
 

1 

 

Development of Indian summer monsoon precipitation biases in two 

seasonal forecasting systems and their response to large-scale drivers 

Richard J. Keane1,2, Ankur Srivastava3, Gill M. Martin1 

1Met Office, Exeter, UK 
2School of Earth and Environment, University of Leeds, UK 5 
3Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India 

Correspondence to: Richard J Keane (richard.keane@metoffice.gov.uk) 

Abstract. The Met Office Global Coupled Model (GC) and the NCEP Climate Forecast System (CFSv2) are both widely used 

for predicting and simulating the Indian summer monsoon (ISM), and previous studies have demonstrated similarities in the 

biases in both systems at a range of time scales from weather forecasting to climate simulation. In this study, ISM biases are 10 

studied in seasonal forecasting setups of the two systems, in order to provide insight into how they develop across time scales. 

Similarities are found in the development of the biases between the two systems, with an initial reduction in precipitation 

followed by a recovery associated with an increasingly cyclonic wind field to the north-east of India. However, this occurs on 

longer time scales in CFSv2, with a much stronger recovery followed by a second reduction associated with sea surface 

temperature (SST) biases, so that the bias at longer lead times is of a similar magnitude to that in GC. In GC, the precipitation 15 

bias is almost fully developed within a lead time of just eight days, suggesting that carrying out simulations with short time 

integrations may be sufficient for obtaining substantial insight into the biases in much longer simulations. The relationship 

between the precipitation and SST biases in GC seems to be more complex than in CFSv2, and is different during the early 

part of the monsoon season from during the later part of the monsoon season. 

The relationship of the bias with large-scale drivers is also investigated, using the Boreal Summer IntraSeasonal Oscillation 20 

(BSISO) index as a measure of whether the large-scale dynamics favours increasing, active, decreasing or break monsoon 

conditions. Both models simulate decreasing conditions the best and increasing conditions the worst, in agreement with 

previous studies and extending these previous results to include CFSv2 and multiple BSISO cycles. 
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1 Introduction 

The Indian summer monsoon (ISM) is one of the most challenging meteorological phenomena to simulate, with many current 30 

general circulation models (GCMs) having substantial systematic biases (Jain et al., 2019; Katzenberger et al., 2021; Mitra, 

2021; Watterson et al., 2021; Choudhury et al, 2022). Two examples of GCMs with a persistent low-precipitation bias for the 

ISM are the Met Office Global Coupled Model (GC, Williams et al., 2015; 2017) and the NCEP Climate Forecast System 

(CFSv2, Saha et al., 2014). This has been shown to occur in these models across a range of time scales—with common 

accompanying features including an anti-cyclonic bias and a high-precipitation bias over the ocean to the south of India—from 35 

weather forecasts (Kar et al., 2019; Keane et al., 2019; 2021; Abhilash et al., 2014) to seasonal and climate simulations (Walters 

et al., 2019; Martin et al., 2021; Swapna et al., 2018; Sahana et al, 2019). The purpose of the present study is to investigate 

this low-precipitation bias in detail in seasonal simulations, to provide insight into how it develops from shorter to longer time 

scales. 

Many previous studies have investigated the skill of seasonal forecasts, using GC or CFSv2, in predicting the ISM, and these 40 

studies have generally demonstrated similar biases to those in weather and climate simulations (Abhilash et al., 2014; George 

et al., 2016; Ramu et al., 2016; Johnson et al., 2017; Srivastava et al., 2017; Jain et al., 2019; Chevuturi et al., 2019; Martin et 

al., 2021; Joseph et al., 2023; Kolusu et al., 2023). Despite these biases, the seasonal forecasts do show skill, particularly at 

shorter lead times of up to two weeks (George et al., 2016; Rao et al., 2019; Joseph et al., 2023; Kolusu et al., 2023)), and can 

reasonably well simulate the northward propagation of the monsoon intraseasonal oscillation (Abhilash et al., 2014; Sabeerali 45 

et al., 2013; Srivastava et al., 2023), low-pressure systems (Srivastava et al., 2017; 2023) and the monsoon onset (Menon et 

al., 2018; Chevuturi et al., 2019; Pradhan et al. 2017). George et al. (2016) attributed this skill in CFSv2 to correctly capturing 

connections with the El Nino Southern Oscillation, with Indian Ocean coupled dynamics not adequately represented in CFSv2, 

and similar behaviour was demonstrated for GC by Johnson et al. (2017). 

The atmospheric biases have been shown to be associated with cold sea-surface temperature (SST) biases over the Indian 50 

Ocean in CFSv2 (George et al., 2016; Srivastava et al., 2017) and GC has also been shown to develop SST biases in seasonal 

forecasts within the first 30 days (Martin et al., 2021); Johnson et al. (2017) attributed incorrect SST anomalies to a lack of 

wind forcing on the SSTs. We investigate this interdependence of atmospheric and oceanic biases in the seasonal forecasting 

systems here by carrying out a systematic investigation of the variation of how precipitation, wind and SST biases vary with 

forecast lead time. 55 

Martin et al. (2021) investigated systematic biases for the Asian summer monsoon, in GC configurations on a range of time 

scales. They showed that, while the biases in seasonal forecasts and climate simulations generally have similar patterns and 

magnitudes, those over India have larger magnitudes in the climate simulations, indicating that these biases could have a 

substantial dependence on how far ahead of the monsoon season the simulation is initialised. Meanwhile, Chattopadhyay et al. 

(2016) demonstrated an intriguing finding that, in CFSv2, longer lead times can produce produces better ISM forecasts at 60 

longer lead times than at shorter lead times. It is therefore important to look at the lead-time development of the seasonal 
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forecast biases in detail to investigate how they are affected by errors in different physical processes occurring on different 

time scales. 

A more direct aim of this study is to follow Keane et al. (2021), who showed that the reduction in mean ISM precipitation with 

forecast lead time in weather forecasts using the atmosphere and land components of GC has a strong and coherent dependence 65 

on the phase of the Boreal Summer Intraseasonal Oscillation (BSISO; Wang & Xie, 1997; Kikuchi et al., 2012; Lee et al., 

2013; Kikuchi, 2020; Kikuchi, 2021). They showed that the precipitation is initially too high for all phases, and the subsequent 

reduction is strongest for phases 2–4, corresponding to broadly increasing monsoon activity, so that by the end of the forecast 

there is a substantial low-precipitation bias. For phases 5–7, corresponding to broadly decreasing monsoon activity, the 

reduction is much weaker so that the value at the end of the forecast is actually quite close to observed values. It is therefore 70 

of interest to investigate longer forecasts with the same model to investigate how this behaviour develops beyond the 7 days 

of the weather forecasts, as well as the influence of ocean-atmosphere coupling. This study provides an opportunity to do this, 

as well as to determine whether a similar dependence of the precipitation bias with BSISO phase occurs in CFSv2. 

