Response to Comments on the Manuscript (egusphere-2023-

2640)

Diagnosing 0Ozone-NOx-VOCs-Aerosols Sensitivity to Uncover Urban-
nonurban Discrepancies in Shandong, China using Transformer-based High-

resolution Air Pollution Estimations

Dear Referee,

We are grateful to the reviewer for their time and energy in providing helpful
comments and suggestions which have significantly improved the manuscript. We
have revised our manuscript according to all of the reviewer’s comments to
address these concerns in full.

The referee’s comments and concerns are answered in detail point-by-point.
The referee’s comments are shown in black and the authors’ responses are shown

in blue.

Reviewer #2 Comments to Author:

This study developed a novel spatiotemporal deep learning model for concurrent
prediction of three air pollutants (ozone, NO2, PM2s). The authors used the
generated fine-scale concentrations to assess urban-nonurban differences and
ozone-NOx-VOCs-aerosols sensitivity in Shandong, China. To facilitate the analysis,
interpretable machine learning was employed to handle nonlinearity and isolate
impacts of drivers relating to ozone photochemistry. The methodology is solid, and
the findings are important for the development of ozone control strategies, though

a few issues remain.

1. Line 259: Please explain the possible reason why NO:z has significantly lower
out-of-site CV-R2 (0.75) than ozone and PMz5 (>0.9), note that the out-of-sample

CV results are comparable across all pollutants?



Response: The decreased R? for NO2 in out-of-site cross-validation could result
from the short atmospheric chemistry lifetime of NO2, which leads to greater
potential disparities in the relationship of satellite column density and surface NO2
between various monitoring stations. Meanwhile, previous studies also show the
same problem. For example, Wei et al. (Wei et al., 2022) estimate the ground-level

NOz2 surveillance with an average out-of-city (out-of-sample) cross-validation R2

of 0.71 (0.93) using interpretable spatiotemporally weighted artificial intelligence.

The same trouble of the underestimation of high values leads to the reduced

evaluation metric.

References:

Wei, J., Liu, S, Li, Z., Liu, C., Qin, K,, Liu, X., Pinker, R.T., Dickerson, R.R,, Lin, ].,
Boersma, K.F., Sun, L, Li, R, Xue, W,, Cuj, Y., Zhang, C., Wang, ]., 2022.
Ground-Level NO:z Surveillance from Space Across China for High
Resolution Using Interpretable Spatiotemporally Weighted Artificial
Intelligence. Environ. Sci. Technol. acs.est.2c03834.

https://doi.org/10.1021/acs.est.2c03834

2. Lines 265-266: In evaluating stability and robustness of the model, it would be
interesting to see if the CNEMC-trained model can obtain local concentration
variations and interpretation outcomes similar to that from the CNEMC+SDEM-
trained model.

Response: Thank you for your insightful comments. We have conducted the
suggested comparison and incorporated the results into Figure 3, comparing
multiple datasets. We apologize for the initial error in the verification of the
CNEMC-trained model on the SDEM dataset, which has also now been rectified.
Additionally, we have included a kernel density estimation result to visually
represent these verification results. It is observed that the CNEMC-trained model
exhibits only an acceptable degradation in predictive accuracy on the SDEM
dataset compared to out-of-site cross-validation of AiT (Figure S6). The outcome

also reveals a similar spatial gradient at the urban scale (Figure 3). Meanwhile, the



comparison results on a daily scale during sandstorms show that although the
model trained with CNEMC data exhibits some overestimation or underestimation
in certain areas, it demonstrates similar spatial distribution and temporal
variation trends as the model trained with all data (Figure S9). These results reveal
the reliability of my deep learning model and the promising prospect of
continuously improving the model’s generalization ability with more ground-level
monitoring data.

The main revision is as follows in lines 294-296: “This spatial gradient is also
captured by AiT trained with CNEMC data, revealing the reliability of the deep
learning model structure”, lines 327-329: “The model trained solely on CNEMC
data is also capable of effectively capturing the drastic changes in air quality
during the pollution episode (Figure S9)”, and lines 637-641: “Meanwhile, the
results between AiT trained with all data and that trained exclusively with CNEMC
data across various spatiotemporal scales underscore the promising prospect for
improving the model’s generalization ability with more ground-level monitoring

data and the growing space of methods.”.
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Figure 3. Spatial distribution of the annual mean (A-E) O3, (K-O) NOz2, and (U-Y)

PM2s concentrations from observations, Air Transformer (AiT), CNEMC-trained



AiT, Random Forest (RF) and ChinaHighAirPollutants (CHAP), respectively, in
2019. The region enclosed by the red rectangular box corresponds to the zoomed-
in maps of the satellite (© Tianditu: www.tianditu.gov.cn) and pollutant

concentrations at a city scale for the capital city of Shandong Province, Jinan.
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Figure S6. Validation for daily ground-level O3, NO2, and PM25 concentration in the

SDEM dataset based on the AiT model trained by monitoring data of CNEMC.
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Figure S9. Comparison of spatial distribution between estimations from AiT

trained with all data and AiT with CNEMC data during the dust storm.

