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Abstract. Mapping sea ice in the Arctic is essential for maritime navigation, and growing vessel traffic highlights the necessity

of timeliness and accuracy of sea ice charts. In addition, with the increased availability of satellite imagery, automation is

becoming more important. The aim of the AutoICE Challenge was to encourage the creation of
:::::::
AutoICE

:::::::::
Challenge

::::::::::
investigates

::
the

::::::::::
possibility

::
of

:::::::
creating

:::::
deep

:::::::
learning

:
models capable of mapping sea ice

::::::::
multi-sea

:::
ice

:::::::::
parameters

:
automatically from

spaceborne Synthetic Aperture Radar (SAR) imagery using deep learning while inspiring participants to move towards multiple5

sea ice parameter model retrieval instead of
:::
and

:::::::
assesses

:::
the

::::::
current

::::
state

::
of

:::
the

::::::::
automatic

:::
sea

:::
ice

::::::::
mapping

:::::::
scientific

:::::
field.

::::
This

:::
was

::::::::
achieved

:::
by

::::::::
providing

:::
the

:::::
tools

::::
and

::::::::::
encouraging

::::::::::
participants

:::
to

:::::
adopt

:::
the

::::::::
multi-sea

:::
ice

:::::::::
parameter

:::::::
retrieval

:::::::::
paradigm

:::::
rather

::::
than the current focus on a single sea ice parameter

:::::::::
parameters, such as concentration.

:::
The

:::::
paper

::::::::::
documents

:::
the

::::::
efforts,

:::::::
analyses,

:::::::::
compares

:::
and

::::::::
discusses

::::
the

:::::::::::
performance

::
of

:::
the

:::
top

::::
five

:::::::::::
participants’

:::::::::::
submissions.

:
Participants were tasked with

the development of machine learning algorithms mapping the total sea ice concentration, stage of development and floe size10

using a state-of-the-art sea ice dataset with dual-polarised Sentinel-1 SAR images and 22 other relevant variables while using
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professionally labelled sea ice charts from multiple national ice services as reference data. The challenge had 129 teams

representing a total of 179 participants, with 34 teams delivering 494 submissions, resulting in a participation rate of 26.4%,

and was won by a team from the University of Waterloo. Participants were successful in training models capable of retrieving

multiple
:::
sea ice parameters with convolutional neural network and vision transformer models. The top participants scored best15

on the total sea ice concentration and stage of development, while the floe size was more difficult. Furthermore, participants

offered intriguing approaches and ideas that could help propel future research within automatic sea ice mapping, such as

applying high downsampling of SAR data to improve model efficiency and produce better results.

1 Introduction

Effective navigation in the cold and remote polar regions requires timely and high-resolution sea ice charts that detail the20

:::::::
detailing

:
contemporary local ice conditions to circumnavigate or traverse safely and quickly. Therefore, sea ice charts are

an indispensable information infrastructure ensuring the transportation of goods and people and supporting activities such

as tourism and fishing. The diminishing Arctic sea ice (Perovich et al., 2020) is enabling
::::::
enables

:
new activities, such as

shipping avenues using the Northern trade routes or resource prospecting. The Arctic could offer quicker connections between

the Atlantic and Pacific oceans with the potential for time and cost savings (Bekkers et al., 2017). Research indicates that ice25

conditions will become increasingly dynamic, and therefore, it is continuously vital to monitor maritime activities (Boutin et al.,

2020). Another use-case for ice information in high resolution
::::::::::::
high-resolution

:::
ice

::::::::::
information is assimilation into weather and

climate models for improved performance, as sea ice acts as an intermediate medium between the ocean and the atmosphere,

reducing interaction. These models often rely on coarse-resolution sea ice products, e.g. OSI SAF (OSI SAF, 2017) produced

by EUMETSAT and based on passive microwave radiometry, and could thus benefit from the higher spatial resolution offered30

by the SAR-based sea ice maps.

1.1 Context

Arctic sea ice is charted by professional sea ice analysts at national ice services across the World
::::::::
worldwide, such as the Green-

land Ice Service at the Danish Meteorological Institute (DMI) and the Canadian Ice Service. The charting process is carried out

following
::::::
follows

:
the SIGRID-3 standard developed by the International Ice Charting Working Group (IICWG) for the World35

Meteorological Organisation (IICWG, 2010). Over the years, the origin of input data has ranged from airborne campaigns to

satellite measurements with multitudes of instruments. The vastness and remoteness of the Arctic pose monitoring challenges

that have made satellite observations the universal approach, offering wide coverage, cost savings and high update frequency

compared to other monitoring options, such as airborne campaigns. However, optical imagery is not reliable
::::::::
unreliable for sea

ice monitoring due to a dependency on sunlight (absent during the Arctic winter) and cloud cover, which can be indistinguish-40

able from sea ice. Despite these challenges,
::::
when

::::::::
available,

:
optical imagery is still used in operational sea ice chartingwhen

available. The Advanced Microwave Scanning Radiometer 2 (AMSR2) instrument onboard the JAXA GCOM-W1 offer bright-

ness temperature measurements with daily coverage of the Arctic at a resolution in the order of 35x62 km to 3x5 km per pixel
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(frequency dependent, 6.925 - 89 GHz) (Kasahara et al., 2012), which is insufficient for use in tactical navigation. Instead,

active microwave systems like Synthetic Aperture Radar (SAR) measurements are the backbone for sea ice charting with oc-45

casional supplements from other instruments ((Saldo et al., 2021), manual). SAR offer particular versatile measurements in

finer than 100m pixel spacing that are independent of sun illumination and cloud cover. One challenge with SAR data is in-

terpretability, as the radar backscatter is dependent
:::::::
depends on surface properties, including roughness, and different surfaces

can appear similar. Furthermore, open water and sea ice can resemble one another in their electromagnetic texture appearance

(Jackson and Apel, 2004). To provide accurate ice charts, professional ice analysts manually interpret and draw charts based50

on their in-depth experience and knowledge using Geographical Information System (GIS) software. This manual analysis ,

however,
:::::::
However,

::::
this

::::::
manual

:::::::
analysis

:
is resource- and time-consuming, which constrains

::::::::::
constraining

:
the number of daily

charts and coverage to the manpower commitment. Naturally, this motivates the development of fully or partially automatic

tools that can provide more detailed ice and consistent information for a wider area, delivered in near-real-time.

1.2 Other relevant works55

The interest in automating the retrieval of sea ice information from SAR imagery has been present for decades with early

contributions including the usage of texture features as input to support vector machines and other early neural network types

(Zakhvatkina et al., 2017; Karvonen, 2014, 2004). Contemporary attempts highlight deep learningand ,
:
particularly semantic

image segmentation
:
, with Convolutional Neural Networks (CNNs) as a primary contender to provide a reliable and precise

automatic alternative. An initial study was published by Wang et al. (2016) with additional entries (Wang et al., 2017a, b)60

::::::::::::::::::
Wang et al. (2017a, b)

:::
and

:::::::::
continued

::
by

::::::::::::::::::::
Cooke and Scott (2019) highlighting the validity of the approach to map the total Sea

Ice Concentration (SIC) in Canada. However, in these early studies, network complexity, data quantity and coverage can be

seen as
:::::::::
considered limiting factors.

In 2020, an initial version of an open-source deep learning dataset was launched, Automated Sea Ice Product (ASIP) Dataset

(ASID-v1) (Malmgren-Hansen et al., 2020). In connection, initial model results using the dataset were published in Malmgren-65

Hansen et al. (2021) using a custom-built CNN architecture applying
:::
and

:::::::::
highlighted

:::::
early

::::
work

:::
on

:::
the data fusion of SAR and

AMSR2 and a regression-based optimisation approach to map the SIC
::::
using

::
a

::::::::::::::
regression-based

::::::::::
optimisation

::::::::
approach. These

models were the results of the first attempts at applying
::::::
resulted

:::::
from

:::
the

:::
first

::::::::
attempts

::
to

:::::
apply

:
large datasets of multiple

100 GBs for training and emphasised obstacles that became foundations for further model developments
::::::::::
development. E.g.

in Heidler et al. (2021), the authors were able to highlight
:::::::::
emphasised

:
the importance of a larger receptive field to improve70

the performance of the model
:::::::
model’s

:::::::::::
performance developed in Malmgren-Hansen et al. (2021). While most of the initial

studies from Wang et al. (2016); Malmgren-Hansen et al. (2021) were primarily concerned with sea ice concentration, others

have proposed deep learning-based approaches to sea ice type mapping in SAR imagery (Boulze et al., 2020).

The European Space Agency’s (ESA) project AI4Arctic continued the efforts of the ASIP project. It produced the second

version of the dataset, ASID-v2, in 2021 (Saldo et al., 2021), which became a part of the ESA AI Ready Earth Observation75

(AIREO) datasets and led to new CNN-related works such as Tamber et al. (2022), and the AI4SeaIce article series (Stokholm

et al., 2022; Kucik and Stokholm, 2022, 2023; Stokholm et al., 2023) that has investigated multiple facets of mapping the
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SIC and approaches to representing it in an optimisation setting. In parallel, other efforts include the ExtremeEarth project

(Koubarakis et al., 2021) with its polar use-case such as Khaleghian et al. (2021b) focusing on the sea ice type
::
A

::::
new

:::::
study

::
in

:::::::::::::::
Wulf et al. (2024)

::::::
explores

::::
data

::::::
fusion

::
of

:::::
SAR

::::
and

::::::
passive

:::::::::
microwave

::::::::::
radiometry

::
to

::::
map

::::
SIC

:::
on

:
a
:::::::::
pan-Arctic

:::::
scale. Other80

notable sea ice mapping literature entries include Radhakrishnan et al. (2021) utilising curriculum learning and de Gelis et al.

(2021) applying the U-Net architecture and underlined obstacles associated with ambiguous SAR signatures and the interest of

large receptive fields.
::
In

:::::::
parallel,

::::
other

::::::
efforts

::::::
include

:::
the

:::::::::::
ExtremeEarth

::::::
project

:::::::::::::::::::::
(Koubarakis et al., 2021)

::::
with

::
its

:::::
polar

:::::::
use-case

::::
such

::
as

:::::::::::::::::::::
Khaleghian et al. (2021b)

:::::::
focusing

:::
on

:::
the

:::
sea

:::
ice

::::
type.

::
In

::::::::
addition,

:::::
there

::::
have

::::
been

::::::
several

:::::
other

:::::::
attempts

::
at

::::::::
mapping

:::
sea

::
ice

::::
type

::
in

::::
SAR

:::::::
imagery

:::::
using

::::
deep

::::::::::::
learning-based

::::::::::
approaches

::::
such

::
as

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Boulze et al. (2020); Khaleghian et al. (2021b); Liu et al. (2021); Lyu et al. (2022); Jiang et al. (2022); Kortum et al. (2022); Guo et al. (2023)85

:
.
:::::
Other

:::::::
literature

::::::
entries

::::
have

:::::::::
attempted

:::
sea

::
ice

::::
floe

::::::::
mapping,

::::
such

::
as

:::::::::::::::::::::::::::::::
Chen et al. (2020); Nagi et al. (2021)

:::
and

::::::::::::
discriminating

:::::::
between

::::
open

:::::
water

:::
and

:::
sea

:::
ice

::
in

::::::::
individual

:::::
pixels

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Khaleghian et al., 2021a; Wang et al., 2023; Rogers et al., 2024).

::::::::
Common

::
for

:::::
these

::::
past

::::::
entries

:
is
:::
the

:::::
focus

:::
on

:::::
single

:::
sea

:::
ice

:::::::::
parameter

:::::::
retrieval.

