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Text S1 Variables Selected 26 

Satellite data have been extensively used to derive surface air pollutant concentration1,2. The daily 27 

tropospheric NO2 vertical column densities (VCDs) and O3 total VCDs with a horizontal resolution 28 

of 5.5 × 3.5 km2 were measured by TROPOMI. The daily AOD data and atmospheric properties 29 

with a 1 km resolution were obtained from MODIS Terra and Aqua combined multiangle 30 

implementation of atmospheric correction (MAIAC) land AOD product (MCD19A2)3. In addition, 31 

we used AOD estimates from the Modern-Era Retrospective Analysis for Research and Applications, 32 

version 2 (MERRA-2) as the supplement of MODIS for filling extensively missing values. The 33 

meteorological reanalysis data were obtained from the fifth generation ECMWF reanalysis for the 34 

global climate and weather (ERA5) hourly products4. Ancillary data related to human activity and 35 

geographical information were retrieved and rasterized, including daily dynamic industrial 36 

emissions, moonlight-adjusted nighttime lights (NTL) product, population density, road density, 37 

land use data, the shuttle radar topography mission digital elevation model (DEM), the MOD13Q1 38 

vegetation index (VI) product, and the MOD11A1 land surface temperature (LST) product. 39 

Industrial emissions amount (unit: kg) contains three categories, i.e. sulfur dioxide (SO2), NOx, and 40 

particulate matter (PM), collected from SDEM. Geographic covariates directly related to pollution 41 

emissions, such as industrial emission, and road density were decomposed into magnitude-related 42 

data by using Gaussian convolution kernels to account for the impact of neighboring sources (Text 43 

S2).  44 

Text S2 Data Extension of Emission Proxies 45 

The procedure of data extension follows from a previous study5, geographic covariates directly 46 

related to pollution emissions like industrial emission, road density, and population density were 47 

decomposed into magnitude-related data by using Gaussian convolution kernels to account for the 48 

impact of neighboring sources. In this study, after rasterizing all spatial data to match with the tarted 49 

grid, the Gaussian convolution with the size of width  (ranging from 1.5 to 31.5 km) was used to 50 

consider the impact of nearby sources. For the Gaussian convoluted values with various at each 51 

location, the maximum value () was assigned as the characteristic magnitude of the emission proxy 52 

map for describing the influence of potential air pollution emission. 53 
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Text S3 Spatiotemporal Proxies 54 

Taking the space-time-variant into consideration, three Euclidean spherical coordinates (𝑒𝑞𝑠	1 −55 

3) and three helix-shape trigonometric sequences (𝑒𝑞𝑠	4 − 6) were calculated as following:6 56 

𝑠! = cos 02𝜋
𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒

360 < cos 02𝜋
𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒
180 < (1) 57 
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𝑠# = sin 02𝜋
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cos_mon =
𝑚𝑜𝑛𝑡ℎ
360 	 (6) 62 

Text S4 Data Fusion and Gap filling 63 

Due to the various data sources and types, we bilinearly interpolated predictor variables to the 64 

targeted grid with 500 m resolution to harmonize with other data. The daily Ozone (O3), fine 65 

particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations were assigned to their overlay 66 

cells by spatial aggregation. 67 

The detection of trace gases information below-cloud was prevented by the shielding of ubiquitous 68 

clouds in optical remote sensing images, causing the existence of gaps in satellite productions. We 69 

utilize the efficient machine-learning model, called Light Gradient Boosting Machine (LightGBM)7, 70 

to fill the gaps in satellite data. LightGBM is designed to be distributed and efficient with the 71 

advantages of faster training speed and higher accuracy. Thus, it can impute a large dataset (1407 × 72 

863 grids in the targeted resolution) with missing data in multiple variables using an iterative way. 73 

