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Diagnosing Ozone-NOx-VOCs-Aerosols Sensitivity to Uncover Urban-

nonurban Discrepancies in Shandong, China using Transformer-based High-

resolution Air Pollution Estimations 

 

Dear Referee, 

We are grateful to the reviewer for their time and energy in providing helpful 

comments and suggestions which have significantly improved the manuscript. We 

have revised our manuscript according to all of the reviewer’s comments to 

address these concerns in full. 

The referee’s comments and concerns are answered in detail point-by-point. 

The referee’s comments are shown in black and the authors’ responses are shown 

in blue. 

 

Reviewer #2 Comments to Author: 

This study developed a novel spatiotemporal deep learning model for concurrent 

prediction of three air pollutants (ozone, NO2, PM2.5). The authors used the 

generated fine-scale concentrations to assess urban-nonurban differences and 

ozone-NOx-VOCs-aerosols sensitivity in Shandong, China. To facilitate the analysis, 

interpretable machine learning was employed to handle nonlinearity and isolate 

impacts of drivers relating to ozone photochemistry. The methodology is solid, and 

the findings are important for the development of ozone control strategies, though 

a few issues remain. 

 

1. Line 259: Please explain the possible reason why NO2 has significantly lower 

out-of-site CV-R2 (0.75) than ozone and PM2.5 (>0.9), note that the out-of-sample 

CV results are comparable across all pollutants? 



Response: The decreased R2 for NO2 in out-of-site cross-validation could result 

from the short atmospheric chemistry lifetime of NO2, which leads to greater 

potential disparities in the relationship of satellite column density and surface NO2 

between various monitoring stations. Meanwhile, previous studies also show the 

same problem. For example, Wei et al. (Wei et al., 2022) estimate the ground-level 

NO2 surveillance with an average out-of-city (out-of-sample) cross-validation R2 

of 0.71 (0.93) using interpretable spatiotemporally weighted artificial intelligence. 

The same trouble of the underestimation of high values leads to the reduced 

evaluation metric. 

References: 

Wei, J., Liu, S., Li, Z., Liu, C., Qin, K., Liu, X., Pinker, R.T., Dickerson, R.R., Lin, J., 

Boersma, K.F., Sun, L., Li, R., Xue, W., Cui, Y., Zhang, C., Wang, J., 2022. 

Ground-Level NO2 Surveillance from Space Across China for High 

Resolution Using Interpretable Spatiotemporally Weighted Artificial 

Intelligence. Environ. Sci. Technol. acs.est.2c03834. 

https://doi.org/10.1021/acs.est.2c03834 

 

2. Lines 265-266: In evaluating stability and robustness of the model, it would be 

interesting to see if the CNEMC-trained model can obtain local concentration 

variations and interpretation outcomes similar to that from the CNEMC+SDEM-

trained model. 

Response: Thank you for your insightful comments. We have conducted the 

suggested comparison and incorporated the results into Figure 3, comparing 

multiple datasets. We apologize for the initial error in the verification of the 

CNEMC-trained model on the SDEM dataset, which has also now been rectified. 

Additionally, we have included a kernel density estimation result to visually 

represent these verification results. It is observed that the CNEMC-trained model 

exhibits only an acceptable degradation in predictive accuracy on the SDEM 

dataset compared to out-of-site cross-validation of AiT (Figure S6). The outcome 

also reveals a similar spatial gradient at the urban scale (Figure 3). Meanwhile, the 



comparison results on a daily scale during sandstorms show that although the 

model trained with CNEMC data exhibits some overestimation or underestimation 

in certain areas, it demonstrates similar spatial distribution and temporal 

variation trends as the model trained with all data (Figure S9). These results reveal 

the reliability of my deep learning model and the promising prospect of 

continuously improving the model’s generalization ability with more ground-level 

monitoring data.  

The main revision is as follows in lines 294-296: “This spatial gradient is also 

captured by AiT trained with CNEMC data, revealing the reliability of the deep 

learning model structure”, lines 327-329: “The model trained solely on CNEMC 

data is also capable of effectively capturing the drastic changes in air quality 

during the pollution episode (Figure S9)”, and lines 637-641: “Meanwhile, the 

results between AiT trained with all data and that trained exclusively with CNEMC 

data across various spatiotemporal scales underscore the promising prospect for 

improving the model’s generalization ability with more ground-level monitoring 

data and the growing space of methods.”.  

 

 

Figure 3. Spatial distribution of the annual mean (A-E) O3, (K-O) NO2, and (U-Y) 

PM2.5 concentrations from observations, Air Transformer (AiT), CNEMC-trained 



AiT, Random Forest (RF) and ChinaHighAirPollutants (CHAP), respectively, in 

2019. The region enclosed by the red rectangular box corresponds to the zoomed-

in maps of the satellite (© Tianditu: www.tianditu.gov.cn) and pollutant 

concentrations at a city scale for the capital city of Shandong Province, Jinan. 

