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Abstract. The Met Office Global Coupled Model (GC) and the NCEP Climate Forecast System (@r&w@hwidely used
for predicting and simulating the Indian summer mons@8M), and pevious studies havdemonstrated similarities in the
biases in both systenasa range ofime scales from weather forecasting to climate simulatiothis study ISM biases are
studied inseasonal forecasting setups of the two systender toprovideinsight into how they develop acrasme scales.
Similarities are found in the development of the biases between the two systems, with are¢hitiibn in precipitation
followed by a recovery associated with increasingly cycloniwind field to the nortkeastof India. However, this occurs on
longer time scales in CFSv2, with a much stronger recovery followed d@g@ndreduction associated with sea surface
temperaturdSST)biases so that the bias at longer lead times is of a similar magnitude to that in GC, the precipitation
bias is almost fully developed within a lead time of just eight dayggesting thatarrying outsimulations with short time
integrations may be sufficient for obtaining substantial insight into the biageadh longer simulationshe relationship
between the precipitation and SST biaige&C seems to be more complex than in CESudis differentduring the early
part of the monsoon season from during the later part of the monsoon season.

The relationship of the bias wittargescale drivers is also investigated, using the BdBaaimerlntraSeasonalOscillation
(BSISO) index as a measure of whether the laagde dynamics favouiacreasing, active, decreasing or breansoon
conditions.Both models simulatelecreasing conditions the best and increasing conditions the worst, in agreement with

previous studies and extenditigsseprevious results to include CFSv2 amdltiple BSISO cycles.
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1 Introduction

The Indian summer monsoon (ISM) is one of the most challenging meteorological phenomena to simulate, with many current
general circulation models (GCMs) haviagbstantial systematic biases (Jain et al., 2019; Katzenberger et al., 2021; Mitra,
2021; Watterson et al., 2021; Choudhury et al, 2022). Two examples of GCMs with a persisfamtcipitation bias for the

ISM are the Met Office Global Coupled Model (G@Wijlliams et al., 2015; 2017) and the NCEP Climate Forecast System
(CFSv2, Saha et al., 2014). This has been shown to occur in these models across a range ofsnvaitecatenmon
accompanying features including an ayclonic bias and a highrecipitaion bias over the ocean to the south of Iddieom

weather forecasts (Kar et al., 2019; Keane et al., 2019; 2021; Abhilash et al., 2014) to seasonal and climate simutatens (Wa

et al., 2019; Martin et al., 2021; Swapna et al., 2018; Sahana et al, 2019). The purpose of the present study ist® investiga
this low-precipitation bias in detail in seasonal simulations, to provide insight into how it develops from shorter to longer time
scales.

Many previous studies have investigated the skill of seasonal forecasts, using GC or CFSv2, in predicting the ISM, and thes
studies have generally demonstrated similar biases to those in weather and climate simulations (Abhilash et al., 2014; Georg
et al., 2016; Ramu et al., 2016; Johnson et al., 2017, Srivastava et al., 2017; Jain et al., 2019; Chevuturi et ali2@19; Ma

al., 2021; Joseph et al., 2023; Kolusu et al., 2023). Despite these biases, the seasonal forecasts do show skil}, gdarticularl
shorter lead timesf up to two week$George et al., 2016; Rao et al., 2019; Joseph et al., 2023; Kolusu et al, a2023n
reasonably well simulate the northward propagation of the monsoon intraseasonal oscillation (Abhilash et al., 2014; Sabeera
et al., 2013; Srivastava et al., 2023), lpvessure systems (Srivastava et al., 2017; 2023) and the monsoon onset (Menon et
al., 2018; Chevuturi et al., 2019; Pradhan et al. 2017). George et al. (2016) attributed this skill in CFSv2 to cottettty cap
connections with the EI Nino Southern Oscillation, with Indian Ocean coupled dynamics not adequately represented in CFSv2
and similar behaviour was demonstrated for GC by Johnson et al. (2017).

The atmospheric biases have been shown to be associated with eddrisze temperature (SST) biase®r the Indian

Oceanin CFSv2 (George et al., 2016; Srivastava et al., 2017) and GC has also been shown to develop SST biases in seasor
forecasts within the first 30 days (Martin et al., 2021); Johnson et al. (2017) attributed incorrect SST anomaliesofo a lack
wind forcing on the SSTs. We investigate this interdependence of atmospheric and oceanic biases in the seasonal forecastil
systems here by carrying out a systematic investigatidineofariation-ohow precipitation, wind and SST biases vary with
forecast led time.

Martin et al. (2021) investigated systematic biases for the Asian summer monsoon, in GC configurations on a range of time
scales. They showed that, while the biases in seasonal forecasts and climate simulations generally have similar patterns a
magnituds, those over India have larger magnitudes in the climate simulations, indicating that these biases could have &
substantial dependence on how far ahead of the monsoon season the simulation is initialised. Meanwhile, Chattopadhyay et

(2016) demonstratkan intriguing finding that CFSproduces better ISM forecasts at longer lead times than at shorter lead
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times It is therefore important to look at the letathe development of the seasonal forecast biases in detail to investigate how
they are affected by errors in different physical processes occurring on different time scales.

A more direct aim of this study is to follow Keane et al. (2021), who showed that the reduction in mean ISM precipitation wit
forecast lead time in weather forecasts using the atmosphere and land components of GC has a strong and coherent depende
on the phase of the Boreal Summer Intraseasonal Oscillation (BSISO; Wang & Xie, 1997; Kikuchi et alL,e&Pal.,
2013;Kikuchi, 2020; Kikuchi, 2021). They showed that the precipitation is initially too high for all phases, aubseguent
reduction is strongest for phaségi2corresponding to broadly increasing monsoon activity, so that by the end of the forecast
there is a substantial leprecipitation bias. For phase$7 corresponding to broadly decreasing monsoon activity, the
reductbn is much weaker so that the value at the end of the forecast is actually quite close to observed values. It is therefor
of interest to investigate longer forecasts with the same model to investigate how this behaviour develops beyond the 7 day
of the weather forecasts, as well as the influence of eagaasphere coupling. This study provides an opportunity to do this,

as well as to determine whether a similar dependence of the precipitation bias with BSISO phase occurs in CFSv2.