For each iteration, available daily satellite-based data are regarded as the observations, and the 74 

missing values are predicted by the LightGBM with meteorological reanalysis and geographical 75 

coordinates. The number of iterations corresponds to the number of satellite products with missing 76 

values. Here, the satellite-based production contains MOIDS AOD, TROPOMI NO2 and O3 column 77 

density, normalized difference vegetation index (NDVI); enhanced vegetation index (EVI), and land 78 

surface temperature (LST). Applying the model of filling missing values, the predictions of all 79 
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variables are reliable, with the average coefficient of determination (R2) values ranging from 0.87 80 

to 0.99 in the validation set. 81 

Text S5 The Detail of Air Transformer (AiT) 82 

In this study, 𝑉, 𝑇, 𝐻 and 𝑊 are configured to 57, 8, 5 and 5, respectively, according to the number 83 

of chosen variables and the empirical range of time and spatial. The data size remains unchanged 84 

𝑉	 × 	8	 × 	5	 × 	5 for the first AiT encoder blocks, while for the next 3 blocks, 2 blocks, and 1 85 

block, the temporal dimensions and spatial window size are reduced by the convolutional embedded 86 

block, which includes convolution operation with 2	 × 	2	 × 	2 filter with the stride of 2	 × 	1	 × 	1, 87 

and the number of variables’ channels is 64, 96 and 128, resulting in data size of 64	 × 	4	 × 	4	 × 	4, 88 

96 × 	2	 × 	3	 × 	3 and 128	 × 	1	 × 	2	 × 	2. The data dimensionality is transformed through a 89 

linear layer in decoder blocks.  90 

We train AiT via backpropagation using an AdamW optimizer with a learning strategy of warmup, 91 

a learning rate of 0.0005 and a batch size of 256, and apply early stopping on the validation loss 92 

using patience of 300 epochs. we combat overfitting by dropout within each layer of linear and self-93 

attention. A GeLU activation function is applied throughout the network. The loss function of mean 94 

squared error was applied to the errors for the computation of gradients in the optimization. The 95 

model is coded and trained using the Pytorch library. Before the data is fed into the model for 96 

training, it is normalized over the entire dataset. The total dataset for training and testing has 97 

262,656 instances. 98 

For sensitivity analysis, we first simply applied the image and video recognition Transformers for 99 

the estimation and also achieved good prediction performance (R2 of 0.96 for O3 in Timesformer). 100 

However, the spatial distribution of estimation exhibits severe “reticular phenomenon” (Figure S5). 101 

We briefly analyze the reasons why original Transformer-based models fell into trouble in terms of 102 

pollutant maps. Firstly, these original Transformer-based image models are purely based on pixel 103 

units for self-attention computation. Air pollution estimation often involves various features 104 

(satellite, meteorological, and emission proxies, etc.) 2,8–10, which is unlike image data with just 105 

three channels (red, green, and blue). These models overly focus on the correlation between 106 

neighboring grids and lack extraction of deep features, resulting in a discontinuous distribution of 107 
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estimation for our study. Secondly, they paid attention to the full domain of pixels and there were 108 

no overlaps between samples, so only the encoder part of Transformer was used. Air quality 109 

estimation could be troubled by the overlearning of neighborhood features and extensive data 110 

duplication of adjacent samples when existing deep learning models are directly applied. 111 

Summarizing the above factors, we believe that it is necessary to build upon a tradeoff between the 112 

spatial distribution of estimations and the performance of the model. 113 

Text S6 Multi-task Learning Strategy 114 

It not only leverages large amounts of cross-task data but also benefits from a regularization effect 115 

that leads to more general representations to help adapt to estimating multiple pollutants 116 

simultaneously and efficiently,11 and alleviating overfitting to a specific pollutant. As shown in the 117 

bottom right of Figure 1, the encoder and decoder blocks are shared across all predictions, while the 118 

last block is task-specific combining different estimations of PM2.5, O3, and NO2. The shared blocks 119 

can take advantage of the interrelationship between different air pollutants by learning the intrinsic 120 

features of data. The task-specific blocks can capture the relevant information needed for the single 121 

task from extracted potential features of Transformer blocks. 122 

Text S7 Method: Inferring Surface HCHO  123 

Column-to-surface Conversion Factor 124 

The satellite-derived surface HCHO concentrations (𝑆$ ) from Tropospheric Ozone Monitoring 125 

Instrument (TROPOMI) formaldehyde (HCHO) vertical columns density (VCD) by the simulated 126 

surface-to-column conversion factor method described in literatures12,13:  127 

𝑆$ =	
%&!'	&!