::::
The

:::::::
winners

::
of

:::
the

:::::::
AutoICE

:::::::::
Challenge

:::::::::
document

::::
their

::::::
models’

::::::::::
capabilities

::
in

::::::::
multi-sea

::
ice

:::::::
retrieval

::::
and

::::::
perform

:::
an

:::::::
ablation

::::
study

:::
on

::
the

::::::
model

::::
input

:::::::::
parameters

::
in
::::::::::::::::
Chen et al. (2023)

::::
using

:::
the

:::::::::
AI4Arctic

::::::::
Challenge

:::::::
Dataset.

:
Many challenges and advancements within the broader scope of Earth observation and90

artificial intelligence are highlighted in Tuia et al. (2023).

1.3 Objective of the AutoICE Challenge

The objective of the AutoICE challenge is to advance the state of the art for
:::
was

::
to

:::::::
advance

::::::::::::
state-of-the-art

:
sea ice parameter

retrieval from SAR data with an increased capacity to derive more robust and accurate automated sea ice maps .
:::
and

:::::
show

:::
that

::::::
models

::::
can

::::::
retrieve

:::::::
multiple

::::
sea

::
ice

::::::::::
parameters.

::
In

:::::::
parallel,

::::
this

:::::::
provides

:::
an

::::::::::
opportunity

::
to

:::::
assess

:::
the

::::::
current

:::::
state

::
of

:::
the95

:::::::
scientific

:::::
field.

The field of automatic sea ice mapping has been hastily improving over the past years. However, common for many past

literature entries listed here is the focus on single sea ice parameters, either the SIC or type and the regional focus on individual

ice services, i.e. Canadian, Greenlandic or Norwegian. Sea ice charts are a treasure trove of expert-labelled training data

extending for multiple years and covering vast areas. To propel the automatic sea ice mapping research field towards retrieving100

multiple sea ice parameters with data from a wider regional area and across national borders - the Artificial Intelligence For

Earth Observation (AI4EO) AutoICE Challenge was designed. The challenge aimed at engaging and encouraging
:
to
::::::
engage

::::
and

::::::::
encourage

:
students, sea ice experts

:
, and machine learning practitioners to develop models capable of automatically mapping

sea ice and generating new ideas and methods. Participants were tasked with mapping three sea ice parameters that are all

important in describing the composition of the sea ice cover relevant to navigation as well as weather and climate models: SIC,105

which describes
::::::::
represents

:
the ratio of sea ice in relation to open water and is the primary descriptor of the sea ice charts. SIC

helps ships identify areas of sea ice and the marginal ice zone. The second parameter is the Stage Of Development (SOD),

which is the type of sea ice and is a proxy for the age of the ice, which in turn is a proxy for the thickness. The parameter

supports decision-making regarding in which areas
:::::
which

::::
areas

::
of

:
the ice can be broken by what type of ships

:::
ship. The final ice

parameter is the Floe size (FLOE), which characterises the size of ice flakes/floes and aids in determining areas of ice leads and110

the degree to which the ice is broken up into smaller floes. This paper summarises and compares the top participants’ results
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and discusses
:::
the

::::::::
AutoICE

::::::::
challenge,

:::
the

:::::::::
AI4Arctic

:::
Sea

:::
Ice

:::::::::
Challenge

:::::::
Dataset,

:::
the

::::
tools

::::::::
provided

::
to

:::
the

::::::::::
participants,

::::
and the

::::::::
evaluation

::
of

:::::::::::
submissions.

:::
In

:::::::
addition,

:::
the

::::::
results

::
of

:::
the

:::
top

::::
five

::::::::::
participants

:::
are

:::::::
analysed

::::
and

:::::::::
compared,

:::
and

:::
the

:
outcome of

the AutoICE Challenge
::
and

:::
the

:::::
state

::
of

:::
the

:::::::::
automatic

:::
sea

:::
ice

:::::::
mapping

:::::::
research

:::::
field

:::
are

::::::::
discussed,

:::::::::::
highlighting

:::::::
avenues

:::
for

:::::
future

::::
work.115

1.4 Article breakdown

Initially, the setup is presented in Section 2, including the evaluation criteria and the tools available to the participants. This is

followed by Section 3, describing the challenge data provided by the organisers. Afterwards, in Section 4, an overview of the

participation rate is presented together with the final challenge results. 3 of the top 5 teams summarise their solutions in Section

5. This is followed by a comparison with
::::::::
comparing

:
scene examples from the test dataset in Section 6. Finally, the challenge120

is discussed and concluded in Sections 7 and 8, highlighting key takeaways and future directions of research to advance the

state-of-the-art in automatic sea ice mapping.

2 Challenge Setup

To help design and evaluate the challenge, an
:::
An external panel of experts in AI and sea ice charting were appointed

:::
was

::::::::
appointed

::
to

::::
help

:::::
design

::::
and

:::::::
evaluate

:::
the

::::::::
challenge. The expert panel members included two sea ice charting experts appointed125

by the International Ice Charting Working Group (IICWG) and represented universities and research institutes. The expert panel

participated in a dedicated workshop hosted by the organizers to discuss submission evaluation metrics and setup, etc.

The challenge was designed to cater to a large audience by providing manageable resources and a clear and purposeful ob-

jective. Participants were given a state-of-the-art dataset, the ASID Challenge dataset (Buus-Hinkler et al., 2022a), to train their

models. The dataset encompasses remotely sensed data from multiple sensors, geographical information and atmospheric and130

land-surface quantities from reanalysis models to encourage diverse data fusion methodologies. The dataset spanned multiple

years and charts from multiple national ice services (Canada and Greenland). Two versions of the dataset were prepared, an

unaltered (raw) version and a Ready-To-Train (RTT) version, to cater to both the ease of getting started while simultaneously

allowing those who prefer fully customised model training setups to pursue their ideas. The scenes were divided up into 513

for training (Buus-Hinkler et al., 2023a, b) and 20 for testing (Buus-Hinkler et al., 2022b, c). Participants did not have access135

to
::::
could

::::
not

:::::
access

:
the testing scenes’

::
sea

:
ice charts to prevent overfitting to the set during training. The testing scenes contain

::::::::
contained all ice classes present in the training datasetand .

:::::
They

:
were selected to represent various sea ice SAR signatures

with charts from both the Canadian and Greenland Ice Services spanning
::::
from January 2018 to December 2021.

Participants were also provided with get-started tools consisting of software created by the organisers to help get started

and training models for the challenge with the RTT dataset. In addition, computing resources through the Polar Thematic140

Exploitation Platform (PolarTEP) were available to participants. The challenge was hosted on the ESA-funded AI4EO.eu

challenge platform, introducing the challenge design and rules, links to the dataset and tools and a submission portal with an
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associated leaderboard, where participants could compare their results to those of other teams. The competition launched on

November 23 2022 , and closed on April 17 2023.

Metrics and final evaluation145

To submit a solution, participants produced sea ice maps for
::::
maps

:::
of the three sea ice parameters in

:
at
:::

an
:
80m pixel spac-

ing and uploaded them to the AI4EO.eu platform portal. The platform backend computed a score based on a comparison

with
:::::::::
comparing the reference data and provided the score to the teams. A public and private score was calculated. The pub-

lic score was calculated based on 10 of the 20 test scenes and the private score on all 20 scenes. The (team’s best) public

score was shown on the leaderboard. In contrast, the private score was withheld from the participants until the closure of the150

competition
::::::::::
competition’s

:::::::
closure and used as the final ranking of the teams to prevent overfitting to the test dataset.

The participant’s test set solutions were evaluated based on a weighted sum of three metrics, one for each of the three sea ice

parameters. The SIC score was evaluated using the R2 coefficient. R2 captures the regression aspect of sea ice concentrations

(inter-class relationship,
:
i.e. 10% SIC being closer to 20% than to 30%) and can be expressed as a percentage. It is formulated

as:155

R2 = 1−
∑Npixel

i=1 (ytruei − ypredi )2∑Npixel
i=1 (ytruei − ŷtrue)2

(1)

where ytruei is the true ith pixel, ŷtruei is the mean true pixel value, and ypredi is the predicted class of the ith pixel.

The SOD and FLOE parameters were both evaluated using the F1 score. SOD and FLOE categories, as opposed to SIC, are

not directly linked, and thus, a classification-oriented metric was deemed suitable for this evaluation. F1 is the harmonic mean

of the
::::
each

:::::
class’s

:
precision and recall metricsof each class. The F1 score for each ice parameter takes

::::::::
considers the dataset sea160

ice class imbalance into consideration by accounting for the number of pixels for each class. The F1 score can further , while

it can also be expressed as a percentage and is formulated as follows:

F1 = 2
precision · recall
precision+ recall

,where precision=
TP

TP +FP
and recall =

TP

TP +FN
(2)

Here, TP is the number of true positives, FP is the number of false positives, and FN is the number of false negatives.

The three sea ice parameter scores were combined into one single final score utilising
:::
final

:::::
score

:::::
using a weighting scheme.165

With input from the expert panel, the final score emphasised SIC and SOD over FLOE, as FLOE was deemed less important

for the ice service and users by the ice charting experts. The weights were 2
5 for both SIC and SOD, and 1

5 for FLOE. For the

metric calculations, pixels that did not contain a sea ice class, e.g. land, were discounted.

Get-started tools

To increase the accessibility of the challenge, get-started tools were prepared by the organisers with Python functions and three170

notebooks
::::
were

:::::::
prepared

:::
by

:::
the

:::::::::
organisers. One notebook served as a thematic and data exploration introduction, another

:
.
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Figure 1. Overview of the 513 training scenes in the AI4Arctic Sea Ice Challenge Dataset. Red and blue squares illustrate scenes with ice

charts from the Canadian and Greenland ice services, respectively. Increasingly bright colours indicate a larger number of charts.

:::::::
Another provided a model training setup implemented in PyTorch , and

:::
and,

:
finally, a notebook to produce a test solution. In

addition, a simple U-Net model implemented in PyTorch provided a common starting point for participants. These files and

notebooks provide
::::
offer

:
examples of how to carry out model training experiments but were not required to be used.

3 The AI4Arctic Sea Ice Challenge Dataset175

The AI4Arctic Sea Ice Challenge Dataset (ASID Challenge) includes 533 co-located and georeferenced scenes between Jan-

uary 2018 and December 2021 distributed across the Canadian and Greenlandic Arctic as illustrated in Fig. 1. In this section,

the data variables are examined briefly. For more details, please
:::::
Please see the official dataset manual in (Buus-Hinkler et al.,

2022a) . Each of the scenes contains :
::
for

:::::
more

::::::
details.

::::
Each

:::::
scene

::::::::
contains

:::
sea

::
ice

:::::
chart

::::::::
reference

::::
data,

:::::
SAR

::::::
images,

:::::::
passive

:::::::::
microwave

:::::::::
radiometry

::::::::::::
measurements,

::::
and

::::::::
numerical

:::::::
weather

:::::::::
prediction

:::::::::
parameters.

::::
The

::::::::
following

::::::::::
subsections

:::::::
describe

:::::
these180

:::
data

:::::::
sources

:::
and

::
a

:::::::
prepared

:::
and

::::::::::::
ready-to-train

:::::::
dataset.

7



Figure 2. Manually produced sea ice chart from the Greenland Ice Service containing polygons with an associated ice "egg code" describing

ice conditions. The image is depicted in geographical coordinates. Greenland Strait, Southeast Greenland. The scene was acquired on March

25, 2018.

Figure 3. SIC, SOD and FLOE maps from the ice chart in Fig. 2. White pixels are masked areas from either no information, land or

ambiguous polygons with no dominant ice class for the respective parameter. The colour code is slightly different than Fig. 2. The images

are depicted in the original SAR geometry.

