a).Fig. 1a shows a comparison of the MAC values of all three mixtures at the 144 

initial pH of 3 and 4. The MAC values of maximum adsorption peaks increase from AS-GL to MEA-GL to MEA-AS-GL 145 

mixture, ranging from 1080 to 6345 cm2 g−1 at pH = 3 and 2037 to 7617 cm2 g−1 at pH = 4. The highest MAC value of MEA-146 

AS-GL is explained by the different initial total concentration of reactants (see in Method), since the initial concentration of 147 

AS and MEA in MEA-AS-GL mixture is twice times than that in MEA-GL or AS-GL mixture. In addition, the MAC value of 148 

maximum adsorption peak in MEA-AS-GL mixture is higher than the sum of those in MEA-GL and AS-GL mixtures, and the 149 

location of maximum absorption peak in MEA-AS-GL mixture is between those in MEA-GL and AS-GL mixtures. It implies 150 

that the extra chromophores are yielded in MEA-AS-GL mixture in addition to producing the same chromophores as AS-GL 151 

and MEA-GL mixtures. 152 

To compare the formation rate of chromophore between the different mixtures, the growth rates (GRs) of the maximum 153 

absorption peaks as a function of reaction time is shown in Fig. 2. The trend of the GR variation with reaction time at pH = 3 154 

is similar to that at pH = 4, while the GRs of three mixtures at pH = 4 are larger than those at pH = 3 at the beginning of the 155 

reactions. The GRs are nearly invariant after 6−9 days, implying that the chromophore formation for three mixtures is 156 

irreversible. MEA-AS-GL mixture exhibits the larger GRs than other mixtures at the beginning of reaction because of its higher 157 

initial concentration of reactants. As the reaction proceeds, the GRs of MEA-GL mixture are increased and finally larger than 158 

those of other mixtures. Hence, MEA reactions form the chromophores by more efficiently than the analogous AS reactions. 159 

The GRs dependence of the pH values of three mixtures is also plotted as a function of reaction time as shown in Fig. 2. 160 

The pH values rapidly degrade within the first 2 days in three mixtures, which is the same trend as GRs that decrease by a 161 
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factor of more than 1−3 at pH = 3 and 4. This trend is explained by ambient pH values, since a known byproduct (i.e., formic 162 

acid) is formed (De Haan et al., 2009b; De Haan et al., 2020; Galloway et al., 2009; Hamilton et al., 2013; Kampf et al., 2012; 163 

Yu et al., 2011). Note that the trend of GRs shows a decrease from MEA-AS-GL, MEA-GL, to AS-GL mixtures at the beginning 164 

of the reaction time, while the MAC values of MEA-GL mixture are larger than those of two mixtures accompanied by the 165 

more rapid decrease of pH values in solution after the reaction is equilibrium (Figs. 1b and 2), suggesting that chromophore 166 

formation of three mixtures depends on the ambient pH value.. 167 

3.2 Chemical composition characterization of BrC chromophores 168 

The chemical composition characterization of formed BrC chromophore was conducted by UPLC-Q-Orbitrap HRMS. The 169 

formulas, m/z values, characteristic fragments, and structures of chromophores and intermediates are identified based on 170 

obtained mass spectrum data in AS-GL, MEA-GL, and MEA-AS -GL mixtures (Table S1). The corresponding MS and MS2 171 

spectra of chromophores and intermediates are exhibited in Figs. 3, S8-S12. For all mixtures, imidazole (IML) compounds are 172 

identified with a characteristic peak at m/z 69.045 in MS2 spectra. Therefore, various IML compounds are observed based on 173 

several representative peaks at m/z 69.045, including imidazole (IMLAS and IMLMEA), imidazole-2-carboxaldehyde (ICAS and 174 

ICMEA), and their hydrated forms (HICAS and HICMEA) for AS-GL and MEA-GL mixtures (Table S1, Figs. 3a-b and S8-S9). 175 

For MEA-GL mixture, extra catenulate intermediates without IML-structure characteristics are obtained at m/z values of 176 

