

The AutoICE Challenge

Andreas Stokholm^{2, 6}, Jørgen Buus-Hinkler¹, Tore Wulf¹, Anton Korosov³, Roberto Saldo², Leif Toudal Pedersen², David Arthurs⁴, Ionut Dragan¹¹, Iacopo Modica¹², Juan Pedro¹³, Annekatrien Debien¹¹, Xinwei Chen⁷, Muhammed Patel⁷, Fernando J. Pena Cantu⁷, Javier Noa Turnes⁷, Jinman Park⁷, Linlin Xu⁷, Andrea K. Scott⁸, David A. Clausi⁷, Yuan Fang⁷, Mingzhe Jiang⁷, Saeid Taleghanidoozdoozan⁷, Neil C. Brubacher⁷, Armina Soleymani⁷, Zacharie Gousseau⁷, Michał Smaczny⁹, Patryk Kowalski⁹, Jacek Komorowski⁹, David Rijlaarsdam¹⁰, Jan N. van Rijn¹⁴, Jens Jakobsen¹, Martin S. J. Rogers¹⁵, Nick Hughes¹⁶, Tom Zagon¹⁷, Rune Solberg⁵, Nicolas Longépé⁶, and Matilde Brandt Kreiner¹

Correspondence: Andreas Stokholm (stokholm@space.dtu.dk)

Abstract. Mapping sea ice in the Arctic is essential for maritime navigation, and growing vessel traffic highlights the necessity of timeliness and accuracy of sea ice charts. In addition, with the increased availability of satellite imagery, automation is becoming more important. The aim of the AutoICE Challenge was to encourage the creation of models capable of mapping sea ice automatically from spaceborne Synthetic Aperture Radar (SAR) imagery using deep learning while inspiring participants to move towards multiple sea ice parameter model retrieval instead of the current focus on a single sea ice parameter, such as concentration. Participants were tasked with the development of machine learning algorithms mapping the total sea ice concentration, stage of development and floe size using a state-of-the-art sea ice dataset with dual-polarised Sentinel-1 SAR images and 22 other relevant variables while using professionally labelled sea ice charts from multiple national ice services as reference data. The challenge had 129 teams representing a total of 179 participants, with 34 teams delivering 494 submissions, resulting in a participation rate of 26.4%, and was won by a team from the University of Waterloo. Participants were successful in training models capable of retrieving multiple ice parameters with convolutional neural network and vision transformer

¹Danish Meteorological Institute (DMI)

²DTU Space, National Space Institute, Technical University of Denmark (DTU)

³Nansen Environmental and Remote Sensing Center (NERSC)

⁴Polar View

⁵Norwegian Computing Center (NR)

⁶φ-lab, European Space Research Institute (ESRIN), European Space Agency (ESA)

⁷Department of System Design Engineering, University of Waterloo

⁸Department of Mechanical and Mechatronics Engineering, University of Waterloo

⁹Warsaw University of Technology

¹⁰Ubotica Technologies

¹¹SpaceTec Partners

¹²GMATICS

¹³EarthPulse

¹⁴Leiden Institute of Advanced Computer Science, Leiden University

¹⁵AI Lab, British Antarctic Survey

¹⁶Norwegian Ice Service, Norwegian Meteorological Institute

¹⁷Canadian Ice Service, Environment and Climate Change Canada

models. The top participants scored best on the total sea ice concentration and stage of development, while the floe size was more difficult. Furthermore, participants offered intriguing approaches and ideas that could help propel future research within automatic sea ice mapping, such as applying high downsampling of SAR data to improve model efficiency and produce better results.

1 Introduction

15

Effective navigation in the cold and remote polar regions requires timely and high-resolution sea ice charts that detail the contemporary local ice conditions to circumnavigate or traverse safely and quickly. Therefore, sea ice charts are an indispensable information infrastructure ensuring the transportation of goods and people and supporting activities such as tourism and fishing. The diminishing Arctic sea ice (Perovich et al., 2020) is enabling new activities, such as shipping avenues using the Northern trade routes or resource prospecting. The Arctic could offer quicker connections between the Atlantic and Pacific oceans with the potential for time and cost savings (Bekkers et al., 2017). Research indicates that ice conditions will become increasingly dynamic, and therefore, it is continuously vital to monitor maritime activities (Boutin et al., 2020). Another usecase for ice information in high resolution is assimilation into weather and climate models for improved performance, as sea ice acts as an intermediate medium between the ocean and the atmosphere, reducing interaction. These models often rely on coarse-resolution sea ice products, e.g. OSI SAF (OSI SAF, 2017) produced by EUMETSAT and based on passive microwave radiometry, and could thus benefit from the higher spatial resolution offered by the SAR-based sea ice maps.

1.1 Context

Arctic sea ice is charted by professional sea ice analysts at national ice services across the World, such as the Greenland Ice Service at the Danish Meteorological Institute (DMI) and the Canadian Ice Service. The charting process is carried out following the SIGRID-3 standard developed by the International Ice Charting Working Group (IICWG) for the World Meteorological Organisation (IICWG, 2010). Over the years, the origin of input data has ranged from airborne campaigns to satellite measurements with multitudes of instruments. The vastness and remoteness of the Arctic pose monitoring challenges that have made satellite observations the universal approach, offering wide coverage, cost savings and high update frequency compared to other monitoring options, such as airborne campaigns. However, optical imagery is not reliable for sea ice monitoring due to a dependency on sunlight (absent during the Arctic winter) and cloud cover, which can be indistinguishable from sea ice. Despite these challenges, optical imagery is still used in operational sea ice charting when available. The Advanced Microwave Scanning Radiometer 2 (AMSR2) instrument onboard the JAXA GCOM-W1 offer brightness temperature measurements with daily coverage of the Arctic at a resolution in the order of 35x62 km to 3x5 km per pixel (frequency dependent, 6.925 - 89 GHz) (Kasahara et al., 2012), which is insufficient for use in tactical navigation. Instead, active microwave systems like Synthetic Aperture Radar (SAR) measurements are the backbone for sea ice charting with occasional supplements from other instruments ((Saldo et al., 2021), manual). SAR offer particular versatile measurements in finer than 100m pixel spacing that are independent of sun illumination and cloud cover. One challenge with SAR data is interpretability, as the radar backscatter is

50

dependent on surface properties, including roughness, and different surfaces can appear similar. Furthermore, open water and sea ice can resemble one another in their electromagnetic texture appearance (Jackson and Apel, 2004). To provide accurate ice charts, professional ice analysts manually interpret and draw charts based on their in-depth experience and knowledge using Geographical Information System (GIS) software. This manual analysis, however, is resource- and time-consuming, which constrains the number of daily charts and coverage to the manpower commitment. Naturally, this motivates the development of fully or partially automatic tools that can provide more detailed ice and consistent information for a wider area, delivered in near-real-time.

1.2 Other relevant works

The interest in automating the retrieval of sea ice information from SAR imagery has been present for decades with early contributions including the usage of texture features as input to support vector machines and other early neural network types (Zakhvatkina et al., 2017; Karvonen, 2014, 2004). Contemporary attempts highlight deep learning and particularly semantic image segmentation with Convolutional Neural Networks (CNNs) as a primary contender to provide a reliable and precise automatic alternative. An initial study was published by Wang et al. (2016) with additional entries (Wang et al., 2017a, b) highlighting the validity of the approach to map the total Sea Ice Concentration (SIC) in Canada. However, in these early studies, network complexity, data quantity and coverage can be seen as limiting factors.

In 2020, an initial version of an open-source deep learning dataset was launched, Automated Sea Ice Product (ASIP) Dataset (ASID-v1) (Malmgren-Hansen et al., 2020). In connection, initial model results using the dataset were published in Malmgren-Hansen et al. (2021) using a custom-built CNN architecture applying data fusion of SAR and AMSR2 and a regression-based optimisation approach to map the SIC. These models were the results of the first attempts at applying large datasets of multiple 100 GBs for training and emphasised obstacles that became foundations for further model developments. E.g. in Heidler et al. (2021), the authors were able to highlight the importance of a larger receptive field to improve the performance of the model developed in Malmgren-Hansen et al. (2021). While most of the initial studies from Wang et al. (2016); Malmgren-Hansen et al. (2021) were primarily concerned with sea ice concentration, others have proposed deep learning-based approaches to sea ice type mapping in SAR imagery (Boulze et al., 2020).

The European Space Agency's (ESA) project AI4Arctic continued the efforts of the ASIP project. It produced the second version of the dataset, ASID-v2, in 2021 (Saldo et al., 2021), which became a part of the ESA AI Ready Earth Observation (AIREO) datasets and led to new CNN-related works such as Tamber et al. (2022), and the AI4SeaIce article series (Stokholm et al., 2022; Kucik and Stokholm, 2022, 2023; Stokholm et al., 2023) that has investigated multiple facets of mapping the SIC and approaches to representing it in an optimisation setting. In parallel, other efforts include the ExtremeEarth project (Koubarakis et al., 2021) with its polar use-case such as Khaleghian et al. (2021) focusing on the sea ice type. Other notable sea ice mapping literature entries include Radhakrishnan et al. (2021) utilising curriculum learning and de Gelis et al. (2021) applying the U-Net architecture and underlined obstacles associated with ambiguous SAR signatures and the interest of large receptive fields. Many challenges and advancements within the broader scope of Earth observation and artificial intelligence are highlighted in Tuia et al. (2023).