The manuscript proceeds by describing the data evaluated in this study and the methods used to perform the evaluation. The 

results of the evaluation are then presented, followed by a summarydiscussion and concluding remarks. 75 

2 Data 

The GC setup for producing seasonal forecasts is GloSea, described in detail by MacLachlan et al. (2015). The forecasts are 

calibrated by running a set of hindcasts initialised at the same time of year as the forecast for a range of previous years using 

the same model version, so that the model version’s statistical errors relative to the relevant seasonal climatology can be 

determined. TheOperationally, the hindcasts are initialised as a 7-member ensemble on the 1st, 9th, 17th and 25th of each month 80 

for the year range 1993–2016. The hindcastsHindcasts are therefore used in this study, rather than forecasts, as they provide a 

large data set and we are interested in the development of biases in the dynamical model itself rather than the quality of the 

post-processed forecasts. 

Operational upgrades to GloSea have always been carried out less often than once per year, meaning that there is at least one 

full year’s worth of hindcasts available for each version. In this study we assess two versions, GloSea5 based on GC2.0 85 

(Williams et al., 2015), using hindcasts generated during the period from November 2017 to August 2018, and GloSea6 based 

on GC3.2 (closely related to GC3.0 and GC3.1, described by Williams et al., 2017), using hindcasts generated during the 

period from November 2021 to August 2022. The atmospheric model resolution of both GloSea versions is N216, 

corresponding to grid spacings of approximately 70 km in the tropics. ERA-interim reanalysis fields are used to provide the 

(unperturbed) initial conditions and perturbations between the members are produced through the use of a stochastic kinetic 90 

energy backscatter scheme (Bowler et al., 2009). An upgrade to the soil moisture initialisation (described by Gautam et al., 

2023) was implemented in 2019 so GloSea6 includes this upgrade whereas the version of GloSea5 evaluated here does not. 
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Hindcasts have also been produced using CFSv2. The atmospheric model spectral resolution is T382, corresponding to grid 

spacings of approximately 38 km in the tropics. Two hindcasts were initialised, at 00UTC and 12UTC, roughly every 5 days 

from February to August for the year range 2002–2015; the precise initialisation dates are provided in Table A1. This means 95 

that there are roughly half as many hindcasts initialised during the period February–August each year for CFSv2 (74) as for 

GloSea (196), but we compare the two systems directly in the main manuscript and show evidence in Appendix A that using 

only three of the seven GloSea ensemble members (so giving 84 hindcasts initialised during February–August) does not affect 

the key conclusions of the paper (Figs. A1, A9). We restrict our evaluation to the period 2002–2015 but, again, show evidence 

in Appendix A that these years are representative of the full period for which GloSea hindcasts are available (Figs. A2, A10). 100 

In this study we evaluate the behaviour of the hindcasts as a function of lead time for given valid time periods. To do this, for 

each lead time we average the hindcast values over all initialisation dates with a hindcast of the corresponding length occurring 

during the relevant valid time period. We focus on valid times during June–August, and the total hindcast length is 216 days 

for GloSea and 208 days for CFSv2. This means that the earliest GloSea hindcasts used are initialised on 1st November the 

previous year, where the longest lead times extend just into the beginning of June, and the number of available hindcasts for 105 

every lead time is approximately the same (12 or 13). However, since the CFSv2 hindcasts are only available from February, 

hindcasts at the longest lead times are only available later in the June–August period (for example, lead times longer than 150 

days are only available for July and August valid times). 

We also carry out some evaluation of the hindcasts by taking all those initialised during a certain period and categorising them 

according to the BSISO state at the start of the hindcast. We look at how the precipitation varies as the hindcast develops, up 110 

to a hindcast time of 60 days, averaged over all hindcasts within each category, and compare with the observed precipitation 

averaged over the corresponding dates. 

The purpose of this study is to investigate how model quantities change as the hindcast develops (whether looking at a given 

set of valid times and increasing the lead time by looking at different hindcasts, or looking at a given set of initialisation times 

and increasing the integration times of the same hindcasts), rather than to evaluate their performance with respect to 115 

observations, which is generally already well known at least in the broadest sense. However, we do compare with observed 

precipitation, using the IMERG data set (Huffman et al., 2019), in order to provide a baseline for the modelled quantities. 

In this study, observed BSISO data are taken from https://iprc.soest.hawaii.edu/users/kazuyosh/ISO_index/data/BSISO_25-

90bpfil_pc.extension.txt. The BSISO index is calculated using temporally bandpass filtered observed outgoing longwave 

radiation (OLR). An extended empirical orthogonal function (EEOF) analysis is carried out on the data for June–October, and 120 

for any given day, principal components can be obtained by projecting the OLR field onto each EEOF. The first two principal 

components are normalised and can then be plotted on orthogonal axes. A phase and amplitude can then be defined as the 

azimuthal and radial coordinate of the plotted point on the orthogonal axes. The full method is described by Kikuchi et al. 

(2012) and Kikuchi (2020). 

In practice, the azimuthal coordinate is divided into eight discrete phases, with phases 4 & 5 generally corresponding to 125 

increased average precipitation over India and phases 8 & 1 corresponding to reduced average precipitation over India (Kikuchi 

https://iprc.soest.hawaii.edu/users/kazuyosh/ISO_index/data/BSISO_25-90bpfil_pc.extension.txt
https://iprc.soest.hawaii.edu/users/kazuyosh/ISO_index/data/BSISO_25-90bpfil_pc.extension.txt
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et al., 2012). We therefore use the phases as an indicator of whether the large-scale dynamics favours enhanced, increasing, 

suppressed or decreasing convection over India and categorise the hindcasts using two different methods, one using the phase 

at the hindcast valid time and one using the phase at the hindcast initialisation time, as described above. 

3 Results 130 

3.1 Overall biases and seasonal cycle 

The overall biases are shown in Figs. 1–3, for different initialisation months. There is a low-precipitation bias over most of 

India and the northern Bay of Bengal, which intensifies somewhat with increasing lead time (i.e., earlier initialisation time) 

and is less bad in GloSea6 than in GloSea5. The spatial pattern of the precipitation bias is broadly similar for the different 

initialisation times. All models have a high-precipitation bias over the ocean to the south of India and, to some extent, over the 135 

south-western coast of India. The wind biases are shown against ERA5 winds (Hersbach et al., 2023): there is some sign of an 

anticyclonic bias over India in all three datasets. 
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Figure 1: Overall CFSv2 biases averaged over valid times in June–August 2002–2015 and initial times in the month shown. Variables 

are precipitation in mm/day (bias against IMERG observations) and 850-hPa horizontal wind (bias against ERA5 reanalysis). 140 
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Figure 2: Overall GloSea5 biases averaged over valid times in June–August 2002–2015 and initial times in the month shown. 

Variables are precipitation in mm/day (bias against IMERG observations) and 850-hPa horizontal wind (bias against ERA5 

reanalysis). 
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 145 

Figure 3: Overall GloSea6 biases averaged over valid times in June–August 2002–2015 and initial times in the month shown. 

Variables are precipitation in mm/day (bias against IMERG observations) and 850-hPa horizontal wind (bias against ERA5 

reanalysis). 

 

The precipitation is plotted as a function of time of year (within June–August), for the three models, in Fig. 4. There is a clear 150 

reduction in precipitation after the first 8 days in GloSea, and this is largest earlier in the monsoon season. In CFSv2 there is 

also a reduction, which occurs more gradually with increasing lead time. It is also striking how much less variable the 

precipitation is at longer lead times, particularly in Glosea. This may reflect the reduced signal-to-noise ratio at longer lead 

times, such that averaging over all years and all ensemble members results in a smoother time variability. 

