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Abstract. The challenges associated with reliably observing and simulating hazardous hailstorms call for new approaches that

combine information from different available sources, such as remote sensing instruments, observations, or numerical model-

ing, to improve understanding of where and when severe hail most often occurs. In this work, a proxy for hail frequency is

developed by combining overshooting cloud top (OT) detections from the Meteosat Second Generation (MSG) weather satellite

with convection-permitting SPHERA reanalysis predictors describing hail-favorable environmental conditions. Atmospheric5

properties associated with ground-based reports from the European Severe Weather Database (ESWD) are considered to define

specific criteria for data filtering. Five convection-related parameters from reanalysis data quantifying key ingredients for hail-

storm occurrence enter the filter, namely: most unstable convective available potential energy (CAPE), K index, surface lifted

index, deep-layer shear, and freezing level height. A hail frequency estimate over the extended summer season (April-October)

in south-central Europe is presented for a test period of 5 years (2016-2020). OT-derived hail frequency peaks at around 1510

UTC in June-July over the pre-Alpine regions and the northern Adriatic sea. The hail proxy statistically matches with ∼ 63% of

confirmed ESWD reports, which is roughly 23% more than the previous estimate over Europe coupling deterministic satellite

detections with coarser global reanalysis ambient conditions. The separation of hail events according to their severity high-

lights enhanced appropriateness of the method for large-hail-producing hailstorms (with hailstones diameters ≥ 3 cm). Further,

signatures for small-hail missed occurrences are identified, which are characterized by lower instability and organization, and15

warmer cloud-top temperatures.

1 Introduction

Hailstorms cause billions of Euros of damage every year by severely damaging buildings (Paterson and Sankaran, 1994),

crops (Zhou et al., 2016), vehicles (Hohl et al., 2002), and infrastructure. Individual hail events can produce losses exceeding

1 billion EUR (Gunturi and Tippett, 2017), as reported for Europe (Kunz et al., 2018), the United States (Changnon and20

Burroughs, 2003), and Australia (Yeo et al., 1999). Hail forms in severe thunderstorms within strong updrafts that penetrate
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above their local cirrus anvil level, containing large amounts of supercooled liquid content, and having a sufficient lifetime for

the accretion process that forms graupel and hail (Knight and Knight, 2001; Houze Jr, 2014). Anthropogenic global warming

is expected to further increase air temperature and, thus, the amount of low-level atmospheric moisture. As a consequence,

these changes may generally increase the probability of hail formation and the development of larger hailstones (Dessens et al.,25

2015; Brimelow et al., 2017; Trapp et al., 2019). However, the response of hailstorms to climate change is highly heterogeneous

(Raupach et al., 2021) and still uncertain (Allen et al., 2020; Seneviratne et al., 2021).

The low probability of hail occurrence at a certain location makes its observation a major challenge (Prein and Holland,

2018; Allen et al., 2020). A comprehensive, standardized, and operational surface hail observing system is missing across most

of Europe. The current observative methods rely on weather station networks, that are usually lacking specific sensors for hail30

detection due to their high cost (e.g., the automatic sensors deployed in parts of Switzerland - Löffler-Mang et al., 2011; Kopp

et al., 2022), or hailpad networks, which cover only smaller regions and require significant resources for their maintenance

(e.g., Changnon Jr, 1970; Giaiotti et al., 2003; Xie et al., 2008; Sánchez et al., 2009; Palencia et al., 2010; Manzato, 2012;

Dessens et al., 2015). Information about hail occurrence can be obtained from severe weather reports, collected by storm

spotters, voluntary observers or media. This practice has been systematically adopted in the United States (Allen et al., 2015),35

Australia (Allen and Allen, 2016), and Europe (Dotzek et al., 2009; Púčik et al., 2019). Nevertheless, hail reports are potentially

affected by spatio-temporal heterogeneity biases (e.g., higher number of reports in densely populated areas or during daytime

compared to nighttime), undersampling bias of the largest hailstones, or under-reporting in case of non-damaging hailstorms

(Allen et al., 2020).