1.3 Objective of the AutoICE Challenge

The objective of the AutoICE challenge is to advance the state of the art for sea ice parameter retrieval from SAR data with an increased capacity to derive more robust and accurate automated sea ice maps. The field of automatic sea ice mapping has been hastily improving over the past years. However, common for many past literature entries listed here is the focus on single sea ice parameters, either the SIC or type and the regional focus on individual ice services, i.e. Canadian, Greenlandic or Norwegian. Sea ice charts are a treasure trove of expert-labelled training data extending for multiple years and covering vast areas. To propel the automatic sea ice mapping research field towards retrieving multiple sea ice parameters with data from a wider regional area and across national borders - the Artificial Intelligence For Earth Observation (AI4EO) AutoICE Challenge was designed. The challenge aimed at engaging and encouraging students, sea ice experts and machine learning practitioners to develop models capable of automatically mapping sea ice and generating new ideas and methods. Participants were tasked with mapping three sea ice parameters that are all important in describing the composition of the sea ice cover relevant to navigation as well as weather and climate models: SIC, which describes the ratio of sea ice in relation to open water and is the primary descriptor of the sea ice charts. SIC helps ships identify areas of sea ice and the marginal ice zone. The second parameter is the Stage Of Development (SOD), which is the type of sea ice and is a proxy for the age of the ice, which in turn is a proxy for the thickness. The parameter supports decision-making regarding in which areas the ice can be broken by what type of ships. The final ice parameter is the Floe size (FLOE), which characterises the size of ice flakes/floes and aids in determining areas of ice leads and the degree to which the ice is broken up into smaller floes. This paper summarises and compares the top participants' results and discusses the outcome of the AutoICE Challenge.

1.4 Article breakdown

Initially, the setup is presented in Section 2, including the evaluation criteria and the tools available to the participants. This is followed by Section 3, describing the challenge data provided by the organisers. Afterwards, in Section 4, an overview of the participation rate is presented together with the final challenge results. 3 of the top 5 teams summarise their solutions in Section 5. This is followed by a comparison with scene examples from the test dataset in Section 6. Finally, the challenge is discussed and concluded in Sections 7 and 8, highlighting key takeaways and future directions of research to advance the state-of-the-art in automatic sea ice mapping.

2 Challenge Setup

100

To help design and evaluate the challenge, an external panel of experts in AI and sea ice charting were appointed. The expert panel members included two sea ice charting experts appointed by the International Ice Charting Working Group (IICWG) and represented universities and research institutes. The expert panel participated in a dedicated workshop hosted by the organizers to discuss submission evaluation metrics and setup, etc.

120

135

The challenge was designed to cater to a large audience by providing manageable resources and a clear and purposeful objective. Participants were given a state-of-the-art dataset, the ASID Challenge dataset (Buus-Hinkler et al., 2022a), to train their models. The dataset encompasses remotely sensed data from multiple sensors, geographical information and atmospheric and land-surface quantities from reanalysis models to encourage diverse data fusion methodologies. The dataset spanned multiple years and charts from multiple national ice services (Canada and Greenland). Two versions of the dataset were prepared, an unaltered (raw) version and a Ready-To-Train (RTT) version, to cater to both the ease of getting started while simultaneously allowing those who prefer fully customised model training setups to pursue their ideas. The scenes were divided up into 513 for training (Buus-Hinkler et al., 2023a, b) and 20 for testing (Buus-Hinkler et al., 2022b, c). Participants did not have access to the testing scenes' ice charts to prevent overfitting to the set during training. The testing scenes contain all ice classes present in the training dataset and were selected to represent various sea ice SAR signatures with charts from both the Canadian and Greenland Ice Services spanning January 2018 to December 2021.

Participants were also provided with get-started tools consisting of software created by the organisers to help get started and training models for the challenge with the RTT dataset. In addition, computing resources through the Polar Thematic Exploitation Platform (PolarTEP) were available to participants. The challenge was hosted on the ESA-funded AI4EO.eu challenge platform, introducing the challenge design and rules, links to the dataset and tools and a submission portal with an associated leaderboard, where participants could compare their results to those of other teams. The competition launched on November 23 2022, and closed on April 17 2023.

125 Metrics and final evaluation

To submit a solution, participants produced sea ice maps for the three sea ice parameters in 80m pixel spacing and uploaded them to the AI4EO.eu platform portal. The platform backend computed a score based on a comparison with the reference data and provided the score to the teams. A public and private score was calculated. The public score was calculated based on 10 of the 20 test scenes and the private score on all 20 scenes. The (team's best) public score was shown on the leaderboard. In contrast, the private score was withheld from the participants until the closure of the competition and used as the final ranking of the teams to prevent overfitting to the test dataset.

The participant's test set solutions were evaluated based on a weighted sum of three metrics, one for each of the three sea ice parameters. The SIC score was evaluated using the R^2 coefficient. R^2 captures the regression aspect of sea ice concentrations (inter-class relationship i.e. 10% SIC being closer to 20% than to 30%) and can be expressed as a percentage. It is formulated as:

$$R^{2} = 1 - \frac{\sum_{i=1}^{N_{\text{pixel}}} (y_{i}^{true} - y_{i}^{\text{pred}})^{2}}{\sum_{i=1}^{N_{\text{pixel}}} (y_{i}^{true} - \hat{y}^{true})^{2}}$$
(1)

where y_i^{true} is the true i^{th} pixel, \hat{y}_i^{true} is the mean true pixel value, and y_i^{pred} is the predicted class of the i^{th} pixel.

The SOD and FLOE parameters were both evaluated using the F1 score. SOD and FLOE categories, as opposed to SIC, are not directly linked, and thus, a classification-oriented metric was deemed suitable for this evaluation. F1 is the harmonic

mean of the precision and recall metrics of each class. The F1 score for each ice parameter takes the dataset sea ice class imbalance into consideration by accounting for the number of pixels for each class. The F1 score can further, while it can also be expressed as a percentage and is formulated as follows:

$$F1 = 2\frac{precision \cdot recall}{precision + recall} \quad \text{, where} \quad precision = \frac{T_P}{T_P + F_P} \quad \text{and} \quad recall = \frac{T_P}{T_P + F_N}$$
 (2)

Here, T_P is the number of true positives, F_P is the number of false positives, and F_N is the number of false negatives.

The three sea ice parameter scores were combined into one single final score utilising a weighting scheme. With input from the expert panel, the final score emphasised SIC and SOD over FLOE, as FLOE was deemed less important for the ice service and users by the ice charting experts. The weights were $\frac{2}{5}$ for both SIC and SOD, and $\frac{1}{5}$ for FLOE. For the metric calculations, pixels that did not contain a sea ice class, e.g. land, were discounted.

Get-started tools

To increase the accessibility of the challenge, get-started tools were prepared by the organisers with Python functions and three notebooks. One notebook served as a thematic and data exploration introduction, another provided a model training setup implemented in PyTorch, and finally, a notebook to produce a test solution. In addition, a simple U-Net model implemented in PyTorch provided a common starting point for participants. These files and notebooks provide examples of how to carry out model training experiments but were not required to be used.

155 3 The AI4Arctic Sea Ice Challenge Dataset

The AI4Arctic Sea Ice Challenge Dataset (ASID Challenge) includes 533 co-located and georeferenced scenes between January 2018 and December 2021 distributed across the Canadian and Greenlandic Arctic as illustrated in Fig. 1. In this section, the data variables are examined briefly. For more details, please see the official dataset manual in (Buus-Hinkler et al., 2022a). Each of the scenes contains:

160 Sea ice charts - reference data

Sea ice charts describe the local ice condition at the capture time, based on professional interpretations of SAR images and represented distinctly as polygons of fairly homogeneous areas of sea ice, steered by the common guidelines outlined in the SIGRID-3 standard but still subject to individual interpretation. Studies have suggested that the SIC between ice analysts can vary on average 20% and, in worst cases, up to 60% (Karvonen et al., 2015). Similarly, low SICs (10-30%) can be overestimated while middle SIC classes (50-60%) can exhibit a wide spread with high variability Cheng et al. (2020). Additionally, the marginal ice zone typically receives more attention during the analysis, as these areas see higher maritime activity ((Saldo et al., 2021), manual). Despite these uncertainties, pixels in the sea ice charts are treated as equally valid.

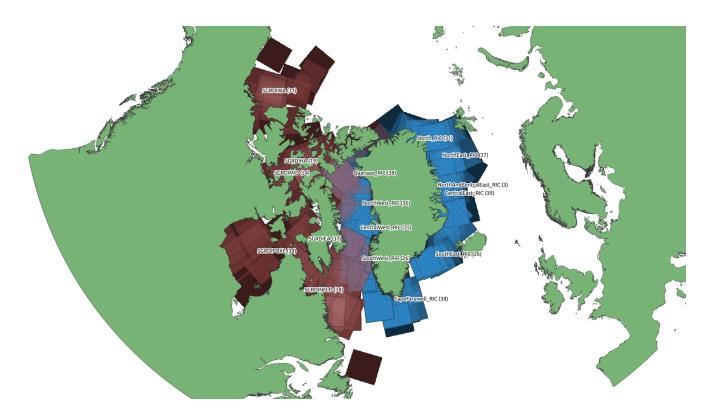


Figure 1. Overview of the 513 training scenes in the AI4Arctic Sea Ice Challenge Dataset. Red and blue squares illustrate scenes with ice charts from the Canadian and Greenland ice services, respectively. Increasingly bright colours indicate a larger number of charts.