102.055 and 120.065 (Table S1, Figs. 3a and S10), corresponding to C4H7O2N (IAMEA) and C4H9O3N (AHAMEA and IDMEA) 177 

compounds, respectively. However, no catenulate intermediates in AS-GL mixture are observed in this study because of their 178 

low concentrations and short lifetimes, although they are observed by previous studies using MS/AMS and 1H nuclear magnetic 179 

resonance spectroscopy (Galloway et al., 2009; Lee et al., 2013; Yu et al., 2011). In addition, as shown in Figs. 3b and S11, 180 

some IML-based products at m/z values of 145.061, 135.066, and 193.072 were obtained in AS-GL mixture correspond to 181 

hydrated N-glyoxal substituted imidazole (HGIAS), 2,2’-biimidazole (BIMAS), and its glyoxal substituted analog (GBIAS), 182 

respectively. As discussed above, an important distinction between AS-GL and MEA-GL mixtures is whether formation of 183 

bicyclic IML products (Fig. 3a-b), indicating that the optical properties of chromophores are mainly determined by mono-184 

imidazole compounds rather than bicyclic IML compounds. 185 

To further explore the difference of identified products in MEA-GL and AS-GL mixtures, the possible pathways leading 186 

to the identified intermediates and chromophores are illustrated in Fig. 4, along with the reaction energies (ΔGr) of all pathways 187 

calculated at the M06-2X/6-311+G(3df,3pd)//M06-2X/6-311G(d,p) level. As shown in Fig. 4, the formation and propagation 188 

of oligomers was proposed to proceed via four-step nucleophilic addition (NA) reactions. For MEA-GL mixture, three 189 

catenulate intermediates (AHAMEA, IAMEA, and IDMEA) are successively yielded by the nucleophilic attack of MEA at the 190 

reactive carbonyl site via dehydration and hydration, with the total ΔGr value of −7.8 kcal mol−1 (Fig. 4a). Subsequently, two-191 

step NA reactions between IDMEA and MEA and between DIMEA and GL-diol (DL), followed by protonation and dehydration, 192 

yields two intermediates (HAMEA and PICMEA) in sequence. Although the third NA reaction between DIMEA and DL is 193 

endothermic (ΔGr = 12.7 kcal mol−1), the total ΔGr value of DIMEA formation in MEA-GL mixture is −18.7 kcal mol−1 for 194 
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proceeding the NA reaction to yield PICMEA. Similarly, the formation of PICAS in AS-GL mixture is also thermodynamically 195 

feasible, with the total ΔGr value of −10.9 kcal mol−1. However, PICMEA or PICAS is thermodynamically unstable, since there 196 

is a large exothermicity of the subsequent reaction pathway (ΔGr = −78.6 or −50.0 kcal mol−1) for proceeding cyclization 197 

leading to the formation of ICMEA or ICAS. It should be noted that for AS-GL mixture, the fate of ICAS is dependent of the 198 

competition between the pathways of hydration to yield HICAS and NA reaction with DL to form BIAS, while for MEA-GL 199 

mixture, there are no nucleophilic sites of ICMEA for further oligomerization to form bicyclic IML compounds because ICMEA 200 

is imidazolium cation. Similarly, ICMEA also undergoes a hydration reaction to form HICMEA with a similar structure to HICAS. 201 

Subsequently, HICAS and HICMEA are decomposed to yield IMLAS and IMLMEA, respectively, accompanied by the formation 202 

of formic acid (ΔGr = -10.2 and -15.6 kcal mol-1), which is the reason for the decrease in pH in Section 3.1. However, as a 203 

reaction byproduct, formic acid hardly participates in the formation of light-absorbing products, so it has little influence on the 204 

reaction mechanisms. Current results further explain our experimental results mentioned above that higher MAC and larger 205 

GR values in MEA-GL mixture than that in AS-GL mixture. 206 

For MEA-AS-GL mixture, the products in AS-GL and MEA-GL mixtures are also observed (Fig. 3c). Beyond that, four 207 

extra IML compounds are also observed at m/z values of 113.071, 141.066, 159.076 and 171.076, corresponding to IML 208 

(IMLMAG), imidazole-2-carboxaldehyde (ICMAG) and its hydrated form (HICMAG), and N-glyoxal substituted imidazole (GIMAG) 209 

(Figs. 3c and S12). An extra -C2H4O group exists in the geometries of the above four IML compounds relative to the products 210 

of AL-GL mixture, indicating that there exist the cross reactions between MEA and AS in the MEA-AS-GL mixture. As shown 211 

in Fig. 5, the cross NA reaction between IDAS and MEA or IDMEA and AS possesses a negative ΔGr value of −4.8 or −5.4 kcal 212 

mol−1, followed by dehydration to form the same intermediate, diimine (DIMAG). It implies that the cross reactions in MEA-213 