"##$%

&!
&'($% 	× 	)!

&!
	× 	𝑉$' (7)128 

where, 𝑆$  is the inferred surface level HCHO mixing ratio, 𝑆*  and 𝑉*  are the surface and 129 

tropospheric HCHO concentration, 𝑉*+,-./ is the lower partial column, 𝑉*
011./ is the upper partial 130 

columns simulated by the CAM-Chem chemical transport model, 𝑉$' is the averaged tropospheric 131 

TROPOPMI HCHO VCD within the WRF-model, and 𝑣 represents the satellite-observed sub-132 

model-grid spatial variability calculated as:  133 

𝑣 = 	 &)
&)*

(8)134 
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where 𝑉$ is the tropospheric HCHO VCD in the TROPOMI grid. HCHO below the lower layer is 135 

considered to be well mixed in the vertical direction, and a large portion of HCHO (~70%) appears 136 

over the boundary layer, causing a nonhomogeneous distribution of upper partial columns. 137 

Therefore, in this study, the altitude where the HCHO partial column reaches the half maximum of 138 

its profile is regarded as the lower layer, following a previous study12. 139 

ECMWF Atmospheric Composition Reanalysis 4 (EAC4) 140 

To derive the surface HCHO concentration, we used the European Centre for Medium-Range 141 

Weather Forecasts (ECMWF) Atmospheric Composition Reanalysis 4 (EAC4) at 0.75×0.75 142 

horizontal resolution simulation with 25 vertical levels.14 Reanalysis combines model data with 143 

observations from across the world into a globally complete and consistent dataset using a model of 144 

the atmosphere based on the laws of physics and chemistry. The monthly averaged field of EAC4 145 

was used in our study. 146 

Text S8 Cross Validation 147 

The performance of our AiT model is evaluated through two cross-validation (CV) methods: out-148 

of-sample 10-fold CV and out-of-site 10-fold CV. The out-of-sample CV, where all samples are 149 

randomly divided into 10 folds, saving one-fold for testing, is widely used for comparing 150 

measurements with the predictions of the out-of-bag sample. In addition, the generalization 151 

capability of spatial prediction at the location without monitors is evaluated by out-of-site CV, which 152 

randomly divides all sites into 10 subsets and then trains the model using four subsets and tests the 153 

model on the remaining subset.  154 

  155 



 7 

 156 

Figure S1. Map of study domain and location of monitoring stations. Purple triangles 157 

show the county-level air quality monitoring stations from SDEM, and red markers 158 

show the city-level air quality monitoring stations from CNEMC. The base map is the 159 

  161 

160 overlay of the © Google Maps and Digital Elevation Model (DEM) data. 
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 162 
Figure S2. Out-of-sample cross-validation of daily surface O3, NO2 and O3 estimates 163 

at each monitoring site. 164 

  165 
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 166 
Figure S3. Out-of-site cross-validation of daily surface O3, NO2 and O3 estimates at 167 

each monitoring site. 168 

  169 
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 170 

Figure S4. Out-of-sample cross-validation (A-C) of daily ground-level O3, NO2 and 171 

PM2.5 concentration in the validation set based on the AiT model trained by monitoring 172 

data of CNEMC.  173 

  174 
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 175 
Figure S5. The estimated O3 concentration on May 12, 2018, in Shandong, China using 176 

Timesformer (left) and also the zoomed-in map in region-scale distribution (right). The 177 

blue area represents the ocean. 178 

  179 
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 180 

Figure S6. Spatial distribution of the annual mean (A-D) O3, (I-L) NO2 and (Q-T) PM2.5 181 

concentrations from observations, Air Transformer (AiT), Random Forest (RF) and 182 