The sea ice charts used in the challenge dataset are either produced by the Canadian Ice Service (CIS) or the Greenland Ice Service at DMI, illustrated in Fig. 1 in red and blue, respectively, with a brighter colour indicating more scenes. Each chart is temporally and geographically matched with a Sentinel-1 image, either within 5 or 15 minutes of the timestamp for the DMI and CIS ice charts, respectively. The original ice chart data is contained in an ESRI ShapeFile format, which is projected to the Sentinel-1 SAR geometry and rasterized to a map matching the pixel spacing of the SAR image with polygon IDs and an associated ice information look-up table. In the RTT dataset version, the ice chart was converted into three maps, one for SIC, SOD and FLOE, using the ice codes defined in the SIGRID-3 convention. SIC is converted into 11 classes from 0-100% in discrete increments of 10%, the SOD into 6 classes; open water, *new ice*, *young ice*, *thin First-Year Ice* (FYI), *thick FYI*, and *old ice*. FLOE is converted into 7 classes; open water, *cake ice*, *small*, *medium*, *big*, *vast* floes as well as *bergs*. Some of these classes are the results of multiple approximate ice codes being merged, as highlighted in the dataset manual (Buus-Hinkler et al., 2022a). In addition, as the SOD and FLOE are given as partial SOD or FLOE concentrations, there may be multiple categories of SOD or FLOE for each ice polygon. To select the SOD or FLOE category while avoiding ambiguity, the SOD or FLOE category must be dominant. Here, we defined a SOD or FLOE category as dominant if said category has a partial concentration of at least 65%. Therefore, there are numerous polygons where a total SIC exists, but the polygon does not have

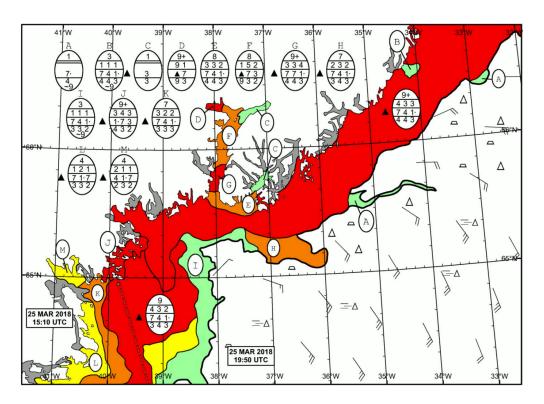


Figure 2. Manually produced sea ice chart from the Greenland Ice Service containing polygons with an associated ice "egg code" describing ice conditions. The image is depicted in geographical coordinates. Greenland Strait, Southeast Greenland. The scene was acquired on March 25, 2018.

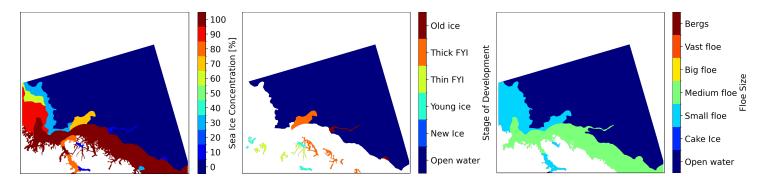


Figure 3. SIC, SOD and FLOE maps from the ice chart in Fig. 2. White pixels are masked areas from either no information, land or ambiguous polygons with no dominant ice class for the respective parameter. The colour code is slightly different than Fig. 2. The images are depicted in the original SAR geometry.

an associated SOD and/or FLOE. For those participants wishing to use the raw dataset, an ice chart conversion Python script was provided. The three sea ice parameter maps associated with Fig. 2 are illustrated in Fig. 3, shown in the original SAR

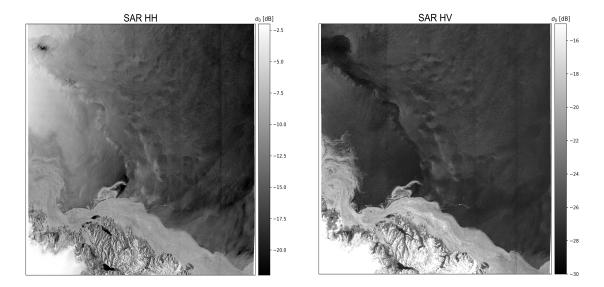


Figure 4. HH and HV SAR images corresponding to the ice chart illustrated in Fig. 2 and 3 in σ_0 dB backscatter values and depicted in the SAR acquisition geometry.

measurement geometry. In this example, there are polygons without a dominant SOD and FLOE, which are shown as white - similar to land or areas with no measurement values.

Synthetic Aperture Radar

190

The primary data source is the two-channel dual polarized (HH and HV) Sentinel-1 C-band 5.410 GHz frequency level 1 Ground Range Detected Medium resolution images acquired in the Extra-Wide operational mode (Torres et al., 2012). The SAR image has been noise corrected using the algorithm described in Korosov et al. (2022). In addition, the SAR incidence angles and a pixel-wise distance-to-land map are included. The closest temporally overlapping SAR image to the ice chart in Fig. 2 and ice parameters in Fig. 3 are illustrated in Fig. 4 in the original SAR geometry.

Passive microwave radiometry

The challenge dataset also contains overlapping level-1b brightness temperatures measured with the AMSR2 passive microwave radiometer onboard the JAXA GCOM-W satellite. The maximum time difference between the acquisition time of the Sentinel-1 image and the overlapping AMSR2 swath is 7 hours. The AMSR2 measurements are resampled to the Sentinel-1 geometry to the coordinates of every 50 by 50 (2 km) pixel using a gaussian weighted interpolation for each polarization (vertical and horizontal) and frequency (6.9, 7.3, 10.7, 18.7, 23.8, 36.5, 89.0 GHz). Examples of AMSR2 measurements corresponding to the ice maps in Fig. 3 and the SAR data in Fig. 4 are illustrated in Fig. 5. Auxiliary AMSR2 variables include the AMSR2 swath names of the used AMSR2 level-1b product(s), AMSR2 swath numbers (relevant when mosaicing multiple swaths), and the time delay(s) between AMSR2 and Sentinel-1.

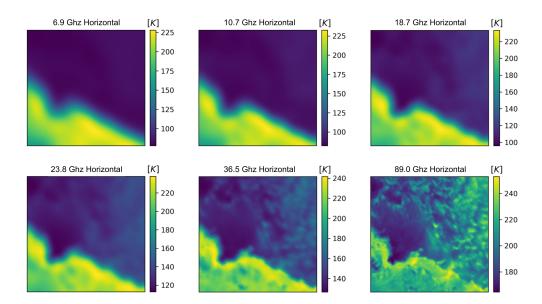


Figure 5. An example of the available horizontally polarised brightness temperatures in Kelvin from the AMSR2 passive microwave radiometer onboard the JAXA GCOM-W Satellite covering the scene in Fig. 2 and viewed in the same perspective as Fig. 3 and 4.

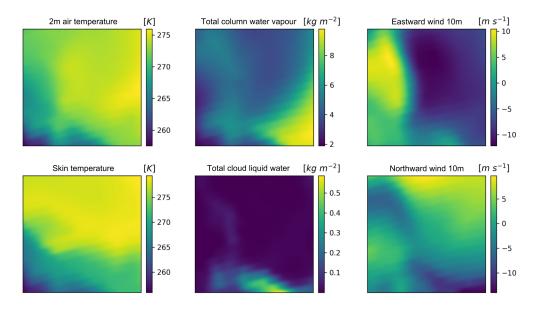


Figure 6. An example of the numerical weather prediction parameters including 2m air and skin temperature, total column water vapour and cloud liquid water, and East- and Northward wind 10m components for the scene depicted in Fig. 2 and in the same perspective as Fig. 3-5.

Numerical weather prediction parameters

Several numerical weather prediction parameters from the ERA5 (ECMWF Reanalysis v5) are included (Hersbach et al., 2023). The parameters are resampled to the Sentinel-1 geometry in the same manner as the AMSR2 brightness temperatures using a

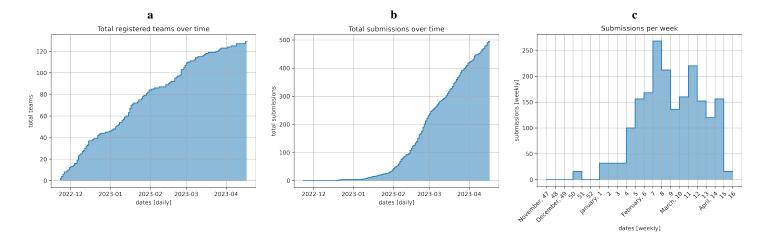


Figure 7. User challenge engagement. a): shows the total accumulated registered teams per day on the AI4EO platform. b): illustrates the total accumulated submissions per day during the competition. c): highlights the number of submissions per week over the course of the challenge.

gaussian weighted interpolation. The parameters are illustrated in Fig. 6 and encompass the 2-meter air and skin temperature, the total column water vapour and cloud liquid water, and the eastward and northward 10-meter wind components rotated to account for the Sentinel-1 flight direction.

Ready-To-Train (RTT) dataset version

210

For the RTT dataset version, some preprocessing choices were already made for the participants. To reduce the barrier of entry, the original 40m pixel spacing (\sim 10,000 x 10,000 pixels) in the SAR (and ice charts etc.) data was downsampled to 80m (\sim 5,000 x 5,000 pixels). It was also required for the participants to deliver sea ice maps in this pixel spacing. The SAR image, distance-to-land map and incidence angle data were downsampled using a 2×2 averaging kernel, whereas ice charts were reduced spatially using a 2x2 max kernel. This is followed by an alignment of masks (nan-values) across the data, except the sub-gridded variables, e.g. AMSR2 data, and the SOD and FLOE polygons with no dominant ice code. Afterwards, the scenes were standard-scaled using the mean and standard deviation of all training data within each data channel. Finally, pixels without ice chart values were replaced with the values 2 and 255 in the SAR images and ice charts, respectively. This was carried out in order to represent non-data or masked pixels and enable the discounting of these pixels during loss optimisation and the computation of the evaluation metrics.

4 Participation and submission results

The competition received good traction from a diverse set of stakeholders ranging from academics, students and industry.