AS-GL mixture are thermodynamical favorable. Therefore, the formation and propagation of chromophores in MEA-AS-GL 214 

mixture also proceed via NA reactions, which is the key route for the formation of BrC chromophores. 215 

As shown in Fig. 3c, no bicyclic IML compounds are produced in MEA-AS-GL mixture because the precursors of bicyclic 216 

IML compound (i.e., imidazole-2-carboxaldehyde) is fully hydrated under more acidic condition than AS-GL mixture (see pH 217 

values in Table S2). It leads to the formation of N-glyoxal substituted imidazole (i.e., GIMAG) instead of bicyclic IML 218 

compounds. The similar phenomenon is also found in the previous studies (Ackendorf et al., 2017; Kampf et al., 2012; Yu et 219 

al., 2011) that bicyclic IML compounds are hardly yield from imidazole-2-carboxaldehyde in acidic condition. As discussed 220 

above, imidazole-based structural characteristics in chromophores are maintained in the presence of MEA, but the 221 

nucleophilicity of chromophores is reduced because the nucleophilic sites are occupied. Also, the positively charged quaternary 222 

amine salts (such as ICMEA and GIMAG) are also yield in MEA-GL and MEA-AS-GL mixtures, and thereby the chemical 223 

composition and optical properties of chromophores are affected. 224 

3.3 Chemical reaction mechanism leading to BrC chromophores 225 

As discussed above, the four-step NA reactions are the key pathways to form and propagate oligomers including intermediates 226 

and chromophores for three mixtures. Therefore, all possible pathways involved in the four key NA reactions of three mixtures 227 



8 

are calculated using density functional theory. The corresponding PESs stablished by the M06-2X/6-311+G(3df,3pd)//M06-228 

2X/6-311G(d,p) level are also presented in dotted boxes of Figs. 4-5. The optimized geometries of key stationary points, 229 

including transition states (TSs), intermediates, and products, are depicted in Figs. S13-S15 at the M06-2X/6-311G(d,p) level. 230 

We first performed quantum chemistry calculation to evaluated the direct nucleophilic attack of GL by MEA or AS, which 231 

proceeds a large activation energy (ΔG‡) value of 6.3 or 8.6 kcal mol−1, following by H-shift reaction to yield AHAMEA or 232 

AHAAS, with also a large ΔG‡ value of 15.2 or 18.2 kcal mol−1 (see NA1a’ and NA2a’ in Fig. 4). The high ΔG‡ values and 233 

large endothermicity of the direct NA reactions leading to AHAMEA and AHAAS imply that their occurrences are kinetically 234 

and thermodynamically hindered. 235 

Hence, we explored the cationic oligomerization of chromophore formation under acidic condition, which involves three 236 

essential steps, (1) protonation and dehydration to form cationic intermediates (CIs) or carbenium ions (CBs), (2) nucleophilic 237 

attack of CIs or CBs by MEA and AS, and (3) formation of intermediates and chromophores by deprotonation or dehydration. 238 

As shown in Figs. 4-5, each pathway involved in the cationic-mediated reaction mechanism proceeds without a TS, except 239 

deprotonation of CIs, in line with the results of the previous studies (Ji et al., 2020; Ji et al., 2022). However, deprotonation of 240 

CIs by sulfate ion (SO4
2−) possesses a negative ΔG‡ value in this study, implying an approximate barrierless process of this 241 

kind of deprotonation. 242 

For the first-step NA reaction (NA1a in Fig. 4) in MEA-GL mixture, the electrophilic cationic site of CBDL is attacked by 243 

the nucleophilic -NH2 group of MEA with the ΔGr value of −40.3 kcal mol−1. CBDL is broadly produced from GL and reflected 244 

from the large particle growth and formation of IML products (Ji et al., 2020; Li et al., 2021). The deprotonation of CIMEA1 245 

possesses a negative ΔG‡ value of −4.5 kcal mol−1, and a pre-reactive complex is identified prior the corresponding TS (detailed 246 

in SI). Similarly, the other two NA1b and NA1c reactions (Fig. 4) also include protonation, dehydration, nucleophilic attack, 247 

and deprotonation to yield HAMEA and PIC MEA. Kinetic data listed in Table S3 show that the rate constants of most pathways 248 

involved in the NA1a-1b and NA2a-2c reactions fall in the range of ~109 M−1 s−1. The similar results can be drawn for AS-GL 249 

mixture, suggesting that the electrostatic attraction is a significant factor to affect the NA reactions. 250 