The manuscript proceeds by describing the data evaluated in this study and the methods used to perform the evaluation. Tl

results of the evaluation are then presented, followeddiscassiorand concluding remarks.

2 Data

The GC setup for producing seasonal forecasts is GloSea, described in detadltachlanet al. (2015). The forecasts are
calibrated by running a set of hindcasts initialised at the same time of year as the forecast for a range of previsungyears u
the same model version, so that t he rudeadonalclenatslogpcadlze st
determinedOperationally, lhe hindcasts are initialised as-mi@mber ensemble on th& 2", 17" and 2% of each month for

the year range 1992016.Hindcasts are used in this stydgther than forecastas they provide a lagglata set and we are
interested in the development of biases in the dynamical model itself rather than the quality ofpnegessed forecasts.
Operational upgrades to GloSea have always been carried out less often than once per year, meaning that there is at least «
full yeards worth of hindcasts available for each vers
(Williams et al., 2015), using hindcasts generated during the period from November 2017 to August 2018, and GloSea6 base
on GC3.2 (closely related to GC3.0 and GC3.1, described by Williams et al., 2017), using hindcasts generated during the
period from November 2021 to August 2022. The atmospheric model resolution of both GloSea versions is N216,
corresponding to grid spacings of approximately 70ikrie tropics. ERANterim reanalysis fields are used to provide the
(unperturbed) initial conditions and perturbations between the members are produced through the use of a stochastic kinet
energy backscatter scheme (Bowler et al., 2009). An upgoatie tsoil moisture initialisation (described by Gautam et al.,
2023) was implemented in 2018 &loSeab includes this upgrade whereas the version of GloSea5 evaluated here does not.
Hindcasts have also been produced using CFSv2. The atmospheric model spectral resolution is T382, corresponding to gri

spacings of approximately 38 km in the tropics. Two hindcasts were initialised, at 00UTC and 12UTC, roughly every 5 days
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from February to August for the year range 200215; the precise initialisation dates are provide@iahleAl. This means
that there are roughly half as many hindcasts initialised during the period FéBwugugt each year for CFSv2 (74) as for
GloSea (196), but we compare the two systems diractlye main manuscrignd show evidence ippendix Athat using
only three of the seven GloSea ensemble members (so giving 84 hindcasts initialised duringiPalmyustydoes not affect
the key conclusions of the pag@igs.AL-ASA4, A12). We restrict our evaluation to the period 202@15 but, again, show

evidence inPAppendix Athat these years are representative of the full period for which GloSea hindcasts are dFaisble
A2-AL0AS5, Al3).

In this study we evaluate the behaviour of the hindcasts as a function of lead time for given valid time periods. Tfordo this,

each lead time we average the hindcast values over all initialisation dates with a hindcast of the corresponding length occur
during the relevant valid time period. We focus on valid times during’ 2wggist, and the total hindcast length is 216 days

for GloSea and 208 days for CFSv2. This means that the earliest GloSea hindcasts used are initiélliNedlernbkr the
previous year, where the longest lead times extend just into the beginning of June, and the number of available hindcasts fc
every lead time is approximately the same (12 or 13). However, since the CFSv2 hindcasts are only availableufitom Feb
hindcasts at the longest lead times are only available later in thieAlgest period (for example, lead times longer than 150

days are only available for July and August valid times).

We also carry out some evaluation of the hindcasts by taking all those initialised during a certain period and categiorising t
according to the BSISO state at the start of the hindcast. We look at how the precipitation varies as the hindcastipevelops,
to a hindcast time of 60 days, averaged over all hindcasts within each category, and compare with the observed precipitatio
averaged over the corresponding dates.

The purpose of this study is to investigate how model quantities change as the hindcast develops (whether looking at a give
set of valid times and increasing the lead time by looking at different hindcasts, or looking at a given set of initiaigatio

and increasing the integration times of the same hindcasts), rather than to evaluate their performance with respect t
observations, which is generally already well known at least in the broadest sense. However, we do compare with observe
precipitation, using the IMERG data set (Huffman et al., 2019), in order to provide a baseline for the modelled quantities.

In this study, observed BSISO data are taken fhoips://iprc.soest.hawaii.edu/users/kazuyosh/ISO_index/data/BSISO_25

90bpfil_pc.extension.txtThe BSISO index is calculated using temporally bandpass filtered observed outgoing longwave

radiation (OLR). An extended empirical orthogonal function (EEOF) analysis is carried out on the data fOcthlver, and

for any given day, principal components can be obtained by projecting the OLR field onto each EEOF. The first two principal

components are normalised and can then be plotted on orthogonal axes. A phase and amplitude can then be defined as 1
azimuthal and radial coordinate of the plotted point on the orthogonal axes. The full method is described by Kikuchi et al.

(2012) and Kkuchi (2020).

In practice, the azimuthal coordinate is divided into eight discrete phases, with phases 4 & 5 generally corresponding to
increased average precipitation over India and phases 8 & 1 corresponding to reduced average precipitation over India (Kikuct

et al., 2012). We therefore use the phases as an indicator of whether thse#degdynamics favours enhanced, increasing,

4
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suppressed or decreasing convection over India and categorise the hindcasts using two different methods, one using the phe

at the hindcast valid time and one using the phase at the hindcast initialisation time, as described above.

