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Diagnosing Ozone-NOx-VOCs-Aerosols Sensitivity to Uncover Urban-

nonurban Discrepancies in Shandong, China using Transformer-based High-

resolution Air Pollution Estimations 

 

Dear Referee, 

We are grateful to the reviewer for their time and energy in providing helpful 

comments and suggestions which have significantly improved the manuscript. We 

have revised our manuscript according to all of the reviewer’s comments to 

address these concerns in full. 

The referee’s comments and concerns are answered in detail point-by-point. 

The referee’s comments are shown in black and the authors’ responses are shown 

in blue. 

 

Reviewer #1 Comments to Author: 

The authors developed a deep learning framework to estimate surface O3, NO2, and 

PM2.5 concentrations, and investigated urban-nonurban difference and ozone-

NOx-VOCs-aerosols sensitivity for ozone pollution in Shandong. This manuscript 

needs to be revised before it can be published. 

1. Theme: There are two logics based on the title, abstract, conclusion, and the last 

paragraph of the introduction. One theme is "High Resolution Air Pollution 

Estimation", while the spatial characterization of pollution and urban-rural 

differences are further investigated in order to illustrate the value of the 

application of this deep learning framework. The other theme is to study the 

spatial characteristics of pollution in Shandong, and a deep learning approach is 

used. Authors should consider the perspective of the writing. 

Response: We appreciate the reviewer’s insight into the thematic presentation of 

our work. In response, we have carefully revised our manuscript to unify the 



themes of air pollution estimation and the spatial characteristics of pollution. We 

clarified our narrative to emphasize how our deep learning framework not only 

advances the estimation of air pollutants but also provides valuable insights into 

urban-nonurban differences and ozone dynamics, and further explain the logical 

progressive relationship between air pollutant estimation, urban-nonurban 

differences, and ozone sensitivity analysis. The revision aims to present a cohesive 

narrative that aligns with both the methodological advancements and their 

application in environmental analysis. Our revision emphasizes the theme of 

urban-nonurban disparities in ozone, wherein we estimate multiple pollutant 

concentrations to analyze these differences as well as the impact of precursor 

emissions on it. Subsequently, through interpretable machine learning, we infer 

the ozone photochemical regime to unveil the influence of meteorology and 

chemical factors on ozone disparities.  

The main revision in the title is as follows in lines 1-3: “Diagnosing Ozone-NOx-

VOCs-Aerosols Sensitivity and Uncovering Causes of Urban-Nonurban 

Discrepancies in Shandong, China using Transformer-Based Estimations”. 

The main revision in the abstract is as follows in lines 22-43: “Narrowing surface 

ozone disparities between urban and nonurban areas escalate health risks in 

densely populated urban zones. A comprehensive understanding of the impact of 

ozone photochemistry on this transition remains constrained by current 

knowledge of aerosol effects and the availability of surface monitoring. Here we 

reconstructed spatiotemporal gapless air quality concentrations by a novel 

Transformer deep learning (DL) framework capable of perceiving spatiotemporal 

dynamics to analyze ozone urban-nonurban differences. Subsequently, the 

photochemical effect on these discrepancies was analyzed by elucidating shifts in 

ozone regimes using an interpretable machine learning method. The evaluations 

of DL model exhibited average out-of-sample cross-validation coefficient of 

determination of 0.96, 0.92, and 0.95 for ozone, nitrogen dioxide, and fine 

particulate matter (PM2.5), respectively. The ozone sensitivity in nonurban areas, 

dominated by nitrogen oxide (NOx)-limited regime, was observed to shift towards 



increased sensitivity to volatile organic compounds (VOCs) when extended to 

urban areas. A third ‘aerosol-inhibited’ regime was identified in the Jiaodong 

Peninsula, where the uptake of hydroperoxyl radicals onto aerosols suppressed 

ozone production under low NOx levels during summertime. The reduction of 

PM2.5 would increase the sensitivity of ozone to VOCs, necessitating more stringent 

VOC emission abatement for urban ozone mitigation. In 2020, urban ozone levels 

in Shandong surpassed those in non-urban, primarily due to a more pronounced 

decrease in the latter resulting from stronger aerosol suppression effects and 

lesser PM2.5 reductions. This case study demonstrates the critical need for 

advanced spatially resolved models and interpretable analysis in tackling ozone 

pollution challenges." 