To compensate for direct hail measurements limitations, proxies retrieved from remote sensing instruments have been em-40

ployed to characterize hail incidence over a certain region with higher spatio-temporal homogeneity (e.g., Murillo and Home-

yer, 2019; Gobbo et al., 2021; Mecikalski et al., 2021). Radar reflectivity, sometimes combined with other observational data

(e.g., melting level or lightning detections), has been widely used for detecting hail and estimating its size and probability

of occurrence (e.g., Puskeiler et al., 2016; Nisi et al., 2020; Fluck et al., 2021). However, radar coverage is often limited to

the national scale, sensor networks are not always homogenized among themselves, and limitations exist in the correct infer-45

ence of hailstone size (Ortega, 2018). To overcome these restricitons, satellite-based products have been used to characterize

hail occurrence. Satellites can sample larger regions of the world with enhanced spatial homogeneity than radars (Cecil and

Blankenship, 2012). Hailstorm detection methods are based on the microwave, infrared (IR) or visible spectrum measured with

passive instruments (e.g., Cecil, 2009; Melcón et al., 2016; Bang and Cecil, 2019; Laviola et al., 2020; Khlopenkov et al.,

2021). Particularly, severe convective thunderstorms are detectable in the IR as local cold spot anomalies, which are commonly50

referred to as Overshooting cloud Tops (OTs) (Adler et al., 1985). It is well known that thunderstorms presenting satellite OTs

signatures have the potential to produce a variety of hazardous weather at the surface, such as tornadoes, heavy rainfall, down-

bursts, large hail, or wind gusts, all of which typically concentrated near OT regions (Reynolds, 1980; Brunner et al., 2007;

Setvák et al., 2013; Mikuš and Mahović, 2013; Bedka and Khlopenkov, 2016; Mecikalski et al., 2021). Moreover, several stud-

ies reported a link between large hail at the surface and OT intensity (Bedka, 2011; Punge et al., 2014; Proud, 2015; Jurković55

et al., 2015; Punge et al., 2017; Bedka et al., 2018; Punge et al., 2021; Wilhelm et al., 2021; Scarino et al., 2023). OTs can
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rapidly form and evolve within a thunderstorm; they usually exist for less than 15 minutes (even less than 5 minutes - Elliott

et al., 2012) with a maximum diameter of roughly 15 km (Fujita, 1992; Brunner et al., 2007), and with typical temperatures

ranging from 190 to 215 K (Allen et al., 2020). The detection of OTs from infrared satellite imagery has been automated by

Bedka et al. (2010), and subsequently refined and optimized with probabilistic approaches by Bedka and Khlopenkov (2016)60

and Khlopenkov et al. (2021). However, not all severe OT-generating thunderstorms produce hail with a potential to reach the

ground (e.g., owing to non-supportive environmental conditions or to hailstone melt during fall in case of very high freezing

level heights).

To reduce the uncertainty of single-source records, potential hail proxies are often combined with hail-favoring environ-

mental conditions, either from proximity soundings or from numerical models, used to discriminate hail from non-hail events.65

These specific conditions are described through atmospheric parameters statistically associated with hailstorm formation (e.g.,

Johns and Doswell III, 1992; Brooks et al., 2003). This approach improves the estimation of the potential for severe thunder-

storms (Thompson et al., 2003; Hitchens and Brooks, 2014; Tippett et al., 2014) and enables to develop hail climatologies on

the global (Riemann-Campe et al., 2009; Prein and Holland, 2018; Chen et al., 2020) or regional scale (Gascón et al., 2015;

Púčik et al., 2017; Li et al., 2018a; Tang et al., 2019; Taszarek et al., 2021). Reanalysis datasets play a major role in this con-70

text, given the spatial homogeneity and long-term records they provide. Several studies have estimated hail hazard by coupling

large-scale reanalysis/regional climate models with lightning data (Rädler et al., 2018; Battaglioli et al., 2023), surface-based

reports (Prein and Holland, 2018; Torralba et al., 2023), or combinations of lightning, insurance loss data, severe weather

reports (Mohr et al., 2015), and radar data (Taszarek et al., 2020). The combination of hail-favoring ambient conditions from

reanalysis with OT detections has been applied to describe the hail hazard over Europe (Punge et al., 2017), Australia (Bedka75

et al., 2018), and South Africa (Punge et al., 2023). However, the hail proxies obtained by blending reanalysis data with OT

detections rely on global datasets such as ERA-Interim (Dee et al., 2011) or ERA5 (Hersbach et al., 2020), characterized by

coarse horizontal resolutions (i.e., about 79 and 31 km, respectively), which could produce significant inaccuracies. Indeed,

a fine spatio-temporal resolution in the models constitutes a crucial necessity for improving the representation of deep moist

convection (Wilhelmson and Wicker, 2001; Bryan et al., 2003; Wu and Arakawa, 2014; Clark et al., 2016; Allen et al., 2020;80

Raupach et al., 2021).