Sea ice charts - reference data

Sea ice charts describe the local ice condition at the capture time
::::::::
conditions

:::
at

:::
the

::::
time

::
of

::::::::::
acquisition

::
of

:::
the

:::::
input

:::::::
satellite

:::::::
imagery, based on professional interpretations of SAR images and represented distinctly as polygons of fairly

:::::::
relatively

:
homo-
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geneous areas of sea ice, steered by the common guidelines outlined in the SIGRID-3 standard but still subject to individual185

interpretation.
:::::
There

:
is
::

a
::::::
natural

:::::::::
limitation

::
to

::::
how

:::::
many

::::::
details

:::
and

::::::::
polygons

:::
the

:::
ice

:::::::
analysts

:::
can

::::::::
manually

:::::
draw

::::::
within

:::
the

::::::
chosen

::::
scale

::::
and

::::::::
coverage

::
of

:::
the

:::
ice

:::::
map.

::
At

:::
the

:::::
same

:::::
time,

::::
there

::
is
::

a
:::::
focus

:::
on

:::::
safety

::::
and

:::
not

:::::::
delaying

:::
the

:::::::::::
information

::
to

::
the

:::::
users

:::::
more

::::
than

:::::::::
necessary.

:::::::::
Therefore,

:::
the

:::::::::
polygons’

:::::::::
boundaries

:::
are

:::::
very

:::::::::
accurately

:::::
drawn

:::
but

:::::
cover

:::::
large

:::::
areas

::::
with

::
a

:::::::::
subsequent

:::
low

::::::::
effective

:::::::::
resolution.

:::::::::::::
Understandably,

::::::
manual

::::::::::
production

:::::
cannot

:::::
relay

:::
ice

::::::::::
information

::::
with

:
a
::::
level

::
of

:::::
detail

::::
that

:::::::
matches

::
the

:::::::::::::
high-resolution

::::
and

::::::::::::::
multidimensional

:::::::::::::
electromagnetic

:::::
SAR

:::::::
textures.

:
190

Studies have suggested that the SIC between ice analysts can vary on average 20% and, in worst cases, up to 60% (Karvonen

et al., 2015). Similarly, low SICs (10-30%) can be overestimated while middle SIC classes (50-60%) can exhibit a wide spread

with high variability Cheng et al. (2020). Additionally, the marginal ice zone typically receives more attention during the

analysis, as these areas see higher maritime activity ((Saldo et al., 2021), manual). Despite these uncertainties, pixels in the sea

ice charts are treated as equally valid.195

The sea ice charts used in the challenge dataset are either produced by the Canadian Ice Service (CIS) or the Greenland Ice

Service at DMI, illustrated in Fig. 1 in red and blue, respectively, with a brighter
:::::
lighter

:
colour indicating more scenes. Each

chart is temporally and geographically matched with a Sentinel-1 image , either within 5 or 15 minutes of the timestamp for

::
of the DMI and CIS ice charts, respectively. The original ice chart data is contained in an ESRI ShapeFile format, which is

projected to the Sentinel-1 SAR geometry and rasterized to a map matching the pixel spacing of the SAR image with polygon200

IDs and an associated ice information look-up table. In the RTT dataset version, the ice chart was converted into three maps,

one for SIC, SOD and FLOE, using the ice codes defined in the SIGRID-3 convention. SIC is converted into 11 classes from

0-100% in discrete increments of 10%, the SOD into 6 classes; open water, new ice, young ice, thin First-Year Ice (FYI), thick

FYI, and old ice. FLOE is converted into 7 classes; open water, cake ice, small, medium, big, vast floes as well as bergs. Some

of these classes are the results of
::::
result

:::::
from

:::::::
merging multiple approximate ice codesbeing merged, as highlighted in the dataset205

manual (Buus-Hinkler et al., 2022a). In addition, as the SOD and FLOE are given as partial SOD or FLOE concentrations,

there may be multiple categories of SOD or FLOE for
:::::
mixed

::::::
within each ice polygon

::::::
without

:::
the

:::::
exact

:::::::
location

::::::::
provided. To

select the SOD or FLOE category while avoiding
::::
class

:::::
while

::::::::::
minimising ambiguity, the SOD or FLOE category

::::
class

:
must

be dominant. Here, we defined a SOD or FLOE category
::::
class

:
as dominant if said category has a partial concentration of

::
the

:::::::::
associated

::::::
partial

:::::::::::
concentration

::
is
:
at least 65%. Therefore, there are numerous polygons where a total SIC exists, but the210

polygon does not have an associated SOD and/or FLOE. For those participants wishing to use the raw dataset, an
::::::
Despite

::::
this

:::::
effort,

:::::::
multiple

::::::
classes

::::
may

:::
still

:::
be

:::::
mixed

::
in

::::
each

::::::::
polygon.

:::
An ice chart conversion Python script was provided

::
for

::::::::::
participants

::::::
wishing

:::
to

:::
use

:::
the

::::
raw

::::::
dataset. The three sea ice parameter maps associated with Fig. 2 are illustrated in Fig. 3, shown in

the original SAR measurement geometry. In this example, there are polygons without a dominant SOD and FLOE, which are

shown as white - similar to land or areas with no measurement values.215

Synthetic Aperture Radar

The primary data source is the two-channel dual polarized (HH and HV) Sentinel-1 C-band 5.410 GHz frequency level 1

Ground Range Detected Medium resolution images acquired in the Extra-Wide operational mode (Torres et al., 2012). The
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Figure 4. HH and HV SAR images corresponding to the ice chart illustrated in Fig. 2 and 3 in σ0 dB backscatter values and depicted in the

SAR acquisition geometry.

SAR image has been noise corrected using the algorithm described in Korosov et al. (2022). In addition, the SAR incidence

angles and a pixel-wise distance-to-land map are included. The closest temporally overlapping SAR image to the ice chart in220

Fig. 2 and ice parameters in Fig. 3 are illustrated in Fig. 4 in the original SAR geometry.

Passive microwave radiometry

The challenge dataset also contains overlapping level-1b brightness temperatures measured with the AMSR2 passive mi-

crowave radiometer onboard the JAXA GCOM-W satellite. The maximum time difference between the acquisition time of the

Sentinel-1 image and the overlapping AMSR2 swath is 7 hours. The AMSR2 measurements are resampled to the Sentinel-1 ge-225

ometry to the coordinates of every 50 by 50 (2 km) pixel using a gaussian weighted interpolation for each polarization (vertical

and horizontal) and frequency (6.9, 7.3, 10.7, 18.7, 23.8, 36.5, 89.0 GHz). Examples of AMSR2 measurements corresponding

to the ice maps in Fig. 3 and the SAR data in Fig. 4 are illustrated in Fig. 5. Auxiliary AMSR2 variables include the AMSR2

swath names of the used AMSR2 level-1b product(s), AMSR2 swath numbers (relevant when mosaicing multiple swaths), and

the time delay(s) between AMSR2 and Sentinel-1.230

Numerical weather prediction parameters

Several numerical weather prediction parameters from the ERA5 (ECMWF Reanalysis v5) are included (Hersbach et al., 2023).

The parameters are resampled to the Sentinel-1 geometry in the same manner as the AMSR2 brightness temperatures using a

gaussian weighted interpolation. The parameters are illustrated in Fig. 6 and encompass the 2-meter air and skin temperature,

10



Figure 5. An example of the available horizontally polarised brightness temperatures in Kelvin from the AMSR2 passive microwave ra-

diometer onboard the JAXA GCOM-W Satellite covering the scene in Fig. 2 and viewed in the same perspective as Fig. 3 and 4.

Figure 6. An example of the numerical weather prediction parameters including 2m air and skin temperature, total column water vapour and

cloud liquid water, and East- and Northward wind 10m components for the scene depicted in Fig. 2 and in the same perspective as Fig. 3-5.

the total column water vapour and cloud liquid water, and the eastward and northward 10-meter wind components rotated to235

account for the Sentinel-1 flight direction.
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a b c

Figure 7. User challenge engagement. a): shows the total accumulated registered teams per day on the AI4EO platform. b): illustrates the

total accumulated submissions per day during the competition. c): highlights the number of submissions per week over the course of the

challenge.

Ready-To-Train (RTT) dataset version

For the RTT dataset version, some
::::
Some

:
preprocessing choices were already made for the participants

::
for

:::
the

:::::
RTT

::::::
dataset

::::::
version. To reduce the barrier of entry, the original 40m pixel spacing (∼10,000 x 10,000 pixels) in the SAR (and ice charts

:
,

etc.) data was downsampled to 80m (∼5,000 x 5,000 pixels). It was also required for the participants
:::
The

::::::::::
participants

:::::
were240

:::
also

::::::::
required to deliver sea ice maps in this pixel spacing. The SAR image, distance-to-land map and incidence angle data

were downsampled using a 2×2 averaging kernel, whereas ice charts were reduced spatially using a 2x2 max kernel. This is

followed by an alignment of masks (nan-values) across the data, except the sub-gridded variables, e.g. AMSR2 data, and the

SOD and FLOE polygons with no dominant ice code. Afterwards, the scenes were standard-scaled using the mean and standard

deviation of all training data within each data channel. Finally, pixels without ice chart values were replaced with the values 2245

and 255 in the SAR images and ice charts, respectively. This was carried out in order to represent non-data or masked pixels

and enable the discounting of these pixels during loss optimisation and the computation of the evaluation metrics.

4 Participation and submission results

The competition received good traction from a diverse set of stakeholders ranging from academics, students and industry.

Fig. 7 illustrates (a) the total number of registered teams (multiple users can be within each team) over the course of the250

competition, (b) the total number of team submissions, and (c) the total number of submissions per week. The competition saw

a continuous influx of users with fewer registrations towards the end of the competition. At the end of the competition, a total

of 129 teams and 179 associated users had registered. Participants started delivering their test set solutions around halfway
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through the competition, with a peaking submission rate of around two-thirds of the way through the competition and a spike

in submissions nearing the closing date. In total, 494 test solutions were submitted from 34 different teams.255

4.1 Submission results

The top-performing teams are listed in Tab. 1, showcasing the combined final private score, as well as the private score for

each ice parameter and the number of submissions per team. In the bottom row, the mean and standard deviation (STD) of

the top 5 teams are included. The overall winner of the AutoICE challenge was the combined team from the Department of

System Design Engineering at the University of Waterloo (UW), encompassing a total of 14 people. UW achieved a combined260

final score of 86.39%. In addition, the team scored highest on both the SIC and SOD while scoring the lowest among the top 5

teams on the FLOE. The UW team consisted of PostDocs and PhD and Master students, were supervised by faculty staff and

were very engaged during the competition. In total, UW submitted test solutions from a total of 7 team accounts that were all

placed in the top 7 on the leaderboard. In total, UW submitted 170 test solutions across their team accounts, which was more

than the other 4 top 5 teams combined.265

The second place went to the team PWGSN, two computer science master students and their PhD candidate supervisor

from the Warsaw University of Technology with a combined score of 82.48%, the highest score on FLOE and a total of 42

submissions. In third place, the team crissy scored 81.17% with a single submission. Fourth went to sim, an engineer at Ubotica

Technologies who submitted 7 test solutions with a score of 80.61%. Finally, on the fifth, jff scored 80.56% with a total of 59

submissions. crissy and jff has not shared their affiliations.270

From the top 5 participants’ mean and STD ice parameter scores in Tab. 1, it is clear that the SIC was the variable that all

participants scored the highest numerical percentage on, followed by the SOD and finally FLOE. The STD appear to be highest

for the SOD, though skewed by the high UW performance. Excluding the UW SOD score, the SOD STD would be the lowest

among the three ice parameters at 1.5, compared to 1.8 and 2.4 for SIC and FLOE, respectively.