 

Figure S6. Validation for daily ground-level O3, NO2, and PM2.5 concentration in the 

SDEM dataset based on the AiT model trained by monitoring data of CNEMC.  

 

Figure S9. Comparison of spatial distribution between estimations from AiT 

trained with all data and AiT with CNEMC data during the dust storm. 

 

3. Lines 322-323: The time span of the training data should be given, as that 

information is important to understand whether the good agreements between 

measurements and estimations reflect fitting or prediction performance.  



Response: Thanks for your kind suggestions. We have added the time information 

of the training dataset in section 2.2 at lines 197-200: “The aggregated feature data 

from June 2019 to June 2021 were utilized to train and validate the model through 

cross-validation (CV), where the optimal model, trained based on out-of-sample 

CV, was used to estimate multiple pollutant concentrations during the study period, 

which was then employed for subsequent analysis.”. 

 

4. How many monitoring stations are there in urban areas? A map highlighting the 

urban and nonurban areas is recommended for intuitive understanding. 

Response: We counted the number of monitoring sites in urban and non-urban 

areas in Table S4. The number of urban sites in 13 cities exceeds that in non-urban 

areas. Particularly in cities like JNA, LC, LY, QD, and YT, the disparity in the number 

of urban and non-urban sites is significant, leading to urban-nonurban differences 

that are contrary to those observed in AiT. We also added the map of urban extents 

in supporting information as Figure S11. 

The main revision for the number of monitoring stations is as follows in lines 397-

400: “The notable disparity between the number of urban and non-urban sites in 

cities such as JNA, LC, LY, QD, and YT results in a pattern of urban-nonurban 

differences that contrasts markedly with the observed in AiT (Table S4).”. 

Table S4. The number of monitoring stations across urban and non-urban areas. 

(YT: Yantai, BZ: Binzhou, DY: Dongying, WH: Weihai, DZ: Dezhou, JNA: Jinan, QD: 

Qingdao, WF: Weifang, ZB: Zibo, LC: Liaocheng, LW: Laiwu, TA: Taian, LY: Linyi, RZ: 

Rizhao, JNI: Jining, HZ: Hezhe, ZZ: Zaozhuang) 

City Name BZ DY DZ HZ JNA JNI LC LW LY 

Non-urban 9 2 10 6 2 6 7 2 8 

Urban 7 11 14 14 17 15 15 1 14 

City Name QD RZ TA WF WH YT ZB ZZ  

Non-urban 1 5 4 9 3 3 10 2  

Urban 11 5 7 15 7 18 6 8  



The main revision for the map of urban extents is as follows in lines 373-374: “The 

urban extents in Shandong Province in 2019 are depicted in Figure S11.” 

 

Figure S11. Urban extents (red) in Shandong province, China in 2019. 

 

5. There is a lack of validation for the XGBoost model, given that reliability of 

interpretation outcomes should be based on the model with high accuracy.  

Response: Thanks for your insightful comments. We added the results of 10-fold 

cross-validation as shown in Figure S16.  

The main revision is as follows in lines 500-502: “As depicted in Figure S16, the 

performance of the XGBoost model is robust, evidenced by a high R2 value of 0.99 

coupled with a low RMSE of 3.24 µg/m3 and MAE of 2.33 µg/m3”. 

 

Figure S13. Results of 10-fold cross-validation in validation dataset based on 

XGBoost for modeling the nonlinear response of monthly O3 variations to 



meteorology and chemical indicators from 2019 to 2020. 

 

6. Please provide more explanations for the SHAP interaction values. The 

statement “lower NO2 … could diminish the formation of ozone under high PM2.5 

concentrations” (Line 456) is difficult to follow. In Figure 7e, lower NO2 and 

negative PM2.5-NO2 SHAP interaction values are observed at lower PM2.5 levels. 

Response: Thanks for the reviewer’s suggestion. We have added more 

information in section 3.3 for easier understanding.  

The main revision is as follows in lines 466-479: “The SHAP interaction plot in 

Figure 7e, f illustrates that the influence of NO2 and HCHO on O3 formation is not 

constant and is influenced by the levels of PM2.5. Typically, at a certain level of PM2.5, 

the lower NO2 concentration, the stronger inhibition effect on O3 production. This 

could be due to aerosols exerting stronger suppression through the HO2 sink at 

lower NOx levels. As the concentration of PM2.5 increases, often involving a 

concurrent increase in NO2 as a key precursor, there is a greater need for higher 

levels of NO2 to be converted into nitrous acid (HONO) through the heterogeneous 

uptake by aerosols. This process produces more OH radicals, which facilitate 

photochemical O3 formation, offsetting the increased inhibitory effect of the HO2 

sink. Under high PM2.5 concentrations, an increase in NO2 along with a decrease in 

HCHO enhances their effect on the promotion of O3 formation. This enhancement 

could be caused by increased titration of O3 by NO, resulting from weaker 

conversion from NO to NOx through the ROx radical. Meanwhile, the impact of 

HCHO shifts from promotion to suppression as PM2.5 pollution intensifies.”. 

