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Abstract. In geosciences, multi-model ensembles are helpful to explore the robustness of a range of results. To obtain a

synthetic and improved representation of the studied dynamic system, the models are usually weighted. The simplest method,

namely the model democracy, gives equal weights to all models, while more advanced approaches base weights on agreement

with available observations. Here, we focus on determining weights for various versions of an idealized model of the Atlantic

Meridional Overturning Circulation. This is done by assessing their performance against synthetic observations (generated from5

one of the model versions) within a data assimilation framework using EnKF. In contrast to traditional data assimilation, we

implement data-driven forecasts using the analog method based on catalogs of short-term trajectories. This approach allows us

to efficiently emulate the model’s dynamics while keeping computational costs low. For each model version, we compute a local

performance metric, known as the contextual model evidence, to compare observations and model forecasts. This metric, based

on the innovation likelihood, is sensitive to differences in model dynamics and considers forecast and observation uncertainties.10

Finally, the weights are calculated using both model performance and model codependency, and then evaluated on averages

of long-term simulations. Results show good performance in identifying numerical simulations that best replicate observed

short-term variations. Additionally, it outperforms benchmark approaches such as model democracy or climatologies-based

strategies when reconstructing missing distributions. These findings encourage the application of the proposed methodology to

more complex datasets in the future, like climate simulations.15

1 Introduction

In the geosciences, several numerical models are usually available to represent the same complex system. For example, the

Earth’s global climate system is implemented in a range of different numerical models that are, for some, gathered within the

Couple Model Intercomparison Projet (CMIP, Eyring et al. 2016). Due to the different parameterizations (related to unresolved
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processes and numerical implementations) and given particular structural equations, a model represents an imperfect image20

of the studied system. In other words, each model is characterized by its own strengths and weaknesses, which impact its

predictive skills. The use of the multi-model ensemble (MME) to predict a specific climate variable is then considered more

informative than any individual model. Here, the models are assumed to complement each other using MME which has the

potential to improve climate system representation (Abramowitz et al. 2019).

Nevertheless it remains the question of how to gather the information produced by the range of models. In this context it is25

usual to follow a model democracy approach, giving equal weight to all models to enhance the representativeness. This is what

is mostly done in the 6th Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC 2021). However,

this strategy has been debated in the community due to the strong assumptions it implies: equal probability of all models to

represent all variables in the whole phase-space of the system and independence between them (e.g., Knutti 2010; Sanderson

et al. 2015; Knutti et al. 2019).30

A trade-off between MME-based model democracy and selecting a single model would be to weight-average the models.

The weights can be found through model performance, which consists in evaluating the consistency between model simulations

and available observations. This procedure should be adapted to the specificities of model simulations being processed (Eyring

et al. 2019). In particular, the models are characterized by nonlinearities which can significantly influence trajectories over short

timescales. Hence, the dynamic behaviour of the system needs to be properly taken into account. This can be done, for example,35

by assessing the models’ ability to describe successive sequences of observations. In addition, the weights should account for

the degree of dependency between the models, as they usually share some elements in their structure or parameterizations

(Knutti et al. 2010; Abramowitz et al. 2019). Several approaches have been suggested to measure the model-observations

consistency and thus obtain the individual model weights.

The first approaches are based on descriptive statistics. This is the case of "reliability ensemble averaging" (Giorgi and40

Mearns 2002) and the "ClimWIP method" (Climate model Weighting by Independence and Performance, Sanderson et al. 2015

and Knutti et al. 2017). In those two methods, weights are based on the ability of model simulations to reproduce observed

statistical diagnostics for one or more variables (e.g., mean, variability, or trend fields), while including a component that

measures inter-model dependence. However, the score formalism does not evaluate how the models reproduce sequences of

observations (which reflect model dynamics). ClimWIP method was applied in numerous studies at global or regional spatial-45

scales with a range of climate variables such as atmospheric temperatures or precipitations (Sanderson et al. 2015; Sanderson

et al. 2017; Brunner et al. 2019; Brunner et al. 2020; Merrifield et al. 2020), arctic sea-ice (Knutti et al. 2017), or antarctic

ozone depletion (Amos et al. 2020).

Second approaches are included in a probabilistic Bayesian framework, such as "Bayesian model averaging" (BMA, e.g.,

Raftery et al. 2005; Min et al. 2007; Sexton et al. 2012; Olson et al. 2016; Olson et al. 2019) and "kriging methods" applied50

at global and local scale (Ribes et al. 2021 and Ribes et al. 2022, respectively). In BMA, the distributions of model outputs

are updated using available observations to obtain a posterior weighted distribution. The weights for candidate models are

determined using Bayes’ theorem which combines prior beliefs (typically uniform weights) with the global likelihood of

the observations estimated for each model. These weights reflect the confidence in each model considering both the data
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and uncertainty. However, evaluating model consistency over time is tricky because the distributions involve time aggregated55

quantities on large time periods, making it less suitable for exploiting information about model dynamics.