O Fig. 7 illustrates (a) the total number of registered teams (multiple users can be within each team) over the course of the

230

235

240

competition, (b) the total number of team submissions, and (c) the total number of submissions per week. The competition saw a continuous influx of users with fewer registrations towards the end of the competition. At the end of the competition, a total of 129 teams and 179 associated users had registered. Participants started delivering their test set solutions around halfway through the competition, with a peaking submission rate of around two-thirds of the way through the competition and a spike in submissions nearing the closing date. In total, 494 test solutions were submitted from 34 different teams.

4.1 Submission results

The top-performing teams are listed in Tab. 1, showcasing the combined final private score, as well as the private score for each ice parameter and the number of submissions per team. In the bottom row, the mean and standard deviation (STD) of the top 5 teams are included. The overall winner of the AutoICE challenge was the combined team from the Department of System Design Engineering at the University of Waterloo (*UW*), encompassing a total of 14 people. *UW* achieved a combined final score of 86.39%. In addition, the team scored highest on both the SIC and SOD while scoring the lowest among the top 5 teams on the FLOE. The *UW* team consisted of PostDocs and PhD and Master students, were supervised by faculty staff and were very engaged during the competition. In total, *UW* submitted test solutions from a total of 7 team accounts that were all placed in the top 7 on the leaderboard. In total, *UW* submitted 170 test solutions across their team accounts, which was more than the other 4 top 5 teams combined.

The second place went to the team *PWGSN*, two computer science master students and their PhD candidate supervisor from the Warsaw University of Technology with a combined score of 82.48%, the highest score on FLOE and a total of 42 submissions. In third place, the team *crissy* scored 81.17% with a single submission. Fourth went to *sim*, an engineer at Ubotica Technologies who submitted 7 test solutions with a score of 80.61%. Finally, on the fifth, *jff* scored 80.56% with a total of 59 submissions. *crissy* and *jff* has not shared their affiliations.

From the top 5 participants' mean and STD ice parameter scores in Tab. 1, it is clear that the SIC was the variable that all participants scored the highest numerical percentage on, followed by the SOD and finally FLOE. The STD appear to be highest for the SOD, though skewed by the high *UW* performance. Excluding the *UW* SOD score, the SOD STD would be the lowest among the three ice parameters at 1.5, compared to 1.8 and 2.4 for SIC and FLOE, respectively.

Table 1. Final ranking and scoring of the top 5 participating teams including the individual ice parameter scores, the mean ice parameter scores across the teams with the standard deviation, and the total submissions for each team.

Rank	Team	Final	SIC	SOD	FLOE	Submissions
1	University of Waterloo	86.39%	92.02%	88.61%	70.70%	170
2	PWGSN	82.48%	89.70%	76.94%	79.12%	42
3	crissy	81.17%	85.35%	80.26%	74.66%	1
4	sim	80.61%	87.22%	77.52%	73.59%	7
5	jff	80.56%	86.68%	77.18%	75.10%	59
mean		-	$88.19\% \pm 2.66$	$80.10\% \pm 4.94$	$74.63\% \pm 3.04$	-

245 5 Top submission solutions

In the following subsections three of the top 5 teams - UW, PWGSN and sim teams - have contributed with short descriptions of their model solutions. All participants in the AutoICE challenge were invited to submit a full description of their solutions to the special issue in the Cryosphere. "AutoICE: results of the sea ice classification challenge". In the proceeding, we refer to the individual teams describing their solutions.

250 5.1 Rank 1 - University of Waterloo

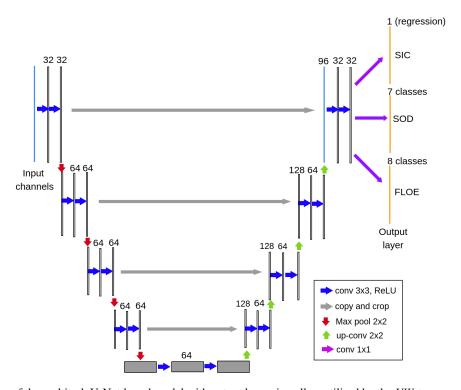


Figure 8. The structure of the multitask U-Net-based model with output layers in yellow utilised by the UW-team.

To streamline our model development process, we utilized the RTT version of the AI4Arctic Sea Ice Challenge Dataset (Buus-Hinkler et al., 2023b). In order to ensure consistent predictions with the ice chart-derived label maps, it is crucial to increase the geographical field of view of the model. To achieve this, we downsample the dual-polarized SAR images, distance maps, and corresponding ice chart-derived label maps by a specific ratio (10 in this work). During training, we randomly extract patches of size 256×256 from the downsampled SAR images. The AMSR2 and ERA5 variables are also resampled to the same size and interpolated within the geographical areas covered by the patches. For validation and testing, the entire SAR scenes and distance maps are downscaled and combined with other upsampled variables as input to the trained model. The outputs are then interpolated back to the original size for evaluation. The best combination of input variables is listed in Tab. 2. Additionally, to incorporate spatial and temporal information, we interpolate the latitude and longitude coordinates of the

270

275

280

Sentinel-1 SAR geographic grid points to match the size of the input SAR image. The acquisition month of each SAR scene represents the time information for each pixel.

Table 2. The combination of input variables that produced the highest score for the *UW*-team.

Feature	Variable description	Total number	
abbreviation	variable description	of channels	
HH, HV, IA	Dual-pol SAR scene with incidence angle information	3	
DM	DM Distance-to-land map for all pixels		
AMSR2 subset	AMSR2 subset Dual-pol AMSR2 brightness temperature data in 18.7 and 36.5 GHz		
ERA5 subset	10-m wind speed, 2-m air temperature, total column water vapour,	5	
Bra is subset	total column cloud liquid water		
Loc, time	Latitude/longitude of each pixel and scene acquisition month	3	

Regarding the model architecture, we construct a multi-task U-Net that simultaneously estimates three sea ice parameters, as depicted in Fig. 8. It consists of four encoder-decoder blocks with varying numbers of filters. To generate predictions for SOD and FLOE, the output feature maps from the final decoder are separately fed into 1×1 convolution layers with the number of filters corresponding to the number of classes. This generates pixel-based classification results (i.e., segmentation). As for SIC, a regression head is added at the end to produce SIC estimates. The model training details, including hyperparameter combinations that yield the best validation accuracy, are specified in Tab. 3. We employ Cosine Annealing as a learning rate schedule, which allows the model to converge to a good solution by adjusting the learning rate in a cyclical manner. Each epoch comprises 500 iterations, with patches randomly sampled from the training scenes in each iteration. Through experimentation, we determine that using mean square error (MSE) loss for SIC and Cross-Entropy (CE) loss for SOD and FLOE achieves the highest testing accuracy. To expedite the convergence of the three scores, we assign a larger weight value to the CE losses relative to the MSE loss, as shown in Tab. 3. To ensure consistency between validation and testing accuracy, we select 18 SAR scenes from the training data that closely match the acquisition locations and time periods of the testing scenes, creating a separate validation set. A combined score, following the metrics given in the competition, is calculated from the validation set at the end of each epoch. If the current epoch's score surpasses all previous scores, the model parameters are updated and saved. The final saved model is employed to generate predictions for the testing data. All experiments are conducted on the Narval cluster of Compute Canada (Baldwin, 2012) using an NVIDIA A100-SXM4-40GB GPU and 128GB of memory, with the PyTorch 1.12 library.

Among the submissions from over 30 teams worldwide, our method achieved the highest combined score of approximately 86.4%. In particular, it was observed that our method outperformed other methods on SOD (8 percentage points higher than the next best) and SIC scores (2 percentage points higher than the next best). As the ice chart-derived labels for the testing data were released after the competition ended, a comprehensive analysis of the experimental results will be presented in a forthcoming paper for publication.

Table 3. Training specifications of the *UW*-team model solution.

Optimizer	SGDM
Learning rate	0.001
Weight decay	0.01
Scheduler	Cosine Annealing
Batch size	16
Number of iterations per epoch	500
Total epoch	300
Number of epochs for the first restart	20
Downscaling ratio	10
Data augmentation	Rotation, flip, random scale, cutmix
Patch size	256
Loss functions	MSE for SIC, CE for SOD and FLOE
Total loss calculation	SIC×1+SOD×3+FLOE×3
Number of validation scenes	18

5.2 Rank 2 - PWGSN

295

300

For all experiments conducted during the competition, the RTT version of the AI4Arctic Sea Ice Challenge Dataset (Buus-Hinkler et al., 2023b) was used. The data was split into training (502 scenes) and validation (10 scenes) datasets. An epoch was defined as an iteration over all available training scenes. During each step, one patch size of 224×224 pixels was selected according to the undersampling procedure in Fig. 9.

Each scene was divided into a grid of patches using a sliding window of size 224×224 pixels with a step of 22 pixels. 90 Each patch was classified into one of the three possible classes, depending on the share of open water pixels (s): open water $(s \ge 0.9)$, water-ice edge $(0.2 \le s < 0.9)$ and ice (s < 0.2).

During an epoch, patches were randomly selected from scenes to approximately satisfy the predefined class distribution, implying that the share of ice-only patches in an epoch should be close to some value, p, and the share of water-ice edge patches should be close to another value, q. We have achieved the best results for p = 0.1 and q = 0.2. Training examples were collected into 8-element batches. Training observations consisted of all 24 channels available in the data. Low-resolution channels were upsampled to the size of SAR images. Following data augmentations were applied in an effort to mitigate overfitting: rotations, flips, multiplicative noise and slight distortions. It is worth noting that only transformer-based architectures were prone to overfitting - for other architectures tested, including CNNs, data augmentations had no positive impact on the metrics.