Table 1. Final ranking and scoring of the top 5 participating teams including the individual ice parameter scores, the mean ice parameter

scores across the teams with the standard deviation, and the total submissions for each team.

Rank Team Final SIC SOD FLOE Submissions

1 University of Waterloo 86.39% 92.02% 88.61% 70.70% 170

2 PWGSN 82.48% 89.70% 76.94% 79.12% 42

3 crissy 81.17% 85.35% 80.26% 74.66% 1

4 sim 80.61% 87.22% 77.52% 73.59% 7

5 jff 80.56% 86.68% 77.18% 75.10% 59

mean - 88.19% ±2.66 80.10% ±4.94 74.63% ±3.04 -
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5 Top submission solutions275

In the following subsections,
:
three of the top 5 teams - UW, PWGSN and sim teams - have contributed with short descriptions

of their model solutions.
::::
The

:::
two

:::::::::
remaining

:::::
teams

::::
have

:::
not

::::::::
provided

::::::::::
information

:::::
about

::::
their

:::::::
personal

::::::
models. All participants

in the AutoICE challenge were invited to submit a full description of their solutions to the special issue in the Cryosphere.

"AutoICE: results of the sea ice classification challenge". In the proceeding, we refer to the individual teams describing their

solutions.280

5.1 Rank 1 - University of Waterloo

Figure 8. The structure of the multitask U-Net-based model with output layers in yellow utilised by the UW-team.

To streamline our model development process, we utilized the RTT version of the AI4Arctic Sea Ice Challenge Dataset

(Buus-Hinkler et al., 2023b). In order to
::
To ensure consistent predictions with the ice chart-derived label maps, it is crucial to

increase the geographical field of view of the model. To achieve this, we downsample the dual-polarized SAR images, distance

maps, and corresponding ice chart-derived label maps by a specific ratio (10 in this work). During training, we
::
We

:
randomly285

extract patches of size 256× 256
::::::
during

::::::
training

:
from the downsampled SAR images. The AMSR2 and ERA5 variables are

also resampled to the same size and interpolated within the geographical areas covered by the patches. For validation and

testing, the entire SAR scenes and distance maps are downscaled and combined with other upsampled variables as input to the

trained model. The outputs are then interpolated back to the original size for evaluation. The
:::
Tab.

::
2

:::
lists

:::
the

:
best combination
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of input variablesis listed in Tab. 2. .
:
Additionally, to incorporate spatial and temporal information, we interpolate the latitude290

and longitude coordinates of the Sentinel-1 SAR geographic grid points to match the size of the input SAR image . The
:::
and

:::
add

:::
the acquisition month of each SAR scene represents

::
to

::::
each

:::::
pixel

::
to

::::::::
represent the time informationfor each pixel.

Table 2. The combination of input variables that produced the highest score for the UW-team.

Feature

abbreviation
Variable description

Total number

of channels

HH, HV, IA Dual-pol SAR scene with incidence angle information 3

DM Distance-to-land map for all pixels 1

AMSR2 subset Dual-pol AMSR2 brightness temperature data in 18.7 and 36.5 GHz 4

ERA5 subset
10-m wind speed, 2-m air temperature, total column water vapour,

total column cloud liquid water
5

Loc, time Latitude/longitude of each pixel and scene acquisition month 3

Regarding the model architecture, we construct a multi-task U-Net that simultaneously estimates three sea ice parameters, as

depicted in Fig. 8. It consists of four encoder-decoder blocks with varying numbers of filters. To generate predictions for SOD

and FLOE, the output feature maps from the final decoder are separately fed into 1× 1 convolution layers with the number295

of filters corresponding to the number of classes. This generates pixel-based classification results (i.e., segmentation). As for

SIC, a regression head is added at the end to produce SIC estimates. The model training details, including hyperparameter

combinations that yield the best validation accuracy, are specified in Tab. 3. We employ Cosine Annealing as a learning rate

schedule, which allows the model to converge to a good solution by
:::::::::
reasonable

:::::::
solution

::
by

:::::::::
cyclically adjusting the learning

ratein a cyclical manner. Each epoch comprises 500 iterations, with patches randomly sampled from the training scenes in each300

iteration. Through experimentation, we determine that using mean square error (MSE) loss for SIC and Cross-Entropy (CE)

loss for SOD and FLOE achieves the highest testing accuracy. To expedite the convergence of the three scores, we assign a

larger weight value to the CE losses relative to the MSE loss, as shown in Tab. 3. To ensure consistency between validation and

testing accuracy, we select 18 SAR scenes from the training data that closely match the acquisition locations and time periods

of the testing scenes, creating a separate validation set. A combined score, following the metrics given in the competition,305

is calculated from the validation set at the end of each epoch. If
:::
The

:::::
model

::::::::::
parameters

:::
are

:::::::
updated

:::
and

::::::
saved

:
if
:
the current

epoch’s score surpasses all previous scores, the model parameters are updated and saved. The final saved model is employed

to generate predictions for the testing data. All experiments are conducted on the Narval cluster of Compute Canada (Baldwin,

2012) using an NVIDIA A100-SXM4-40GB GPU and 128GB of memory , with the PyTorch 1.12 library.

Among the submissions from over 30 teams worldwide, our method achieved the highest combined score of approximately310

86.4%. In particular, it was observed that our method outperformed other methods on SOD (8 percentage points higher than

the next
::::::::
following best) and SIC scores (2 percentage points higher than the next best). As the ice chart-derived labels for the

testing data were released after the competition ended, a comprehensive analysis of the experimental results will be presented

in a forthcoming paper for publication.
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Table 3. Training specifications of the UW-team model solution.

Optimizer SGDM

Learning rate 0.001

Weight decay 0.01

Scheduler Cosine Annealing

Batch size 16

Number of iterations per epoch 500

Total epoch 300

Number of epochs for the first restart 20

Downscaling ratio 10

Data augmentation Rotation, flip, random scale, cutmix

Patch size 256

Loss functions MSE for SIC, CE for SOD and FLOE

Total loss calculation SIC×1+SOD×3+FLOE×3

Number of validation scenes 18

5.2 Rank 2 - PWGSN315

For all experiments conducted during the competition, the RTT version of the AI4Arctic Sea Ice Challenge Dataset (Buus-

Hinkler et al., 2023b) was used. The data was split into training (502 scenes) and validation (10 scenes) datasets. An epoch

was defined as an iteration over all available training scenes. During each step, one patch size of 224×224 pixels was selected

according to the undersampling procedure in Fig. 9.

Each scene was divided into a grid of patches using a sliding window of size 224× 224 pixels with a step of 22 pixels.320

Each patch was classified into one of the three possible classes, depending on the share of open water pixels (s): open water

(s≧ 0.9), water-ice edge (0.2≦ s < 0.9) and ice (s < 0.2).

During an epoch, patches were randomly selected from scenes to approximately satisfy the predefined class distribution,

implying that the share of ice-only patches in an epoch should be close to some value, p, and the share of water-ice edge

patches should be close to another value, q
:
,
:::
but

:::::::
without

:::::
taking

::::::
image,

::::::
region

::
or

::::::
season

::::
into

:::::::
account. We have achieved the325

best results for p = 0.1 and q = 0.2. Training examples were collected into 8-element batches. Training observations consisted

of all 24 channels available in the data. Low-resolution channels were upsampled to the size of SAR images. Following
:::
The

::::::::
following data augmentations were applied in an effort to mitigate overfitting: rotations, flips, multiplicative noise and slight

distortions. It is worth noting that only transformer-based architectures were prone to overfitting - for other architectures tested,

including CNNs, data augmentations had no positive impact on the metrics.330

A modified semantic segmentation model was used with an adjusted number of output heads. This approach enabled us to

make SIC, SOD and FLOE maps simultaneous predictions
::::::::::::
simultaneously. The model returned three 3-dimensional tensors

with an estimated likelihood of pixels belonging to a particular class. An ensemble of 10 models was created to generate
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Figure 9. The undersampling procedure used by the PWGSN-team. Composing training dataset with approximately imposed class frequency.

the final results. Outputs from each of the models were merged using a majority voting mechanism. All of the models in the

ensemble shared the same architecture but differed in the checkpoint used
::::
saved

::::::
model

::::::::
parameter

::::::::::
checkpoint,

:
loss function,335

augmentations and the imposed data distribution.

Validation and test scenes were divided into patches (224× 224 pixels, 512× 512 pixels and 1024× 1024 pixels) due to

memory limitations on the utilised GPU. Predictions were made on each patch separately and then combined together into the

final outcome. During this process, different
::::::::
Different tiling techniques were used

:::::
during

:::
this

::::::::
process, including overlapping

the patches, rotating and averaging, and smooth blending, as inspired by Chevalier (2017).340

A number of
:::::
Several

:
convolutional and vision transformer architectureshave been tested

:
, including EfficientUNet, ResNeXt

and DeepLabV3
:
,
::::
have

::::
been

:::::
tested. The most promising results were achieved with a transformer-based architecture, where an

altered Coat-Lite Medium (Xu et al., 2021) was used as the encoder and an altered Daformer (Hoyer et al., 2022) as the decoder.

For the encoder part
:
, transfer learning was applied (weights were pre-trained on the ImageNet dataset). The architecture was

inspired by a Kaggle competition notebook (Cijov, 2022). The number of the encoder input channels was adjusted to 24345

dimensions available in the RTT dataset. For this purpose, the pre-trained weights of the first convolution layer were averaged

and then expanded to the required quantity of input channels.

The distribution of classes for all three maps was highly unbalanced. Thus, a set of experiments was
:::::::::
experiments

:::::
were

:
set

up in which models were trained using Cross-Entropy (CE), Weighted Cross-Entropy (WCE), focal, dice and ordinal loss. The

best results were obtained with CE, WCE and
:
a
:::::::
mixture

::
of

:
CE and dice loss mixture with the ratio of 0.7

0.3 , respectively. The350

Adam optimizer was applied during the training. In most of the experiments, models were trained in two steps. At first, the
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learning rate was set to η = 10−4 while training the model for approximately 50 epochs. Then the model was fine-tuned for

subsequent 300 epochs with η = 10−5.

5.3 Rank 4 - sim

Our best solution was based on U-net architecture (Ronneberger et al., 2015), which effectively captures spatial information355

and preserves fine details, making it suitable for tasks requiring pixel-level segmentation accuracy. One of the primary reasons

for choosing U-net as our baseline architecture is our team’s prior experience with the architecture. The U-net model has been

previously adopted for earth observation data processing tasks, particularly for onboard processing, where limited computa-

tional resources are available. The architecture performs well on edge processing hardware (Dunkel et al., 2022). In addition,

the architecture required minimal adaptation from the provided code base, enabling us to focus on optimizing its performance360

for the challenge.

In search for an appropriate network architecture, a secondary solution was explored in the form of DeepLabV3 (Chen et al.,

2017). The reasoning for choosing DeepLabV3 was that this state-of-the-art deep learning architecture for semantic image

segmentation could be used to segment sea ice since it excels in capturing multi-scale contextual information. We hypothesized

that this could improve overall performance due to the scale differences of ice formations. However, despite reasonable results,365

we did not find this model architecture to be able to outperform our U-Net solution. In addition, due to the larger size of the

network, iterations proved more time-consuming than the U-Net architecture and more demanding in terms of computational

resources.

For our training pipeline, we utilized the code and data provided by the competition organizers as these resources proved a

powerful starting point. Both the get-started notebook and the RTT dataset (Buus-Hinkler et al., 2023b) were leveraged.370

The U-Net was trained with the Adam optimizer, with a learning rate of 10−4, and using a CE loss function. 225 epochs with

100 iterations per epoch were used. For each iteration, a batch was filled with 32 random crops of 256x256 pixels. All input

channels were used as input, i.e. the input tensor was of shape [32, 24, 256, 256] [batch, channel, H, W]. This model reached

an overall score of 80.6%, with a score of 87.2% for the SIC, 77.5% for the SOD, and 73.6% for the FLOE.