3 Results

130 3.1 Overall biases-and-seasenal-eydiehaviour

The overall biases are shown kfig. 1 (upper panels)for initialisations during May, and iRigs 4+-3;A1i A3 for different

initialisation monthsThere is a lowprecipitation bias over most of Indéad the northern Bay of Bengal, which intensifies
somewhat with increasing lead tiriee., earlier initialisation timeand is less bad in GloSea6 than in GloSea5. The spatial
pattern of the precipitation bias is broadly similar the different initialisation timesAll models have a higiprecipitation

135 bias over the ocean to the south of India and, to some extent, over thavestéim coast of Indidhe wind biases are shown

against ERASwinds (Hersbach et al., 2023here is some sign of an anticyclonic bias over lid&ll three datasets
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Figure 1:. Top row: Overall CFSv2biases averaged over valid times in Jufiidugust 2002 2015 and initial timesin-the-month
showrduring May . Variables are precipitation in mm/day (bias against IMERG observations) and 850Pa horizontal wind (bias

140 against ERAS5 reanalysis)Bottom row: Seasonal cycle of precipitation in hindcasts and IMERG observatlons averaged overnk
Au ust 2002 2015 8N 29N 695 89E re ion denoted b the blaclboxes in the anels in the to
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Fhe-precipitatierlongitudes 69E89E is plotted as a function of time of year (withlané Augus), for the three models, in
Fig. 4:1 (lower panels)There is a clear reduction in precipitation after the first 8 days in GloSea, andldniggest earlier in
the monsoon season. In CFSv2 there is also a reduction, which occurs more gradually with increasing lkeasl diste.

striking how much less variable the precipitation is at longer lead times, particul&lgsa&loSea This may reflect the
reduced signalo-noise ratio at longer lead times, such that averaging over all years and all ensemble members results in &
smoother time variability.
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The precipitation averaged over latitudes 88N and longitudes 69B9E, and over valid times during JiiReigust 2002

2015, is shown for each hindcast lead time in Biy This is the region investigated in detail by Keane et al. (2021)sand

used in this study when looking at spatially averaged quanitégsions of Fig52 usingfewer GloSea members and using a
longer range of GloSea years are shown in Appendix A (Figa4 andA2A5, respectively)and are very similaBecause
hindcasts are only initialised on certain dates within each system, hindcasts at a given lead time will only be available on
subset of the 92 daysduringJuAeu gust each year. For example, in GloSea,
on 4" 11 19" 27" June, &, 11, 19", 27" July, and &, 11", 19" 27" August; at most lead times there are 12 hindcasts
available, with 13 available at some lead times due to the slight irregularity in the rate of initialisation of the hifideasts

rate of initialisation for the CFSM2indcasts is slightly more irregulaso that there are &5 18 dates available feach lead

time up to 137 days (after which the number of available dates gradually decreases, as described in the previousesection). Tl
dotted lines therefore show the observed precipitation on the same subsets of dates, and provide an estimate of how much tl
variation in available dates with lead time should affect the hindcast.
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Looking at Fg.52, CFSv2 and GloSea5 reach a similardprgcipitation bias by the end of the hindcast, but this takes longer

185 to develop in CFSv2. GloSeab6 also has a-foecipitation bias but this is much improved compared with GloSea5. Both
GloSea systems have increasing precipitation at very short lead times and then all systems have sharply decreasiog precipitat
during the first 8 days or so. The development is then characterised by a slower decrease followed by a recovery, but this i
much stronger, and takes longer to develop, in CFSv2 and is very weak in GloSea6. In CFSv2 there is then a decrease followe

by fairly constant values from about 100 days, while in GloSea the precipitation is fairly constant from about 30 days.
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3-21 Changes during specific stages of the hindcast

In order to investigate the behaviour in more detail, the hindcasts are divided into different stages, following the evolutio
shown in Fig52. The first two days are characterised by increasing precipitation in GloSea and decreasing precipitation in
CFSv 2. I n GloSea tHipd mMapymbé heueetomadysspi nnitial state
Days 3 8 account for most of the lowrecipitation bias in both GloSea setupsys 8 16 have fairly constant precipitation

in GloSea and decreasing precipitation in C&Svhile days 1631 have a small increase in precipitation in GloSea and fairly
constant values in C3. The subsequent period d@éys 3150 has increasing precipitation in C¥% then there is a period

of approximately fifty day$50i 101)of decreasing precipitation in C#¥& These two periods have fairly constarecipitation

in GloSea and the period from 100 days onwards has fairly constant precipitation in all setups.

To investigate thidurther, maps of precipitation, 850Pa wind andSST, in the form of differences between pairs of lead
times corresponding to the green vertical lines in Bigre plotted in Fgs. 3i 61-9. For the final two pairsfjays 5@ 101 and

Days 105 150)differences are shown between-@dy averages, centred respectively on the initial and final 8iee at

such long lead timeimdividual days are less relevant than longer time averdgesabsolute values are plottedHigs. A3

A8A6I A1l and are characterised by a prevailing westerly flow over India and widespread precipitation, with the largest

amounts on the vet coast and northast of India and the Bay of Bengal (BoB).
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(left column), GloSea6 (centrecolumn) and CFSv2 (right column), between the hindcast lead times shown, averaged over Jiine
August 2002 2015 The greerblack boxes show the evaluation regio(8BNi 29N-and, 69E 89E) used throughout this study.

S5, day 50 - day 31 G5S6, day 50 - day 31 CF5, day 50 - day 31

RpE e e e

:_....-.-.-.-.-‘\"-\u'wm...-
e e R N,

T L LTI

R

afl
i

——r e R
e T e s g
b

W)

d
T T
I I T

BN Y
-

bR RN Wy g

MO I

GS6, day 150 - day 101 CFS, day 150 - day 101

B P

i .-.'.fl":_‘-_..\k

Phe v R R

-9 —6 =3 0 3 6 9
220

Figure 5:. Precipitation differences (colours, in mmirday) and 858hPa wind differences (vectors) in GloSea5 (leftolumn),
GloSeab (centrecolumn) and CFSv2 (rightcolumn), between two fieldsat (top row) and averaged over 30 days centred oftentre

14



and bottom rows)the two hindcast lead times shown aboviae panel_The black boxes show the evaluation regiof8Ni 29N, 69E(

225

89E) used throughout this studyand the boxes in the bottom centre panel show the regions used in Figs. 7, 8,10, 11 & 12

GS5, day 50 - day 31

GS6, day 50 - day 31

CF5, day 50 - day 31

%.,*ff' P
ik e g

[ '

a b PN = -
v hoehh i}/‘.‘-’-' - e

44,n\h¥1t” o e

st ]
e \\\ll P;"J a3

CFS, day 101 - day 50

2 Ry

,,;%-:-‘.".;I,““:_

GS5, day 150 - day 101 GS6, day 150 - day 101 CFS, day 150 - day 101
f% ! ' ","..'_'-a‘

L W . e
2
aamw N - W

e e v W

g g B

AT




‘230

235
240
245
250
255

260

in GloSeab (leftcolumn), GloSeab6 (centreeolumn) and CFSv2 (rightcolumn), between two fieldsat (top row) and averaged over
30 days centredon (centre and bottom rows)the two hindcast lead times shown abouvhe panel.The black boxes show the
evaluation region(8Ni 29N, 69Ei 89E) used throughout this study.