3. Lines 322-323: The time span of the training data should be given, as that
information is important to understand whether the good agreements between

measurements and estimations reflect fitting or prediction performance.



Response: Thanks for your kind suggestions. We have added the time information
of the training dataset in section 2.2 atlines 197-200: “The aggregated feature data
from June 2019 to June 2021 were utilized to train and validate the model through
cross-validation (CV), where the optimal model, trained based on out-of-sample
CV, was used to estimate multiple pollutant concentrations during the study period,

which was then employed for subsequent analysis.”.

4. How many monitoring stations are there in urban areas? A map highlighting the
urban and nonurban areas is recommended for intuitive understanding.
Response: We counted the number of monitoring sites in urban and non-urban
areas in Table S4. The number of urban sites in 13 cities exceeds that in non-urban
areas. Particularly in cities like JNA, LC, LY, QD, and YT, the disparity in the number
of urban and non-urban sites is significant, leading to urban-nonurban differences
that are contrary to those observed in AiT. We also added the map of urban extents
in supporting information as Figure S11.

The main revision for the number of monitoring stations is as follows in lines 397-
400: “The notable disparity between the number of urban and non-urban sites in
cities such as JNA, LC, LY, QD, and YT results in a pattern of urban-nonurban
differences that contrasts markedly with the observed in AiT (Table S4).".

Table S4. The number of monitoring stations across urban and non-urban areas.
(YT: Yantai, BZ: Binzhou, DY: Dongying, WH: Weihai, DZ: Dezhou, JNA: Jinan, QD:
Qingdao, WF: Weifang, ZB: Zibo, LC: Liaocheng, LW: Laiwu, TA: Taian, LY: Linyi, RZ:
Rizhao, JNI: Jining, HZ: Hezhe, ZZ: Zaozhuang)

City Name BZ DY DZ HZ JNA JNI LC LW LY
Non-urban 9 2 10 6 2 6 7 2 8
Urban 7 11 14 14 17 15 15 1 14
City Name QD RZ TA WF WH YT ZB 77
Non-urban 1 5 4 9 3 3 10 2

Urban 11 5 7 15 7 18 6 8




The main revision for the map of urban extents is as follows in lines 373-374: “The

urban extents in Shandong Province in 2019 are depicted in Figure S11.”

Figure S11. Urban extents (red) in Shandong province, China in 2019.

5. There is a lack of validation for the XGBoost model, given that reliability of
interpretation outcomes should be based on the model with high accuracy.
Response: Thanks for your insightful comments. We added the results of 10-fold
cross-validation as shown in Figure S16.

The main revision is as follows in lines 500-502: “As depicted in Figure S16, the
performance of the XGBoost model is robust, evidenced by a high R2 value of 0.99
coupled with a low RMSE of 3.24 pg/m3 and MAE of 2.33 pg/m?3”.
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Figure S13. Results of 10-fold cross-validation in validation dataset based on

XGBoost for modeling the nonlinear response of monthly O3 variations to



meteorology and chemical indicators from 2019 to 2020.

6. Please provide more explanations for the SHAP interaction values. The
statement “lower NO: ... could diminish the formation of ozone under high PMzs
concentrations” (Line 456) is difficult to follow. In Figure 7e, lower NO2 and
negative PM2.5-NO2 SHAP interaction values are observed at lower PMzs levels.
Response: Thanks for the reviewer’s suggestion. We have added more
information in section 3.3 for easier understanding.

The main revision is as follows in lines 466-479: “The SHAP interaction plot in
Figure 7e, f illustrates that the influence of NO2 and HCHO on Os formation is not
constant and is influenced by the levels of PM2s. Typically, at a certain level of PMzs,
the lower NO2 concentration, the stronger inhibition effect on O3 production. This
could be due to aerosols exerting stronger suppression through the HO2 sink at
lower NOx levels. As the concentration of PM2s increases, often involving a
concurrent increase in NOz as a key precursor, there is a greater need for higher
levels of NOz2 to be converted into nitrous acid (HONO) through the heterogeneous
uptake by aerosols. This process produces more OH radicals, which facilitate
photochemical O3 formation, offsetting the increased inhibitory effect of the HO2
sink. Under high PM25 concentrations, an increase in NO2 along with a decrease in
HCHO enhances their effect on the promotion of O3 formation. This enhancement
could be caused by increased titration of O3 by NO, resulting from weaker
conversion from NO to NOx through the ROx radical. Meanwhile, the impact of

HCHO shifts from promotion to suppression as PMzs pollution intensifies.”.