Our best DeepLabV3 model was trained for 76 epochs with 500 iterations per epoch and a batch size of 8. For this training375

pipeline, the Adam optimizer was used with a learning rate of 10−5 and CE loss as well. Our best-performing DeepLabV3

model performed worse overall than our U-net, with a public score of 79.1%. Interestingly, the network outperformed U-Net

significantly on FLOE segmentation with a public score of 74.5%. For SIC the best public score was close to U-Net with 84.8%

and SOD was significantly worse with 75.8%. These results suggest that an ensemble of multiple network architectures could

potentially outperform a standalone model by leveraging their complementary strengths. However, due to time constraints,380

further investigations into ensemble models were not pursued.
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Figure 10. Hudson Bay, Canada. First row: SAR HH and HV images, acquired on July 7 2018. Reference ice chart labelled by the Canadian

Ice Service. Second row: SIC reference and top 5 solution SIC maps with standard deviation between solutions and accumulated map of error

between solutions and the reference. Max indicates the maximum possible standard deviation of 4.9, 2.4 and 2.9 for SIC, SOD and FLOE,

respectively, or max accumulated error assuming a linear distance between classes of 50, 25 and 30 for SIC, SOD and FLOE, respectively.

The third row contains the SOD and the fourth the FLOE. White areas indicate a mask of either land, with no information or ice polygons

without a dominant ice code.

6 Comparison of top 5 submissions

For a deeper dive into the solution results submitted by the top 5 teams, output maps for two example SAR scenes are high-

lighted. Fig. 10 illustrates a scene in the native measurement geometry from Hudson Bay in the Canadian Arctic, captured in
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Figure 11. Scoresbysund, East Greenland. First row: SAR HH and HV images, acquired on October 10 2020. Reference ice chart labelled

by Greenland Ice Service at DMI. Second row: SIC reference and top 5 solution SIC maps with standard deviation between solutions and

accumulated map of error between solutions and the reference. Max indicates the maximum possible standard deviation of 4.9, 2.4 and 2.9

for SIC, SOD and FLOE, respectively, or max accumulated error assuming a linear distance between classes of 50, 25 and 30 for SIC, SOD

and FLOE, respectively. The third row contains the SOD and the fourth the FLOE. White areas indicate a mask of either land, with no

information or ice polygons without a dominant ice code.

July 2018, along with an
:
a

:::
sea ice chart from the Canadian Ice Service. In the top row, the Sentinel-1 HH and HV channels385

are shown, followed by rows for the SIC, SOD and FLOE ice parameters. The columns show the reference
:::
sea ice chart, the

solutions by the top 5 teams, the STD between the solutions and the accumulated error between each solution and the refer-
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ence. The STD and error colour scales are from 0 to the maximum STD, defined as the maximal possible STD. Likewise, the

error goes from 0 to the maximal possible accumulated error across the solutions. The STD indicates where the top 5 solutions

disagree, while the error shows locations where the top 5 solutions disagree with the reference.390

The scene in Fig. 10 was acquired during the Arctic Summer season and showcases sea ice in warm conditions with varying

SICs covering the majority of the scene while most ice is in the right-hand side of the image with an area of ice in the centre

of the image stretching towards the left side. The top 5 solutions agree on the separation between open water and sea ice.

The SICs
:::
SIC

:
solutions have the lowest STD among the three sea ice parameters, and the errors are most prominent near the

ice-water boundaries and in the upper portion of the scene. In the SOD maps, all solutions are consistent in that they agree on395

the dominant class being thick FYI but disagree on the location of the ice edge as seen in the STD and error images. This is

persistent across the three ice parameters. Still, as the STD and error are calculated based on an assumption of linear distance

between classes, the difference becomes most notable in the SOD as the difference between open water and thick FYI is large

here. The FLOE parameter is also relatively consistent across the solutions. However, the UW team appear to have hit the

location of the vast floe class given in the reference ice chart more accurately than the other teams.400

The second scene example is illustrated in Fig. 11 with an ice chart labelled by the Greenland Ice Service at DMI, showcasing

the large Scoresbysund fjord in Eastern Greenland. The scene was acquired in October 2020 and thus at the beginning of the

cold period with newly formed ice in the fjord and old ice along the coast in cake ice form and small floes. This scene also

contains many different SICs, varying SAR signatures, no strong wind patterns and dim ice signatures in the fjord. Again,

the separation between open water and ice is strong, with all SIC solution maps capturing the complexity of the labels well405

with low inter-solution STD and error. The solutions also, to a large extent, identified that the ice is old along the coast and

new / young in the fjord. There is also a large
::::::::::
considerable

:
SOD error in the centre of the image, which is caused by many

of the solutions saying that open water is present here instead of old ice. As the SIC is low here, there is quite a bit of open

water, implying that this error is not problematic but perhaps rather an expression of the ice charting methodology and the way

polygons were drawn. This could be due to a tendency of the ice services to be conservative in their delineation of ice polygons410

(i.e. the tendency in some cases to draw more ice than is actually present), a result of the coarser resolution of the ice charts (i.e.

not all openings in the sea ice in the SAR imagery are resolved in the ice charts), or even a combination of both. The produced

FLOE maps, however, have a large STD with
::::
only one solution correctly identifying the cake ice patterns along the coast. In

contrast, three solutions label it as big or vast floes, which naturally gives rise to a large error.
:::::::::
significant

::::
error.

:::::::
Another

:::::::
notable

::::::
feature

:
is
::::

the
:::::
model

::::::
output

:::::::::
submission

:::::
from

:::::
crissy

:::
that

::::::
appears

:::::::
blocky.

::::
This

::
is

:::::
likely

:
a
:::::

result
:::

of
:::::::::
outputting

::::
small

:::::::
sections

:::
of415

::
the

::::
map

:::
at

:
a
::::
time

::::
and

:::::::
stitching

:::
the

::::::
image

:::::::
together,

::::::
which

:::::::
typically

:::::
limits

:::
the

:::::
field

::
of

::::
view

::
of

:::
the

::::::
model

::::
and

::
its

::::::::
capability

:::
of

::::::::
producing

:::::::::::
continuously

:::::::
looking

::::::
outputs.

:

The average class accuracies for each sea ice parameter are presented in Tab. 4. For simplicity, the open water accuracy is

only included under the SIC class performance, as this ice parameter contains the most pixels (due to some polygons not having

dominant SOD or FLOE). In addition, similar to Stokholm et al. (2023), SIC performance can be summarised using macro420

classes, open water, any ice class ("Ice"), true intermediate pixels outputted by the model as any intermediate class and 100%

sea ice. This is due to the relatively large uncertainties in the intermediate classes as highlighted in Karvonen et al. (2015) and
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Table 4. Average sea ice parameter class accuracies for SIC, SOD and FLOE for the top 5 participants. Ice implies ice pixels labelled as

any true SIC above 0%. Intermediate SICs are compressed to one class indicating the percentage of intermediate class predictions correctly

labelled as a true intermediate class. Open water accuracies for SOD and FLOE are omitted for simplicity.

SIC Open water Ice Intermediate 100% Ice

96.85% 94.98% 75.53% 83.46%

SOD New Ice Young ice Thin FYI Thick FYI Old ice

15.58% 19.73% 20.55% 75.92% 42.11%

FLOE Cake Ice Small Medium Big Vast Bergs

14.26% 18.81% 21.43% 50.44% 60.38% 13.87%

Cheng et al. (2020), resulting in accuracy for individual SIC classes being uninformative. Here, the models’ capabilities in

separating water and ice are clearly highlighted with a high open water accuracy of 98.65% and 94.98% of ice labelled as any

SIC above 0%, with further high accuracies in the intermediate and 100% ice categories of 75.53% and 83.46%, respectively.425

For the SOD parameter, it is clear that new and young ice, as well as thin FYI, is challenging for the models, while the thick

FYI has the highest score of 75.92% followed by old ice with an accuracy of 42.11%. Finally, the FLOE scores highlight

difficulties with cake ice, and small and medium floes, while big and vast floes received higher accuracies of 50.44% and

60.38%, respectively. Finally, bergs were the most difficult, with an accuracy of merely 13.87%
:
.

::
To

::::::
expand

:::
on

:::
the

:::::
class

:::::::::
accuracies,

:::::::::
confusion

:::::::
matrices

:::
for

::::
each

:::
sea

:::
ice

:::::::::
parameter

:::
for

:::
the

::::::::
combined

:::::
top-5

:::::::::::
submissions

:::
are430

:::::::
included

::
in

:::
Fig.

:::
12

::::
with

:
a

:::
SIC,

::
b

:::::
SOD,

:::
and

:
c

:::::
FLOE.

::::
The

:::::::
matrices

::::
show

::::::::::
percentages

::
of

::::::::
predicted

::::::
classes

::
in

:::::::
contrast

::
to

:::
the

:::::
actual

::::::
classes.

:::::
Each

:::
row

:::::
sums

::
to

::::::
100%,

:::
and

:::
the

:::::::
diagonal

::::::::
elements

:::
are

::::::::::
demarcated

::::
with

:::::
black

::::::
borders

::::
and

::::::
indicate

:::
the

::::::::::
percentage

::
of

::::::::
individual

::::::::
correctly

::::::
labelled

:::::::
classes.

::
In

::::
Fig.

::::
12a,

::
the

::::::::::
predictions

::::
align

::::
well

::::
with

:::
the

:::::::
diagonal

::::
with

:::::::
notable

:::::::::
exceptions

::
of

:::
10,

:::
40,

::
60

:::
and

:::::
80%

:::::
where

:::
the

::::::::::
submissions

::::
tend

::
to

:::::::
produce

:::::
fewer

:::::
class

:::::::
outputs,

::::::::
indicating

::::
that

:::
the

::::::
models

::::::::
prioritise

:::
the

:::::::::::
neighbouring

::::::
classes.

::::
The

::::::::
deviation

::::
from

:::
the

::::::
actual

::
to

:::
the

::::::::
predicted

::::::::::
intermediate

::::
SIC

:::::::
appears

::
to

::
be

::::::
within

:::
±2

:::::::
classes,

:::
e.g.

:::::::
models

::::::
predict435

::::
70%

::::::
classes

:::
for

:::::
actual

::::::
classes

::
of

:::::::
50-90%.

::::
The

::::::::::
submissions

::::
also

::::
have

::::
high

:::::::::
accuracies

:::
for

::::
open

:::::
water

:::
and

::::::
100%

::::
SIC.

::::::::
However,

:::::
nearly

::::
half

:::
the

:::::
actual

::::
10%

::::
class

::::
and

::::
90%

::::
class

:::::
were

::::::::
predicted

::
as

::::
open

:::::
water

::::
and

:::::
100%,

:::::::::::
respectively.

:::
For

::::
SOD

::
in

::::
Fig.

::::
12b,

:::
the

::::
same

::::::::
tendency

::::
with

::::::
actual

:::
and

::::::::
predicted

::::::
classes

::::
align

::::
with

:::
the

::::::
matrix

::::::::
diagonal.

::
It

::::::
appears

::::
that

:::
the

::::::::::
submissions

::::::
classify

::::
new

:::
ice

::
and

::::
thin

::::
FYI

::
as

:::::
young

:::
ice

::::
close

::
to

::::
50%

::
of

:::
the

:::::
time,

:::::::
whereas

:::
the

:::::
actual

::::::
young

:::
ice

::
is

::::::::
predicted

::
as

::::
thick

:::
FYI

:
at
:::
the

:::::
same

::::
rate.