To further evaluate the cationic reaction mechanism, the natural bond orbital (NBO) analysis reveals that the N atom of 251 

NH3 exhibits more negative charge (−1.1 e) relative to MEA (−0.9 e), suggesting the stronger electrostatic attraction between 252 

CBDL and NH3 to yield CIAS1 in the first-step NA reaction (see NA1a and NA2a in Fig. 4). However, the second-step NA 253 

reaction between CBMEA and MEA are promoted by MEA because the presence of MEA enhances the positive charge in CBMEA 254 

(0.6 e), facilitating the electrostatic attraction (see NA1b and NA2b in Fig. 4). For the third-step NA reaction (see NA1c and 255 

NA2c in Fig. 4), due to the steric hindrance, the deprotonation of CIMEA8 possesses a larger ΔG‡ value relative to that of CIAS8. 256 

Hence, the NA reactions are regulated by both electrostatic attraction and steric hindrance effect. 257 

The fourth-step NA reactions in MEA-GL and AS-GL mixtures exhibit two distinct chemical reaction mechanisms in 258 

cyclization to yield N-heterocycles (see NA1d and NA2d in Fig. 4). The protonation of PICMEA and PICAS occurs at the 259 

hydroxyl group to form CIMEA9 and CIAS9. For MEA-GL mixture, the barrierless dehydration and cyclization of CIMEA9 occur 260 

in one step to yield N-heterocycle (i.e., ICMEA), with the total ΔGr value of −78.6 kcal mol−1 (NA1d in Fig. 4a). However, for 261 
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AS-GL mixture, the cyclization of PICAS to ICAS includes protonation, dehydration, cyclization, and deprotonation. Note that 262 

cyclization and deprotonation proceed via two TSs in sequence, with the corresponding ΔG‡ values of 3.9 and −0.6 kcal mol−1 263 

(NA2d in Fig. 4b), respectively, forming ICAS. As discussed above, cyclization in MEA-GL and AS-GL mixtures is the rate-264 

limiting step to chromophore formation. 265 

For MEA-AS-GL mixture, AHAMEA/AS, and ID MEA/AS are yielded via the same first NA reactions (NA1a/2a) as MEA-GL 266 

and AS-GL mixtures. Also, the formation of IDMEA/AS proceeds via protonation and dehydration to form CBMEA/AS. However, 267 

the second NA reaction includes the cross-NA reaction of CBMEA with AS (NA3b-1) or CBAS with MEA (NA3b-2) to produce 268 

extra oligomers (i.e., HAMAG1 and HAMAG2), in contrast to MEA-GL and AS-GL mixtures. Hence, the fate of CBMEA/AS is 269 

dependent of the competition reaction between the pathways of self-NA reaction to form HA MEA/AS (NA1b/2b) and cross-NA 270 

reaction to yield HAMAG1/2 (NA3b-1/2). The ΔGr values of the cross-NA reactions to yield HAMAG1 and HAMAG2 are −30.3 271 

and −30.4 kcal mol−1, respectively, comparable with those of self-NA reactions. It suggests both NA reactions to form HAs are 272 

equally accessible. Subsequently, HAMAG1/2 undergoes dehydration to form DIMAG, further proceeds the third NA reaction to 273 

yield PICMAG, in line with the mechanisms of the third NA reactions for MEA-GL and AS-GL mixtures. The cyclization of 274 

CIMAG10 (the fourth NA reaction) possesses with two successive TSs, similar to that of AS-GL mixture but different to that of 275 

MEA-GL mixture. The corresponding ΔG‡ values are obtained as 5.0 and 1.6 kcal mol−1, respectively, which are larger than 276 

those of AS-GL mixture. In summary, compared with the AS-containing mixtures, the presence of MEA provides the extra two 277 

branched chains in N atoms, which affect the natural charges and molecular steric hindrance of intermediates, to thereby 278 

facilitate the intramolecular interaction between N and C atoms to form SBrC chromophores. 279 

4 Conclusions and atmospheric implications 280 

BrC chromophores play an important role in the Earth’s radiative balance, air quality and human health. However, the 281 

formation mechanisms of BrC chromophores are not fully understood, hindering a comprehensive assessment of BrC 282 

chromophores on atmospheric chemistry and environmental impacts. Hence, using combined theoretical and experimental 283 

methods, we investigated the aqueous chemistry of typical RNCs with GL and evaluated the impact of typical multifunctional 284 