A modified semantic segmentation model was used with an adjusted number of output heads. This approach enabled us to make SIC, SOD and FLOE maps simultaneous predictions. The model returned three 3-dimensional tensors with an estimated likelihood of pixels belonging to a particular class. An ensemble of 10 models was created to generate the final results. Outputs

310

315

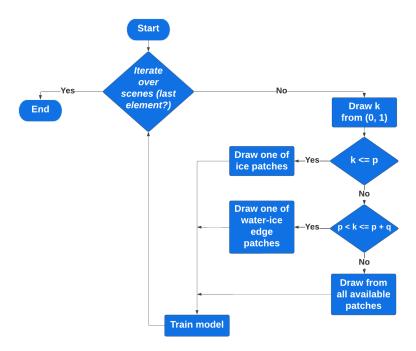


Figure 9. The undersampling procedure used by the PWGSN-team. Composing training dataset with approximately imposed class frequency.

from each of the models were merged using a majority voting mechanism. All of the models in the ensemble shared the same architecture but differed in the checkpoint used loss function, augmentations and the imposed data distribution.

Validation and test scenes were divided into patches $(224 \times 224 \text{ pixels}, 512 \times 512 \text{ pixels})$ and $1024 \times 1024 \text{ pixels})$ due to memory limitations on the utilised GPU. Predictions were made on each patch separately and then combined together into the final outcome. During this process, different tiling techniques were used including overlapping the patches, rotating and averaging, and smooth blending, as inspired by Chevalier (2017).

A number of convolutional and vision transformer architectures have been tested including EfficientUNet, ResNeXt and DeepLabV3. The most promising results were achieved with a transformer-based architecture, where an altered Coat-Lite Medium (Xu et al., 2021) was used as the encoder and an altered Daformer (Hoyer et al., 2022) as the decoder. For the encoder part transfer learning was applied (weights were pre-trained on the ImageNet dataset). The architecture was inspired by a Kaggle competition notebook (Cijov, 2022). The number of the encoder input channels was adjusted to 24 dimensions available in the RTT dataset. For this purpose, the pre-trained weights of the first convolution layer were averaged and then expanded to the required quantity of input channels.

The distribution of classes for all three maps was highly unbalanced. Thus, a set of experiments was set up in which models were trained using Cross-Entropy (CE), Weighted Cross-Entropy (WCE), focal, dice and ordinal loss. The best results were obtained with CE, WCE and CE and dice loss mixture with the ratio of $\frac{0.7}{0.3}$, respectively. The Adam optimizer was applied during the training. In most of the experiments, models were trained in two steps. At first, the learning rate was set to $\eta = 10^{-4}$

while training the model for approximately 50 epochs. Then the model was fine-tuned for subsequent 300 epochs with $\eta = 320 \quad 10^{-5}$.

5.3 Rank 4 - sim

325

330

335

340

345

Our best solution was based on U-net architecture (Ronneberger et al., 2015), which effectively captures spatial information and preserves fine details, making it suitable for tasks requiring pixel-level segmentation accuracy. One of the primary reasons for choosing U-net as our baseline architecture is our team's prior experience with the architecture. The U-net model has been previously adopted for earth observation data processing tasks, particularly for onboard processing, where limited computational resources are available. The architecture performs well on edge processing hardware (Dunkel et al., 2022). In addition, the architecture required minimal adaptation from the provided code base, enabling us to focus on optimizing its performance for the challenge.

In search for an appropriate network architecture, a secondary solution was explored in the form of DeepLabV3 (Chen et al., 2017). The reasoning for choosing DeepLabV3 was that this state-of-the-art deep learning architecture for semantic image segmentation could be used to segment sea ice since it excels in capturing multi-scale contextual information. We hypothesized that this could improve overall performance due to the scale differences of ice formations. However, despite reasonable results, we did not find this model architecture to be able to outperform our U-Net solution. In addition, due to the larger size of the network, iterations proved more time-consuming than the U-Net architecture and more demanding in terms of computational resources.

For our training pipeline, we utilized the code and data provided by the competition organizers as these resources proved a powerful starting point. Both the get-started notebook and the RTT dataset (Buus-Hinkler et al., 2023b) were leveraged.

The U-Net was trained with the Adam optimizer, with a learning rate of 10^{-4} , and using a CE loss function. 225 epochs with 100 iterations per epoch were used. For each iteration, a batch was filled with 32 random crops of 256x256 pixels. All input channels were used as input, i.e. the input tensor was of shape [32, 24, 256, 256] [batch, channel, H, W]. This model reached an overall score of 80.6%, with a score of 87.2% for the SIC, 77.5% for the SOD, and 73.6% for the FLOE.

Our best DeepLabV3 model was trained for 76 epochs with 500 iterations per epoch and a batch size of 8. For this training pipeline, the Adam optimizer was used with a learning rate of 10^{-5} and CE loss as well. Our best-performing DeepLabV3 model performed worse overall than our U-net, with a public score of 79.1%. Interestingly, the network outperformed U-Net significantly on FLOE segmentation with a public score of 74.5%. For SIC the best public score was close to U-Net with 84.8% and SOD was significantly worse with 75.8%. These results suggest that an ensemble of multiple network architectures could potentially outperform a standalone model by leveraging their complementary strengths. However, due to time constraints, further investigations into ensemble models were not pursued.

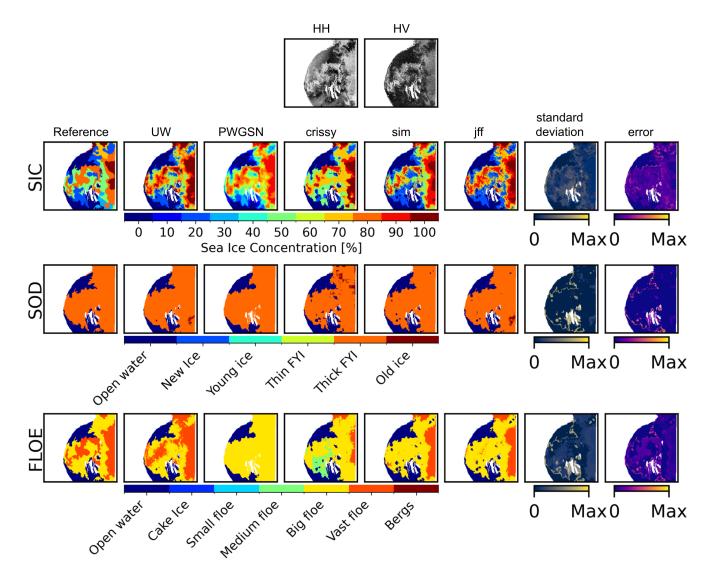


Figure 10. Hudson Bay, Canada. First row: SAR HH and HV images, acquired on July 7 2018. Reference ice chart labelled by the Canadian Ice Service. Second row: SIC reference and top 5 solution SIC maps with standard deviation between solutions and accumulated map of error between solutions and the reference. Max indicates the maximum possible standard deviation of 4.9, 2.4 and 2.9 for SIC, SOD and FLOE, respectively, or max accumulated error assuming a linear distance between classes of 50, 25 and 30 for SIC, SOD and FLOE, respectively. The third row contains the SOD and the fourth the FLOE. White areas indicate a mask of either land, with no information or ice polygons without a dominant ice code.

6 Comparison of top 5 submissions

For a deeper dive into the solution results submitted by the top 5 teams, output maps for two example SAR scenes are highlighted. Fig. 10 illustrates a scene in the native measurement geometry from Hudson Bay in the Canadian Arctic, captured

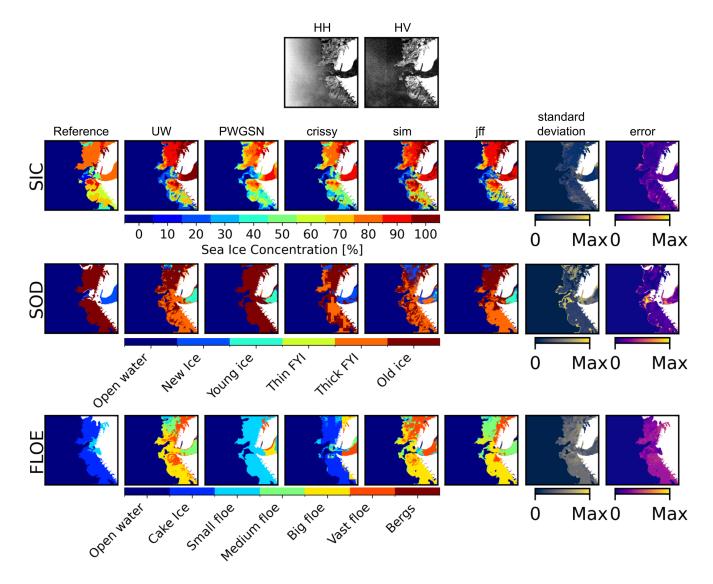


Figure 11. Scoresbysund, East Greenland. First row: SAR HH and HV images, acquired on October 10 2020. Reference ice chart labelled by Greenland Ice Service at DMI. Second row: SIC reference and top 5 solution SIC maps with standard deviation between solutions and accumulated map of error between solutions and the reference. Max indicates the maximum possible standard deviation of 4.9, 2.4 and 2.9 for SIC, SOD and FLOE, respectively, or max accumulated error assuming a linear distance between classes of 50, 25 and 30 for SIC, SOD and FLOE, respectively. The third row contains the SOD and the fourth the FLOE. White areas indicate a mask of either land, with no information or ice polygons without a dominant ice code.

in July 2018, along with an ice chart from the Canadian Ice Service. In the top row, the Sentinel-1 HH and HV channels are shown, followed by rows for the SIC, SOD and FLOE ice parameters. The columns show the reference ice chart, the solutions by the top 5 teams, the STD between the solutions and the accumulated error between each solution and the reference. The

360

365

370

375

380

55 STD and error colour scales are from 0 to the maximum STD, defined as the maximal possible STD. Likewise, the error goes from 0 to the maximal possible accumulated error across the solutions. The STD indicates where the top 5 solutions disagree, while the error shows locations where the top 5 solutions disagree with the reference.