 155 
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Figure 4: Seasonal cycle of precipitation in hindcasts and IMERG observations, averaged over June–August 2002–2015. Hindcasts 

are grouped into 8-day lead time sections and depicted in colours ranging with increasing lead time from magenta (darker, for lead 

times of 1–8 days) to yellow (lighter, for lead times of 199–216 days). Quantities are smoothed in the time-of-year direction with a 1-

2-1 filter. 160 

3.2 General Behaviourlead-time development 

The precipitation averaged over latitudes 8N–29N and longitudes 69E–89E, and over valid times during June–August 2002–

2015, is shown for each hindcast lead time in Fig. 15. This is the region investigated in detail by Keane et al. (2021) and is 

used in this study when looking at spatially averaged quantities. Versions of Fig. 15 using fewer GloSea members and using a 

longer range of GloSea years are shown in Appendix A (Figs. A1 and A2, respectively), and are very similar. Because hindcasts 165 

are only initialised on certain dates within each system, hindcasts at a given lead time will only be available on a subset of the 

92 days during June–August each year. For example, in GloSea, at 10 days’ lead time there are hindcasts available on 4th, 11th, 

19th, 27th June, 5th, 11th, 19th, 27th July, and 4th, 11th, 19th, 27th August; at most lead times there are 12 hindcasts available, with 

13 available at some lead times due to the slight irregularity in the rate of initialisation of the hindcasts. The rate of initialisation 

for the CFSv2 hindcasts is slightly more irregular, so that there are 15—18 dates available for each lead time up to 137 days 170 

(after which the number of available dates gradually decreases, as described in the previous section). The dotted lines therefore 

show the observed precipitation on the same subsets of dates, and provide an estimate of how much this variation in available 

dates with lead time should affect the hindcast. 

Looking at Fig. 15, CFSv2 and GloSea5 reach a similar low-precipitation bias by the end of the hindcast, but this takes longer 

to develop in CFSv2. GloSea6 also has a low-precipitation bias but this is much improved compared with GloSea5. Both 175 

GloSea systems have increasing precipitation at very short lead times and then all systems have sharply decreasing precipitation 

during the first 8 days or so. The development is then characterised by a slower decrease followed by a recovery, but this is 

much stronger, and takes longer to develop, in CFSv2 and is very weak in GloSea6. In CFSv2 there is then a decrease followed 

by fairly constant values from about 100 days, while in GloSea the precipitation is fairly constant from about 30 days. 
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Figure 5: Variation of precipitation (averaged over 8N–29N and 69E–89E and June–August 2012–2015) with hindcast lead time in 

different seasonal forecasting systems. The dotted lines show observed (IMERG) values averaged over the dates on which hindcasts 

were available in the specified system at that lead time. The green vertical lines show the lead times used in Figs. 2–75 (1, 3, 8, 16, 

31, 50, 101 and 150 days). Note that the horizontal scale is larger for lead times less than 10 days than for lead times greater than 10 185 
days (so that it is different either side of the vertical dotted grey line). 

3.2.1 Changes during specific stages of the hindcast 

In order to investigate the behaviour in more detail, the hindcasts are divided into different stages, following the evolution 

shown in Fig. 15. The first two days are characterised by increasing precipitation in GloSea and decreasing precipitation in 

CFSv2. In GloSea this may be due to a ‘spin-up’ from the reanalysis initial state toward behaviour more representative of GC. 190 

The next five daysDays 3–8 account for most of the low-precipitation bias in both GloSea setups. The following eight daysDays 
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8–16 have fairly constant precipitation in GloSea and decreasing precipitation in CFSv2, while the next fifteen days after 

that16–31 have a small increase in precipitation in GloSea and fairly constant values in CFSv2. The subsequent period of 

approximately nineteen days 31–50 has increasing precipitation in CFSv2, then there is a period of approximately fifty days 

(50–101) of decreasing precipitation in CFSv2. These two periods have fairly constant precipitation in GloSea and the period 195 

from 100 days onwards has fairly constant precipitation in all setups. 

To investigate this further, maps of precipitation, 850-hPa wind and SST, in the form of differences between pairs of lead 

times corresponding to the green vertical lines in Fig. 1, are plotted in Figs. 2–7.5, are plotted in Figs. 6–9. For the final two 

pairs (Days 50—101 and Days 101—150) differences are shown between 31-day averages, centred respectively on the initial 

and final time, since at such long lead times individual days are less relevant than longer time averages. The absolute values 200 

are plotted in Figs. A3–A8 and are characterised by a prevailing westerly flow over India and widespread precipitation, with 

the largest amounts on the west coast and north-east of India and the Bay of Bengal (BoB). 
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Figure 6: Precipitation differences (colours, in mm/hr) and 850-hPa wind differences (vectors) in CFSv2,GloSea5 (left column), 205 
GloSea6 (centre column) and CFSv2 (right column), between the hindcast lead times shown, averaged over June–August 20122002–

2015. The green boxes show the evaluation region 8N–29N and 69E–89E used throughout this study. 
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Figure 7: SST differences (colours, in K) and 850-hPa wind differences (vectors; note that this field is identical to that in Fig. 26) in 210 
GloSea5 (left column), GloSea6 (centre column) and CFSv2, (right column), between the hindcast lead times shown, averaged over 

June–August 20122002–2015. The green boxes show the evaluation region 8N–29N and 69E–89E used throughout this study. 
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Figure 4:8: Precipitation differences (colours, in mm/hr) and 850-hPa wind differences (vectors) in GloSea5, (left column), 215 
GloSea6 (centre column) and CFSv2 (right column), between two fields at (top row) and averaged over 30 days centred on (centre 

and bottom rows) the two hindcast lead times shown, averaged over June–August 2012–2015. 
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Figure 5: SST differences (colours, in K) and 850-hPa wind differences (vectors; note that this field is identical to that in Fig. 4) in 

GloSea5, between above the hindcast lead times shown, averaged over June–August 2012–2015panel. 220 
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Figure 6: Precipitation differences (colours, in mm/hr) and 850-hPa wind differences (vectors) in GloSea6, between the hindcast 

lead times shown, averaged over June–August 2012–2015. 
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Figure 7:  225 

Figure 9: SST differences (colours, in K) and 850-hPa wind differences (vectors; note that this field is identical to that in Fig. 68) in 

in GloSea5 (left column), GloSea6, (centre column) and CFSv2 (right column), between two fields at (top row) and averaged over 

30 days centred on (centre and bottom rows) the two hindcast lead times shown, averaged over June–August 2012–2015 above the 

panel. 
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 230 

During days 1 to 3, the overall westerly flow strengthens in all three systems (albeit rather less coherently in CFSv2), but 

diverges away from India, in that it is too southerly in the north and too northerly in the south. In GloSea this is accompanied 

by an increase in precipitation over India and the Equatorial Indian Ocean (EIO), whereas in CFSv2 there is a sharp decrease. 