In this study, we evaluate the performance of competing models based on their ability to reproduce short-term dynamics

of the system described by observed sequences. To achieve this, a data-driven approach is adopted within a data assimilation

framework (Ruiz et al. 2022). One of the main advantage is the use of already existing simulations to produce free-model

probabilistic forecasts (i.e. without having to rerun the models, which greatly reduces the computational cost), while retaining60

the useful properties of data assimilation (Lguensat et al. 2017). The data-driven forecasts are estimated using regression based

on the classic least squares, but applied locally in the phase space, to capture the nonlinearities in the evolution of the system

(Platzer et al. 2021). The proposed methodology is relevant for various reasons. It effectively combines the advantages of multi-

ple weighting methods mentioned earlier. Moreover, it is integrated within a data assimilation framework, enabling a thorough

consideration of the described dynamics. Also, it is written in a Bayesian framework (as BMA and kriging strategies), where65

data-driven forecasts are considered as Gaussian a priori information which are sequentially updated thanks to observations

(which are also considered as Gaussian). This provides accurate and reliable initialization for the next forecast. The difference

between the data-driven forecasts and the observations allows the computation of the innovation likelihood (e.g., Carrassi et al.

2017), which is used locally in time as a metric of model performance. The information of the local likelihood is then summa-

rized following different score formalisms to yield weights. Finally, one of the scores take into account the model dependency70

as in the formalism of ClimWIP (Knutti et al. 2017). The weights are tested by applying them to long-term simulations.

This study aims to develop a weighting methodology. As a first step, we use numerical simulations of an idealized chaotic

deterministic model representing the centennial-to-millennial dynamic of the Atlantic Meridional Overturning Circulation

(AMOC). The proposed alternative approach is compared to more classic approaches, such as model democracy, climatology,

or single best model.75

The study is organized as follows. Section 2 details the methodological framework for obtaining model weights and applying

them. Section 3 describes the numerical model and the data used to implement the methodology. Section 4 is devoted to the

numerical results and section 5 concludes this study and presents some perspectives for future research.

2 Methodology

This section first describes the framework to measure the ability of a single dynamical model to fit a set of noisy observations.80

After applying it to an ensemble of competing models, the second part is devoted to the strategies for computing model weights

and their application.

2.1 Evaluating the local performance of a dynamical model

Here, we evaluate the model performance based on its short-term dynamics. For this purpose, initialized model forecasts are

crucial to estimate the accuracy of the dynamics with regards to observations. By synchronising model forecasts to available85

observations, Bayesian Data Assimilation (DA) is a suitable framework for addressing this. DA, like Kalman filtering strategies,
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is commonly used to improve the estimation of the latent unknown state of a system by sequentially including the available

observations (Carrassi et al. 2018). The associated state-space model is expressed as

xk =M(xk−1)+ηk, (1a)

yk =H (xk)+ ϵk, (1b)90

where k is the time index, xk is the true state, M is the model propagator, ηk is the model error, yk is the noisy observations,

H is the observational operator, and ϵk is the observation error. Equation (1a) represents the model relation between the true

state and the previous state given an additive model error. Equation (1b) makes the relationship between the observations to the

true state with an additive observational error.

In the classic Kalman filter, an assimilation cycle aims to sequentially update a Gaussian forecast distribution (generated95

by the model equations) with the information provided by the observations (also Gaussian), when available. The posterior

analysis distribution is a more accurate and reliable estimation of the latent state by satisfying robust statistical properties (i.e.,

best linear unbiased estimator). Therefore, the forecast for the next time step benefits from this accurate initial condition. The

ensemble Kalman filter (EnKF) is preferred when dealing with nonlinear systems (Evensen 2003). At each time step, the two

first moments of the Gaussian forecast distribution are approximated empirically using a Monte Carlo approach. To do this, N100

forecast members are generated from the same model equations, each one initialized from a sample of the previous analysis

distribution. This is expressed as

xf
(j),k+1 =M

(
xa
(j),k

)
+η(j),k+1 (2)

where j is the member sample index, xf
(j),k+1 is the jth forecast member at time k+1, xa

(j),k is the jth analysis member at

the previous time k and η(j),k+1 is the model error assumed to be Gaussian. In Eq. (2), xa
(j),k is calculated as105

xa
(j),k = xf

(j),k +Kk

(
yk −H(xf

(j),k)+ ϵ(j),k

)
(3)

where ϵ(j),k is the observation error drawn from a random sample from the multivariate Gaussian with the 0-mean vector and

an error covariance matrix R. The Kalman gain Kk in Eq. (3) is defined as

Kk =Pf
kH

T
(
HPf

kH
T +R

)−1

, (4)

where Pf
k is the empirical covariance matrix of the forecast distribution at time k calculated using the EnKF j members, H110

represents the tangent linear of the observation operator H.

DA allows the model performance evaluation by measuring the consistency between the model forecasts and the available

observations. Directly computed in a DA cycle, the Contextual Model Evidence (CME) is defined as the log-likelihood of

observations at a given time for a model, taking into account the forecast state as prior information (Carrassi et al. 2017).115

Larger CME is obtained for more consistency between the model forecast and observations. Under Gaussian assumption
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included in the EnKF cycle, CME is approximated as follows

CMEk(y;M) =−1

2

(
yk −H(xf

k)
)(

HPf
kH

T +R
)−1(

yk −H(xf
k)
)T

− 1

2
ln
(

det
(
HPf

kH
T +R

))
− r

2
ln(2π), (5)

where xf
k is the empirical mean of the ensemble forecasts and r is the number of available observations. At time k, the CME is

defined as a mean square error function between the forecast and the observation [represented by the term
(
yk −H(xf

k)
)(

yk −H(xf
k)
)T

120

in (5)], which is normalized by the covariance matrix uncounting for both forecast and observations error [denoted as the term(
HPf

kH
T +R

)−1

in (5)]. It has been demonstrated that by considering both the prior and data uncertainty, the CME exhibits

greater effectiveness in selecting the accurate model from a pool of models compared to using RMSE alone (Metref et al. 2019

and Ruiz et al. 2022).