 

7. Figure 8d shows that the NOx-limited regime dominates in urban areas. Please 

confirm. 

Response: Thanks for your insightful comment. We sincerely apologize for any 

confusion caused by the inaccuracies in our previously stated conclusions 

regarding the ozone formation regimes. Upon closer examination, we 

acknowledge that our initial interpretation, suggesting an increased sensitivity of 



ozone to NOx transitioning from urban to non-urban areas and erroneously 

concluding urban areas to be predominantly VOC-limited. In response to your 

comment, we have conducted a thorough reanalysis of the pertinent data and have 

updated our findings accordingly in Figure 8. This revised analysis provides a more 

precise and quantified insight into the distribution of ozone formation regimes 

across different urban and non-urban settings. Specifically, our updated results 

indicate that in certain cities, the prevalence of the VOC-limited regime within 

urban areas varies between 15% to 43%. This contrasts with non-urban areas, 

where the VOC-limited regime is significantly less common. 

The main revision in the abstract is as follows in lines 32-35: “The ozone sensitivity 

in nonurban areas, dominated by nitrogen oxide (NOx)-limited regime, was 

observed to shift towards increased sensitivity to volatile organic compounds 

(VOCs) when extended to urban areas.” 

The main revision in section 3.3.1 is as follows in lines 536-639: “Moving along an 

urban-to-rural gradient, reactions dominated by ROx radical self-reactions are 

continuously enhanced with increasing NOx SHAP values, resulting in the majority 

of rural Shandong being situated in NOx-limited regimes.”, and lines 555-572: “In 

several cities, including Binzhou, Zibo, Liaocheng, Linyi, and Jining, a greater 

proportion of urban areas, as compared to their nonurban counterparts, exhibited 

a VOC-limited regime in 2019, as indicated by the prevalence of red regions in 

Figure 8D. The percentage of urban areas in these cities under a VOC-limited 

regime ranges from 15% to 43%, in stark contrast to non-urban areas where such 

a regime is typically rare (Figure 8F). The comparison of O3 sensitivities from 2019 

to 2020 shows a regional shift towards increased sensitivity to aerosol and NOx, 

along with a decreased VOC sensitivity as a result of NOx reduction (Figure 8A-C). 

This shift has led to the majority of areas in Shandong being dominated by a NOx-

limited regime in 2020, with an expanded aerosol-inhibited regime region in the 

Jiaodong Peninsula (Figure 8E). Additionally, the discrepancy in O3 formation 

sensitivity between urban and non-urban areas has been diminishing during this 

period (Figure 8C). As illustrated in Figure 9, while the ozone regime transitions 



towards NOx-limited, there is a marked shift towards greater aerosol sensitivity 

across nearly 90% of areas, leading to a 1.6% increase in aerosol-inhibited grids. 

Compared to nonurban regions, a higher number of grids in urban areas 

demonstrate a shift towards NOx sensitivity. Conversely, urban areas that were 

predominantly aerosol-inhibited in 2019 showed a lower sensitivity shift towards 

NOx.” 

 

Figure 8. Comparison of geographical distribution for ozone formation regimes 

between 2019 and 2020 in the summertime. All surface daily O3, PM2.5, and NO2 

estimations from Air Transformer (AiT) are averaged over each month from May 

to October 2019-2020 for matching monthly HCHO derived from TROPOMI (500 * 

500 m). (A, B) Geographical distribution of fractional contribution of chemical 

factors representing O3 formation regimes. The ternary phase diagram in the 

legend depicts the normalized fraction of SHAP values for O3 attributed to HCHO, 

NO2, and PM2.5  at the surface, representing VOC-limited (red), aerosol-inhibited 

(green), and NOx-limited (blue) regimes, respectively. (C) Statistical Changes in the 

fractional contribution of chemical factors. (D, E) Geographical distribution of O3 

chemical regimes. (F) Proportion of three O3 chemical regimes across urban and 

nonurban areas in 2019 in Shandong (SD), and individual cities (BZ: Binzhou, ZB: 

Zibo, LC: Liaocheng, LY: Linyi, JNI: Jining). 



 

Figure 9. Geographical distribution of changes in ozone sensitivity from 2019 to 

2020 in summertime (A). Comparison of ozone sensitivity changes across areas 

dominated by different chemical regimes in 2019 between urban and non-urban 

areas (B). 

 

8. Minor typos and grammar errors need to be corrected. For example, Line 355: 

the upper right area of E, M, and U; Line 370: are shown in Figure 5, etc. 

Response: Thank you for pointing out these typos and grammar errors. We have 

carefully modified them in the manuscript. We also conducted a thorough review 

of the entire text to ensure the accuracy and clarity. 