7. Figure 8d shows that the NOx-limited regime dominates in urban areas. Please
confirm.

Response: Thanks for your insightful comment. We sincerely apologize for any
confusion caused by the inaccuracies in our previously stated conclusions
regarding the ozone formation regimes. Upon closer examination, we

acknowledge that our initial interpretation, suggesting an increased sensitivity of



ozone to NOx transitioning from urban to non-urban areas and erroneously
concluding urban areas to be predominantly VOC-limited. In response to your
comment, we have conducted a thorough reanalysis of the pertinent data and have
updated our findings accordingly in Figure 8. This revised analysis provides a more
precise and quantified insight into the distribution of ozone formation regimes
across different urban and non-urban settings. Specifically, our updated results
indicate that in certain cities, the prevalence of the VOC-limited regime within
urban areas varies between 15% to 43%. This contrasts with non-urban areas,
where the VOC-limited regime is significantly less common.

The main revision in the abstract is as follows in lines 32-35: “The ozone sensitivity
in nonurban areas, dominated by nitrogen oxide (NOx)-limited regime, was
observed to shift towards increased sensitivity to volatile organic compounds
(VOCs) when extended to urban areas.”

The main revision in section 3.3.1 is as follows in lines 536-639: “Moving along an
urban-to-rural gradient, reactions dominated by ROx radical self-reactions are
continuously enhanced with increasing NOx SHAP values, resulting in the majority
of rural Shandong being situated in NOx-limited regimes.”, and lines 555-572: “In
several cities, including Binzhou, Zibo, Liaocheng, Linyi, and Jining, a greater
proportion of urban areas, as compared to their nonurban counterparts, exhibited
a VOC-limited regime in 2019, as indicated by the prevalence of red regions in
Figure 8D. The percentage of urban areas in these cities under a VOC-limited
regime ranges from 15% to 43%, in stark contrast to non-urban areas where such
aregime is typically rare (Figure 8F). The comparison of O3 sensitivities from 2019
to 2020 shows a regional shift towards increased sensitivity to aerosol and NOx,
along with a decreased VOC sensitivity as a result of NOx reduction (Figure 8A-C).
This shift has led to the majority of areas in Shandong being dominated by a NOx-
limited regime in 2020, with an expanded aerosol-inhibited regime region in the
Jiaodong Peninsula (Figure 8E). Additionally, the discrepancy in O3 formation
sensitivity between urban and non-urban areas has been diminishing during this

period (Figure 8C). As illustrated in Figure 9, while the ozone regime transitions



towards NOx-limited, there is a marked shift towards greater aerosol sensitivity
across nearly 90% of areas, leading to a 1.6% increase in aerosol-inhibited grids.
Compared to nonurban regions, a higher number of grids in urban areas
demonstrate a shift towards NOx sensitivity. Conversely, urban areas that were
predominantly aerosol-inhibited in 2019 showed a lower sensitivity shift towards

NOx.”

A. Ozone sensitivity in 2019 B. Ozone sensitivity in 2020 C. Sensitivity comparison
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Figure 8. Comparison of geographical distribution for ozone formation regimes
between 2019 and 2020 in the summertime. All surface daily O3, PMzs, and NO2
estimations from Air Transformer (AiT) are averaged over each month from May
to October 2019-2020 for matching monthly HCHO derived from TROPOMI (500 *
500 m). (A, B) Geographical distribution of fractional contribution of chemical
factors representing O3z formation regimes. The ternary phase diagram in the
legend depicts the normalized fraction of SHAP values for O3z attributed to HCHO,
NO2, and PM25 at the surface, representing VOC-limited (red), aerosol-inhibited
(green), and NOx-limited (blue) regimes, respectively. (C) Statistical Changes in the
fractional contribution of chemical factors. (D, E) Geographical distribution of O3
chemical regimes. (F) Proportion of three O3 chemical regimes across urban and
nonurban areas in 2019 in Shandong (SD), and individual cities (BZ: Binzhou, ZB:

Zibo, LC: Liaocheng, LY: Linyi, JNI: Jining).
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Figure 9. Geographical distribution of changes in ozone sensitivity from 2019 to
2020 in summertime (A). Comparison of ozone sensitivity changes across areas
dominated by different chemical regimes in 2019 between urban and non-urban

areas (B).

8. Minor typos and grammar errors need to be corrected. For example, Line 355:
the upper right area of E, M, and U; Line 370: are shown in Figure 5, etc.

Response: Thank you for pointing out these typos and grammar errors. We have
carefully modified them in the manuscript. We also conducted a thorough review

of the entire text to ensure the accuracy and clarity.