125

In principle, DA formalism requires access to the numerical model to propagate the state of the system in order to obtain the

forecasts. When performing EnKF, a large number of model forecasts are generated, representing a significant computational

cost. An efficient and flexible data-driven alternative aims at combining DA with a statistical forecasting strategy based on

analogs (Lorenz 1969). In Analog Data Assimilation (AnDA), existing long-term simulations are used instead of performing

new sequential models simulations (Tandeo et al. 2015; Lguensat et al. 2017). The simulations are decomposed as a catalog130

of short-term trajectories (i.e., pairs of analog states and their successors) sampling the short-term model dynamics. Hence,

using an appropriate distance, the analog states closest to the assimilated state are selected from the catalog. Their successors

are combined using a statistical operator to obtain probabilistic forecasts. Hence, AnDA corresponds to perform a classic DA

process, but replacing the model propagator by its analog-based approximation in (1a). This reads:

xk = M̂(xk−1)+ηk, (6)135

where M̂ refers to the analog-based forecasting propagator.

In practice, it consists in fitting a local linear regression (Cleveland and Devlin 1988) relating the selected analogs to their

successors, which has proven to be robust (Zhen et al. 2020; Platzer et al. 2021). The regression is able to learn the time-

local dynamic of the model including nonlinearities since the linear adjustement is applied locally in the phase space. By

projecting the current state with the regression, statistical approximated forecasts are obtained. The forecast takes into account140

the regression uncertainty (assumed Gaussian) which is a robust estimate of the model error. When the catalog is large enough

(to approximately cover the full dimension of the phase space), it has been shown that AnDA performs as well as DA (Lguensat

et al. 2017). Ruiz et al. 2022 have recently shown, using different idealized dynamical models, that CME can be robustly

estimated using AnDA. The combination of AnDA with CME is the basis of the current study.

2.2 Strategies for model weighting-average145

The methodology described above is applied to an ensemble of L models in order to individually measure their forecast skills

given a set of observations. For each model, CME time series are obtained and used to derive individual weights. The weights

are then applied to provide a model-average representative of the observations.
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2.2.1 Calculating CME-based weights

The CME time series can be processed in various ways to obtain a single scalar (i.e., the score) used to derive the model150

weight. In this study, three CME scores are defined, together with three benchmark scores (not using the CME). Hence, we

define w(i)
score-type as the score assigned to model M(i). For simplicity, the scores are here described prior to their normalization,

which leads to the model weights.

(a) The model democracy (Knutti 2010) gives the same weight to all models, regardless of model performance. It reads:

w
(i)
democracy = 1. (7a)155

(b) The climatological score is based on the comparison of model and observation distributions. Here, there is no assimilation

process, which means that this score does not evaluate the local dynamics. It measures the minimum cumulative value

of the two histograms, highlighting the common area between both distributions. A score close to 0 denotes a model

that poorly simulates the observed distribution, while a score of 1 is obtained by a model with a perfect climatological

distribution (Perkins et al. 2007). It reads:160

w
(i)
climato =

n∑
j=1

minimum(Y (j),M (i)(j)), (7b)

where Y and M (i) are the normalized histograms (such that their respective sum equals 1) of the observations and the

model simulations, respectively, j is the index of histogram equal-width bins, and n is their total number. Note that in

the current study, single-variable observations are used but the score could be adapted using multivariate distributions.

(c) The single best model score assigns 1 to the model showing the best climatological score and 0 to the others. Opposite165

to the democracy score, it only takes into account the best-performing model over the whole set of observations (Tebaldi

and Knutti 2007). It reads:

w
(i)
single =

1, if w(i)
climato >w

(j)
climato ∀i ̸= j;

0, otherwise.
(7c)

(d) The CME-ClimWIP score is based on the ClimWIP approach (Knutti et al. 2017). Our adaptation reads:

w
(i)
CME-ClimWIP =

e
Di
σD

1+
∑L

j ̸=i e
Sij
σS

, (7d)170

where Di measures the intra-model performance with its associated shape parameter σD and Sij measures the inter-

model dependency with its associated shape parameter σS . Di and Sij are usually expressed with Euclidian distance

(Knutti et al. 2017). Here, we evaluate Di such as Di =
∑K

k=0 CMEk(y;M(i)), where K is the number of time step and

Sij as the sum of the defined inter-model such that Sij =
∑K

k=0 CMEk(M(i);M(j))j ̸=i. The CME-ClimWIP score is
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higher if model forecasts match observations and if they are sufficiently different from other-model forecasts. The two175

parts of (7d) are balanced thanks to the use of the parameters σD and σS . When they are appropriately set within the

score, a few top-performing models are selected. Notably, higher values for these parameters bring the score closer to

the model democracy while when σD=1 and σS→+∞ the BMA expression is retrieved. In particular, the numerator in

(7d) corresponds to a formulation of model evidence typically calculated for model selection problems (see Appendix A

for more details on this specific point). Classic ClimWIP and BMA approaches are special cases of the CME-ClimWIP180

score which are discussed in Section 4.2.3. Note that σD and σS are determined according to the specific experiments

model tests following Knutti et al. (2017) and Lorenz et al. (2018).