During days 1 to 3, the overall westerly flow strengthens in all three systems (albeit rather less coherently in CFSv2), but
diverges away from India, in that it is too southerly in the north and too northerly in the south. In GloSea this is degompan

by an increase in precipitation over India and the Equatorial Indian Ocean (EIO), whereas in CFSv2 there is a sharp decreas
There is also increased convergence into theiBlGloSea This time period is generally too short for any SST changes to
develop.

During days 3 to 8, most of the precipitation reduction occurs in GloSea and it is accompanied by an anticyclonicedrias, as se
in previous studies of GC) on weather and climate time scales. The precipitation bias is considerably reduced in GloSea6 bt
the anticyclonic bias is similar to that in GloSea5. The behaviour is similar in CFSv2 but with rather less coherent patterns.
All systems show a decrease in the westerly flow into the south of India, although this is less pronounced in THeSea6.
behaviourduring the first 8 days in GloSea is consistent wlitht in the atmosphet@nly weather forecasts studied by Keane

et al. (2019; 2021).

Days 8 to 16 represent a relatively quiet period for GloSea in terms of precipitation, but v5 has an increase in arfiiiyclonic
whereas v6 becomes more cyclonic and the westerly flow into India increases, mitigating the bias in the previous period.
CFS\2 also has small precipitation changes over India but there is a decreatiee®@B and an increase over EIO. The

flow also becomes more anticyclonic to the east of India. The reduction in precipitatich®@BeB is accompanied by an
increase in SST and a reduction in the flow from India. SST changes are still very small in GloSea, but with some notable
increase over the EIO.

Days 16 to 31 show an increase in the westerly flo@loSea, bringing increased precipitation over the western coast, and

an increase in cyclonic flow, bringing increased precipitation to the very east of India and northern BoB. These features are
more pronounced in v5, which could be related to the lfettthe reduction in precipitation during earlier periods is stronger,

and so there is more scope for a recovery in precipitation. CFSv2 looks very different, with decreased westerly floia over Ind
and reduced precipitation ovite northern BoB. The flow to the south of India is more westerly, with (as in the previous
period) an increase in precipitatiol.similar pattern was seen in the overall bias in CFSv2 simulations carried él#trby
Prasacket al. (2021)SST changes are also different, with increases over the Arabian Sea and BoB in CFSv2 (and decreases
further southand along the eastern coast of India) and decreases everywhere in GloSea.

Days 31 to 50 show very little change in GloSea, whereas there is much more change in CFSv2, which has an increase |
westerly flow over India and an increase in cyclonic flow over eastern India and th&BisBs similar to what is seen in
GloSea over the previous two periodmjt positioned further soutand accompanied by an even stronger increase in
precipitation. The precipitation decreasesver the seuth-ef-rdi&lO so that overall the change is in the opposite direction

to (and strongerte than)that in the previous period in CFSVPhe SST and precipitation changes match very closely in
CFSv2, except over the very north of the BoB and Banglaaledbastern India, and along the western coast of India.
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Days 50 to 101 also show little change in GloSea, with small decreases in precipitation in northern India and small increase
in southern India. The flow into the southern part of the western side of the box changes direction somewhair $ that
advectedmore into the western part of the southern side of the box. There is much more change in CFSv2, with a substantia
reduction in precipitation; the pattern looks similar to that in GloSea during days 3 to 8, but with the anticyclonic flow
difference and the strongest precipitation reduction centred further west, over the Arabian Sea. The SST and precipitatior
differences again look remarkably similar in CFSv2.

From day 101 onwards, both systems have roughly constant precipitation within the analysis region uses ihuEig
whereas in GloSea there is very little change in the wind or precipitation fields, in CFSv2 there are changes in bath wind an
precipitation fields, with the precipitation changes cancelling each other when averaged over the region as a whet. In CFS
there is a reduction in westerly flow over India, which seems to cause a reduction in precipitation over the westeunh coast, b
an increase over the peninsula, so it could be that less moist air is advected out to the east. Both systems show widespre

deaeases in SST.

3.21.2 Physical interpretation

To investigate the interplay between SSTs, precipitation and wind fugthertitiesaverageaver selected regiorase plotted

as a function of lead time in Fig97. It can be seen that theitial decrease in precipitation over India is mirrored by an
increase in precipitation over tl&#O in all models (with both occurring over a longer time scale in CFSu®re is also
increasing flow from India to the E|Guggesting that the increagecipitation over the EIO draws moisture away from
India and could be strongly associated with the-frecipitation bias over India. This agrees with previous wBktlasina

& Ming, 2012;Bush et al., 2015; Martin & Rodriguez, 202&)d suggests that this phenomenon occurs very early in any
model simulation.

In all modelschangesn the westerly flow over the Arabian Saefollowed closely by the precipitation botiverindia as a
whole andoverthe northeast India (NEI) regiothat seems to be largely responsible for the recovery in precipitatis
suggests that its initial decrease may contribute to theptewipitaton bias, while its subsequent increase could be

contributing strongly to thkater recovery in precipitation.
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Figure 7:--Surface-temperature SST, 850hPa wind and precipitation averaged over different regions (shown in Figd5), averaged
over Junei August 2002 2015, as a function of lead time. A smoothing is applied by taking a@ay running average in the leaetime
direction.

The flow out of India into the EI@duces after about 8 days in GloSea, and is partly connected to the reduction in precipitation
over the EIOThis reduction in precipitation is associated with a decrease in SST over the same region through a compensating
coupled feedback. There is some evidence that decreasing SSTs over the BoB are similarly related to decreasing precipitatic
over NEIL

Theimproved performance in GloSea6 over GloSea5 (smaller precipitation reduction over lad@ganied by a smaller
increase in precipitation over the EIO (and a weaker flow from India out to the EIO) and a smaller decrease in westerly wind
over the Arabian Sea, providing further evidence that these are important factors in-firedipitation bias. There is also

less of areduction in SSTs in all the locations analysmhsistent with the smaller changes in precipitation.