There is also increased convergence into the EIO in GloSea. This time period is generally too short for any SST changes to 

develop. 235 

During days 3 to 8, most of the precipitation reduction occurs in GloSea and it is accompanied by an anticyclonic bias, as seen 

in previous studies of GC) on weather and climate time scales. The precipitation bias is considerably reduced in GloSea6 but 

the anticyclonic bias is similar to that in GloSea5. The behaviour is similar in CFSv2 but with rather less coherent patterns. 

All systems show a decrease in the westerly flow into the south of India, although this is less pronounced in GloSea6. The 

behaviour during the first 8 days in GloSea is consistent with that in the atmosphere-only weather forecasts studied by Keane 240 

et al. (2019; 2021). 

Days 8 to 16 represent a relatively quiet period for GloSea in terms of precipitation, but v5 has an increase in anticyclonic flow 

whereas v6 becomes more cyclonic and the westerly flow into India increases, mitigating the bias in the previous period. 

CFSv2 also has small precipitation changes over India but there is a decrease over the BoB and an increase over EIO. The 

flow also becomes more anticyclonic to the east of India. The reduction in precipitation over the BoB is accompanied by an 245 

increase in SST and a reduction in the flow from India. SST changes are still very small in GloSea, but with some notable 

increase over the EIO. 

Days 16 to 31 show an increase in the westerly flow Inin GloSea, bringing increased precipitation over the western coast, and 

an increase in cyclonic flow, bringing increased precipitation to the very east of India and northern BoB. These features are 

more pronounced in v5, which could be related to the fact that the reduction in precipitation during earlier periods is stronger, 250 

and so there is more scope for a recovery in precipitation. CFSv2 looks very different, with decreased westerly flow over India 

and reduced precipitation over the northern BoB. The flow to the south of India is more westerly, with (as in the previous 

period) an increase in precipitation. A similar pattern was seen in the overall bias in CFSv2 simulations carried out by Hari 

Prasad et al. (2021). SST changes are also different, with increases over the Arabian Sea and BoB in CFSv2 (and decreases 

further south and along the eastern coast of India) and decreases everywhere in GloSea. 255 

Days 31 to 50 show very little change in GloSea, whereas there is much more change in CFSv2, which has an increase in 

westerly flow over India and an increase in cyclonic flow over eastern India and the northern BoB. This is similar to what is 

seen in GloSea over the previous two periods, and isbut positioned further south and accompanied by an even stronger increase 

in precipitation. The precipitation decreases to the south of India so that overall the change is in the opposite direction (and 

stronger) to that in the previous period in CFSv2. The SST and precipitation changes match very closely in CFSv2, except 260 

over the very north of the BoB and Bangladesh and eastern India, and along the western coast of India. 

Days 50 to 101 also show little change in GloSea, with small decreases in precipitation in northern India and small increases 

in southern India. The flow into the southern part of the western side of the box changes direction somewhat so that air is 
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advected more is coming into the western part of the southern side of the box. There is much more change in CFSv2, with a 

substantial reduction in precipitation; the pattern looks similar to that in GloSea during days 3 to 8, but with the anticyclonic 265 

flow difference and the strongest precipitation reduction centred further west, over the Arabian Sea. The SST and precipitation 

differences again look remarkably similar in CFSv2. 

From day 101 onwards, both systems have roughly constant precipitation within the analysis region used in Fig. 15 but, 

whereas in GloSea there is very little change in the wind or precipitation fields, in CFSv2 there are changes in both wind and 

precipitation fields, with the precipitation changes cancelling each other when averaged over the region as a whole. In CFSv2 270 

there is a reduction in westerly flow over India, which seems to cause a reduction in precipitation over the western coast, but 

an increase over the peninsula, so it could be that less moist air is advected out to the east. Both systems show widespread 

decreases in SST. 

3.2.2 Physical interpretation 

To investigate the interplay between SSTs, precipitation and wind further, quantities averaged over selected regions are plotted 275 

as a function of lead time in Fig. 10. It can be seen that the initial decrease in precipitation over India is mirrored by an increase 

in precipitation over the EIO in all models (with both occurring over a longer time scale in CFSv2). There is also increasing 

flow from India to the EIO, suggesting that the increased precipitation over the EIO draws moisture away from India and could 

be strongly associated with the low-precipitation bias over India. This agrees with previous work (Bollasina & Ming, 2012; 

Bush et al., 2015; Martin & Rodriguez, 2024) and suggests that this phenomenon occurs very early in any model simulation. 280 

In all models, changes in the westerly flow over the Arabian Sea are followed closely by the precipitation both over India as a 

whole and over the north-east India (NEI) region that seems to be largely responsible for the recovery in precipitation. This 

suggests that its initial decrease may contribute to the low-precipitation bias, while its subsequent increase could be 

contributing strongly to the later recovery in precipitation. 
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 285 
Figure 10: Surface temperature, 850-hPa wind and precipitation averaged over different regions (shown in Fig. 8), averaged over 

June–August 2002–2015, as a function of lead time. A smoothing is applied by taking a 9-day running average in the lead-time 

direction. 

The flow out of India into the EIO reduces after about 8 days in GloSea, and is partly connected to the reduction in precipitation 

over the EIO. This reduction in precipitation is associated with a decrease in SST over the same region through a compensating 290 

coupled feedback. There is some evidence that decreasing SSTs over the BoB are similarly related to decreasing precipitation 

over NEI. 

The improved performance in GloSea6 over GloSea5 (smaller precipitation reduction over India) is accompanied by a smaller 

increase in precipitation over the EIO (and a weaker flow from India out to the EIO) and a smaller decrease in westerly wind 

over the Arabian Sea, providing further evidence that these are important factors in the low-precipitation bias. There is also 295 

less of a reduction in SSTs in all the locations analysed, consistent with the smaller changes in precipitation. 

Napusetty et al. (2016) used low-resolution CFSv2 seasonal hindcasts and investigated the lead-time dependence of the 

moisture transport bias in the Tropical Indian Ocean. They found that the positive bias in moisture transport in the equatorial 

Indian Ocean increases systematically from June to August. This bias causes reduced moisture availability to the weakened 

cross-equatorial monsoon flow, and the strong dry bias in rainfall over the Indian landmass can be partly attributed to this 300 

strong positive bias in moisture transport. Interestingly, the bias in moisture transport over EIO is at its maximum in July for 

May initialization and August for June initialization, compared to other initialization months, which roughly corresponds to a 

lead time of ~30-90 days. Similar to their findings, the high-resolution version of CFSv2 used here also exhibits a strong bias 
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in vertically integrated moisture transport over EIO (figure not shown). We explore the flow into a box over the eastern EIO 

(0-15N, 80-120E, denoted EEIO) and contrast it with the strength of the Findlater jet (49E-69E, 0N-21N, the “Arabian Sea” 305 

box). Generally, during JJA, the precipitation over India closely follows the influx of moisture from the Arabian Sea, such that 

the precipitation curve, U850, and V850 (over the Arabian Sea, V850 not shown here) curves are in sync. However, the peak 

in the winds over the Arabian Sea occurs a few days later compared to the peak in precipitation over India, the reasons for 

which are not clear. The recovery in precipitation in CFSv2 during days 31-50 and the subsequent decline are associated with 

the strength of the Findlater jet and the associated moisture influx. The recovery in precipitation over EIO (~30-51 days lead 310 

time) and the subsequent decline is related to the large influx of moisture over this region by the zonal winds. The decline is 

also associated with increased flow eastward into the eastern EIO; contrastingly, this flow does not change substantially in 

GloSea, particularly after 30 days lead time. 