Convection-permitting (CP) numerical models produce simulations with horizontal grid spacings of a few km. This allows

to switch off physical parameterizations for convection in the model, which have been demonstrated to enhance its skills to

forecast convective phenomena thanks to the explicit representation of most convective motions (e.g., Prein et al., 2015; Trapp

and Hoogewind, 2016; Hoogewind et al., 2017; Prein et al., 2017; Liu et al., 2017; Trapp et al., 2019; Lupo et al., 2020;85

Giovannini et al., 2021; Chen et al., 2021; Tiesi et al., 2022). Particularly, CP models have provided added value for the

representation of tornadic or large-hail environments (Clark et al., 2013; Adams-Selin and Ziegler, 2016; Labriola et al., 2019;

Gagne II et al., 2019; Manzato et al., 2020; Malečić et al., 2022). The need to enhance the characterization of high-impact

atmospheric phenomena prompted the development of a new CP regional reanalysis over south-central Europe: SPHERA

(High rEsolution ReAnalysis over Italy - Cerenzia et al., 2022), which demonstrated to enhance the representation of severe90
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precipitation over Italy and neighbouring countries (Giordani et al., 2023). This region is particularly relevant as it represents

one of the major hail hotspots over Europe (i.e., northern Italy, Taszarek et al., 2020).

This work aims at presenting a new method for hail hazard assessment obtained by combining satellite OT detections from

Meteosat Second Generation (MSG) SEVIRI instrument with a set of environmental predictors from SPHERA and ESWD

hail reports. The purpose is to characterize hail hazard exemplarily for south-central Europe by selecting the cloud-top storm95

signatures associated with favorable environmental conditions for hail development. These are described by the distributions

of dynamic and thermodynamic reanalysis predictors in the presence of confirmed surface hail reports. The identification of

hail-related OTs is perfomed by removing those detections presenting environments whose descriptors fall within the tails of

the relative distributions that are unsopportive for hail development. For this reason, in the following the use of the reanalysis-

based conditions to exclude non-hail events identified by OTs only is referred to as filter. An application and evaluation of100

the approach is proposed during the extended summer season (April-October) over a 5-year test period (2016-2020), which

coincides with the last years available for SPHERA reanalysis, and during which numerous hail reports have been collected.

Additionally, the high-resolution CP regional reanalysis allows for a detailed representation of the environmental conditions

prevailing during hailstorms. Hence, in order to investigate the atmospheric states potentially associated with hail, the distribu-

tions of the numerical convective indices considered are conditionally analyzed depending on hail severity, inferred from the105

reports, and on the ability of detection of the hail proxy.

Section 2 presents the datasets used, while the OT-reanalysis filter procedure to retain potentially hail-related OTs is de-

scribed in Sect. 3. The resulting hail frequency over the analyzed test period and the associated ambient conditions are reported

in Sect. 4, and are discussed in Sect. 5. Finally, conclusions are drawn in Sect. 6.

2 Data110

This section describes the sets of hail reports, OT detections and reanalysis proxies considered. The diagram in Fig. 1 illustrates

how the data are processed and combined to obtain the hail proxy and to characterize the associated environments. The investi-

gation period pertains to the extended summer (April-October), representing the climatological season for hail at mid-latitudes,

over the period 2016-2020. The reference area pertains to the entire SPHERA reanalysis domain (i.e., approximately 35-49°N;

6-19°E, Fig. 3a), including the countries of Italy, Switzerland, Austria, Slovenia, Croatia, parts of Bosnia-Herzegovina and115

Germany.