RNCs on the formation of BrC chromophores. Experimental studies show that the MAC values of chromophores are affected 285 

by the initial pH value for AS-GL, MEA-GL and MEA-AS-GL mixtures, and the growth rates of chromophores are enhanced 286 

in the presence of MEA. The optical properties of chromophores are regulated by monocyclic and bicyclic IML compounds in 287 

AS-GL mixture but by monocyclic IML compounds in MEA-containing mixtures (i.e., MEA-GL and MEA-AS-GL). 288 

Combined with the results of quantum chemical calculations, chromophore formation is characterized by nucleophilic addition 289 

with large exothermicity and strong electrostatic attraction among the MEA-derived intermediates, which are also enhanced 290 

by MEA.  291 

In addition, to simply evaluate the impacts of MEA and AS on chromosphere formation in the aqueous aerosols and 292 

fog/cloud droplets, the dynamics process of GL from gas to aqueous phase was carried out (Fig. S16). The free energy 293 
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difference reflects whether the liquid particles with MEA and AS (denoted as MEA and AS particles) prefer to adsorb and 294 

accommodate GL. As shown in Fig. S16, a larger decrease in the free energy (−3.7 kcal mol−1) occurs when GL approaches 295 

the interface of the MEA particle relative to the AS particle, indicating a thermodynamically favorable process. Subsequently, 296 

the stabilized GL enters into the interior region of the MEA and AS particles, with slightly endothermic (1.6 and 2.4 kcal mol-297 

1). A smaller free energy difference from the interface into the interior region of the MEA particle implies that the interfacial 298 

GL is more readily promoted to enter the interior region of the particle when the particles contain MEA compared with AS. 299 

Hence, the interfacial and interior attraction on the MEA particle is more pronounced for small α-dicarbonyls, to facilitate the 300 

further engagement in the aqueous-phase reactions with RNCs in the particle.  301 

Formation of SBrC from multifunctional RNCs and small α-dicarbonyls occurs widely on aqueous aerosols and fog/cloud 302 

droplets under typical atmospheric conditions. Compared with the ubiquitous coexistence between AS and small α-dicarbonyls 303 

from global aerosol measurement, SBrC aerosol formation from multifunctional RNC mixtures should be paid attention to 304 

during serious haze formation in China because of their atmospheric reactivities and non-negligible concentrations. Our results 305 

also imply that SBrC aerosols, if formed from the aqueous reactions between MEA and GL, likely contribute to atmospheric 306 

warming because the presence of MEA enhances the MACs of the mixture. Hence, recognition of this aerosol formation 307 

mechanism in the radiative transfer atmospheric model is needed, reparenting a possible missing source for BrC formation on 308 

urban, regional and global scales. 309 
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 539 

Figure 1: The MAC values for AS-GL, MEA-GL and MEA-AS-GL mixtures at the initial pH of 3 and 4 at 1d (a) and 15d (b).  540 
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 541 

Figure 2: Dependence of the growth rates (blue line) and pH values (green line) on reaction time for AS-GL, MEA-GL and MEA-542 
AS-GL mixtures. 543 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1000

2000

3000

4000

M
A

C
 G

r
o
w

th
 R

a
te

 (
c
m

2
 g

-1
 d

-1
)   AS-GL    MEA-GL    MEA-AS-GL

  AS-GL    MEA-GL    MEA-AS-GL

Reaction Time (d)

1.25

1.50

1.75

2.00

2.25

2.50

2.75

p
H

 V
a

lu
e

c



20 

 544 

Figure 3: Mass spectra monitoring of chromophores for (a) MEA-GL (b) AS-GL and (c) MEA-AS-GL mixtures. 545 
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 546 
Figure 4: Possible pathways leading to chromophores for (a) MEA-GL and (b) AS-GL mixtures (oriented by gray arrows). Detailed 547 
PESs of the four NA reactions are presented in dotted boxes. The number denotes the values of ∆Gr and ΔG‡ (in brackets) for each 548 
reaction step (in kcal mol-1), and all energies are relative to the corresponding reactants. 549 
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 550 

Figure 5: Possible pathways leading to chromophores for MEA-AS-GL mixture (oriented by gray arrows). Detailed PESs of the four 551 
NA reactions are presented in dotted box. The shaded area is the overlapping part with the pathways of MEA-GL and AS-GL 552 
mixtures. The number denotes the value of ∆Gr and ΔG‡ (in brackets) for each reaction step (in kcal mol-1), and all energies are 553 
relative to the corresponding reactants. 554 
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