The main revision in the introduction is as follows in lines 105-122: “In this study, 

we aim to analyze the evolving dynamics of urban-nonurban O3 differences 

between 2019 and 2020. The roles of emission discrepancies and nonlinearity of 

O3-NOx-VOCs-aerosols photochemical processes in shaping these O3 variations 

were deeply dissected. To achieve a comprehensive analysis, we employed a new 

spatiotemporal Transformer framework that paid special attention to air mass 

transport and dispersion affected by the spatial-temporal correlations, to 

reconstruct the spatially gapless air quality datasets based on satellite data, 

ground-level observations, and meteorological reanalysis. The estimations are 

particularly vital for regions lacking dense ground-based monitors, ensuring that 

our understanding of O3 dynamics in urban-nonurban areas and formation 

regimes is not limited by geographical constraints in data availability. Surface O3 

formation regimes in Shandong province were inferred by the classic XGBoost 

model coupled with Shapley Additive exPlanations (SHAP), which identifies the 

impact of meteorological conditions and photochemical indicators (i.e. PM2.5 as a 

proxy for aerosols, NO2 as a proxy for NOx, and HCHO as a proxy for VOCs) on O3. 

The innovative Transformer-based modeling and interpretable machine learning 

analysis approaches are expected to enable new applications such as those of air 

quality simulation and O3 formation regimes studies.” 



The main revision in conclusions is as follows in lines 618-628: “The purpose of 

the current study was to diagnose the non-linearity of O3-NOx-VOCs-aerosols 

chemistry using an interpretable ML model based on spatially resolved multi-

pollutant estimations for determining the causes of changing differences in O3 

levels between urban and non-urban areas. Our study represents the first attempt 

to develop an advanced DL model that reconstructs the concentrations of multiple 

pollutants and subsequently infers the aerosol-inhibited regime from 

observations. This innovative approach provides further support for investigating 

the impact of precursor emissions and aerosol on the urban-nonurban differences 

in O3 levels.”. More detailed modifications can be found in the manuscripts with 

tracking changes. 

 

2. The study is divided into two main parts: one on estimating ozone 

concentrations and studying urban-rural differences, and the other on ozone 

sensitivity. The logical relationship between the two parts is not very coherent. 

Ozone sensitivity does not adequately explain the variations and differences in 

ozone concentrations between urban and rural areas and in different years. In 

other words, if ozone concentrations are not estimated, it does not seem to affect 

the results of the ozone sensitivity study. 

Response: We appreciate the insightful feedback regarding the perceived 

coherence between the two parts of our study. The initial design aimed to 

comprehensively understand the multifaceted nature of ozone, especially for 

uncovering the urban-rural differences. However, we recognized the need for a 

more explicit linkage to better articulate the study’s coherence. The variations in 

ozone levels between urban and nonurban areas are influenced by a complex 

interplay of factors, including emission sources (precursors and PM2.5), 

atmospheric chemistry (ozone photochemical sensitivity), and meteorological 

conditions. Thus, we first discussed the impact of the distribution pattern of NO2, 

HCHO and PM2.5 on ozone urban-nonurban disparities. And then the sensitivity of 

ozone to these pollutants was inferred to understand these differences. 



Furthermore, we examined the influence of meteorological conditions. The high-

resolution estimation of air quality concentration lays the groundwork for the 

above analysis by providing a comprehensive dataset, which compensates for 

potential biases caused by the sparse spatial distribution of monitoring sites, 

including site imbalance between urban and nonurban areas in the analysis of 

urban-rural differences and a limited number of site used to determine thresholds 

in the HCHO/NO2 ratio method. Our intention is that by reconstructing surface air 