ChinaHighAirPollutants (CHAP), respectively, in 2020. The region enclosed by the red 183 

rectangular box in (A-T) corresponds to the zoomed-in maps of satellite (© Tianditu: 184 

www.tianditu.gov.cn) and pollutant concentrations at a city scale for the capital city of 185 

Shandong Province, Jinan. 186 

  187 
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 188 

Figure S7. Spatial distribution of annual mean disparities for (A-D) O3, (I-L) NO2 and 189 

(Q-T) PM2.5 concentrations from observations, Air Transformer (AiT), Random Forest 190 

(RF) and ChinaHighAirPollutants (CHAP), respectively, during 2019-2020. The region 191 

enclosed by the red rectangular box in (A-T) corresponds to the zoomed-in maps of 192 

satellite (© Tianditu: www.tianditu.gov.cn) and pollutant concentrations at a city scale 193 

for the capital city of Shandong Province, Jinan. 194 

  195 
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 196 

Figure S8. The spatial distribution of ground-level O3 (A-C), NO2 (D-F), and PM2.5 (G-197 

I) from AiT and monitoring stations in three cities experiencing diverse dust storm 198 

pollution on 15 March 2021 in Shandong, China. J-L represents the satellite maps of 199 

these cities (© Tianditu: www.tianditu.gov.cn). 200 

  201 
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 202 

Figure S9. The urban-nonurban disparities of O3, NO2, PM2.5 and HCHO calculated by 203 

AiT across cities with administrative divisions in Shandong, China during summer in 204 

2019 (A, D, G) and 2020 (B, E, H), and the changes of differences between 2019 and 205 

2020 (C, F, I).  206 

  207 
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 208 

 209 

Figure S10. The urban-nonurban disparities of O3, NO2, and PM2.5 were calculated by 210 

monitoring station data across cities in Shandong, China in 2019 (A, D, G) and 2020 211 

(B, E, H), and the changes of differences between 2019 and 2020 (C, F, I). 212 

  213 
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 214 

Figure S11. The urban-nonurban disparities of O3, NO2, and PM2.5 calculated by CHAP 215 

across cities in Shandong, China in 2019 (A, D, G) and 2020 (B, E, H), and the changes 216 

of differences between 2019 and 2020 (C, F, I). 217 

  218 
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 219 
Figure S12. The seasonal changes of surface HCHO mixing ratio inferred from 220 

TROPOMI and EAC4 (A-D), and surface NO2 (E-D), PM2.5 (I-L) and O3 (M-P) derived 221 

from Air Transformer across Shandong, China, in 2010 and 2020. 222 

  223 
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 224 

Figure S13. The geographical distribution of the averaged SHAP values for the 225 

important driving factors of O3 production (A-K) in XGBoost model, and O3 226 

concentration (L) from May to October across Shandong, China in 2019 and 2020. The 227 

above color demonstrates how different variables each contribute to pushing the model 228 

output away from the base value (the average model output over the training dataset) 229 

towards the actual model output. Variables pushing the O3 higher are shown in red, 230 

indicating they promote O3 formation. In contrast, variables pushing the estimations 231 

lower are in blue, revealing they inhibit O3 formation. 232 

  233 
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 234 

Figure S14. The seasonal changes of SHAP values in HCHO (A-D), NO2 (E-H) and 235 

PM2.5 (I-L) for O3 formation across Shandong, China in 2019 and 2020. 236 

  237 
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 238 

Figure S15. The changes in urban-nonurban discrepancies of meteorological 239 

conditions between 2019 and 2020 in Shandong, China during the lockdown periods 240 

(A) and summertime (B). 241 

  242 
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 243 

Figure S16. Contribution of each covariate to the near-surface O3 (a), NO2 (b), and 244 

PM2.5 (c) concentration quantified with the Shapley Additive explanations (SHAP) 245 

method in the training dataset. The estimations of the model are shown above the 246 

heatmap matrix and the global importance of each model input is shown as a bar plot 247 

on the right side of the plot. The top fifteen variables of global importance are listed in 248 

order from top to bottom. The abbreviation of “people_density”, “road_gau”, and 249 