(e) The CME best punctual model score exploits the time-local performance provided by the CME. It assigns a local-value

of 1 to the best model at time k and 0 to the other models. The score reads:

w
(i)
punctual =

1

K

K∑
k=0

1{CMEk(y;M(i))>CMEk(y;M(j))} i̸=j
, (7e)185

where 1 is the indicator function assigning 1 when the condition {CMEk(y;M(i))> CMEk(y;M(j))}i ̸=j is satisfied

and 0 otherwise. This score captures the good performance of model in specific regions of the phase space, despite not

necessary being optimal in other regions. For example, extreme values are often only well captured by a few specific

models. By retaining the information from only one model at each time k, the score bypasses the need to identify

temporal inter-model similarities.190

(f) The CME best persistent model score w
(i)
persistent is derived from the previous score by overweighting models that are the

best on several consecutive states. The score is linearly proportional to the cumulative number of consecutive time steps

where the model is the best (expression not shown here). This score emphasises consistently good local dynamics.

2.2.2 Assessing the performance of weighting-averages

Here, the methodology for one experiment consists in two successive stages (Fig. 1). The first step corresponds to a training195

stage where AnDA is applied to obtain the CME time series associated with each candidate model (left panel of Fig. 1). From

them, CME-based scores are calculated following the expressions defined in Sec. 2.2.1 as well as the three benchmark scores

(bottom center panel of Fig. 1). The second step is a testing stage consisting in applying the six weighting approaches on

new individual model simulations and comparing their effectiveness to suitably reconstruct the true one (right panel of Fig. 1).

Considering probability density functions (PDFs) of model simulations, the reconstructed PDF related to a score is calculated200

as follows

p(ω̃|M(0), . . . ,M(L),y) =
∑L

i=0
p(ω̃|M(i)) ·w(i)

score (8)

where p(ω̃|M(0), . . . ,M(L),y) denotes the reconstructed PDF of the normalized AMOC (denoted as ω̃), p(ω̃|M(i)) repre-

sents the individual PDF associated with model i and w
(i)
score is the weight of model i for a given score, depending on y the set of
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observations. To evaluate the skill of the reconstructed PDF , its overlap (in terms of %) with the PDF of the truth is calculated205

[following similar formalism as the climatological score w
(i)
climato, (7b)]. The resulting reconstruction score performance for the

six approaches can then be compared.

Figure 1. Schematic of the two-stages methodology for one experiment using 11 models. Left panel: training stage performing AnDA with

the 11 catalogs and a single set of observations leading to CME computation. Bottom center: model weights calculated for two illustrative

scores, one based on CME and another based on a benchmark method (blue and red, respectively). Right panel: individual PDF of new

model simulations (grey) are weighted following (8) to obtain a reconstructed PDF associated with both competing scores (blue and red).

The quality of both reconstructions is assessed by measuring the overlap (blue and red shadings) with the true PDF (dashed black line) which

allows comparison of the performance of the two scores. Here, the CME score shows a higher overlap with the true distribution, highlighting

a better reconstruction compared to the benchmark score.

3 Experimental setup

3.1 Idealized AMOC model

The study is based on an idealized autonomous low-order deterministic model of the AMOC able of reproducing its millennial210

variability within a chaotic dynamics (Sévellec and Fedorov 2014; Sévellec and Fedorov 2015). The model derives from the

long history of salinity loop-models (originally proposed by Welander 1957; Welander 1965; Welander 1967; Howard 1971;

Malkus 1972). Its formalism with three equations (Dewar and Huang 1995; Dewar and Huang 1996; Huang and Dewar 1996)
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reads:

dω
dt

=−λω− ϵβSNS , (9a)215

dSBT

dt
= (Ω0 +ω)SNS −KSBT +

F0S0

h
, (9b)

dSNS

dt
=−(Ω0 +ω)SNS −KSNS , (9c)

where t is the time, ω is the variable component of the overturning circulation strength, SBT and SNS are the bottom-

top salinity gradients and the north-south salinity gradients, respectively, Ω0 is the steady part of the overturning circulation

strength which acknowledges the impact of constant temperature and surface winds, ϵ is the buoyancy torque, λ is a linear220

friction, β is the haline contraction coefficient, K is a linear damping and F0S0/h is the surface salt flux (where F0 is the

freshwater flux intensity, S0 is a reference salinity, and h is the loop thickness i.e., the depth of the level of no motion).

(9a) describes the momentum balance. Here, the rate of change of the ocean overturning strength is driven by the meridional

salinity gradients accounting for the buoyancy torque and a linear friction. (9b) and (9c) describe the evolution of the salinity

gradients driven by advection, a linear damping representative of diffusion, and the surface salt flux.225

Numerical integrations are done using a 4th order Runge-Kutta method with a time step of 1 year. All reference parameters

are set following Sévellec and Fedorov 2014 (which we refer interested reader to). Their values are h= 1000 m, Ω0 =−2.5×
10−2 yr−1, F0 = 1m yr−1, S0 = 35 psu, λ= 10−2 yr−1, ϵ= 0.35 yr−2, K = 10−4 yr−1 and β = 7× 10−4 psu−1.

