Supplementary Information for "A large role of missing volatile organic compounds reactivity from anthropogenic emissions in ozone pollution regulation" Wenjie Wang^{1,2}*, Bin Yuan¹*, Hang Su², Yafang Cheng², Jipeng Qi¹, Sihang Wang¹, Wei Song³, Xinming Wang³, Chaoyang Xue², Chaoqun Ma², Fengxia Bao², Hongli Wang⁴, Shengrong Lou⁴, Min Shao¹ ¹ Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China ² Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany ³ State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China ⁴ State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China *Correspondence to: Bin Yuan (<u>byuan@jnu.edu.cn</u>); Wenjie Wang (Wenjie.Wang@mpic.de) Figure S1. Correlation of missing VOC_R with NO_X, formic acid (HCOOH) and acetonitrile during the measurement in Guangzhou. Each point represents hourly data. Figure S2. Diurnal variations in Ox, formic acid and acetic acid.