“land_use” represents the people density, road density and land use data, respectively. 250 

Another full form of the abbreviation can be found in Text S2 and Table S1. 251 

  252 



 23 

Table S1. Summary of the dataset used in Air Transformer from multiple sources* 253 

Data category Data name Spatial resolution 
Temporal 
resolution 

Data source 

Ground 
observation 

O3、NO2、PM2.5 measurements  Point Hourly 
http://www.sdem.org.cn 
http://www.cnemc.cn 

Satellite data 
TROPOMI O3, NO2 

[1] 5.5 × 3.5 km [2] Daily https://scihub.copernicus.eu 
MAIAC AOD [3] 1 × 1 km Daily https://lpdaac.usgs.gov/products/mcd19a2v006/ 

Meteorological 
fields 

ERA5 [4] 0.25° × 0.25° Hourly https://cds.climate.copernicus.eu 

Ancillary data 

Industry emission Point Hourly http://www.sdem.org.cn 
Land use 30 × 30 m - http://www.globallandcover.com 
People density  100m - https://hub.worldpop.org 
Road density  0.5 × 0.5 km - https://www.openstreetmap.org 
Digital elevation model (DEM) 0.5 × 0.5 km - https://www.resdc.cn 
MODIS vegetation index [5] 0.25 × 0.25 km 16-daily https://lpdaac.usgs.gov/products/mod13q1v061/ 

Nighttime lights (NTL) 0.5 × 0.5 km Daily 
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-
measurements/products/VNP46A2/ 

Land surface temperature (LST) 1 × 1 km Daily https://e4ftl01.cr.usgs.gov 
MERRA-2 AOD reanalysis [6] 0.625° × 0. 5° 3-hourly https://disc.gsfc.nasa.gov/datasets/M2I3NXGAS_5.12.4/summary 

Spatial-temporal 
information 

Euclidean spherical coordinates 
- - - 

Temporal trend [7] 
* The dataset covers the Shandong province of China from May 1, 2018 to July 1, 2021. 254 
[1] TROPOMI satellite data contains: Tropospheric NO2 column density (NO2); Total O3 column density (O3); NO2 slant columns density (NO2_slant); Absorbing 255 
aerosol index (AAI); cloud fraction. The Level-2 data from TROPOMI were filtered based on quality assurance values (>0.5). 256 
[2] 7.5 × 3.5 km from 30. May 2018 to 6. August 2019. 257 
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[3] MAIAC AOD data including Aerosol Optical Depth (AOD) and column water vapor over land and clouds (AOD_cwv). The AOD was calculated by averaging the 258 
AOD at 0.47 µm and 0.55 µm. MAIAC AOD has better accuracy in the brighter areas15 compared with AOD products generated from the Deep Blue16 or Dark Target 259 
algorithms17. 260 
[4] ERA5 hourly data on single levels (reanalysis). It contains 18 variables: 10 meter U wind component (u10), 10 meter V wind component (v10), 2 meter dewpoint 261 
temperature (d2m); 2 meter temperature (t2m); Boundary layer height (blh); Evaporation (e); Total precipitation (tp); Surface pressure (sp); Boundary layer dissipation; 262 
Cloud base height; Low vegetation cover; Forecast albedo; Instantaneous large-scale surface precipitation fraction; Medium cloud cover; Mean evaporation rate (mer); 263 
Mean surface downward long-wave radiation flux, clear sky (msdwlwrfcs); Mean surface downward short-wave radiation flux, clear sky (msdwswrfcs); Mean sea level 264 
pressure (msl); Total columns ozone; Total columns water (tcw). 265 
[5] MODIS vegetation index contains: Normalized Difference Vegetation Index (NDVI); Enhanced Vegetation Index (EVI). 266 
[6] MERRA-2 AOD reanalysis contains: Aerosol Optical Depth Analysis, Aerosol Optical Depth Analysis Increment. 267 
[7] Temporal trends contain: Helix-shape trigonometric month sequence; Julian day; Year; Month. One-hot encoding was used to process categorical variables. 268 
  269 
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Table S2. The performances of AiT in estimating multiple targeted pollutants as well as single 270 

targeted pollutants. All four model was trained using the same input dataset, but different targets 271 