3.2 Ensemble of AMOC model versions

Various versions of the AMOC model are obtained by perturbing some parameters in the equations: Ω0, K and λ
ϵ , while230

other remain fixed. All possible combinations between the reference values of the parameters, twice of them, and half of them

lead to twenty-seven distinct parameterizations. Eleven are selected by ignoring the versions describing singular dynamics

(e.g., with strong instabilities, constant over time, or presenting periodic behaviour). Thus, for the same equations, the 11 sets

of parameters induces their own dynamics. These dynamics show similarities and differences that can be visualised by the

computation of the trajectories in the phase space (Fig. 2).235

3.3 Synthetic data

A model-as-truth experiment framework is set up (e.g., Herger et al. 2018), in which one model is used to generate noisy

pseudo-observations. Here, only ω is observed and will be used as the variable of interest. To efficiently select the analogs,

the three variables are normalized (here rescaled). In particular, the normalized values of the original variable ω are associated

with the new variable called "normalized AMOC" (Fig. 3). In all the experiments, the covariance of the observations for the240

normalized AMOC is fixed to R= 0.5I3. The AnDA framework is applied over a period of K=8000 years with an assimilation

step of 20 years, thus resulting in 400 assimilation cycles. The choice of the assimilation step allows the forecasts to be suf-

ficiently differentiated, so that the competing models can be distinguished locally over time when using the CME (sensitivity

experiments not shown). The methodology has been tested with different catalog sizes. A catalog size of 400 000 years ensures

9



Figure 2. Chaotic trajectories in the phase space of the eleven perturbed versions of the 3-variable (normalized here) AMOC model (Sévellec

and Fedorov 2014). The values of the perturbed parameters λ, ϵ, Ω0 and K used to generate the eleven model versions are indicated in the

title. The attractor labelled 0 (top left) corresponds to the model with the reference set of parameters.

robust data-driven forecasts estimates in all the experiments. For each of the 200 EnKF-members of an AnDA cycle, forecast245

distributions are estimated using a fixed number of 10 000 analogs. These ensure the stability of the forward propagator algo-

rithm across all eleven experiments, particularly in areas less frequently visited. These areas are often associated with extreme

values, making it more challenging to track suitable analogs. (Lguensat et al. 2017).
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Figure 3. Distributions of normalized AMOC for the eleven model versions

4 Experimental results

The different methods are evaluated using two protocols. In the first one, we consider a "perfect experiment", where the250

model used to generate the pseudo-observations is also included in the catalog. In the second one, the model is excluded from

the catalog and we talk about "imperfect experiment". For both perfect and imperfect cases, we first describe an illustrative

experiment when model 8 is used as pseudo-observations, and then summarized the results for each model alternately used to

generate the pseudo-observations following a Leave-One-Out experiments design.

4.1 Perfect model experiment255

The goal of the perfect model approach is to measure the ability of the three CME-based scores to retrieve the correct model

(by giving it a predominant weight) from a pool of catalogs, including the true one. The skills of these scores are then compared

with the skills of the three benchmarks. In all the perfect model experiments of this study, the CME-ClimWIP score is computed

using the optimal values of σD=0.3 and σS=0.4 which maximize the overall overlap scores in all the experiments combined

(following Knutti et al. 2017 and Lorenz et al. 2018).260

4.1.1 Experiment with model 8

AnDA is performed on the eleven models with the same pseudo-observations from model 8 and the CME is computed for each

assimilation cycle. The resulting CME series for each individual model varies significantly over time and differs locally from

model to model (Fig. 4). CME of models 0, 1, 2, 6, and 10 is more than 75% lower than −1 (Fig. 5), showing their inefficiency

to replicate model 8 system dynamics. The CME distributions of models 3, 7, and 9 show a narrower distribution with 75%265
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values greater than −1. This means they are both accurate and reliable. As expected, the model with the highest and more

consistent CME is model 8. This demonstrates the ability of the CME to retrieve the correct model from a range of models.

Figure 4. AnDA results on 400 cycles using model 8 to generate the pseudo-observations: examples of three assimilated models among

the eleven. Top panel: time series of normalized AMOC with forecasts mean states and 90% prediction interval (in shades). The red series

denotes the true model (i.e., model 8), the orange and blue ones refer to models 0 and 7, respectively. The black dots represent the noisy

observations generated from the true states denoted by the dashed black line. Bottom panel: associated CME time series for each model.

Close to zero values of the CME indicate better forecast distribution.

The climatologies-based score produces almost uniform weights close to model democracy (Table 1). Indeed, the model

climatological distributions are very comparable. This impacts the reliability of selecting a single model following the best

model score. Beyond that, the observation error leads the climatologies-based score to misidentify model 9 instead of model270

8. The CME-ClimWIP score assigns its highest weight to the correct model 8, although models 7 and 9 have close weights.

Regarding the two other CME-based scores, although the weight associated to model 8 is high, these scores give the highest

weight to model 9. We conclude that the time selection characteristics of them make both scores more sensitive to observation

errors.