quality concentration, we can accurately assess ozone formation regimes and 

urban-nonurban differences and then uncover the cause of these differences. We 

have modified the text to strengthen the logical connection and ensuring the 

relevance of each part. Considering that ozone sensitivity alone cannot fully 

account for urban-nonurban differences, we have revised the title to “Diagnosing 

Ozone-NOx-VOCs-Aerosols Sensitivity and Uncovering Causes of Urban-Nonurban 

Discrepancies in Shandong, China using Transformer-Based Estimations” for more 

accurately summarize the content of the manuscript. Moreover, the estimation of 

ozone concentrations is crucial for inferring ozone sensitivity. The novel machine-

learning-based method supplies the analysis of aerosol-inhibited regime based on 

observation. The inference in the atmospheric chemical transportation model is 

highly dependent on emission inventories and prior chemical mechanisms. we 

enhanced the study’s overall coherence and impact by more explicitly connecting 

ozone concentration estimates with sensitivity analysis in the revised manuscript. 

 

3. Ozone formation regimes: From Fig.8, the NOx-limited regime dominates, 

especially Fig.8D shows that the proportion of NOx-limited is almost 1.0, which is 

not quite consistent with the authors' conclusions. 

Response: Thanks for your insightful comment. We sincerely apologize for any 

confusion caused by the inaccuracies in our previously stated conclusions 

regarding the ozone formation regimes. Upon closer examination, we 

acknowledge that our initial interpretation, suggesting an increased sensitivity of 

ozone to NOx transitioning from urban to non-urban areas and erroneously 



concluding urban areas to be predominantly VOC-limited. In response to your 

comment, we have conducted a thorough reanalysis of the pertinent data and have 

updated our findings accordingly in Figure 8. This revised analysis provides a more 

precise and quantified insight into the distribution of ozone formation regimes 

across different urban and non-urban settings. Specifically, our updated results 

indicate that in certain cities, the prevalence of the VOC-limited regime within 

urban areas varies between 15% to 43%. This contrasts with non-urban areas, 

where the VOC-limited regime is significantly less common. 

The main revision in the abstract is as follows in lines 32-35: “The ozone sensitivity 

in nonurban areas, dominated by nitrogen oxide (NOx)-limited regime, was 

observed to shift towards increased sensitivity to volatile organic compounds 

(VOCs) when extended to urban areas.” 

The main revision in section 3.3.1 is as follows in lines 536-639: “Moving along an 

urban-to-rural gradient, reactions dominated by ROx radical self-reactions are 

continuously enhanced with increasing NOx SHAP values, resulting in the majority 

of rural Shandong being situated in NOx-limited regimes.”, and lines 555-572: “In 

several cities, including Binzhou, Zibo, Liaocheng, Linyi, and Jining, a greater 

proportion of urban areas, as compared to their nonurban counterparts, exhibited 

a VOC-limited regime in 2019, as indicated by the prevalence of red regions in 

Figure 8D. The percentage of urban areas in these cities under a VOC-limited 

regime ranges from 15% to 43%, in stark contrast to non-urban areas where such 

a regime is typically rare (Figure 8F). The comparison of O3 sensitivities from 2019 

to 2020 shows a regional shift towards increased sensitivity to aerosol and NOx, 

along with a decreased VOC sensitivity as a result of NOx reduction (Figure 8A-C). 

This shift has led to the majority of areas in Shandong being dominated by a NOx-

limited regime in 2020, with an expanded aerosol-inhibited regime region in the 

Jiaodong Peninsula (Figure 8E). Additionally, the discrepancy in O3 formation 

sensitivity between urban and non-urban areas has been diminishing during this 

period (Figure 8C). As illustrated in Figure 9, while the ozone regime transitions 

towards NOx-limited, there is a marked shift towards greater aerosol sensitivity 



across nearly 90% of areas, leading to a 1.6% increase in aerosol-inhibited grids. 

Compared to nonurban regions, a higher number of grids in urban areas 

demonstrate a shift towards NOx sensitivity. Conversely, urban areas that were 

predominantly aerosol-inhibited in 2019 showed a lower sensitivity shift towards 

NOx.” 