:::
The

:::::::
models

:::
also

::::::
appear

::
to

:::::
often

::::
label

:::
old

:::
ice

:
as

:::::
thick

:::
FYI

:
.440

::
In

:::
the

:::::
FLOE

:::::::::
confusion

::::::
matrix

::
in

::::
Fig.

::::
12c,

:::
the

::::::::
predicted

::::
and

:::::
actual

::::::
classes

:::::
align

::::
with

:::
the

::::::
matrix

::::::::
diagonal.

:::::::::
However,

:::
the

:::::::
majority

::
of

::::
cake

:::
ice,

:::::
small

:::
floe

:::
and

:::::::
medium

:::
floe

:::
are

::::::::
predicted

::
as

:::
big

:::
floe

:
,
::
in

:::::::
addition

::
to

:
a
:::::::
notable

::::::
portion

::
of

::::
vast

:::
floe

:::
and

:::::
bergs

:
.

::::
Most

::::::
actual

::::
bergs

::::::
classes

:::
are

::::::::
predicted

::
as

:::::
open

:::::
water.

::::
The

:::
test

:::::
scene

::::
with

:::::
bergs

::::::
consists

:::
of

:::
SIC

:::::
areas

::
of

::::
less

::::
than

::::
50%

::::
and

::
the

::::::::
majority

::
of

::::
30%

:::
of

::::
less.

::
In

:::::::
addition,

::
if
:::
the

:::::
areas

::::::
mostly

::::::
consist

::
of

:::::
small

::::::
bergs,

:
a
:::
lot

::
of

:::::
ocean

::::
will

::
be

:::::::
present,

::::::
which

::::
may

::::::
confuse

:::
the

::::::
models.445
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(a)

(b) (c)

Figure 12. Confusion matrices for a SIC, b SOD, c FLOE in percentages from 0-100%. Diagonal elements are highlighted with black borders

and represent the accuracy for each class.

7 Discussion

Overall,
:

the top-5 participants scored well on the selected metrics and showed strong separation between open water and sea

icebut
:
.
::::::::
However,

::
as

::::::::
indicated

:::
by

:::
Tab.

::
4
:::
and

::::
Fig.

:::
12,

:::
the

::::::
models

:
struggled to classify the SOD classes New Ice, Young Ice and

Thin FYI correctly
:::
but

::::::
tended

::
to

:::::
follow

:::
the

::::::
matrix

:::::::
diagonal

::
in
:::
the

:::::::::
confusion

:::::::
matrices. Similarly, Cake Ice, Small, and Medium

floes proved challenging for the top participants as well as the Bergs class. As the FLOE parameter score was substantially450
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numerically lower than the SIC and SOD scores, additional research on improving it is warranted. Given the lower individual

ice parameter score that FLOE received, it
:
It
:
is plausible that participants gave less priority as the weight for this parameter

was half that of SIC and SOD. This lower weight was assigned because the ice charting experts in the AI4Arctic external panel

of experts deemed this parameter less critical for the ice service end users. The ice charts used as label data in the challenge are

not produced with associated uncertainties for the SIC, SOD and FLOE information. Suppose the FLOE parameter is generally455

given less attention during the charting process. In that case, there might be a higher degree of uncertainty accompanying this

parameter, and therefore,
:
so

::::
that the label quality could be lower.

7.1
::::
Top-5

:::::
team

::::::::::
approaches

Table 5. Summary of the 3 top 5 teams’ approaches, including dataset version, the preprocessing steps taken, how the data was loaded,

implementation details, such as model architecture, model optimisation approach, and finally the teams’ technical background. *Learning

Rate

Team Dataset Preprocessing Dataloader Implementation Experience

1 - UW RTT downsample SAR, upsampling coarse resolu-

tion variables, latlon + time, data augmentation

get-started tools U-Net architecture, cosine annealing LR*

scheduling

sea ice + AI

2 - PWGSN RTT data augmentation, upsampling coarse resolu-

tion variables

new sampling method transfer learning and vision transformer AI

4 - sim RTT upsampling coarse resolution variables get-started tools U-Net architecture, constant LR* space

Tab. 5 summarises the main characteristics of the solutions presented by the three top-5 teams, including the version of the

dataset used, the preprocessing steps taken, data-loading, implementation details, such as the model architecture and model op-460

timisation, and finally the teams’ technical experience. Among the
:::
All three top-5 teams , all teams have used the RTT dataset.

Two of the teams have used or modified the U-Net model provided, while two teams added data augmentation. All teams

have applied the same approach to feeding the model different data types by upsampling coarse resolution variables with the

get-started tools and ingesting it together with the SAR data. Two teams applied more advanced model optimisation strategies

with cosine annealing learning rate and transfer learning with weights optimised on the ImageNet dataset (Russakovsky et al.,465

2015).

The three teams had different professional backgrounds, with sea ice domain experts, AI practitioners and space engineering

knowledge, which is thought to have had an effect on
::::::
affected

:
the variety of solutions presented and which also led to some

interesting discussions. Domain knowledge allowed the UW team to tinker with the input and output, while AI expertise

allowed for more advanced modelling architectures in the PWGSN team. Fusing the two approaches could lead to further470

improvements, as suggested by the PWGSN team during the Winner’s Event.

As the only team, UW applied additional preprocessing steps by downsampling the SAR data before ingesting it into the

network. This increases the
:::::::
effective

:
geographical field of view of the model, allowing it to see information further away when

deciding the class for a particular pixel. The tradeoff of this approach is the loss of resolution
::::
This

::::::::
approach

:
is
::::::::
contrary

::
to

:::
the
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:::::::::
approaches

::::::::
presented

:::
in

::::::::::::::::::::::::::::::::::::
Heidler et al. (2021); Stokholm et al. (2022),

::
as

:::::
these

::::::
sought

::
to
:::::::

achieve
:::
the

:::::
same

:::
but

:::
by

:::::::::
increasing475

::
the

:::::::
number

::
of

::::::
pixels

::
in

:::
the

::::::
model’s

::::::::
receptive

::::
field

:::::::
instead

::
of

::::::::
increasing

:::
the

::::
area

::::
each

:::::
pixel

::::::
covers.

::::
This

::::::::
increased

:::::
pixel

:::::
cover

:::
has

:
a
:::::::
tradeoff

::::
with

:
a
::::
loss

::
of

::::::::
effective

:::
and

:::::::
detailed

::::::::
resolution

::::
but

:::::
yields

::::::::::::
computational

::::::::
efficiency

::
as

:::::
fewer

::::::
pixels

:::
are

::::::::
funnelled

::::::
through

:::
the

:::::::
network. However, as the polygons in the ice charts are relatively coarse (except for the boundaries) compared to

the SAR data, this loss of resolution does not appear to hamper the models from learning to replicate the human-produced SIC

and SOD ice charts. However, we see that UW score lower in FLOE, which could be because the delineations of the individual480

smaller ice floes are lost. It may also substantially reduce the training duration and memory requirements,
:
allowing for quicker

model iterations, which, in addition to UW being a large team, could have increased the rate of iteration , triggering a large

number of submissions. Moreover, the
:::::::
iteration

::::
rate,

::::::::
triggering

:::::
many

:::::::::::
submissions.

:::
The

:
UW team

:::
also provided additional information to the model in terms of

::::::::
regarding the geographical location by ingesting

the latitude and longitude of the scene as well as
:::
and the acquisition month. It is possible that knowing the location of the scene485

could be beneficial in determining the SIC and particularly SOD, as multiyear ice typically drifts South along the East coast of

Greenland. In contrast, the West Coast of Greenland and the Baffin Bay area have less multiyear ice. The SAR scene acquisition

time could also be beneficial for the model, enabling it to better capture the sea ice seasonal changes, especially for the SOD

parameter. The combination of both the geographical location and the time of the year could be a particularly strong
:::::::
powerful

information combination for mapping SOD.
:::
This

::
is

:::::::::
supported

::
in

::
the

:::::::
ablation

:::::
study

::
in

::::::::::::::::
Chen et al. (2023)

:::
with

::
a

::::
9.1%

::::::::
decrease490

::
in

::::
SOD

:::::::::::
performance

::::
when

:::::::::
removing

:::
the

::::::::::
information.

:

Among the top solutions, it is interesting that UW scored best on SIC and SOD — by a significant margin — but fifth on

the FLOE parameter. This could reflect less effort towards this parameter, or perhaps the high amount of downsampling could

blur the individual ice floe boundaries. If boundaries between smaller floes are difficult to distinguish, it could be difficult to

differentiate cake ice, small, and medium floes, which could lead to lower performance in three of the FLOE classes. Big and495

vast floes do not appear to be problematic.
:::::
Across

:::
the

:::
top

::::::
teams,

::::
these

:::::::::::
observations

::::
align

::::
with

:::
the

:::::::::
confusion

:::::
matrix

::
in

::::
Fig.

::::
12c.

This hypothesis could be further supported in the SIGRID-3 documentation with individual floe sizes of 30cm - 20m for cake

ice, 20m - 100m for small floes and 100m - 500m for medium floes while considering that UW downsamples with a factor 10,

giving a
::::
SAR pixel spacing of 800m.

::
In

:::::::
addition,

::::
this

::::
may

::::::
support

:::::
using

:::
the

:::::
native

:::::
SAR

::::
pixel

:::::::
spacing

::
of

::::
40m

::::::
instead

::
of

:::::
80m,

:::::
which

::
is

::::::::
otherwise

::::
used

::
in

:::
the

:::::::::
challenge.500

:::
UW

::::::::
investigate

:::
the

:::::
effect

::
of

:::::
SAR

::::::::::::
downsampling

::
on

:::
the

::::::
FLOE

:::::::
retrieval

::
in

:::::::::::::::
Chen et al. (2023)

:
,
::::::::
indicating

:
a
:::::::::::
performance

::::
loss

::
of

::::
5.3%

:::::
when

::::
their

:::::::::
additional

::::
SAR

::::::::::::
downsampling

::
is

::::::::
removed.

::
At

:::
the

:::::
same

::::
time,

::::
SIC

:::
and

:::::
SOD

::::
lose

::::
7.3%

::::
and

:::::
6.5%.

::::::::
However,

::::
given

::::
that

:::
the

::::::::
receptive

::::
field

::
of

:::
the

:::::
CNN

::::::
model

:
is
::::

not
::::::::
increased,

:::
the

::::::::::
comparison

::
is

::::::
strictly

:::::::
between

::
a
:::::
lower

:::
and

::::::
higher

:::::
pixel

:::::::
coverage

::::
and,

::::::::::::
subsequently,

:::
an

:::::::
effective

:::::::::::
geographical

:::::
field

::
of

:::::
view.

::
In

::::
this

:::::::
context,

:::
the

:::::::
analysis

::::::::
supports

:::
an

::::::::
advantage

:::
in

:::::
having

::
a
:::::
larger

::::::::
effective

:::::::::::
geographical

::::
field

::
of

:::::
view.

::::::::::
Ultimately,

:::
this

:::::::
analysis

::::::
cannot

::::::::
conclude

:::::::
whether

:::
the

::::::::::::
downsampling

:::
of505

:::::
FLOE

::::::::::
delineations

::::::::
hampers

:::::::::::
performance

::::::::
compared

::
to
::::

not
::::::::::::
downsampling

::
as

::::::::
severely

:::
and

:::::::
instead

::::::
relying

:::
on

:::::::::
increasing

:::
the

::::::
model’s

::::::::
receptive

:::::
field.