The scene in Fig. 10 was acquired during the Arctic Summer season and showcases sea ice in warm conditions with varying SICs covering the majority of the scene while most ice is in the right-hand side of the image with an area of ice in the centre of the image stretching towards the left side. The top 5 solutions agree on the separation between open water and sea ice. The SICs solutions have the lowest STD among the three sea ice parameters, and the errors are most prominent near the ice-water boundaries and in the upper portion of the scene. In the SOD maps, all solutions are consistent in that they agree on the dominant class being *thick FYI* but disagree on the location of the ice edge as seen in the STD and error images. This is persistent across the three ice parameters. Still, as the STD and error are calculated based on an assumption of linear distance between classes, the difference becomes most notable in the SOD as the difference between open water and *thick FYI* is large here. The FLOE parameter is also relatively consistent across the solutions. However, the *UW* team appear to have hit the location of the *vast floe* class given in the reference ice chart more accurately than the other teams.

The second scene example is illustrated in Fig. 11 with an ice chart labelled by the Greenland Ice Service at DMI, showcasing the large Scoresbysund fjord in Eastern Greenland. The scene was acquired in October 2020 and thus at the beginning of the cold period with *newly formed ice* in the fjord and *old ice* along the coast in *cake ice* form and *small floes*. This scene also contains many different SICs, varying SAR signatures, no strong wind patterns and dim ice signatures in the fjord. Again, the separation between open water and ice is strong, with all SIC solution maps capturing the complexity of the labels well with low inter-solution STD and error. The solutions also, to a large extent, identified that the ice is old along the coast and *new / young* in the fjord. There is also a large SOD error in the centre of the image, which is caused by many of the solutions saying that open water is present here instead of *old ice*. As the SIC is low here, there is quite a bit of open water, implying that this error is not problematic but perhaps rather an expression of the ice charting methodology and the way polygons were drawn. This could be due to a tendency of the ice services to be conservative in their delineation of ice polygons (i.e. the tendency in some cases to draw more ice than is actually present), a result of the coarser resolution of the ice charts (i.e. not all openings in the sea ice in the SAR imagery are resolved in the ice charts), or even a combination of both. The produced FLOE maps, however, have a large STD with one solution correctly identifying the *cake ice* patterns along the coast. In contrast, three solutions label it as *big* or *vast floes*, which naturally gives rise to a large error.

The average class accuracies for each sea ice parameter are presented in Tab. 4. For simplicity, the open water accuracy is only included under the SIC class performance, as this ice parameter contains the most pixels (due to some polygons not having dominant SOD or FLOE). In addition, similar to Stokholm et al. (2023), SIC performance can be summarised using macro classes, open water, any ice class ("*Ice*"), true intermediate pixels outputted by the model as any intermediate class and 100% sea ice. This is due to the relatively large uncertainties in the intermediate classes as highlighted in Karvonen et al. (2015) and Cheng et al. (2020), resulting in accuracy for individual SIC classes being uninformative. Here, the models' capabilities in separating water and ice are clearly highlighted with a high open water accuracy of 98.65% and 94.98% of ice labelled as any SIC above 0%, with further high accuracies in the intermediate and 100% ice categories of 75.53% and 83.46%, respectively.

Table 4. Average sea ice parameter class accuracies for SIC, SOD and FLOE for the top 5 participants. *Ice* implies ice pixels labelled as any true SIC above 0%. Intermediate SICs are compressed to one class indicating the percentage of intermediate class predictions correctly labelled as a true intermediate class. Open water accuracies for SOD and FLOE are omitted for simplicity.

SIC	Open water	Ice	Intermediate	100% Ice		
	96.85%	94.98%	75.53%	83.46%		
SOD	New Ice	Young ice	Thin FYI	Thick FYI	Old ice	
	15.58%	19.73%	20.55%	75.92%	42.11%	
FLOE	Cake Ice	Small	Medium	Big	Vast	Bergs
	14.26%	18.81%	21.43%	50.44%	60.38%	13.87%

For the SOD parameter, it is clear that *new* and *young ice*, as well as *thin FYI*, is challenging for the models, while the *thick FYI* has the highest score of 75.92% followed by *old ice* with an accuracy of 42.11%. Finally, the FLOE scores highlight difficulties with *cake ice*, and *small* and *medium floes*, while *big* and *vast floes* received higher accuracies of 50.44% and 60.38%, respectively. Finally, *bergs* were the most difficult, with an accuracy of merely 13.87%.

7 Discussion

405

Overall the top-5 participants scored well on the selected metrics and showed strong separation between open water and sea ice but struggled to classify the SOD classes *New Ice*, *Young Ice* and *Thin FYI* correctly. Similarly, *Cake Ice*, *Small*, and *Medium* floes proved challenging for the top participants as well as the *Bergs* class. As the FLOE parameter score was substantially numerically lower than the SIC and SOD scores, additional research on improving it is warranted. Given the lower individual ice parameter score that FLOE received, it is plausible that participants gave less priority as the weight for this parameter was half that of SIC and SOD. This lower weight was assigned because the ice charting experts in the AI4Arctic external panel of experts deemed this parameter less critical for the ice service end users. The ice charts used as label data in the challenge are not produced with associated uncertainties for the SIC, SOD and FLOE information. Suppose the FLOE parameter is generally given less attention during the charting process. In that case, there might be a higher degree of uncertainty accompanying this parameter, and therefore, the label quality could be lower.

Tab. 5 summarises the main characteristics of the solutions presented by the three top-5 teams, including the version of the dataset used, the preprocessing steps taken, data-loading, implementation details, such as the model architecture and model optimisation, and finally the teams' technical experience. Among the three top-5 teams, all teams have used the RTT dataset. Two of the teams have used or modified the U-Net model provided, while two teams added data augmentation. All teams have applied the same approach to feeding the model different data types by upsampling coarse resolution variables with the get-started tools and ingesting it together with the SAR data. Two teams applied more advanced model optimisation strategies with cosine annealing learning rate and transfer learning with weights optimised on the ImageNet dataset (Russakovsky et al., 2015). The three teams had different professional backgrounds, with sea ice domain experts, AI practitioners and space engineering

420

425

430

435

Table 5. Summary of the 3 top 5 teams' approaches, including dataset version, the preprocessing steps taken, how the data was loaded, implementation details, such as model architecture, model optimisation approach, and finally the teams' technical background. *Learning Rate

Team	Dataset	Preprocessing	Dataloader	Implementation	Experience
1 - UW	RTT	downsample SAR, upsampling coarse resolu-	get-started tools	U-Net architecture, cosine annealing LR*	sea ice + AI
		tion variables, latlon + time, data augmentation		scheduling	
2 - PWGSN	RTT	data augmentation, upsampling coarse resolu-	new sampling method	transfer learning and vision transformer	AI
		tion variables			
4 - sim	RTT	upsampling coarse resolution variables	get-started tools	U-Net architecture, constant LR*	space

knowledge, which is thought to have had an effect on the variety of solutions presented and which also led to some interesting discussions. Domain knowledge allowed the *UW* team to tinker with the input and output, while AI expertise allowed for more advanced modelling architectures in the *PWGSN* team. Fusing the two approaches could lead to further improvements, as suggested by the PWGSN team during the Winner's Event.

As the only team, *UW* applied additional preprocessing steps by downsampling the SAR data before ingesting it into the network. This increases the geographical field of view of the model, allowing it to see information further away when deciding the class for a particular pixel. The tradeoff of this approach is the loss of resolution. However, as the polygons in the ice charts are relatively coarse (except for the boundaries) compared to the SAR data, this loss of resolution does not appear to hamper the models from learning to replicate the human-produced SIC and SOD ice charts. However, we see that *UW* score lower in FLOE, which could be because the delineations of the individual smaller ice floes are lost. It may also substantially reduce the training duration and memory requirements allowing for quicker model iterations, which, in addition to *UW* being a large team, could have increased the rate of iteration, triggering a large number of submissions. Moreover, the *UW* team provided additional information to the model in terms of the geographical location by ingesting the latitude and longitude of the scene as well as the acquisition month. It is possible that knowing the location of the scene could be beneficial in determining the SIC and particularly SOD, as multiyear ice typically drifts South along the East coast of Greenland. In contrast, the West Coast of Greenland and the Baffin Bay area have less multiyear ice. The SAR scene acquisition time could also be beneficial for the model, enabling it to better capture the sea ice seasonal changes, especially for the SOD parameter. The combination of both the geographical location and the time of the year could be a particularly strong information combination for mapping SOD.

Among the top solutions, it is interesting that *UW* scored best on SIC and SOD — by a significant margin — but fifth on the FLOE parameter. This could reflect less effort towards this parameter, or perhaps the high amount of downsampling could blur the individual ice floe boundaries. If boundaries between smaller floes are difficult to distinguish, it could be difficult to differentiate *cake ice*, *small*, and *medium floes*, which could lead to lower performance in three of the FLOE classes. *Big* and *vast floes* do not appear to be problematic. This hypothesis could be further supported in the SIGRID-3 documentation with individual floe sizes of 30cm - 20m for cake ice, 20m - 100m for small floes and 100m - 500m for medium floes while considering that *UW* downsamples with a factor 10, giving a pixel spacing of 800m.

440

455

460

465

470

An elaborate validation scheme was applied by the *UW* team, where scenes were selected to be approximate both geographically and temporally to the test set, enabled by the date given in the file names and the geographical coordinates provided in the files. This allowed the team to compare model outputs more frequently to scenes that may have some information leakage. While this validation selection is within the rules of the challenge, it is thought to have had a positive effect on the teams scoring and their final rank on the leaderboard. Ideally, the test scenes should have been selected sufficiently distant temporally to prevent any leakage from testing data to training or validation. This is a notable takeaway for organising similar competitions in the future.