4.1.2 Overall eleven experiments275

By varying the model used to generate the pseudo-observations in the eleven AnDA experiments, we can robustly assess the

ability of the six scores to efficiently retrieve the correct model (Table 2). As emphasized in the specific experiment for model
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Figure 5. CME distributions from AnDA results using model 8 to generate the pseudo-observations. CME distribution are on the y-axis

and model number (from index 0 to 10) on the x-axis. The boxes span the 25th, median, and 75th percentiles of the distributions, while

the whiskers show the minimum and maximum values (excluding the outliers denoted with the black diamonds). Mean is indicated with the

small yellow triangle.

0 1 2 3 4 5 6 7 8 9 10

Model democracy 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1

Climatologies 6.2 9 9.1 9.8 9.4 9.5 8.7 9.3 9.7 10 9.2

Best single model 0 0 0 0 0 0 0 0 0 100 0

CME ClimWIP 0.1 0 0 16.2 0.3 0.5 0.1 30.4 31.2 21.2 0

CME best punctual 4 2.3 2 10 8.3 6.5 4.8 12.3 16.8 24 9.3

CME best persistent 3.3 1.9 1.7 8.5 7.3 6 5 12.5 17.5 28.1 8.1
Table 1. Perfect model results for model 8 as the pseudo-observation. For each score (in row): weights (in %) associated with the eleven

models. The sum of the weights per row is 100. Values in bold highlight the model with the highest weight for each score.

8, the scores based on climatology do not allow a clear discrimination between models. Hence the climatological and the best-

single-model only retrieved the correct model twice over the eleven experiments (i.e., experiments with models 1 and 10). The

CME-based scores perform better, attributing their highest weight to the correct model 8 times for CME-ClimWIP and both 6280

times for CME best punctual and CME best persistent. As for model 8 experiment, in most of the unsuccessful experiments

of the three CME scores, the correct model still has a weight close to the weight of the selected one (not shown here). These

results emphasize that identifying the correct model is more effective using local dynamics (thanks to DA framework) rather

than a climatological-statistics.

4.2 Imperfect model experiment285

The imperfect model approach aims to reconstruct the statistical properties of the distribution of a missing model using distinct

models. In all the imperfect experiments of this study, the CME-ClimWIP score is computed using the optimal values of
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0 1 2 3 4 5 6 7 8 9 10 # success

Model democracy N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0/11

Climatologies 6 1 1 5 5 3 1 3 9 8 10 2/11

Best single model 6 1 1 5 5 3 1 3 9 8 10 2/11

CME ClimWIP 0 1 2 3 5 5 6 8 8 8 10 8/11

CME best punctual 0 10 10 3 5 5 6 9 9 9 10 6/11

CME best persistent 0 10 10 3 5 5 6 9 9 9 10 6/11
Table 2. Summarised perfect model results of the Leave-One-Out model-as-truth experiments. For each column representing an experiment

(i.e., the model index used to generate pseudo-observations), the index of the model with the highest weight is specified for each score in the

row. The indices in bold show when the true model is recovered. The last column summarizes how frequently the correct model is identified

among the candidate models across the 11 experiments for the five scores. Note that ’N/A’ is indicated for model democracy since the score

prevents differentiation between models.

σD = 0.5 and σS = 0.7 which maximize the overlap scores in all the experiments combined (following Knutti et al. 2017 and

Lorenz et al. 2018).

4.2.1 Experiment with model 8290

The model democracy approach yields the worst reconstruction (Fig. 6, left panel), stressing that, in this case, the observations

information should be included in the weight calculation. The climatology-based score slighty improves the reconstruction

provided by the model democracy (+0.8% compared to model democracy). By selecting model 9, the best single-model score

improve by 6% the reconstruction of the true model 8 distribution, when compared to the model democracy. The reconstructed

distributions associated with the three strategies (i.e., model democracy, climatology, best single model) are all positively295

skewed, underestimating the true normalized AMOC (Fig. 6, left panel). The three CME-based scores outperform the three

benchmark ones, with greater overlaps of their reconstruction with the truth. In particular, they all reconstruct better statistics

for high positive values of normalized AMOC. For CME-ClimWIP, three models contribute the most to the reconstruction

of the true missing model: model 3 by 18.1%, model 7 by 49.1%, and model 9 by 31.7%. To a lesser extent, the same three

models are also selected for the best punctual and best persistent scores, but still leaves a greater contribution from other seven300

models. This suggests that the information provided by these seven models is negligible, as the two last CME strategies have

lower overlapping scores than the one obtained using CME-ClimWIP.

4.2.2 Overall eleven experiments

When the eleven models are reconstructed independently in the imperfect framework, the three CME-based scores produce

better reconstructions on average than the democracy and climatologies scores (Fig. 7). Similar to the specific model 8 recon-305

struction, the climatologies comparison score does not provide meaningful distinctions between the models. This results in

high variations in the reconstruction score when using the best single model across all experiments, further highlighting its un-
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Figure 6. Imperfect model results of model 8 experiment (by excluding it). Left panel: reconstructed distribution of normalized circulation

strength for the six scores with different colors. They are compared with the true distribution in dash black. The overlap score (in %) for each

score is expressed in the legend in brackets. Right panel: table of model weights (in %) for each score (the sum of the weights per row is

100). Values in bold highlight the weights greater than the model democracy weight (>10%) which correspond to the models contributing

the most to the distribution reconstruction.

reliability. For instance, while the score effectively captures most of the distribution when reconstructing models 1 and 2 (due

to their highly similar dynamics), for other experiments, it yields lower reconstruction performance. These results highlight the

ability of using local-dynamics over climatology-statistics for accurately differentiating between models for our reconstruction310

problem.