:::::::::
Empirical

:::::::
evidence

::
to
:::::::

support
::::
this

:::::::
analysis

:::::
could

:::
be

:::::::
provided

:::
by

:::::::::
comparing

:::::::
models

::::
with

:::
the

:::::
same

:::::::
effective

:::::::::::
geographical

::::
field

::
of

::::
view

:::
but

::::::::
achieved

:::::
either

:::::::
through

::::::::::::
downsampling

::
or

:::
by

:::::::::
increasing

::
the

:::::::
model’s

::::::::
receptive

::::
field

:::
by

::::::::
expanding

:::
the

:::::::
number

::
of

:::::
pixels

:::
the

::::::
model

:::
can

::::::
access

:::::
during

:::::::::
individual

::::
pixel

::::::::::
predictions.

:
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An elaborate validation scheme was applied by the UW team, where scenes were selected to be approximate both geograph-510

ically and temporally to the test set, enabled by the date given in the file names and the geographical coordinates provided in

the files. This allowed the team to compare model outputs more frequently to scenes that may have some information leakage.

While this validation selection is within the rules of the challenge, it is thought to have had a positive effect on the teams scoring

and their
:::::::::
challenge’s

:::::
rules,

:
it
:::::
could

:::::
have

::::::::
positively

:::::::
affected

:::
the

::::::
team’s

::::::
scoring

::::
and final rank on the leaderboard. Ideally, the

test scenes should have been selected sufficiently distant temporally to prevent any leakage from testing data to training or515

validation. This is a notable takeaway for organising similar competitions in the future.

The PWGSN team was the only of the three
:::
one

::
of

:::
the

:
top-5 teams to apply vision transformers in their winning solution,

which have been hailed as very potent for computer vision but require additional computational resources compared to the

U-Net. The team chose to utilise
::::
used

:
pre-configured weights (transfer learning), trained on ImageNet (Russakovsky et al.,

2015), which contains large quantities of RGB images. Here, the pre-trained weights included three-channel input for RGB.520

However, the competition data had 24 channels. Here, PWGSN choose to average the three-channel input weights and repeat

them to match the 24 channels. While this is practical, the weights trained on RGB images may not be suitable for the remote

sensing and climate data, with particular emphasis on the AMSR2 and reanalysis data that have
::::
with less structured patterns

compared to
::::
than typical real-life images. However, this weight-averaging approach may have been the most feasible as the data

volume that the competition offered
:::::::::::
competition’s

::::
data

::::::
volume

:
may not have been sufficient to train a vision transformer from525

scratch. In addition, PWGSN implemented an alternative dataloading scheme to speed up their training time and to mitigate

class imbalance by sampling less frequently appearing classes.

Lastly, the sim team utilised the provided get-started tools and the provided U-Net model with tuned hyperparameters to

perform well and brought the team to a top-5 ranking. Therefore, it can be noted that the supporting get-started tools provided to

the participants worked well and allowed for very competitive models. Multiple teams also investigated using the DeepLabV3530

(Chen et al., 2017) architecture but did not achieve better results than the U-Net on this particular segmentation task.

For evaluation, it could have been helpful to measure SOD performance with macro classes, similar to how SIC was

summarised in Tab. 4. Macro classes could combine new and young ice, as this would allow for, at least conceptually, macro

categories with closely related ice types

7.2
:::

The
::::
state

::
of
::::::::::
automatic

:::
sea

:::
ice

::::::::
mapping535

:::::
Given

:::
the

::::::::
decisions

:::
on

::::::
design

::::::
choices

:::::::::
regarding

:::
the

:::::::
dataset,

:::::
metric

:::::::::
selection,

:::::
using

:::
sea

:::
ice

::::::
charts,

::::
and

:::::::
selecting

:::::::::
dominant

::
ice

:::::::
classes

::
in

::::::::
polygons

:::::
using

:
a
:::::::::
threshold,

:::
the

::::::::
outcome

::
of

:::
the

::::::::
challenge

::::::::
contains

::::
some

::::
bias

:::::::
despite

:::::::
attempts

::
to

::::::::
minimise

:::
it.

::::::::::
Nonetheless,

:::::
given

:::
the

::::
large

:::::::::::
participation

::
in

:::
the

:::::::::
challenge,

::
the

:::
top

::::::
teams

:::::
should

::::::::
represent

:::
the

::::::
general

::::
field

:::
of

::::::::
automatic

:::
sea

:::
ice

:::::::
mapping

:::
and

:::::::
retrieval

:::
of

:::
the

::::
three

:::
sea

:::
ice

:::::::::
parameters

::::
with

::::::::::
overlapping

::::::::::::
shortcomings

:::
that

:::
can

:::
be

::::::::::
extrapolated

::
to

:::
the

:::::::::
remaining

:::::::::
community.

:
540

::::::::
Regarding

::::
SIC,

:::::::
models

:::::
appear

:::::::
capable

::
of

:::::::::
identifying

:::::
open

:::::
water

:::
and

::::
fully

::::::::::
ice-covered

:::::
areas,

::::::
similar

::
to

::::::
earlier

:::
SIC

::::::
works

::
in

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Radhakrishnan et al. (2021); de Gelis et al. (2021); Tamber et al. (2022); Stokholm et al. (2023); Wulf et al. (2024).

:::::::::
However,

:::::::
correctly

::::::::
assigning

:::::::::::
intermediate

::::
SIC

::::::
appear

:::
to

::::::
remain

:::
an

:::::::
obstacle,

:::
as

::::::::
presented

:::
in

:::
the

::::
SIC

::::::::
confusion

::::::
matrix

:::
in

::::
Fig.

::::
12a.
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:::::
Some

::::::
classes

:::::
appear

::::::::::::
underutilised,

::
as

:::
the

::::::
models

:::
do

:::
not

:::::
appear

::
to
:::::::
produce

:::::
many

:::
10,

:::
40,

:::
60

:::
and

::::
80%

:::::::
outputs

::::
often

::::
and

::::::
instead

:::::::
prioritise

::::::::::::
neighbouring

::::::
classes.

::::
The

:::::
class

:::::::::
imbalance

:::::
could

:::::
cause

::::
this,

::::
but

:
it
::::

also
:::::::

appears
:::::::

similar
::
to

:::
the

::::::
results

:::::::
reported

:::
in545

:::::::::::::::::::::::
Kucik and Stokholm (2023)

::::
when

:::::::
utilising

::::::::::::
classification

::::::::::
optimisation

::::::::::
objectives.

:::::
Given

:::
the

:::
R2

:::::::
metric,

:::
this

::
is
:::
not

:::::::::
penalised

::::::::::
significantly

:::
but

::
is
::::::::

apparent
:::::
when

:::::::::
inspecting

:::
the

:::::
class

:::::::::
accuracies.

:::
As

::::
not

:::
all

::::::
classes

:::
are

:::::::
utilised

:::
by

:::
the

::::::
model,

::
it

::::
may

:::
be

:::::
better

::
to

:::::::
combine

:::::
some

:::::::::::
neighbouring

:::::::::::
intermediate

::::
SIC

::::::
classes

::
to

:::::::
simplify

:::
the

::::::::
problem

:::
and

:::::::
mitigate

:::::
class

:::::::::
imbalance

::::::
issues,

::
as

:::::::
explored

:::
in

::::::::::::::::::
Stokholm et al. (2023)

:
.
::::::::
However,

:::
the

:::::
paper

::::
only

::::::::
assessed

:::
the

::::::
impact

::
of
:::::::::

separating
::::::

macro
::::::
classes

::::::
rather

::::
than

::::::::
combined

::::::::
R2-score

:::::
when

:::::::::
combining

::::::
classes.

:
550

:::::::
Another

::::::
notable

:::::::
element

::
is

:::
the

::::::::
variation

::
of

:::
the

::::::::
assigned

::::::::::
intermediate

::::
SIC

::::::
classes

::
in
::::

Fig.
::::
12a,

:::::::::
appearing

::
as

::::::
actual

::::::
classes

:::::::::
distributed

:::::
across

:::
±2

::::::::
predicted

:::::::
classes

::
or

::::
20%

::
in

:::::
many

::::::
cases.

::
In

::::::::
addition,

:::::
lower

::::
SIC

::::::
appears

::
to
:::

be
::::::::::::
overestimated

::
as

::::::
higher

::::
SIC.

::::::
Middle

::::
SIC,

:::
e.g.

:::::
50%,

::
is

::::::
widely

::::::
spread,

:::
and

::::::
higher

:::
SIC

::
is

::::::
skewed

:::::::
towards

:::::
lower

:::::::::::::
concentrations.

:::::
These

::::::::::
observations

:::::
align

::::
with

::
the

::::::
results

:::::::
reported

::
in
:::::::::::::::
Wulf et al. (2024)

:
.

:::
The

:::::
SOD

::::::
classes

::::
new

:::
ice

:::
and

::::
thin

::::
FYI

:::
also

::::::
appear

:::::::
difficult

::
to
:::::::

predict
::::::::
correctly,

:::::
given

:::
the

::::
SAR

::::::
image,

:::::::::
dominant

:::::::
polygon555

::
ice

::::::
classes

::::
and

::::
class

::::::::::
distribution

::::::::
favouring

:::::
thick

:::
FYI

:::
and

:::
old

:::
ice. Similarly, for FLOE, some combination of cake ,

:::
ice

:::::
small

:::
floe

::
and

:::::::
medium

::::
floe

::::::::
predictions

::::
can

::
be

:::::::::
improved,

::::::
which

:::
are,

::
to
::

a
:::::
large

::::::
extent,

:::::::
assigned

::
as
:

smalland medium floescould be

combined and
::
big

::::
floe.

:::
For

::::::
FLOE,

:::
the

:::::
class

:::::::::
distribution

:::::::
favours big and vast floe.

::::
vast

:::
floe

:
.

:::::
Other

::::::
factors

::::
could

:::::::
explain

:::::
these

:::::::::::
shortcomings,

:::
as

:::
the

:::::::::::::
electromagnetic

::::
SAR

:::::::::
signatures

:::::
could

::
be

::::::::::
ambiguous

:::
for

::::
these

:::::
SOD

:::
and

:::::
FLOE

:::::::
classes.

:::::
There

::::
may

:::
also

:::
be

:::::::::
underlying

::::
bias

::
in

::
the

:::
ice

:::::::
charting

:::::::
process,

::::
such

::
as

:::::
some

::::::
classes

:::
are

::::::
viewed

::
as

:::::::::
secondary560

:::
and

::::
used

:::::::::::
occasionally

::::::
instead

::
of

:::::::::
regularly.

:::::
Bergs

::::
also

::::::
appears

:::::::
difficult

:::
to

::::
map

::
in

:::
the

::::
style

:::
of

:::
the

:::
sea

:::
ice

::::::
charts.

:::::
Bergs

::::
often

::::
cover

::::
few

:::::
pixels

::::
and

::::
may

:::::
often

::
be

::
in

:::::::
regions

::::
with

:::
low

:::::
SIC,

::::::
making

:::
the

::::::::
effective

::::::
number

:::
of

::::
berg

::::
pixels

::::::
small,

:::
and

::::
thus

::::
few

::::::::
examples

::
for

:::
the

::::::
model

::
to

::::
train

:::
on.

:

7.3
::::::::

Challenge
:::::::::::::
considerations

In the challenge, 20 scenes were selected for testing the models. Naturally, it is necessary to evaluate the models much565

::::::::
evaluating

:::
the

:::::::
models

:
more thoroughly with many more ice conditions, years

:
,
:
and geographical areas than present in the

test set . In order to
::
is

:::::::::
necessary.