The *PWGSN* team was the only of the three top-5 teams to apply vision transformers in their winning solution, which have been hailed as very potent for computer vision but require additional computational resources compared to the U-Net. The team chose to utilise pre-configured weights (transfer learning), trained on ImageNet (Russakovsky et al., 2015), which contains large quantities of RGB images. Here, the pre-trained weights included three-channel input for RGB. However, the competition data had 24 channels. Here, *PWGSN* choose to average the three-channel input weights and repeat them to match the 24 channels. While this is practical, the weights trained on RGB images may not be suitable for the remote sensing and climate data, with particular emphasis on the AMSR2 and reanalysis data that have less structured patterns compared to typical real-life images. However, this weight-averaging approach may have been the most feasible as the data volume that the competition offered may not have been sufficient to train a vision transformer from scratch. In addition, *PWGSN* implemented an alternative dataloading scheme to speed up their training time and to mitigate class imbalance by sampling less frequently appearing classes.

Lastly, the *sim* team utilised the provided get-started tools and the provided U-Net model with tuned hyperparameters to perform well and brought the team to a top-5 ranking. Therefore, it can be noted that the supporting get-started tools provided to the participants worked well and allowed for very competitive models. Multiple teams also investigated using the DeepLabV3 (Chen et al., 2017) architecture but did not achieve better results than the U-Net on this particular segmentation task.

For evaluation, it could have been helpful to measure SOD performance with macro classes, similar to how SIC was summarised in Tab. 4. Macro classes could combine *new* and *young ice*, as this would allow for, at least conceptually, macro categories with closely related ice types. Similarly, for FLOE, some combination of *cake*, *small* and *medium floes* could be combined and *big* and *vast floe*.

In the challenge, 20 scenes were selected for testing the models. Naturally, it is necessary to evaluate the models much more thoroughly with many more ice conditions, years and geographical areas than present in the test set. In order to perform comparative studies of different SAR-based sea ice retrievals of SIC, SOD and FLOE in an effort to establish the state-of-the-art, there is a need for a standardized benchmarking dataset. One obstacle in the evaluation of the SOD and FLOE is the occasional absence of a dominant ice class. Therefore, it may be useful to evaluate on polygon level rather than pixel level, which could enable the use of the partial concentrations for the evaluation of SOD and FLOE. Despite the lack of dominant ice types in some polygons, models are still capable of producing segmentation results in these areas. Future models could be able to produce maps with the individual partial polygon concentrations of the SOD and FLOE classes, effectively increasing the information resolution of the maps.

475

485

500

8 Conclusions

This article presents the AI4EO AutoICE Challenge in full with the challenge setup, dataset description, and participation statistics while briefly summarising 3 of the top-5 solutions before highlighting two test scenes with the top 5 participants' model output maps. Finally, a discussion that compares the different approaches is included. The competition was won by the University of Waterloo team from the Department of System Engineering, followed by the teams *PWGSN*, *crissy*, *sim*, and finally *jff*. The challenge had 129 registered teams representing 179 users, with 494 submissions in total by 34 of the 129 teams comprising a participation rate of 26.4%.

Overall, the †AI4Arctic team is delighted with the extensive participation from across a broad and diverse international community ranging from sea ice and computer vision experts to students who have used the competition as part of their educational activities. The tools provided in the competition proved to be both competitive and useful to the participants, with all 3 top-5 teams highlighted here using the ready-to-train dataset.

Participants have shown that it is possible to perform multi-ice parameter retrieval with convolutional and transformer models using professionally produced sea ice charts across multiple national ice services and national boundaries. Top solutions showed that the total sea ice concentration and stage of development were mapped the best, while the floe size was the most difficult. Furthermore, participants offered intriguing approaches and ideas that could help propel future research within automatic sea ice mapping. Particularly showing that higher rates of SAR data downsampling do not degrade model SIC and SOD performance when evaluated against ice charts but may not fully exploit the rich information in the SAR data.

9 Future Work

The AI4Arctic Sea Ice Challenge Dataset (ASID Challenge) incorporated several additional data sources compared to the ASID-v2 dataset (Saldo et al., 2021), such as numerical weather prediction parameters. Mapping how influential each data source is on both combined and individual ice parameter retrieval model performance is a natural next step in quantifying data fusion choices. In addition, the top participants all applied the provided data ingesting approach of upsampling coarse resolution data to the SAR pixel spacing but this simple solution may be naive. Therefore, an investigation of alternative approaches could provide a more appropriate means of integrating the data sources. The prospect of downsampling the SAR data yielding good results, is promising and provides an avenue to reduce complexity and hardware constraints in training models. However, more research into how the downsampling affects the performance of the three ice parameters would be beneficial but investigating how better to utilise the rich information in the SAR data could also yield additional benefits.

Finally, it will be possible for the AutoICE participants to continue their work when the next iteration of the ASID dataset, ASID-v3, is released. The new dataset will comprise 16 times as much data compared to the competition dataset, which will allow a much larger test dataset to be selected, much more data to train on and with the addition of ice charts from the Norwegian Ice Service (with SIC only), which further expands the geographical coverage.

505

510

Code and data availability. Data from the competition is available here: Buus-Hinkler et al. (2022a) (https://doi.org/10.11583/DTU.c.6244065. v2) and the code provided to participants are available here: Stokholm et al. (https://github.com/astokholm/AI4ArcticSeaIceChallenge)

Video supplement. A short video describing the AutoICE Competition: https://youtu.be/iuXIeLPyKfg

Author contributions. The AI4Arctic consortium consists of Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Rune Solberg, Nicolas Longépé and Matilde Brand Kreiner, and has been the main architects and composers of the AutoICE Challenge. The AI4EO consortium encompasses Ionut Dragan, Iacopo Modica, Juan Pedro, and Annekatrien Debin, and was responsible for hosting the competition on the AI4EO platform. Jan N. van Rijn, Jens Jakobsen, Martin S. J. Roers, Nick Hughes and Tom Zagon constituted the expert panel has supported the AI4Arctic consortium in designing the competition. Top participants were Xinwei Chen, Muhammed Patel, Fernando J. Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Andrea K. Scott, David A. Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil C. Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski and David Rijlaarsdam. The teams have each provided a section describing their solutions to the challenge.

The AI4Arctic consortium was managed by Rune Solberg and led by Matilde Brandt Kreiner. The ESA technical officer and project owner was Nicolas Longépé. The initial manuscript draft was prepared by Andreas Stokholm. The first review of the manuscript was conducted by Jørgen Buus-Hinkler, Matilde Brand Kreiner, Nicolas Longépé and Tore Wulf. All authors have reviewed and approved the initial manuscript submission.

Competing interests. The authors declare that there are no competing interests.

Acknowledgements. The authors would like to acknowledge all challenge participants for a constructive competition, and ESA ϕ -lab for funding the competition and providing the AI4EO platform to host it.

References

530

550

555

- Baldwin, S.: Compute Canada: Advancing Computational Research, Journal of Physics: Conference Series, 341, 012 001, 2012.
- Bekkers, E., Francois, J. F., and RojasRomagosa, H.: Melting ice Caps and the Economic Impact of Opening the Northern Sea Route, The Economic Journal, 128, 1095–1127, 2017.
- Boulze, H., Korosov, A., and Brajard, J.: Classification of Sea Ice Types in Sentinel-1 SAR Data Using Convolutional Neural Networks, Remote Sensing, 12, 2165, 2020.
 - Boutin, G., Williams, T., Rampal, P., Olason, E., and Lique, C.: Impact of wave-induced sea ice fragmentation on sea ice dynamics in the MIZ, Tech. rep., Copernicus GmbH, 2020.
 - Buus-Hinkler, J., Wulf, T., Stokholm, A. R., Korosov, A., Saldo, R., Pedersen, L. T., Arthurs, D., Solberg, R., Longépé, N., and Kreiner, M. B.: AI4Arctic Sea Ice Challenge Dataset, https://doi.org/10.11583/DTU.c.6244065.v2, 2022a.
 - Buus-Hinkler, J., Wulf, T., Stokholm, A. R., Korosov, A., Saldo, R., Pedersen, L. T., Arthurs, D., Solberg, R., Longépé, N., and Kreiner, M. B.: Raw AI4Arctic Sea Ice Challenge Test Dataset, https://doi.org/10.11583/DTU.21762848.v1, 2022b.
 - Buus-Hinkler, J., Wulf, T., Stokholm, A. R., Korosov, A., Saldo, R., Pedersen, L. T., Arthurs, D., Solberg, R., Longépé, N., and Kreiner, M. B.: Ready-To-Train AI4Arctic Sea Ice Challenge Test Dataset, https://doi.org/10.11583/DTU.21762830.v1, 2022c.
- Buus-Hinkler, J., Wulf, T., Stokholm, A. R., Korosov, A., Saldo, R., Pedersen, L. T., Arthurs, D., Solberg, R., Longépé, N., and Kreiner, M. B.: Raw AI4Arctic Sea Ice Challenge Dataset, https://doi.org/10.11583/DTU.21284967.v3, 2023a.
 - Buus-Hinkler, J., Wulf, T., Stokholm, A. R., Korosov, A., Saldo, R., Pedersen, L. T., Arthurs, D., Solberg, R., Longépé, N., and Kreiner, M. B.: Ready-To-Train AI4Arctic Sea Ice Challenge Dataset, https://doi.org/10.11583/DTU.21316608.v3, 2023b.
- Chen, L.-C., Papandreou, G., Schroff, F., and Adam, H.: Rethinking Atrous Convolution for Semantic Image Segmentation, https://arxiv.org/abs/1706.05587, 2017.
 - Cheng, A., Casati, B., Tivy, A., Zagon, T., Lemieux, J.-F., and Tremblay, L. B.: Accuracy and inter-analyst agreement of visually estimated sea ice concentrations in Canadian Ice Service ice charts using single-polarization RADARSAT-2, The Cryosphere, 14, 1289–1310, 2020.
 - Chevalier, G.: GitHub Vooban/Smoothly-Blend-Image-Patches: Using a U-Net for image segmentation, blending predicted patches smoothly is a must to please the human eye., https://github.com/Vooban/Smoothly-Blend-Image-Patches, 2017.
- 545 Cijov, A.: [Training] Hubmap CoAT, Kaggle, 2022.
 - de Gelis, I., Colin, A., and Longepe, N.: Prediction of categorized sea ice concentration from sentinel-1 SAR images based on a fully convolutional network, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 5831–5841, 2021.
 - Dunkel, E., Swope, J., Towfic, Z., Chien, S., Russell, D., Sauvageau, J., Sheldon, D., Romero-Cañas, J., Espinosa-Aranda, J. L., Buckley, L., Hervas-Martin, E., Fernandez, M., and Knox, C.: Benchmarking Deep Learning Inference of Remote Sensing Imagery on the Qualcomm Snapdragon And Intel Movidius Myriad X Processors Onboard the International Space Station, pp. 5301–5304, IEEE, 2022.
 - Heidler, K., Mou, L., and Zhu, X. X.: Seeing the Bigger Picture: Enabling Large Context Windows in Neural Networks by Combining Multiple Zoom Levels, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE, 2021.
 - Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service Climate Data Store, 2023.
 - Hoyer, L., Dai, D., and Van Gool, L.: DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation, in: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2022.