Figure 11 shows scatter plots of 850-hPa eastward wind over the Arabian Sea against precipitation over India, coloured by 

SST over the Arabian Sea. These show individual hindcasts over the full range of years and dates available, for different lead 315 

time ranges, in order to investigate how the relationship between the three variables develops within the models as the hindcasts 

progress. A plot for observed/reanalysed values is included for comparison: this uses IMERG for precipitation (Huffman et 

al., 2019), ERA5 for 850-hPa winds (Hersbach et al., 2023) and a satellite-derived dataset for SST (Copernicus, 2019). 

There is a clear correlation between wind and precipitation in all models at the earliest lead times, agreeing with what is seen 

in the observations. This correlation weakens, however, as the hindcasts develop, with the weakening being greater in GloSea5 320 

than GloSea6. This suggests that the recovery in westerly wind over the Arabian Sea, seen in Fig. 10, could lead to a stronger 

recovery in precipitation if the relationship between the two variables were simulated correctly in the models. 

The SST ranges vary between the models and between models and observations, but there is a general tendency for higher 

temperatures to be associated with weaker winds and less precipitation. There is also some evidence from Fig. 11 that the 

relationship between SST and both wind and precipitation is too strong, as the temperature values vary more coherently with 325 

wind and precipitation, in the models than in the observations, particularly at longer lead times. In CFSv2 this is particularly 

the case for lead times of 51 to 101 days, when the precipitation decreases strongly with lead time, and the temperature range 

here is also largest. This provides further evidence that SSTs are an important factor in this secondary decrease in precipitation, 

and suggests that the coupling between the ocean and atmosphere components could be too strong (for example, the effect of 

stronger winds leading to evaporative cooling could be overestimated) in this region in all the models. 330 
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Figure 11: Scatter plots of precipitation over India (8-29N, 69-89E) against 850-hPa eastward wind over the Arabian Sea (0-21N, 

49-69E), coloured by SST over the Arabian Sea. Each dot represents a single hindcast for on year during 2002—2015, one day in 

June, July or August and one lead time within the range shown. 

3.3 Behaviour during different parts of the monsoon season 335 

The development with lead time for different parts of the monsoon season is shown in Fig. 812. Because the CFSv2 hindcasts 

are only available initialised from February, the longest lead times are not available in June and July. All three months show 

sharp initial decreases. In June this is followed by a consistent but decelerating decrease throughout the length of the hindcast. 

The recovery followed by a further decrease seen for CFSv2 is present in all months, but is much stronger in July and August. 

The less substantial recovery behaviour seen for GloSea also occurs in all months, but in August on somewhat longer time 340 

scales: the worst low-precipitation biases are seen for lead times of 8-50 days, with the bias reducing to a smaller value from 
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50 to 100 days. It is also notable that the differences between the three model setups are much larger in July and August than 

in June. 

 

 345 

Figure 8:12: Variation of precipitation with hindcast lead time (averaged over 8N–29N and 69E–89E and 20122002–2015) for 

hindcasts valid in each of June, July and August. The dotted lines show observed values averaged over all dates in the month (i.e., 

not just dates on which hindcasts are available). 

The behaviour in different parts of the season in GloSea is consistent with the findings of Martin & Levine (2012), who 

evaluated the seasonal cycle of precipitation over a similar region to that used in this study for climate simulations using an 350 

earlier version of the GC model. Looking at the recent past climate, they found both atmosphere-only (forced by observed 

SSTs) and coupled-model simulations to produce too little precipitation over the region throughout June–August, but with the 

bias being worse in the coupled simulation earlier in the period, and worse in the atmosphere-only simulation later in the 

period. The early poorer performance of the coupled simulation was attributed to a delayed monsoon onset caused by cold 

SST biases over the Arabian Sea, as described by Levine & Turner (2012). Meanwhile, the later better performance of the 355 
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coupled simulation was attributed to a cold SST bias over EIO associated with reduced precipitation there, leading to increased 

precipitation over the Indian Peninsula. 

Figure 9 shows that there is a cold SST bias in GloSea5 over the Arabian Sea in June, which becomes larger as the lead time 

increases. In other words, the earlier in the year that the seasonal hindcast is initialised, the longer the SST bias has to develop 

over the course of the simulation, which, based on Levine & Turner (2012), leads to a more delayed onset and therefore a 360 

larger low-precipitation bias. 

 

Figure 9: Changes in SST (K), precipitation (mm/hr) and wind in GloSea5 for valid times in June, between the lead times shown. 

Meanwhile, for August valid times the situation is slightly more complex. At short lead times biases in the atmospheric 

component of the model mean that the low-precipitation bias is larger if the hindcast has been started earlier for a given valid 365 

time. At longer lead times, however, initialising the hindcast earlier in the season means that the cold SST bias over EIO has 

had longer to develop, counteracting the early high-precipitation bias there (indeed, the excess precipitation may itself 
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contribute to the cold SST bias via excess wind stresses, as discussed by Levine & Turner, 2012), and mitigating the low-

precipitation bias over India. This is illustrated in Fig. 10: at 20 days’ lead time, there has been a small decrease in EIO SSTs, 

but much increased convergence into the EIO and increased precipitation there. From 20-150 days, however, the cold EIO 370 

SST bias is much more fully developed and the previous south-eastward change in the flow during the first 20 days has now 

been reversed. There is decreased precipitation over EIO and increased flow from EIO into southern India leading to increased 

precipitation over the western coast of India. 

 

Figure 10: Changes in SST (K), precipitation (mm/hr) and wind in GloSea5 for valid times in August, between the lead times 375 

shown.Equivalent plots to Fig. 10, but restricting to each of June, July and August, are shown in Figs. 13–15. The initial 

decrease in precipitation is accompanied by an increase in precipitation over the EIO in all months. In GloSea, this is 

particularly strongly tied to the flow from India to the EIO in July and August. The subsequent reduction in precipitation over 

the EIO is slower in August and is accompanied by a later recovery in the precipitation over India. The initial increase in 
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eastward wind over the Arabian Sea is weaker in June in all models, and the flow itself is generally weaker as the monsoon 380 

has not yet fully developed. The flow subsequently decreases in June, accompanied in GloSea by decreasing SSTs. 

 

Figure 13: Surface temperature, 850-hPa wind and precipitation averaged over different regions (shown in Fig. 8), averaged over 

June 2002–2015, as a function of lead time. A smoothing is applied by taking a 9-day running average in the lead-time direction. 

In CFSv2, it is evident that the recovery in precipitation over EIO is much stronger for July and August. In contrast, the 385 

recovery is smaller for June, and it occurs much later (~70 days of lead time). This might be because the bias in moisture 

transport over EIO is not very large in June, as reported by Napusetty et al. (2016). For July and August, there is a rapid 

increase in the zonal flow over the EIO, such that the precipitation also increases rapidly, peaking at ~50–60 days lead time. 