2.1 ESWD hail reports

The European Severe Weather Database (ESWD - https://www.eswd.eu/; Dotzek et al., 2009) constitutes a primary source for

severe convective storm data in Europe, being the only European multinational archive of hail reports available. Maintained by

the European Severe Storm Laboratory (ESSL), the ESWD provides quality-checked data collected by networks of voluntary120

observers, meteorological services, weather enthusiasts, and news and media reports. Thanks to technological innovations

and increasing public awareness of extreme meteorological events, reports have rapidly increased in number in recent years
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Figure 1. Flowchart summarizing the data processing. Red rectangles indicate the datasets included, blue ellipses the operations performed,

white rectangles the intermediate steps, and green rectangles the final outcomes. The upper part of the chart (yellow outer rectangle) shows

the steps applied to define the hail proxy, while the lower part (purple outer rectangle) illustrates the steps for the post-processing validation

and environmental characterization.

(Groenemeijer et al., 2017). Despite recent advances, the ESWD still suffers from deficits in data representativity owing to the

spatial-inhomogeneity in the localization of a large part of reports, biased towards the most populated areas (i.e., the main urban

centers) and the relatively short temporal series covering only the last few years. However, the ESWD forms the only reliable125

source of direct hail data for Europe, including information such as location, date, hour (with an estimate of the temporal

accuracy), and maximum size of hailstones. Further, an operational quality control procedure categorizes each report with

different quality levels: QC0 (“as received”), QC0+ (“plausibility checked”), QC1 (“confirmed by reliable source”), and QC2

(“scientific case study”).

A total of 2,813 hail reports with a minimum quality level of QC0+ were available for this study (Fig. 2). Among them,130

2,249 reports (80%) contained hail size information (for a minimum hailstone diameter of 2 cm - Fig. 2c), used to quantify

hail severity. Hereafter we refer to small hail reports for maximum hailstone diameters of <3 cm, large hail for reports with

maximum hailstone diameters of ⩾3 cm, and very large hail for reports with maximum hailstone diameters of ⩾5 cm. Note

that this nomenclature is slightly different from that adopted by ESSL (which refers to large hail reports for maximum hailstone
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Figure 2. ESWD hail reports in April-October over 2016-2020. The reports are classified by distinguishing among three classes: reports with

no information on hail size (in gray), small hail (maximum diameter <3 cm, in orange), and large hail (maximum diameter ⩾ 3 cm in red).

a) spatial distribution, b) temporal accuracy distribution, c) maximum hailstone diameter distribution, d) number of reports per hour of the

day (UTC), e) number of reports per month, and f) number of reports per year.

diameters of ⩾2 cm). The three different classes account for 39, 61, and 16%, respectively, of ESWD reports with information135

about hail size. Their spatial distribution (Fig. 2a) shows a strong inhomogeneity with a larger density of reports in northern

Italy, south-eastern Austria, eastern Slovenia, and northern Croatia. The regions with the lowest hail reporting are central-

southern Italy and all islands, the main Alpine crest (extending along the northern Italian border with France, Switzerland and

Austria), and southern Balkans (southern Croatia and Bosnia and Herzegovina). The temporal accuracy is ⩽ 1h for 98% of

the reports (Fig. 2b), and is considerably high (⩽ 15 min) for the 77% of the sample. Their temporal distribution indicates140

the maximum probability for hail at 15 UTC (Fig. 2d) and in July (Fig. 2e), with a similar number of reports (between 400

and 500) for the first three years considered (Fig. 2f). A substantial increase is noted for 2019 and, to a slightly lesser extent,

for 2020, most likely owing to the general increase in the public awareness, and hence reporters, in recent years (Púčik et al.,

2019). Particularly, since 2019, the PRETEMP group has been collecting a large amount of storm reports over Italy which have

been fed into ESWD (De Martin et al., 2023).145
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Figure 3. a) The spatial domain and model orography of SPHERA reanalysis. b) Number of overshooting tops detected per grid cell (on a

10-km regular grid) during April-October in 2016-2020.