Napusetty et al. (2016)sedlow-resolution CFSv2 seasonal hindcasts and investigated the-fimael dependence of the
moisture transport bias in tAeopical Indian Ocean. They found that the positive bias in moisture transportagithirial
Indian-OeceaR|O increases systematically from June to August. This bias causes reduced moisture availability to the weakened
crossequatorial monsoon flow, and the strong dry bias in rainfall over the Indian landmass can be partly attributed to this
strong positive bias in moisture transport. Interestingly, the bias in moisture transport over EIO is at its maximuforin July
May initialization and August for June initialization, compared to other initialization months, which roughly corresponds to a

lead time of ~3@ 90 days. Similar to their findings, the higbsolution version of CFSuZsed heralso exhibits a strong bias
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in vertically integrated moisture transport over EIO (figure not shown). We explore the flow into a box c&stéreElIO
(0-15N, 801 120F denoted EEIpand contrast it with the strength of the Findlater 49E¢I 69E, ON-I 21N, theii Ar a b i an

S e a 0). Genexally, during JJA, the precipitation over India closely follows the influx of moisture from the Arabian Sea,

such that the precipitatiocurve_and theU850 and V850 (over the Arabian Se4850 not shown hejecurves are in sync.

However, the peak in the winds over the Arabian Sea occurs a few days later compared to the peak in precipitation over Indic
the reasons for which are not clear. The recovery in precipitation in CFSv2 during d&® &1d the subsequent decline are
associated with the strength of the Findlater jet and the associated moisture influx. The recovery in precipitation over EIO
(~30 51 days lead time) and the subsequent decline is related to the large influx of moisture over this region by the zonal
winds. The decline is also associated with increaded eastward into the eastern El€ontrastingly, this flow does not
change substantially in GloSea, particularly after 30 days lead time.

Figure 118 shows scatter plots of 880Pa eastward wind over the Arabian Sea against precipitation over India, coloured by
SST over the Arabian Sea. These show individual hstdaaver the full range of years and dates available, for different lead
time rangesin order to investigate how the relationship between the three variables devidhapthe models as the hindcasts
progressA plot for observefteanalysedialues is included for comparisothis uses IMERG for precipitatiofiHuffman et

al., 2019) ERAS for 856hPa windgHersbach et al., 202anda satellitederived dataset for SST (Copernicus, 2019).

There is a clear correlation betwegimd and precipitation in all models at the earliest lead times, agreeing with what is seen

in the observationghis correlation weakens, however, as the hindcasts develop, with the weakenirgy&aieg GloSea5

than GloSea6. Tib suggests thahe recovery in westerly wind over theabian Sea, seen in Figj0, could lead to a stronger
recovery in precipitation ifhe relationship between the two variables were simulated correctly in the models.

The SST ranges vary between the models and between models and observations, but there igendeneyafor higher
temperatures to be associated with weaker winds and less precipitdtére.is also some evidence from Fig8 that the
relationship between SST and both wind and precipitation is too strong, tasniherature valuegary more coherently with

wind and precipitationin the models than in the observations, particularly at longer lead tim€&3m2 this is particularly

the case for lead times of 51 tollflays, whe the precipitation decreases strongly with lead tiamel the temperature range

here is also largesthis provides further evidence that SSTs are an important factor in this secondary decrease in precipitation,
and suggests that the coupling between the ocean and atmosphere congoare s too stron¢for example, theffect of

stronger winds leading to evaporative cooling coulderestimateyin this region in all the models.
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Figure 8:. Scatter plots of precipitation over India (81 29N, 691 89E) against 856hPa eastward wind over the Arabian Sea (@21N,
49 69E), coloured by SST over the Arabian Sea. Each dot represents a single hindcastdbone year during 200251 2015, one day
in June, July or August and one lead time within the range shown.

3.32 Behaviour during different parts of the monsoon season

The development with lead time for different parts of the monsoon season is showritizpFRpcause the CFSv2 hindcasts

are only available initialised from February, the longest lead times are not available in June and July. All three months sho
sharp initial decreases. In June this is followed by a consistent but decelerating decreaseuhttoeiggngth of the hindcast.

The recovery followed by a further decrease seen for CFSv2 is present in all months, but is much stronger in July and Augus
The less substantiakcovery behaviour sedor GloSeaalso occurs in alinonths butin Auguston somewhat longer time

scalesthe worst lowprecipitation biases are seen for lead timestb® days, with the bias reducing temallervalue from
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50 to 100 daydt is alsonotable that the differences between the three model setups are much larger in July and August than

in June.
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Figure 9:. Variation of precipitation with hindcast lead time (averaged over 8M29N-and, 69Ei 89E and 20022015) for hindcasts
valid in each of June, July and August. The dotted lines show observed values averaged over all dates in the month (i.e jusbt
dateson which hindcasts are available).

The behaviour in different parts of the season in GloSea is consistent with the findings of Martin & Levine (2012), who
evaluated the seasonal cycle of precipitation over a similar region to that used in this study for climate simulatians using
earlier version of the GC model. Looking at the recent past climate, they found both atmaspyéferced by observed
SSTs)and coupledmodel simulations to produce too little precipitation over the region throughoutAugest, but with the

bias being worse in the coupled simulation earlier in the period, and worse in the atmosphaimulation later in the

period. The edy poorer performance of the coupled simulation was attributed to a delayed monsoon onset caused by cold
SST biases over the Aan Sea, as described by Levine & Turner (2012). Meanwhile, the later better performance of the
coupled simulation was attributed to a cold SST bias over EIO associated with reduced precipitation there, leadingdo increas
precipitation over the Indian Peninsula.

Equivalent plots to Figto7, but restricting to each of June, July and August, are shown in=g&10i 12. The initial
decrease in precipitation is accompanied by an increase in precipitation over the EIO in all months. In GloSea, this is
particularly strongly tied to the flow from India to the EIO in July and August. The subsequent reduction in precipitation

the EIO is slower in August and is accompanied by a later recovery in the precipitation over India. The initial increase in
eastward wind over the Arabian Sea is weaker in June in all models, and the flow itself is generally weaker as the monsool

has not t fully developed. The flow subsequently decreases in June, accompanied in GloSea by decreasing SSTSs.
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Figure 10-Surface-temperature SST, 850hPa wind and precipitation averaged over different regions (shown in Figg5), averaged
over June 2002 2015, as a function of lead time. A smoothing is applied by taking adhy running average in the leaetime direction.