This branch of zonal winds, which feeds moisture to EIO, likely pulls away the moisture from the Arabian Sea branch, such 

that the precipitation over India declines as the zonal flow builds up rapidly and peaks over the EIO region. This argument is 390 

supported by the fact that the rate of build-up of zonal flow over EIO during July and August is much more rapid than that of 

the Findlater jet.   

The biases in moisture transport over EIO appear to contribute significantly to India's biased annual cycle of precipitation. The 

peak in monsoon rainfall occurs during July in observations. However, CFSv2 has a relatively flat annual cycle of precipitation 

over India, wherein the maximum rainfall occurs during August, but the difference between July and August rainfall is small 395 

(Ramu et al. 2016). The bias in moisture transport over EIO, its lead-time dependence, and its contribution in pulling moisture 

away from the Indian landmass is therefore important, and will be investigated in future studies.   
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 400 

 

Figure 14: Surface temperature, 850-hPa wind and precipitation averaged over different regions (shown in Fig. 8), averaged over 

July 2002–2015, as a function of lead time. A smoothing is applied by taking a 9-day running average in the lead-time direction. 



 

34 

 

 

Figure 15: Surface temperature, 850-hPa wind and precipitation averaged over different regions (shown in Fig. 8), averaged over 405 
August 2002–2015, as a function of lead time. A smoothing is applied by taking a 9-day running average in the lead-time direction. 

 

3.4 Variation with BSISO phase at hindcast valid time 

The hindcasts are categorised according to the observed BSISO phase at the valid time, following Keane et al. (2021), taking 

precipitation averaged over latitudes 8N–29N and 69E–89E. For each lead time, all hindcasts where the observed BSISO 410 

amplitude at valid time is greater than 1 are assigned a phase equal to the observed phase on the date at that lead time (those 

with amplitude less than or equal to 1 are discarded for this method). For each phase, an average is taken of all the area-

averaged precipitation values to produce a quantity that varies as a function of BSISO phase and lead time. This quantity is 

plotted as a function of phase in Fig. 1116, for selected lead times, with a further 8-day average over lead time to reduce noise. 

Also plotted is the quantity for observations, which applies the same method (including the restriction to BSISO amplitudes 415 

greater than 1) to observed precipitation over all days during June–August 2002–2015. Versions of Fig. 1116 using fewer 
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GloSea members and using a longer range of GloSea years are shown in Appendix A (Figs. A9 and A10, respectively), and 

are very similar. 

Looking at GloSea5 during the first 8 days, the bias is worse for phases where the large-scale dynamics implies increasing 

precipitation and less bad when the large -scale dynamics implies decreasing precipitation, in agreement with the findings of 420 

Keane et al. (2021) for 7-day forecasts. The situation is slightly different for GloSea6 and CFSv2, with the precipitation 

generally still too high when averaged over the first 8 days of the hindcast, but there is the same shift in the peak precipitation 

from phase 4 in the observations to phase 5 in all the models. 

Figure 11: Variation in precipitation (averaged over 8N–29N and 69E–89E and June–August 2012–2015) with lead time as a function 

of observed BSISO phase at valid time, averaged over 8-day lead time blocks (coloured lines). Each panel corresponds to a model 

denoted by its title. Observed precipitation corresponding to each BSISO phase is denoted by the black dashed line in all three 

panels. 
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Comparing the second 8 days with the first 8 days for all models, it is clear that the behaviour continues, with generally a 

reduction for all phases, but a stronger reduction when the large-scale dynamics implies increasing precipitation and vice-425 

versa. From day 16 this continues but becomes weaker as the hindcasts lose their phase dependence until at day 40 the errors 

are essentially independent of phase. This suggests that the models lose their capability to forecast the BSISO phase by 40 

days into the hindcast, as the model precipitation (and, therefore, any BSISO phase that it is simulating) has no significant 

relationship with the observed BSISO phase. This is consistent with previous work that has shown that seasonal forecast 

models can effectively simulate the BSISO on time scales of tens of days (e.g., Lee et al., 2015; Fang et al., 2019). 430 

Figure 16: Variation in precipitation (averaged over 8N–29N and 69E–89E and June–August 2002–2015) with lead time as a 

function of observed BSISO phase at valid time, averaged over 8-day lead time blocks (coloured lines). Each panel corresponds to 

a model denoted by its title. Observed precipitation corresponding to each BSISO phase is denoted by the black dashed line in all 

three panels. 



 

37 

 

3.5 Variation with BSISO phase at initial time 

In order to establish the role of initial conditions on the development of the rainfall biases over India in the two seasonal 

forecast systems, hindcasts initialised from 1st June to 1st August (inclusive), for each year, are next categorised according to 

the observed BSISO phase at the start of the hindcast. The precipitation is again averaged over latitudes 8N–29N and 69E–

89E, and over all hindcasts corresponding to each phase, and values for the first 60 hindcast days in each system are plotted in 435 

Fig. 1217. For this method there is no temporal coarse-graining into 8-day blocks; therefore, no minimum restriction on the 

BSISO amplitude is applied, so that a larger data sample can be taken to reduce random temporal fluctuations that would 

otherwise be reduced by the 8-day coarse-graining. The dotted lines show observed values averaged over the same dates on 

which each length of hindcast is available; as for Fig. 15, this is different between the two systems as the hindcasts are initialised 

on different dates. Figure A11 shows a similar set of plots, but also including hindcasts initialised in the rest of August, and 440 

extending only to 30 days: these plots from a somewhat larger sample size are in broad agreement with the first 30 days of 

those in Fig. 1217. 

We use the observed curves to define how the large-scale drivers affect the precipitation through the course of each hindcast, 

and they are similar to what is expected from the standard dynamical analysis that is used to define the phases. For example, 

hindcasts starting in phase 4 have high initial precipitation on average, and this decreases early in the hindcast, while those 445 

Figure 17: Variation in precipitation with hindcast time, for hindcasts initialised during each of 8 BSISO phases. Values are 

averaged over 8N–29N and 69E–89E and over hindcasts initialised during the period 1st June to 1st August 2002–2015 on dates 

where the observed BSISO was in the given phase. The black dotted lines show observed values averaged over the same dates as 

the hindcasts at the relevant lead time. 

Figure 12: Variation in precipitation with hindcast time, for hindcasts initialised during each of 8 BSISO phases. Values are averaged 

over 8N–29N and 69E–89E and over hindcasts initialised during the period 1st June to 1st August 2012–2015 on dates where the 

observed BSISO was in the given phase. The black dotted lines show observed values averaged over the same dates as the hindcasts 

at the relevant lead time. 
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starting in phase 8 have low initial precipitation on average, and this increases early in the hindcast. Moreover, the curves 

follow an oscillation in precipitation with a period of about 40 days, corresponding to the period of the BSISO cycle.  

A general conclusion from Fig. 1217 is that both models perform better when the large-scale dynamics is driving decreases in 

precipitation than when it is driving increases in precipitation. For example, the first 30 days are well simulated when the 

hindcast starts in phases 4 or 5, whereas the precipitation is far too low over the first 30 days when the hindcast starts in phases 450 

8, 1 or 2, particularly for GloSea5 (CFSv2 sometimes even simulates too much precipitation, although this is usually associated 

with an initial high-precipitation bias). This continues further into the hindcast in GloSea: for phases 4 and 5, although the first 

30 days are well simulated, the subsequent observed increasing precipitation is not well captured, and the improvement in 

GloSea6 compared to GloSea5 in capturing increasing precipitation is less than that during the first 30 days of the hindcast 

(e.g., phases 8, 1, 2). CFSv2 does simulate the later increase for phases 4 and 5, although this could be because it produces 455 

increasing precipitation more generally during days 30 to 50 of the hindcast.  