- IICWG: SIGRID-3: a vector archive format for sea ice charts, https://library.wmo.int/records/item/37171-sigrid-3-a-vector-archive-format-for-sea-ice-charts, 2010.
- Jackson, C. R. and Apel, J. R.: Synthetic Aperture Radar Marine User's Manual, National Environmental Satellite, Data, & Information Service, 2004.
 - Karvonen, J.: Baltic Sea ice SAR segmentation and classification using modified pulse-coupled neural networks, IEEE Transactions on Geoscience and Remote Sensing, 42, 1566–1574, 2004.
 - Karvonen, J.: A sea ice concentration estimation algorithm utilizing radiometer and SAR data, The Cryosphere, 8, 1639–1650, 2014.
- Karvonen, J., Vainio, J., Marnela, M., Eriksson, P., and Niskanen, T.: A comparison between high-resolution eo-based and ice analyst-assigned sea ice concentrations, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 1799–1807, 2015.
 - Kasahara, M., Imaoka, K., Kachi, M., Fujii, H., Naoki, K., Maeda, T., Ito, N., Nakagawa, K., and Oki, T.: Status of AMSR2 on GCOM-W1, in: SPIE Proceedings, SPIE, 2012.
- Khaleghian, S., Ullah, H., Kræmer, T., Hughes, N., Eltoft, T., and Marinoni, A.: Sea ice classification of SAR imagery based on convolution neural networks, Remote Sensing, 13, 1734, 2021.
 - Korosov, A., Demchev, D., Miranda, N., Franceschi, N., and Park, J.-W.: Thermal Denoising of Cross-Polarized Sentinel-1 Data in Interferometric and Extra Wide Swath Modes, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–11, 2022.
- Koubarakis, M., Stamoulis, G., Bilidas, D., Ioannidis, T., Mandilaras, G., Pantazi, D.-A., Papadakis, G., Vlassov, V., Payberah2, A., Wang, T.,
 Sheikholeslami, S., Hagos, D. H., Bruzzone, L., Paris, C., Weikmann, G., Marinelli, D., Eltoft, T., Marinoni, A., Kræmer, T., Khaleghian,
 S., Ullah, H., Troumpoukis, A., Kostopoulou, N. P., Konstantopoulos, S., Karkaletsis, V., Dowling, J., Kakantousis, T., Datcu, M., Yao,
 W., Dumitru, C. O., Appel, F., Migdall, S., Muerth, M., Bach, H., Hughes, N., Everett, A., Kiærbech, A., Pedersen, J. L., Arthurs, D.,
 Fleming, A., and Cziferszky, A.: Artificial Intelligence and Big Data Technologies for Copernicus Data: The ExtremeEarth Project, in:
 Publications Office of the EU, pp. 9–12, 2021.
- 580 Kucik, A. and Stokholm, A.: AI4SeaIce: Comparing Loss Representations for SAR Sea Ice Concentration Charting, https://ai4earthscience.github.io/iclr-2022-workshop/accepted, 2022.
 - Kucik, A. and Stokholm, A.: AI4SeaIce: selecting loss functions for automated SAR sea ice concentration charting, Scientific Reports, 13, 2023.
- Malmgren-Hansen, D., Pedersen, L. T., Nielsen, A. A., Skriver, H., Saldo, R., Kreiner, M. B., and Buus-Hinkler, J.: ASIP Sea Ice Dataset Version 1, https://data.dtu.dk/articles/ASIP_Sea_Ice_Dataset_-_version_1/11920416/1, 2020.
 - Malmgren-Hansen, D., Pedersen, L. T., Nielsen, A. A., Kreiner, M. B., Saldo, R., Skriver, H., Lavelle, J., Buus-Hinkler, J., and Krane, K. H.: A convolutional neural network architecture for sentinel-1 and AMSR2 data fusion, IEEE Transactions on Geoscience and Remote Sensing, 59, 1890–1902, 2021.
- OSI SAF: Global Sea Ice Concentration DMSP, EUMETSAT SAF on Ocean and Sea Ice, 590 https://doi.org/10.15770/EUM_SAF_OSI_NRT_2004, 2017.
 - Perovich, D., Meier, W., Tschudi, M., Hendricks, S., Petty, A. A., Divine, D., Farrell, S., Gerland, S., Haas, C., Kaleschke, L., Pavlova, O., Ricker, R., Tian-Kunze, X., Webster, M., and Wood, K.: Arctic Report Card 2020: Sea Ice, https://repository.library.noaa.gov/view/noaa/27904, 2020.
- Radhakrishnan, K., Scott, K. A., and Clausi, D. A.: Sea Ice Concentration Estimation: Using Passive Microwave and SAR Data With a U-Net and Curriculum Learning, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 5339–5351, 2021.

- Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional networks for biomedical image segmentation, pp. 234–241, Springer International Publishing, Cham, 2015.
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L.: ImageNet Large Scale Visual Recognition Challenge, International Journal of Computer Vision, 115, 211–252, 2015.
- Saldo, R., Kreiner, M. B., Buus-Hinkler, J., Pedersen, L. T., Malmgren-Hansen, D., Nielsen, A. A., and Skriver, H.: AI4Arctic / ASIP Sea Ice Dataset Version 2, https://data.dtu.dk/articles/dataset/AI4Arctic ASIP Sea Ice Dataset version 2/13011134/3, 2021.
 - Stokholm, A., Kucik, A., Wulf, T., Buus-Hinkler, J., Korosov, A., Saldo, R., Pedersen, L. T., Arthurs, D., Solberg, R., Longépé, N., and Kreiner, M. B.: GitHub astokholm/AI4ArcticSeaIceChallenge, https://github.com/astokholm/AI4ArcticSeaIceChallenge.
- Stokholm, A., Wulf, T., Kucik, A., Saldo, R., Buus-Hinkler, J., and Hvidegaard, S. M.: AI4SeaIce: Toward solving ambiguous SAR textures in convolutional neural networks for automatic sea ice concentration charting, IEEE Transactions on Geoscience and Remote Sensing, 60, 1–13, 2022.
 - Stokholm, A., Kucik, A., Longépé, N., and Hvidegaard, S. M.: AI4SeaIce: Task Separation and Multistage Inference CNNs for Automatic Sea Ice Concentration Charting, The Cryosphere, 2023.
- Tamber, M. S., Scott, K. A., and Pedersen, L. T.: Accounting for label errors when training a convolutional neural network to estimate sea ice concentration using operational ice charts, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 1502–1513, 2022.
 - Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I. N., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R., Pietropaolo, A., Huchler, M., and Rostan, F.: GMES Sentinel-1 mission, Remote Sensing of Environment, 120, 9–24, 2012.
- Tuia, D., Schindler, K., Demir, B., Camps-Valls, G., Zhu, X. X., Kochupillai, M., Džeroski, S., van Rijn, J. N., Hoos, H. H., Frate, F. D., Datcu, M., Quiané-Ruiz, J.-A., Markl, V., Saux, B. L., and Schneider, R.: Artificial intelligence to advance Earth observation: a perspective, https://arxiv.org/abs/2305.08413, 2023.
 - Wang, L., Scott, K. A., Xu, L., and Clausi, D. A.: Sea ice concentration estimation during melt from dual-pol SAR scenes using deep convolutional neural networks: A case study, IEEE Transactions on Geoscience and Remote Sensing, 54, 4524–4533, 2016.
- Wang, L., Scott, K., and Clausi, D.: Sea Ice Concentration Estimation during Freeze-Up from SAR Imagery Using a Convolutional Neural Network, Remote Sensing, 9, 408, 2017a.
 - Wang, L., Scott, K. A., Clausi, D. A., and Xu, Y.: Ice concentration estimation in the gulf of St. Lawrence using fully convolutional neural network, in: 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 2017b.
- Xu, W., Xu, Y., Chang, T., and Tu, Z.: Co-Scale Conv-Attentional Image Transformers, in: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, 2021.
 - Zakhvatkina, N., Korosov, A., Muckenhuber, S., Sandven, S., and Babiker, M.: Operational algorithm for ice–water classification on dual-polarized RADARSAT-2 images, The Cryosphere, 11, 33–46, 2017.