In CFSv2 it is evident that the recovery in precipitation over EIO is much stronger for July and August. In contrast, the
recovery is smaller for June, and it occurs much later (~70 days of lead Tinejnight be because the bias in moisture
transport over EIO is not very large in June, as reported by Napusetty et al. (2016). For July and August, there is a rapic
increase in the zonal flow over the EIO, such that the precipitation also increases pegziligg at ~5060 days lead time.

This branch of zonal winds, which feeds moisture to EIO, likely pulls away the moisture from the Arabian Sea branch, such
that the precipitation over India declines as the zonal flow builds up rapidly and peaks over the EIO region. This agument i
suppored by the fact that the rate of builgh of zonal flow over EIO during July and August is much more rapid than that of

the Findlater jet.

The biases in moisture transport over EIO appear to contribute significantly to India's biased annual cycle of pretipitation.
peak in monsoon rainfall occurs during July in observations. However, CFSv2 has a relatively flat annual cycle of precipitati
over India, wherein the maximum rainfall occurs during August, but the difference between July and August rainfall is small
(Ramu et al. 2016). The bias in moisture transport over EIO, itstiea@ldependence, and its contribution in pulling moisture

away from the Indian landmass is therefore important, and will be investigated in future studies.
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| Figure 11:-Surface-temperature SST, 850-hPa wind and precipitation averaged over different regions (shown in Fig5), averaged
385 over July 2002 2015, as a function of lead time. A smoothing is applied by taking ad&y running average in the leaetime direction.
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Figure 12-Surface-temperature SST, 850-hPa wind and precipitation averaged over different regions (shown in Fig5), averaged
over August 20022015, as a function of lead time. A smoothing is applied by taking adiy running average in the leaetime
direction.
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3-43.3 Response to largscale drivers

3.3.1 Variation with BSISO phase at hindcast valid time

The hindcasts are categorised according to the observed BSISO phase at the valid time, following Keane et al. (2021), takin

precipitation averaged over latitudesi@9N and 69E89E. For each lead time, all hindcasts where the observed BSISO
395 amplitude at valid time is greater than 1 are assigned a phase equal to the observed phase on the date at that lead time (th

with amplitude less than or equal to 1 are discarded for this method). For each phase, an average is taken of-all the are

averaged precipitation valugs produce a quantity that varies as a function of BSISO phase and lead time. This quantity is

plotted as a function of phase in Fig13, for selected lead times, with a furthed&y average over lead time to reduce noise.

Also plotted is the quantity for observations, which applies the same method (including the restriction to BSISO amplitudes
400 greaterthan 1) to observed precipitation over all days during iJangust 20022015.Versions of Fig1613 using fewer

GloSea members and using a longer range of GloSea years are shown in Appendix®®FHigandA10A13, respectively),

and are very similar.
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Looking at GloSea5 during the first 8 days, the bias is worse for phases where trseddegdynamics implies increasing

precipitation and less bad when the lasgale dynamics implies decreasing precipitation, in agreement with the findings of

405 Keane et al. (2021) for-day forecasts. The situation is slightly different for GloSea6 and CFSv2, with the precipitation

generally still too high when averaged over the first 8 days of the hindcast, but there is the same shift in the peatioprecipi

from phase 4 in the observations to phase 5 in all the models.

Comparing the second 8 days with the first 8 days for all models, it is clear that the behaviour continues, with generally a

reduction for all phases, but a stronger reduction when the-dgaje dynamics implies increasing precipitation and-vice

410 versa. Fom day 16 this continues but becomes weaker as the hindcasts lose their phase dependence until at day 40 the errc
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are essentially independent of phase. This suggests that the models lose their capability to forecast the BSISO phase by -

days into the hindcast, as the model precipitation (and, therefore, any BSISO phase that it is simulating) has no significan
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relationship with the observed BSISO phase. This is consistent with previous work that has shown that seasonal forecas
models can effectively simulate the BSISO on time scales of tens of days (e.g., Lee et al., 2015; Fang et al., 2019)
415 3.53.2Variation with BSISO phase atinitial time

In order to establish the role of initial conditions on the development of the rainfall biases over India in the two seasonal

forecast systems, hindcashitialised from ¥ June to 1 August (inclusive), for each year, arextcategorised according to

Phase 1 Phase 2 Phase 3 Phase 4
=
]
2
£
E
p —— CFs
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Figure 14: Variation in precipitation with hindcast time, for hindcasts initialised during each of 8 BSISO phases. Values &
averaged over 8N129N and 69E 89E and over hindcasts initialised during the period 1st June to 1st August @& 2015 on date
where the observed BSISO was in the given phase. The black dotted lines show observed values averaged over the same 1
the hindcasts at the relevant lead time.

the observed BSISO phase at the start ohthdcast The precipitations again averaged over latitudesi@9N and 69E
89E, ancbver allhindcass$ corresponding to each phase, and values for the fith@0astdays in each system are plotted in
420 Fig. £714. For this method there is no temporal coagezining into 8day blocks; therefore, no minimum restriction on the
BSISO amplitude is applied, so that a larger data sample can be taken to reduce random temporal fluctuations that woul
otherwise be reduced by thed@y coarseyraining. The dotted lines show observed values averaged over the same dates on
which each length dfindcasis available; as for Fig2, this is different between the two systems a$ithdcass are initialised
on different datesrigureA11A14 showsa similar set of plots, but also including hindcasts initialised in the rest of August,
425 and extading only to 30 days: these plots from a somewhat larger sample size are in broad agreement with the first 30 day:
of those in Fig1714.