::
To

:
perform comparative studies of different SAR-based sea ice retrievals of SIC, SOD and

FLOE in an effort to establish the state-of-the-art, there is a need for a standardized benchmarking dataset. One obstacle in the

evaluation of the SOD and FLOE is the occasional absence of a dominant ice class. Therefore, it may be useful
:::::
helpful

:
to eval-

uate on polygon level rather than pixel level, which could enable the use of the partial concentrations for the evaluation of SOD570

and FLOE. Despite the
::::
some

::::::::
polygons’

:
lack of dominant ice typesin some polygons, models are still capable of producing

:
,
::::::
models

:::
can

::::
still

:::::::
produce

:
segmentation results in these areas. Future models could be able to produce

:::::
create maps with the

individual partial polygon concentrations of the SOD and FLOE classes, effectively increasing the information resolution of

the maps.

:::
For

:::::::::
evaluation,

::
it
::::::

could
::::
have

:::::
been

::::::
helpful

:::
to

:::::::
measure

:::::
SOD

:::::::::::
performance

::::
with

::::::
macro

:::::::
classes,

::::::
similar

:::
to

::::
how

::::
SIC

::::
was575

::::::::::
summarised

::
in

::::
Tab.

::
4.

::::::
Macro

::::::
classes

:::::
could

:::::::
combine

::::
new

:::
and

::::::
young

:::
ice,

::
as
::::

this
:::::
would

:::::
allow

::::
for,

::
at

::::
least

:::::::::::
conceptually,

::::::
macro

27



::::::::
categories

::::
with

:::::::
closely

::::::
related

:::
ice

:::::
types.

::::::::
Similarly,

:::
for

::::::
FLOE,

:::::
some

:::::::::::
combination

::
of

::::
cake

:
,
:::::
small,

::::
and

:::::::
medium

::::
floes

::::
could

:::
be

::::::::
combined

:::
and

:::
big

:::
and

:::
vast

::::
floe.

:

::::::::
Naturally,

::::::::
automatic

:::
sea

:::
ice

::::::::
mapping

:::::::
research

:::::
could

::::::
benefit

::::
from

:::
an

::::::::
increased

::::::
dataset

:::
size

::::
with

:::::::::
thousands

::
of

::::::
scenes

:::
and

:::
an

::::::::::::
accompanying

:::::
larger

::::::
testing

::::::
dataset.

::::
This

:::::
could

::::
help

:::::
train

:::::
better

::::::
models

::::
and

:::::::
evaluate

::::
them

:::::
more

::::::::
generally

:::::
while

::::::::::
minimising580

:::::::
potential

:::::::
biasing

::
in

:::
the

::::::
choice

::
of

::::
the

::::::
current

:::::::
scenes.

:::::
Work

::
is

::::::::
underway

:::
to

::::::
expand

:::
the

:::::::
current

:::::
ASID

:::::::::
Challenge

::::::
dataset

:::
to

::::::
provide

:::
the

:::::::::
ASID-v3.

::::::::
However,

::::
with

:::
an

::::::::
increased

:::::::
number

::
of

::::::
scenes,

:::
the

:::::::::
imbalance

::
of
:::::::::::

intermediate
::::
SIC,

::::::::
younger

::::
SOD

::::
and

::::
floes

::
of

:::::::
smaller

::::
size

::
is

:::::::
expected

:::
to

::::::
remain

:::::::
present.

:::::::::
Therefore,

:::::
work

::
on

::::::::::::
incorporating

:::::
better

:::::
class

::::::::
balancing

:::::
could

::::::::
improve

:::::::::::
performance.

::::::::
However,

:::::::::::::::::::::::::::::::::::::::::::
Kucik and Stokholm (2023); Stokholm et al. (2023)

:::
have

::::::::::::
experimented

::::
with

:::::
class

::::::
weight

:::::::::
balancing

::::
when

::::::::::
optimising

:::
SIC

:::::::
models

:::::::
showing

::
an

:::::::::
increased

::::::::::
performance

:::
on

:::::::::::
intermediate

:::
SIC

:::
but

::::::
lower

::::::::::
performance

:::
for

:::::
open

:::::
water585

:::
and

::::
fully

::::::::::
ice-covered

:::::
areas.

:::::::
Another

::::::::
approach

:::::
could

::
be

::
to

::::::
sample

:::::::
classes

::::
with

:::::
lower

:::::::::::
representation

:::::
more

:::::
often.

:

:
A
:::::::::

limitation
::
of

::::
the

::::::::
challenge

::::
and

:::
the

:::::::::
associated

::::
work

:::::
with

:::::::::
developing

::::::::::
supervised

::::
deep

:::::::
learning

:::::::
models

::
to

::::
map

::::
sea

:::
ice

:::::::::
information

::::::
based

:::
on

:::
sea

:::
ice

:::::
chart

:::::::::
reference

::::
data

::
is

:::
the

:::::
large

::::::::
polygons

:::::
with

:::
low

::::::::
effective

:::::::::
resolution

::::
and

:::
the

:::::
SOD

::::
and

:::::
FLOE

::::::::::
information

::::::
mixed

:::::
within

:::::
each

:::::::
polygon.

:::
An

:::::
open

:::::::
question

::
is

:::::::
whether

:::::::::
mimicking

:::::
these

::::::
coarse

:::
and

::::::
mixed

:::::
maps

::
is

:::
the

:::::
future

:::
for

:::
sea

:::
ice

::::::::
mapping.

::::
With

::::::
better

:::
and

:::::
more

::::::
reliable

:::::::
satellite

::::::::::::::
communication,

:::
the

:::::
polar

::::::
regions

::::
have

:::::
more

:::::::::::
transmission590

::::::::
bandwidth

:::
to

::::::
acquire

::::
sea

:::
ice

::::::::::
information,

::::::
which

:::::
could

:::::::
warrant

:::::::
moving

:::::::
towards

:::::
more

:::::::
detailed

:::
sea

:::
ice

::::::
maps.

:::::::::::
Nonetheless,

::::
using

:::::::::
manually

::::::
derived

::::
sea

:::
ice

:::::
charts

::::
has

::::::
fuelled

:::::::::
supervised

::::::
model

::::::::::::
developments

::::
with

:::::::::::
open-source

:::
and

:::::::
readily

::::::::
available

::::::::::::
expert-labelled

::::::::::
information

:::::::
without

::::::
needing

::::::::::
large-scale

:::::::::
annotation

:::::
efforts

:::
of

::::
SAR

:::::::
imagery.

:::::::::
However,

:::
the

:::::::::
community

::::
may

:::
be

::::
ready

::
to
:::::::::
undertake

::::
such

::::::
efforts.

:

8 Conclusions595

This article presents the AI4EO AutoICE Challenge in full with the challenge setup, dataset description, and participation

statistics while briefly summarising 3 of the top-5 solutions before highlighting two test scenes with the top 5
::::
top-5

:
participants’

model output maps. Finally, a discussion that compares the different approaches is included
::::
with

:::
an

:::::::::
assessment

::
of

:::
the

:::::
state

::
of

::::::::
automatic

:::
sea

:::
ice

::::::::
mapping. The competition was won by the University of Waterloo team from the Department of System

Engineering, followed by the teams PWGSN, crissy, sim, and finally jff. The challenge had 129 registered teams representing600

179 users, with 494 submissions in total by 34 of the 129 teams comprising a participation rate of 26.4%.

Overall, the †AI4Arctic team is delighted with the extensive participation from across a broad and diverse international

community ranging from sea ice and computer vision experts to students who have used the competition as part of their

educational activities. The tools provided in the competition proved to be both competitive and useful to the participants, with

all
:::
the 3 top-5 teams highlighted here

::::::::
described

::::
here, using the ready-to-train dataset.605

Participants have shown
:::::::
Through

::
the

:::::::::::
competition,

::::::::::
participants

::::
have

::::::
proven that it is possible to perform multi-ice parameter

retrieval with convolutional and transformer
:::
deep

:::::::
learning

:
models using professionally produced sea ice charts across multiple

national ice services and national boundaries. Top solutions showed that the total sea ice concentration and stage of development

were mapped the best, while the floe size was the most difficult. Furthermore, participants offered intriguing approaches and
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ideas that could help propel future research within automatic sea ice mapping. Particularly showing that higher rates of SAR610

data downsampling do not degrade model SIC and SOD performance when evaluated against ice charts but may not fully

exploit the rich information in the SAR data.

::::::::::
Intermediate

::::
SIC

::::::
appear

::
to

::::::
remain

:::::::
difficult

::
to

::::::
assign

::::::::
correctly

::::
with

::::::
models

:::::::::::::
overestimating

:::
low

::::
SIC,

::::::
middle

::::
SIC

::::::
having

::
a

::::
wide

::::::
spread

::::
while

::::
high

::::
SIC

:::
can

:::
be

:::::::::::::
underestimated.

:::::::
Younger

:::::
SOD

::::::
classes

:::
and

:::
floe

:::::
sizes

:::
that

:::
are

:::
less

::::::::
extensive

:::
are

::::
also

:::::::
difficult

::
to

::::::
predict

::::::::
correctly.615

9 Future Work

The AI4Arctic Sea Ice Challenge Dataset (ASID Challenge) incorporated several additional data sources compared to the

ASID-v2 dataset (Saldo et al., 2021), such as numerical weather prediction parameters. Mapping how influential each data

source is on both combined and individual ice parameter retrieval model performance is a natural next step in quantifying

data fusion choices. In addition, the top participants all applied the provided data ingesting approach of upsampling coarse620

resolution data to the SAR pixel spacing but this simple solution may be naive. Therefore, an investigation of alternative

approaches could provide a more appropriate means of integrating the data sources.

The prospect of downsampling the SAR data yielding good results, is promising and provides an avenue to reduce complexity

and hardware constraints in training models. However, more research into how the downsampling affects the performance of

the three ice parameters would be beneficial but investigating how better to utilise the rich information in the SAR data could625

also yield additional benefits.

:::::
Some

::
of

:::
the

:::::
issues

::::
with

::::::::
correctly

::::::::
assigning

::::::::::
intermediate

::::
SIC,

:::::::
younger

:::::
SOD

::::::
classes

:::
and

::::
less

::::::::
extensive

:::::
FLOE

::::
sizes

:::::
could

:::
be

::::::::
addressed

::
by

::::::
having

::
a

:::::
larger

::::::
dataset

::::
with

::::
more

:::::::
scenes.

::::::::
However,

:::::::::
approaches

::
to

:::::
better

::::::::
optimise

::::::
models

::
on

:::::
these

::::::
classes

::::::
should

::
be

::::::::::
investigated,

:::::
such

::
as

::::::::
weighted

::::::::
sampling.

:::::::
Another

:::::
option

:::
for

:::::
future

:::::
work

:
is
:::::::::
estimating

:::::::::::
uncertainties

:::
for

::
all

:::
sea

:::
ice

:::::::::
parameters.

:::::
This,

::
in

:::::::::
connection

::::
with

:::
the

:::::::
mapped

:::
sea630

::
ice

::::::::::
parameters,

:::::
could

::
be

::::::
useful

:::
for

::::
both

:::::::
maritime

:::::::::
navigation

::::
and

::
as

::::::::::
assimilation

:::::::::
parameters

::::
into

::::::
climate

::::
and

::::::
weather

:::::::
models.

:

Finally, it will be possible for the AutoICE participants to continue their work when the next iteration of the ASID dataset,

ASID-v3, is released. The new dataset will comprise 16 times as much data compared to the competition dataset, which

will allow a much larger test dataset to be selected, much more data to train on and with the addition of ice charts from the

Norwegian Ice Service (with SIC only), which further expands the geographical coverage.635

Code and data availability. Data from the competition is available here: Buus-Hinkler et al. (2022a) (https://doi.org/10.11583/DTU.c.6244065.

v2) and the code provided to participants are available here: Stokholm et al. (https://github.com/astokholm/AI4ArcticSeaIceChallenge)

Video supplement. A short video describing the AutoICE Competition: https://youtu.be/iuXIeLPyKfg
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