 

 

Figure 8. Comparison of geographical distribution for ozone formation regimes 

between 2019 and 2020 in the summertime. All surface daily O3, PM2.5, and NO2 

estimations from Air Transformer (AiT) are averaged over each month from May 

to October 2019-2020 for matching monthly HCHO derived from TROPOMI (500 * 

500 m). (A, B) Geographical distribution of fractional contribution of chemical 

factors representing O3 formation regimes. The ternary phase diagram in the 

legend depicts the normalized fraction of SHAP values for O3 attributed to HCHO, 

NO2, and PM2.5  at the surface, representing VOC-limited (red), aerosol-inhibited 

(green), and NOx-limited (blue) regimes, respectively. (C) Statistical Changes in the 

fractional contribution of chemical factors. (D, E) Geographical distribution of O3 

chemical regimes. (F) Proportion of three O3 chemical regimes across urban and 

nonurban areas in 2019 in Shandong (SD), and individual cities (BZ: Binzhou, ZB: 

Zibo, LC: Liaocheng, LY: Linyi, JNI: Jining). 

 



 

Figure 9. Geographical distribution of changes in ozone sensitivity from 2019 to 

2020 in summertime (A). Comparison of ozone sensitivity changes across areas 

dominated by different chemical regimes in 2019 between urban and non-urban 

areas (B). 

 

4. Specification of figures: Do Figures 7A and B share a colorbar to indicate O3 

concentration? In fact, Figure 7B contains the information from Figure 7A. In 

Figure 7D, what does the arrow next to PM2.5 mean? Figure 8C is a legend for 

Figures 8A and B, making it difficult to understand. In Figure 9, it is not appropriate 

to represent one variable in dots and one in columns as they are of the same kind. 

Response: We deeply appreciate your constructive comments and have taken the 

following steps to address the concerns raised: 

(1) Both Figures 7A and B utilize a shared color bar to indicate O3 concentrations, 

enhancing comparability. We have now included a detailed explanation in the 

figure captions to clarify this. 

(2) While it is true that Figure 7B encompasses the data presented in Figure 7A, 

we maintain Figure 7A to provide a more intuitive comparison with previous 

studies and to affirm the robustness of our dataset analysis. The classic O3-VOC-



NOx isopleths presented in Figure 7A offer a direct and easily interpretable visual 

representation, hence our decision to retain it for its comparative value and 

reliability verification. 

(3) The arrow adjacent to PM2.5 originally intended to signify an increase in PM2.5 

concentrations. To clarify, we have replaced the arrow with the term "increasing" 

to directly convey the intended meaning without ambiguity. 

(4) Acknowledging the difficulty in interpreting Figure 8C as a standalone legend 

for Figures 8A and B, we have incorporated the legend directly into Figures 8A and 

B.  

(5) Upon reflection, we agree that representing variables of the same nature in 

different graphical forms (dots and columns) in Figure 10 could potentially 

confuse the reader. We have thus revised Figure 10, opting for a consistent bar 

graph representation for both sets of data. 

 

 

Figure 7. (A) O3 concentrations as a function of surface HCHO and NO2. (B) O3 

concentrations as a function of surface HCHO, NO2, and PM2.5. Both A and B utilize 

a shared color bar to indicate O3 concentrations, enhancing comparability. (C) 

Relationship between O3, and NO2, HCHO, and surface short-wave radiation flux. 

The paired O3, HCHO, NO2, and solar radiation are divided into 100 bins based on 

PM2.5 and then the averaged concentrations (y-axis) are calculated for each PM2.5 



bin (x-axis). (D) Changes in HCHO/NO2-O3 relationship in response to changing 

PM2.5 by XGBoost model. The solid lines are fitted with four-order polynomial 

curves, and the shading indicates 95% confidence intervals. (E-F) The interaction 

SHAP values reveal an interesting hidden relationship between pairwise variables 

(PM2.5 and NO2, HCHO) and O3.  

 

Figure 10. Comparison of urban-nonurban disparities in meteorological 

conditions (A), and mean absolute SHAP values (B) between 2019 and 2020 across 

Shandong, China during the summertime.  

 

Figure S19. Comparison of urban-nonurban disparities in meteorological 

conditions (A), and mean absolute SHAP values (B) between 2019 and 2020 across 

Shandong, China during the COVID period. 