26



430

435

440

445

450

455

We use the observed curves to define how the lsacgke drivers affect the precipitation through the course of leiadbast

and they are similar to what is expected from the standard dynamical analysis that is used to define the phases. For examp!
hindcass$ starting in phase 4 have high initial precipitation on average, and this decreases eaffynitictst while those

starting in phase 8 have low initial precipitation on average, and this increases earlyimdti@est Moreover, the curves

follow an oscillation in precipitation with a period of about 40 dapsresponding to the period of the BSISO cycle

A general conclusion from Fig714is that both models perform better when the lagge dynamics is driving decreases in
precipitation than when it is driving increases in precipitation. For example, the first 30 days are well simulated when the
hindcassstarts in phases 4 or 5, whereas the precipitation is far too low over the first 30 days vitieehctsstarts in phases

8, 1 or 2, particularly for GloSea5 (CFSv2 sometimes even simulates too much precipitation, although this is usuaty associat
with an initial highprecipitation bias). This continues further into kiledcasin GloSea: for phases 4 and 5, although the first

30 days are well simulated, the subsequent observed increasing precipitation is not well captured, and the improvement il
GloSea6 compared to GloSeabcapturing increasing precipitation is less than that during the first 30 days luhtuast

(e.g., phases 8, 1, 2). CFSv2 does simulate the later increase for phases 4 and 5, although thibeszauddbe@roduces
increasing precipitation more generally during days 30 to 50 ohthdcast

The variation inmodel precipitation development with BSISO phase may be quite different in theobiastedGloSea
seasonal forecasts from the behaviour seen here in the hindictstively, given that the biasorrection depends only on

start date and lead timatrfibas et al., 2011MacLachlanet al., 201}, it may be expected that ti@recasts would have a
positive precipitation bias fgghases 4 and 5 and a negative bias for phases 1 and 8. It would be interesting to investigate
whether this isrideed the case, and whether it could be improved by using some information about expected BSISO phases
at least for shorter lead times.

4 Discussion

This study investigatdsidian-summermoenset®M biases in two seasonal forecasting systems, CFSv2 and versions 5 and 6
of GloSea.Both systems initially have a reduction in precipitation with increasing lead time, accompanied by increasingly
anticyclonic flow, and in GloSea the precipitation reduction is shown to fully occur within the first 8 days lihtloast.

This corroborates previous work (e.&odwell and Palmer, 2007; Martin et al., 2010; Rodriguez and Milton, 2019; Martin et
al.,, 2021) showinghat future work studying biases in weather forecagéd more generally, shotime-integration
simulations)will provide substantial insight into biases across timescales, without the requirement to conduct lengthy climate
simulations, particularly for the G&ystemA strong focus for this work should be investigating the cause of the increasing
precipitation over the EIO at short lead tsna linkbetweerexcessive convergenoger the EIO and lovprecipitation biases

over India has previously been identified both in GC (Bush et al., 2015) and in CH81Kaand Huang, 2006 andMartin

& Rodriguez (2024jlemonstrated change in behaviobetween the first 10 days and longer lead times over the eastern EIO

that islessapparent in the western EIBoth systems show a substantial decrease wathéad time of 25 dayand the results
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for GloSea are in broad agreement with previous work on atmosphbreveather forecasts. Thisiggest thatissues in the
atmospheric model component of the systm sufficiently important thattmoespheriatmosphesonly simulations can
continue to play a role in investigating these biases.

It is notable that GloSea6 has improved (i.e., smaller) biases compared to GloSea5. Althbwjartlseimmermensot®BM
low-precipitation bias is an important factor in evaluating the performance of GC3 compared with GC2, improvements in GC
versions are aimed at Global model performaaa wholeand on the full range of time scales, from weather forecasting to
climate simulation. It is therefore encouraging that the combined effect of these improvements on the simulatiodiaf the
summer-monsedBM on seasonal time scales has been so substantially positive. The upgrade from GC2 to GC3 (Williams et
al., 2017) includes a wide range of improvements to the atmosphere and land components (Walt2ts é},ahe ocean
component (Storkey et al., 2017) and the sea ice component (Ridley et al., 2017). In particular, the previous upgrade in th
atmospheric component (GA6) had focused on the dynamical core, with changes to the physics parameteriiggbns rela
restricted, so that the uggle from GA6 (used in GC2) to GA7 (used in GC3) included a relatively large number of substantial
longerterm changes to the atmospheric parameterisation sché@ines. that themprovement is present within 8 days, it is

likely thatupgradedo theatmospheric component are largely responsible for the impqeddrmance irslosea&loSeat

Walters et al. (2017) shothat GA7 does have reduced summer precipitation biases over India compared with GA6, and
attribute thigo improvements in thetochastic physics forcing, an upgrade in the conveptimameterisatiofrom 5A to 6A

and improvedvarm rain nicrophysicslmprovements in the scale adaptivity of the model play a large rolesaupgrads:

Sanchez et al. (2016) show that thelusion of aresolutiondependent factor for the convection dissipation pateluces
higherkinetic energy perturbatioret lower resolutionsjeading to reducettopical biasesand the 6A convection scheme is
designed to be effective at higher vertical resolutions than those for which the 5A convection scheme was designed.

After its initial reduction, the precipitation recovers in CFSv2, so that it is in agreement with observations over feafl time

30i 70 days. It could therefore be interesting to study this recovery period further: although it is based on errors iel the mod
(as quantities should not vary with forecast/hindcast lead time as plotted #2)ithis could provide insight into conditions

under which the model is capable of simulating breadictive transitions. A similar, albeit much smaller and more short

lived, recovery is also identified in GloSea, suggesting that such insight could apfffetent modelling systems. In this

study, the recovery has been shown to be associated with increasing westerly flow over the ArabidotBeaodelling

systems

Although the biases seem to develop from issues in the atmospheric model components, the interaction with SSTs in the oces
component does plasome role and it is likely that this role becomes more important beyond the seasonal time duakeas

in climate simulations are generally larger than those demonstrated here in the seasonal. Hm@faSt® tle interaction

seems to be quite direct (with decreasing SSTs corresponding closely with decreasing precipitation), and more important tha
in GloSeawhere itseems to depend more on the part of the season that is evaluated. This could be due to differences in the
two ocean model components or in the coupling between the atmosphere and thBaltzsna and Nigam (2009) showed

that different coupled models exhibit varyingly deficient representation of local addcairaiii sea interactions in the Indian

28



495

500

505

510

515

520

525

Ocean during boreal summand, in particular, that they tend to overestimate the correlation between SST and precipitation,
suggesting that local &iseainteractions are overemphasised. Meanwhile, when focussing on June, the behaviour of the two
systems (and the two versions of GloSea) is much more similar, and suggests that both systems suffer from a delayed monso
onset, so this could be a common issue affecting both systems in the same way.