The reconstruction performances in the eleven experiments show that CME-ClimWIP greatly outperforms the model democ-

racy for 7 of 11 model reconstructions. As for model 8 reconstruction, CME-ClimWIP gives higher weights to a small subset

of models, making it well suited to reconstruct distributions that share similarities with some others in the ensemble.

On the other hand, CME-ClimWIP is close but less useful than democracy (and climatologies) for reconstructing models 3,315

5, 9, and 10. Here, despite the six scores having lost performance, uniform weights are appropriate for good reconstruction.

A typical example of such case is the reconstruction of model 10 whose distribution is quite symmetric, whereas all the other

models have asymmetric distribution. For model 3, 5, 9, and 10 experiments, CME best punctual and persistent give better

results than CME-ClimWIP. It is worth noting that these two scores also have greater reliability across all eleven experiments

than CME-ClimWIP, since their reconstruction performance remains consistently superior to the model democracy score with320

minimal variation between all the experiments.

4.2.3 Comparing CME-ClimWIP reconstruction performance to alternative literature scores

As expressed in (7d), the CME-ClimWIP score is composed of the performance and dependence of the models, both expressed

using the CME. The CME at time k depends on the innovation (i.e., the difference between xf
k and yk) and the covariance

error matrices Pf
k and R. The degree of contribution of the performance and independence is controlled by two tuned shape325

parameters: σD and σS . Hence, to assess the importance of each component in the reconstruction performance, various versions

of the CME-ClimWIP score are tested, by taking into account or not the influence of each component (Table 3). Note here that
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Figure 7. Imperfect model results (i.e., excluding the true model) of the Leave-One-Out model-as-truth experiments. Left panel: the model

index used as pseudo-observations is on x-axis, whereas the overlap scores (in %) between the reconstructed PDF and the true PDF read in

y-axis. Each colored marker corresponds to a score strategy as denoted in the legend. Right panel: boxplots spanning for each score (keeping

the same colour code) the 25th, median, and 75th percentiles of the distributions of overlap scores for all the model-as-truth experiments

combined. The whiskers show the minimum and maximum values excluding the outliers denoted with the black diamonds. Small yellow

triangle indicate the means.

two alternative versions represent weighting strategies of the literature mentioned in the introduction. Hence, BMA formalism

(with model evidence estimated using successive CME) and the ClimWIP approach (not considering the covariance error

matrix) are presented (refer to rows 5 and 6, respectively, in Table 3).330

The degree of dependence between models does not contribute significantly to the reconstruction performance (Table 3).

Since the eleven model versions are based on the same set of equations and the three variables are normalized, the model-

model redundancy is significant. This implies that the inter-model dependency (i.e., the denominator in Eq. (7d)), is too similar

across the models to contribute notably to differentiate them. The shape parameter (σD) has the main impact on the CME-

ClimWIP by driving the score performance. The reconstruction performance of the CME-ClimWIP version without tuning335

the shape parameters is more than 10% lower to the reference performance. The same conclusion can be done concerning the

BMA approach. The ClimWIP score computed without information from Pf and R has lower performance than the reference,

confirming the usefulness of CME (including the covariances in its formulation) over a metric only based on Euclidian distance.

Finally, when both covariances and shape parameters are excluded from the score, the performance lost is even more important.

5 Conclusion and perspectives340

This study aims at developing a data-driven methodology for weighting models, only based on their ability to represent the

dynamics of observations. For this purpose, a set of dynamical models is compared to noisy observations, where model equa-

tions are replaced by available simulations. The method combines a machine learning approach (i.e., an analog forecasting

method) to estimate the model forecasts in a cost-effective manner (i.e., without the need to re-run the model) and a sequential

data assimilation algorithm (i.e., the ensemble Kalman filter). The time-varying performance of the models with respect to345
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ClimWIP alternative/simplified versions
model 8 experiment (%) All experiments

mean [mean-std , mean+std] (%)

CME-ClimWIP reference
91.30 84.15

[75.09,93.29]

Score without codependency part (i.e., σS →+∞)
90.93 84.11

[75.09,93.13]

Score without the influence of shape parameters (i.e., σD=σS=1)
80.32 81.19

[72.81,89.58]

BMA with CME (i.e., σD = 1 and σS →+∞)
79.73 81.18

[72.80,89.55]

Classic ClimWIP score (i.e., without Pf and R informations)
89.45 83.68

[74.61,92.75]

Score without Pf or R and with σD=σS=1
79.24 80.84

[72.47,89.21]

Table 3. Sensitivity of the reconstruction performance (based on overlap of the reconstruction distribution with the truth) to various al-

ternative/simplified versions of the ClimWIP score (first column) in the imperfect model approach. The second column shows the overlap

associated with model 8 experiment. The third column shows the results of all Leave-One-Out experiments combined

observations is evaluated using the contextual model evidence (also known as innovation likelihood), which benefits from DA

properties.

To test this methodology, an ensemble of eleven models is obtained by perturbing parameters of an idealized chaotic model

of the AMOC. For each model version, the equations are only used to generate large simulations of its three variables. Each

version alternately plays the role of truth (i.e., Leave-One-Out experiments) used to construct pseudo-observations of the350

AMOC component. In the eleven experiments, model weights are extracted from the CME series using different strategies.