4 Conclusions 

The variation in model precipitation development with BSISO phase may be quite different in the bias-corrected GloSea 

seasonal forecasts from the behaviour seen here in the hindcasts. Intuitively, given that the bias-correction depends only on 

start date and lead time (Arribas et al., 2011; MacLachlan et al., 2015), it may be expected that the forecasts would have a 460 

positive precipitation bias for phases 4 and 5 and a negative bias for phases 1 and 8. It would be interesting to investigate 

whether this is indeed the case, and whether it could be improved by using some information about expected BSISO phases, 

at least for shorter lead times. 

4 Discussion 

This study investigates Indian summer monsoon biases in two seasonal forecasting systems, CFSv2 and versions 5 and 6 of 465 

GloSea. Both systems initially have a reduction in precipitation with increasing lead time, accompanied by increasingly anti-

cyclonic flow, and in GloSea the precipitation reduction is shown to fully occur within the first 8 days of the hindcast. This 

this corroborates previous work (e.g., Rodwell and Palmer, 2007; Martin et al., 2010; Rodriguez and Milton, 2019; Martin et 

al., 2021) showing that future work studying biases in weather forecasts (and, more generally, short-time-integration 

simulations) will provide substantial insight into biases across timescales, without the requirement to conduct lengthy climate 470 

simulations, particularly for the GC system. A strong focus for this work should be investigating the cause of the increasing 

precipitation over the EIO at short lead times: a link between excessive convergence over the EIO and low-precipitation biases 

over India has previously been identified both in GC (Bush et al., 2015) and in CFSv2 (Shukla and Huang, 2016), and Martin 

& Rodriguez (2024) demonstrated a change in behaviour between the first 10 days and longer lead times over the eastern EIO 

that is less apparent in the western EIO. Both systems show a substantial decrease within a lead time of 25 days, and the results 475 
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for GloSea are in broad agreement with previous work on atmosphere-only weather forecasts. This suggests that issues in the 

atmospheric model component of the system are sufficiently important that atmospheric-only simulations can continue to play 

a role in investigating these biases. 

It is notable that GloSea6 has improved (i.e., smaller) biases compared to GloSea5. Although the Indian summer monsoon 

low-precipitation bias is an important factor in evaluating the performance of GC3 compared with GC2, improvements in GC 480 

versions are aimed at Global model performance as a whole and on the full range of time scales, from weather forecasting to 

climate simulation. It is therefore encouraging that the combined effect of these improvements on the simulation of the Indian 

summer monsoon on seasonal time scales has been so substantially positive. The upgrade from GC2 to GC3 (Williams et al., 

2017) includes a wide range of improvements to the atmosphere and land components (Walters et al.., 2017), the ocean 

component (Storkey et al., 2017) and the sea ice component (Ridley et al., 2017). In particular, the previous upgrade in the 485 

atmospheric component (GA6) had focused on the dynamical core, with changes to the physics parameterisations relatively 

restricted, so that the upgrade from GA6 (used in GC2) to GA7 (used in GC3) included a relatively large number of substantial 

longer-term changes to the atmospheric parameterisation schemes. Given that the improvement is present within 8 days, it is 

likely that upgrades to the atmospheric component are largely responsible for the improved performance in Glosea6. Walters 

et al. (2017) show that GA7 does have reduced summer precipitation biases over India compared with GA6, and attribute this 490 

to improvements in the stochastic physics forcing, an upgrade in the convection parameterisation from 5A to 6A and improved 

warm rain microphysics. Improvements in the scale adaptivity of the model play a large role in these upgrades: Sanchez et al. 

(2016) show that the inclusion of a resolution-dependent factor for the convection dissipation rate produces higher kinetic 

energy perturbations at lower resolutions, leading to reduced tropical biases, and the 6A convection scheme is designed to be 

effective at higher vertical resolutions than those for which the 5A convection scheme was designed.  495 

After its initial reduction, the precipitation recovers in CFSv2, so that it is in agreement with observations over lead times of 

30–70 days. It could therefore be interesting to study this recovery period further: although it is based on errors in the model 

(as quantities should not vary with forecast/hindcast lead time as plotted in Fig. 15), this could provide insight into conditions 

under which the model is capable of simulating break-to-active transitions. A similar, albeit much smaller and more short-

lived, recovery is also identified in GloSea, suggesting that such insight could apply to different modelling systems. In this 500 

study, the recovery has been shown to be associated with increasing westerly flow over the Arabian Sea in both modelling 

systems. 

Although the biases seem to initially develop from issues in the atmospheric model components, the interaction with SSTs in 

the ocean component is also important. In CFSv2 thisdoes play some role, and it is likely that this role becomes more important 

beyond the seasonal time scale, as biases in climate simulations are generally larger than those demonstrated here in the 505 

seasonal hindcasts. In CFSv2 the interaction seems to be quite direct (with decreasing SSTs corresponding closely with 

decreasing precipitation), and perhaps more important than in GloSea, where it seems to depend more strongly on the part of 

the season that is evaluated. This could be due to differences in the two ocean model components or in the coupling between 

the atmosphere and the ocean; Bollasina and Nigam (2009) showed that different coupled models exhibit varyingly deficient 
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representation of local and non-local air–sea interactions in the Indian Ocean during boreal summer and, in particular, that 510 

they tend to overestimate the correlation between SST and precipitation, suggesting that local air–sea interactions are 

overemphasised. Meanwhile, when focussing on June, the behaviour of the two systems (and the two versions of GloSea) is 

much more similar, and suggests that both systems suffer from a delayed monsoon onset, so this could be a common issue 

affecting both systems in the same way. 

An analysis of how the seasonal forecast total precipitation amount depends on observed BSISO state has been carried out in 515 

this study, in terms of both the phase at the beginning of the forecast and the phase at the end of the forecast. Both evaluation 

methods show that the two systems are best at simulating situations where the large-scale dynamics favours decreasing 

precipitation over India, and are worst at simulating situations where the large-scale dynamics favours increasing precipitation 

over India, and that this continues beyond the first 8 days of the forecast and even into a second BSISO cycle. This suggests 

an opportunity to focus future work on cases corresponding to such increasing precipitation conditions, and it will be interesting 520 

to investigate how widespread the behaviour is amongst other models. It also provides useful information to users on the 

relative reliability of forecasts of each of these transitions. 

One explanation for the dependence on BSISO phase could be that, based on their systematic biases, the two systems have a 

tendency to move towards monsoon break conditions and so are better at capturing situations where this is occurring in reality. 

Further analysis of such transitions in the models may provide insight into the reasons for this preference and its contribution 525 

to the overall systematic biases in Indian summer monsoon rainfall in climate models. Gera et al. (2021) evaluated seasonal 

forecasts of the Indian summer monsoon using the NCMRWF-ERP system based on GC2 and found that, while break-to-

active and active-to-break transitions were both predicted well up to 4 weeks, there was some evidence of a weakening and a 

delay in the break-to-active transitions with increased forecast lead time. 