An analysis of how theeasenaforecastotal-precipitationameuntdepends on observed BSISO state has been carried out in
this study, in terms of both the phase at the beginning of the forecast and the phase at the end of the forecast.tBoth evalua
methods show that the two systems are best at simulating situatimme the largscale dynamics favours decreasing
precipitation over India, and are worst at simulating situations where theskeaitpedynamics favours increasing precipitation

over India, and that this continues beyond the first 8 days of the forecast and even into a second BSIB@scyuatgests

an opportunity to focus future work on cases corresponding tarstreasing precipitatioconditions, and it will be interesting

to investigate how widespread the behaviour is amoothstr models.It also provides useful information to users on the
relative reliability of forecasts of each of these transitions

One explanation for thdependence on BSISO phaselld be that, based on their systematic biases, the two systems have a
tendency to move towards monsoon break conditions and so are better at capturing situations where this is occurying in realit
Further analysis of such transitions in the models may provide insight into the reasons for this preference and iisrcontribut
to the overall systematic biasessslian-summermonset®M rainfall in climate modeldsera et al. (2021) evaluated seasonal
forecasts of théadian-summermonsot®M usingthe NCMRWRFERP system based @2 and found that, while bred&-

active and activéo-break transitions were both predicted well up to 4 weeks, there was some evidence of a weakening and a
delay in the breako-active transitions with increased forecast lead time.

The BSISO analysis also shows that the precipitation in both systems is largely independent of observed BSISO state by abo
40 days into the forecast. It will therefore be interesting in future work to carry out a simaligsis of how the biases vary
with the model sé own BSI SO state and, i nde e.d’lhe mbdelsnayh at e
simulate different distributions of precipitation as a function of their own BSISO pinaskis could change as the lead time
increaseslt may also be useful to use the longamge predictability of the BSISO phase to add information about likely biases

in weather and seasonal forecasts, particularly if the BSISO is not well simulated by the models, in which case thigrinformat
would not already be included in the forecasts themseRe=zious studies have shown that B&®SO can beredicted in

forecast models up tour weeksn advancegJie et al., 2017; Xiang et al., 2024) ahik could be combined with statistical
processing to obtaia longefrange prediction of likely model biases.

The interannual variation of tHedian-SummerMeonsed8M is affected byboththe El NificSouthern Oscillation (ENSO;
Krishnamurthy& Goswamj 2000; Chattopadhyayet al., 2015;Xavier et al., 2007and the Indian Ocean Dipole (IOD;
Pothapakulat al., 2020Hrudyaet al., 2021)Ashok et al. (2001) showed that ENSO and the @Bhavecomplementary

effects on the monsoon, witligh ENSQrainfall correlations accompanied by low I@Binfall correlations and viegersa.

It will therefore be interesting to investigate whether the relationship between rainfall bias and BSISO phasepesitisg

on the indices of ENSO and the IORikuchi (2020; 2021) showed th&NSO has little effect on the BSISO overallit it
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can affectertain aspects of the BSIS@W( & Cao, 2017Li & Mao, 2019) and the Monsoon Intraseasonal Oscillatimséph
et al., 2011).
Lee et al. (2013attribute theBSISO2 indices, corresponding to Bieéand 4" EOFs, tabeing relevant tthe premonsoon and

530 onset phaseso arevaluation of the relationshipetweerprecipitation biaseand BSISO2 phaséthe present study evaluates
this relationship for BSISO1 phas&®rresponding to the'and 2¢E OF s , and referred to here
would be worthwhileln the present study, it isdiod that the biases have different chagastics in June from those in July
and Augist, so it may be that applying tBSISO analysis to the months separately, witld the two indices separately, will
identify further relationships between biases and BSISO phases.

535 As already mentioned, the purpose of seasonal forecasts is largely to produce a statistical idea of the state of hieweather
weeks to months ahead, and the hindcasts evaluated in this study are in practice used to calibrate the actual forecast mode
so that systematic biases should diotctly affect the quality of the forecast. However, it may be of interest in future work to

investigate whether there is any relationship between model bias and forecast skill in the seasonal forecasts.

Appendix A: Additional figures and table

Initialization Dates

month

February 05, 10, 15, 20, 25 (00 &12 UTC)
March 02,07,12,17,22,27 (00 & 12 UTC)
April 01, 06, 11, 16, 21, 26 (00 & 12 UTC)
May 06, 11, 16, 21, 26 (00 & 12 UTC)
June 05, 10, 15, 20, 25 (00 &12 UTC)
July 05, 10, 15, 20, 25 (00 &12 UTC)
August 05, 10, 15, 20, 25 (00 &12 UTC)

540
Table Al:, Start dates of CFSv2 hindcasts evaluated in this study.
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Figure A16. Overall GloSea5biases averaged over valid times in Juiidugust 2004 2015 and initial times in the month shown.
550 Variables are precipitation in mm/day (bias against IMERG observations) and 85®Pa_horizontal wind (bias _against ERA5

reanalysis)
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Figure A17. Overall GloSea6biases averaged over valid times in Juiidugust 2002 2015 and initial times in the month shown.
555 Variables are precipitation in_ mm/day (bias against IMERG observations) and 850iPa horizontal wind (bias against ERAS

reanalysis).
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Figure A2:A5. As Fig. 52 but with GloSea5 hindcasts valid during 19942015 and GloSea6 hindcasts valid during 1992016 (all

ot her data unchanged, i . e., i Gil2015)e a
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|565 Figure A3:A6. Precipitation (colours, in mmiday) and 856hPa wind (vectors) in CFSv2, at the hindcast lead time shown, averaged
over Jund August 20021 2015.
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Figure A4:A7. SST (colours, inK) and 850hPa wind (vectors) in CFSv2, at the hindcast lead time showayeraged over Juné
August 20027 2015.
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