(The targets of AiT is O3, NO2, PM2.5. The target of AiT_O3, AiT_NO2, AiT_PM2.5 is O3, NO2 and 272 

PM2.5, respectively). 273 

Model AiT AiT_O3 AiT_NO2 AiT_PM2.5 

 O3 NO2 PM2.5 O3 NO2 PM2.5 

R2 0.96 0.92 0.90 0.97 0.92 0.90 

RMSE (µg/m3) 9.96 4.72 11.99 9.27 4.75 12.57 

MAE (µg/m3) 7.06 3.48 5.38 6.35 3.46 6.14 

  274 
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Table S3. Comparison of model performance with previous studies. 275 

Model 
Spatial 

resolution 
Cross-validation 

Pollutant Literature 
R2 RMSE (µg/m3) 

RF 0.05° 0.87 13.03 O3 Zhu et al., 202218 
STET 0.1° 0.87 17.1 O3 Wei et al., 202219 
LSTM 0.1° 0.94 10.64 O3 Wang et al., 202220 

DP 0.003° 0.94 11.29 O3 Li et al., 202210 
LightGBM 0.05° 0.91 14.14 O3 Wang et al., 20212 
XGBoost 0.05° 0.83 7.58 NO2 Liu, 202121 

LightGBM 0.05° 0.83 6.62 NO2 Wang et al., 20212 
GTWR-SK 0.025° 0.84 6.70 NO2 Wu et al., 202122 

FSDN 0.01° 0.82 8.80 NO2 Li & Wu, 202123 
SWDF 0.01° 0.93 4.89 NO2 Wei et al., 202224 

DP 0.04° 0.88 11.27 PM2.5 Song et al., 20221 
DEML 0.01° 0.87 5.38 PM2.5 Yu et al., 202225 

RF 0.1° 0.83 13.9−22.1 PM2.5 Geng et al., 202126 
STET 0.01° 0.89 10.33 PM2.5 Wei et al., 20209 

RF 0.01° 0.88 15.73 PM2.5 Huang et al., 202127 

RF* 0.005° 
0.90 15.5 O3 

This study 0.82 7.2 NO2 
0.92 10.72 PM2.5 

AiT 0.005° 
0.96 10.11 O3 

This study 0.92 4.82 NO2 
0.95 8.54 PM2.5 

STET: Space-time extremely randomized trees; LSTM: Long short-term memory network; DP: 276 
deep forest; semi-SILDM: tree-based ensemble deep learning model; LightGBM: Light gradient 277 
boosting machine; XGBoost: Extreme gradient boosting; GTWR-SK: Geographically and temporal 278 
weighted regression with spatiotemporal kriging; SFDN: Full residual deep networks; SWDF: 279 
Spatiotemporally weight deep forest; DEML: deep ensemble machine learning; RF: random forest; 280 
AiT: Air Transformer. 281 
*: While training RF with variables involving neighboring grids is necessary, ML models are limited 282 
to accepting only one-dimensional data. Flattening four-dimensional data (𝑋 ∈ 𝑅23×5×2×2) causes 283 
a significant increase in the number of features, which results in a reduction in model performance. 284 
Thus, to ensure optimal performance, only variables in situ were employed to train RF. 285 
  286 
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Table S4. The average concentration of four pollutants across urban and non-urban areas in 2019 287 
and 2020. 288 

Year Type O3 NO2 PM2.5 HCHO 
2019 Nonurban 141.1 24.7 33.3 3.5 

Urban 141.1 26.3 32.6 4.2 
2020 Nonurban 129.2 24.2 30.8 3.3 

Urban 130.4 25.4 29.5 4.0 
Relative 

Changes (%) 
Nonurban -8.43 -2.02 -7.51 -5.71 

Urban -7.58 -3.42 -9.51 -4.76 
  289 
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