The BSISO analysis also shows that the precipitation in both systems is largely independent of observed BSISO state by about 530 

40 days into the forecast. It will therefore be interesting in future work to carry out a similar analysis of how the biases vary 

with the models’ own BSISO state and, indeed, to what extent the models are able to simulate the BSISO, and determine 

whether similar variation. The models may simulate different distributions of bias withprecipitation as a function of their own 

BSISO phase extends further intoand this could change as the forecastlead time increases. It may also be useful to use the 

longer-range predictability of the BSISO phase to add information about likely biases in weather and seasonal forecasts, 535 

particularly if the BSISO is not well simulated by the models, in which case this information would not already be included in 

the forecasts themselves. Previous studies have shown that the BSISO can be predicted in forecast models up to four weeks in 

advance (Jie et al., 2017; Xiang et al., 2024) and this could be combined with statistical processing to obtain a longer-range 

prediction of likely model biases. 

The interannual variation of the Indian Summer Monsoon is affected by both the El Niño-Southern Oscillation (ENSO; 540 

Krishnamurthy & Goswami, 2000; Chattopadhyay et al., 2015; Xavier et al., 2007) and the Indian Ocean Dipole (IOD; 

Pothapakula et al., 2020; Hrudya et al., 2021). Ashok et al. (2001) showed that ENSO and the IOD can have complementary 

effects on the monsoon, with high ENSO-rainfall correlations accompanied by low IOD-rainfall correlations and vice-versa. 
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It will therefore be interesting to investigate whether the relationship between rainfall bias and BSISO phase varies depending 

on the indices of ENSO and the IOD. Kikuchi (2020; 2021) showed that ENSO has little effect on the BSISO overall, but it 545 

can affect certain aspects of the BSISO (Wu & Cao, 2017; Li & Mao, 2019) and the Monsoon Intraseasonal Oscillation (Joseph 

et al., 2011). 

Lee et al. (2013) attribute the BSISO2 indices, corresponding to the 3rd and 4th EOFs, to being relevant to the pre-monsoon and 

onset phase, so an evaluation of the relationship between precipitation biases and BSISO2 phases (the present study evaluates 

this relationship for BSISO1 phases, corresponding to the 1st and 2nd EOFs, and referred to here simply as “BSISO phases”) 550 

would be worthwhile. In the present study, it is found that the biases have different characteristics in June from those in July 

and August, so it may be that applying the BSISO analysis to the months separately, and with the two indices separately, will 

identify further relationships between biases and BSISO phases. 

As already mentioned, the purpose of seasonal forecasts is largely to produce a statistical idea of the state of the weather a few 

weeks to months ahead, and the hindcasts evaluated in this study are in practice used to calibrate the actual forecast models, 555 

so that systematic biases should not directly affect the quality of the forecast. However, it may be of interest in future work to 

investigate whether there is any relationship between model bias and forecast skill in the seasonal forecasts. 

Appendix A: Additional figures and table 
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Table A1: Start dates of CFSv2 hindcasts evaluated in this study. 560 

 

 

Figure A1: As Fig. 15 but with only 3 of the 7 ensemble members in GloSea. 
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 565 

Figure A2: As Fig. 15 but with GloSea5 hindcasts valid during 1994–2015 and GloSea6 hindcasts valid during 1994–2016 (all other 

data unchanged, i.e., “GloSea obs” still refers to the period 2002–2015). 
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 570 

Figure A3: Precipitation (colours, in mm/hrday) and 850-hPa wind (vectors) in CFSv2, at the hindcast lead time shown, averaged 

over June–August 20122002–2015. 
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Figure A4: SST (colours, in K) and 850-hPa wind (vectors) in CFSv2, at the hindcast lead time shown, averaged over June–August 

20122002–2015. 575 
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Figure A5: Precipitation (colours, in mm/hrday) and 850-hPa wind (vectors) in GloSea5, at the hindcast lead time shown, averaged 

over June–August 20122002–2015. 
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Figure A6: SST (colours, in K) and 850-hPa wind (vectors) in GloSea5, at the hindcast lead time shown, averaged over June–August 

20122002–2015. 
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Figure A7: Precipitation (colours, in mm/hrday) and 850-hPa wind (vectors) in GloSea6, at the hindcast lead time shown, averaged 585 
over June–August 20122002–2015.  
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Figure A8: SST (colours, in K) and 850-hPa wind (vectors) in GloSea6, at the hindcast lead time shown, averaged over June–August 

20122002–2015. 
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Figure A9: As Fig. 11 but with only 3 of the 7 ensemble members in GloSea. 
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Figure A10: As Fig. 11 but with GloSea5 hindcasts valid during 1994–2015 and GloSea6 hindcasts valid during 1994–2016 (all other 595 
data unchanged, i.e., the black dashed lines refer to observations during 2002–2015 in all three panels). 
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Figure A11: As Fig. 12 but including start dates up to 31st August and only to 30 days' hindcast time. 600 

 

 

Code availability 

Due to intellectual property right restrictions, we cannot provide either the source code or documentation papers for the Met 

Office Unified Model (MetUM). The MetUM is available for use under licence. For further information on how to apply for 605 

a licence, see https://www.metoffice.gov.uk/research/approach/collaboration/unified-model/partnership. JULES is available 

under licence free of charge. For further information on how to gain permission to use JULES for research purposes, see 

https://jules.jchmr.org/. The model code for NEMO v3.4 is available from the NEMO Consortium and can be downloaded 

from their repository (https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/NEMO/guide/html/install.html; 

https://doi.org/10.5281/zenodo.1464816; NEMO System Team, 2020). The model code for CICE is freely available from the 610 

CICE Consortium, a group of stakeholders and primary developers of the Los Alamos sea ice model, and can be downloaded 

from the CICE repository (https://github.com/CICE-Consortium/CICE/wiki). To obtain source code and documentation for 

https://www.metoffice.gov.uk/research/approach/collaboration/unified-model/partnership
https://jules.jchmr.org/
https://forge.ipsl.jussieu.fr/nemo/chrome/site/doc/NEMO/guide/html/install.html
https://doi.org/10.5281/zenodo.1464816
https://github.com/CICE-Consortium/CICE/wiki
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CFSv2, see https://www.tropmet.res.in/monsoon/monsoon2/MM_Model_CFS_Output.php. Model data used in this study are 

available to research collaborators upon request. Observed precipitation data were obtained from 

ftp://arthurhou.pps.eosdis.nasa.gov/pub/gpmdata/YYYY/MM/DD/imerg/ and observed BSISO data were taken from 615 

https://iprc.soest.hawaii.edu/users/kazuyosh/ISO_index/data/BSISO_25-90bpfil_pc.extension.txt. Observed SST data were 

obtained from https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-surface-temperature?tab=overview and 

reanalysed wind data were obtained from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-

levels?tab=overview, using code provided at  https://cds.climate.copernicus.eu/cdsapp#!/software/app-c3s-daily-era5-

statistics?tab=overview to produce daily quantities. 620 
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