They take into account the performance of the models with respect to pseudo-observations and the degree of similarity with

other models. The method is then assessed by applying the weights to the distributions of long-term model simulations. In

this way, we test the extent to which the short-term dynamics of individual models can provide relevant information for

reconstructing the statistics of a targeted distribution. Reconstruction performance is measured by the percentage of overlap355

between the reconstructed and the true distributions. The reconstruction performance associated with the three CME-based

scores is compared to three benchmark approaches that do not include DA framework (i.e., model democracy, climatological

distributions comparison, and best single model).

The results of the perfect model approach highlight a better performance of CME-based scores in recovering the correct

model, compared to benchmarks, suggesting the importance of using DA. The results of the benchmark strategies generally360

suffer from a lack of discrimination between models to correctly identify the right one. In the context of the imperfect models

approach, the scores based on the CME are able to reconstruct the targeted distribution more suitably than the benchmarks

17



using the same partial noisy observations. This emphasizes the valuable information contained within the short-term dynamics,

rather than the general information provided by climatological statistics, enabling efficient differentiation between models.

The results underline that CME-based scores can be seen as a compromise between the "democracy score" and the so-called365

"dictatorial score" which selects only a single model. Within the CME-based score, the CME-ClimWIP score is relatively

closer to "dictatorship". It is suitable for reconstructing distributions sharing similarities with few models in the ensemble

and when democracy is not appropriate. On the other hand, the CME best punctual and CME persistent scores are closer to

"democracy". By exploiting temporal performance, their weights are more adaptive, which is advantageous for outperforming

the already successful democracy in any experiment (when CME-ClimWIP does not succeed).370

An inherent assumption of our study is the Gaussianity of the EnKF-forecast distributions. Testing its validity through a

Jarque-Bera test (Jarque and Bera 1980), we find that it is valid up to 50.5% of the 400 total forecasts for model 0 and pseudo-

observations from model 8 (results not shown). To go beyond our Gaussian approach, non-parametric assimilation method, such

as particle filters (Van Leeuwen 2009), could be implemented. This approach is more suitable where the Gaussian assumption

is not appropriate. In this context, a performance metric adapted to non-parametric PDF should be used instead of CME (e.g.,375

Wasserstein distance) to assess whether reconstruction performance improvements can still be achieved.

In the current study, the weights are fixed and do not change over time, as long-trem average of stationary series are re-

constructed. From a methodological standpoint, there is potential to better leverage the time-local properties of the CME by

computing time-dependent weights. This would be especially relevant in a non-autonomous framework (e.g., in the context of

climate changes).380

This study initiates the implementation of the methodological framework whose ultimate goal is to weight a larger ensemble

of dynamic models representing more complex systems, such as those provided by the CMIP6 (Eyring et al. 2016). Here, the

aim will be to find weights that will be calculated on the performance of climate models (represented by their catalog of simu-

lations) in correctly reproducing current partial observations. Extrapolating the weighted model averages using future climate

projection simulations could provide a more accurate and reliable response of the AMOC to anthropogenic forcing. However,385

some aspects need to be examined due to the differences between a CMIP study and the present one. Firstly, whereas here

the simulations are stationary, the CMIP simulations describe a trend and variabilities in response to the time-varying forcing

(e.g., solar activity, volcano eruption, and greenhouse gas emissions). Secondly, in this proof of concept study, the full phase

space of the idealized model is known, whereas using CMIP simulations, additional variables would need to be investigated to

increase the unknown number of dimensions. This could be valuable for obtaining accurate and reliable AnDA reconstructions390

needed for deriving relevant weights. The diversity of available observations types could be particularly beneficial in this case.

Code and data availability. Python codes are available in the following GitHub open repository: https://github.com/pilebras/AnDA_weight_

idealAMOC/tree/main under the GNU license. They include the code for generating the data (using an idealized AMOC model developped in

Sévellec and Fedorov 2014), performing the experiments using AnDA (adapted from the code available at https://github.com/ptandeo/AnDA)

and obtaining the figures of the paper.395
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Appendix A: Link between CME-ClimWIP and Bayesian Model Averaging (BMA)

Including CME as a metric in the CME-ClimWIP expression brings the score into the Bayesian Model Averaging (BMA)

framework which relies on marginal likelihoods. Specifically, e
∑K

k=0 CMEk(y;M(i)), in the numerator of Eq. (7d), represents the

approximate marginal likelihood of the observations. This is estimated within the AnDA process using successive innovation

likelihoods (i.e., the CME values, e.g., Carrassi et al. 2017; Pulido et al. 2018; Metref et al. 2019; Tandeo et al. 2020). This520

approach offers two key advantages. Firstly, it avoids the need for calculating a climatological distribution, which can be

challenging to estimate accurately and computationally expensive. Secondly, it provides more informative insights into current

conditions, including forecast states with their uncertainties. This is especially useful for dealing with nonlinearities in dynamic

systems, instead of using globally defined climatological distributions (Metref et al. 2019). Furthermore, the denominator in Eq.

(7d) serves as a prior that contains information about inter-model dependency. This provides more valuable insights compared525

to a uniform prior commonly used in standard BMA approaches (e.g., George 2010; Garthwaite and Mubwandarikwa 2010).
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