2.2 Overshooting top detections

The remote detection of OTs automated by Bedka et al. (2010) has been previously used to characterize OTs climatological

distribution in North America (Bedka et al., 2010), Europe (Bedka, 2011), and Australia (Bedka et al., 2018). The OT detection

algorithm relies on the comparison between clusters of cold pixels likely related to strong updrafts with a tropopause tempera-

ture, as well as with pixels consistent with the temperature of the anvil of the thunderstorm, as detected with IR satellite scans.150

A large temperature difference (> 6 K) helps to separate true OTs from other non-convective clouds (e.g., cirrus) as this differ-

ence is indicative of updraft penetration through the anvil of at least 1-2 km (Griffin et al., 2016). Recently, the automatic OT

detection algorithm has been substantially improved by considering a probabilistic approach (Bedka and Khlopenkov, 2016;

Khlopenkov et al., 2021) instead of the binary yes/no decisions based on predefined fixed temperature thresholds. The statisti-

cal combination of tropopause-relative IR brightness temperature, the prominence of a candidate OT relative to the surrounding155

anvil, and the spatial uniformity and size of the area covered by the anvil delivers a 3-km gridded probabilistic OT estimate

across the domain. The validation of this methodology (Khlopenkov et al., 2021; Cooney et al., 2021) revealed important

improvements compared to the original detection algorithm of Bedka et al. (2010).

The present study considers IR imagery from geostationary MSG Spinning Enhanced Visible and InfraRed Imager (SEVIRI)

(Schmetz et al., 2002) between 2016 to 2020 at a continuous temporal resolution of 15 minutes over south-central Europe. Only160

OTs detected with the Khlopenkov et al. (2021) algorithm having a probability >50% are considered, similar to Punge et al.
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(2023). This statistical constraint was derived by the comparison of OT detections with radar echo tops (Cooney et al., 2021) and

demonstrated enhanced reliability being indicative of colder and more prominent anvil-relative tops. The spatial distribution of

the 991,042 OTs detected over 872 days is shown on a 10-km regular grid in Fig. 3b. A generally higher number of OTs over

land is observed, especially around the Alps, Apennines, and Dinaric Alps mountainous ranges. The main OT hotspot over the165

study domain extends throughout the northern Po valley region adjacent to the Alps, which is bounded to the north by the most

prominent minimum located in proximity of the Alpine crest (i.e., along the northern Italian border with south-eastern France,

southern Switzerland, and western Austria, Fig. 3a).

2.3 SPHERA reanalysis ambient predictors

The atmospheric conditions associated with convective environments that favor hail formation are inferred from the high-170

resolution regional reanalysis SPHERA (Cerenzia et al., 2022; Giordani et al., 2023). SPHERA is a dynamical downscaling of

the global reanalysis ERA5 driven by the non-hydrostatic limited-area model COSMO (COnsortium for Small-scale MOdelling

- Schättler et al., 2018) at the convection-permitting horizontal grid spacing of 0.02° over 65 vertical levels. The assimilation

of observations (wind speed, pressure, air humidity and temperature), coming from various sources (surface weather stations,

radiosoundings, radar and aircraft reports), with a continuous nudging scheme steers the simulations towards the observed175

state. Three-dimensional output is produced on a hourly basis for south-central Europe (Fig. 3a) during 1995-2020.

The meteorological parameters selected to describe ambient conditions favorable to hailstorm development and to identify

potential hail-related OTs rely on statistical relationships between hail observations and proximal atmospheric soundings (e.g.,

Kunz, 2007; Prein and Holland, 2018; Kunz et al., 2020; Allen et al., 2020; Jelić et al., 2020). These parameters represent

the key dynamical and thermodynamical ingredients necessary for hailstorm formation: atmospheric instability and low-level180

moisture, storm organization, and freezing level altitude.

Atmospheric instability and related updraft strength of a thunderstorm are particularly relevant as strong updrafts are nec-

essary for hail growth. Numerous radiosounding-based instability indices have been proposed to predict the potential for

thunderstorm development. As of today, the preference on which index is most suited to represent favorable conditions for hail

occurrence is not univocal, as it could depend on the different ambient conditions over specific regions (e.g., Europe compared185

to the United States, where the majority of the indices have been designed - Brooks, 2009; Taszarek et al., 2020, 2021). Hence,

to better identify hail-favorable meteorological conditions and reduce possible misrepresentation by using a single quantity

(that may potentially be unsuitable in some situations), three different thermodynamic parameters are considered. These are

Most Unstable (MU) CAPE, K index, and Surface Lifted Index (SLI), which showed the highest skill for severe thunderstorms

predictions in central Europe (Kunz, 2007), and which formulations are reported in Appendix A. K index relies only on the190

environmental characteristics of the vertical temperature and moisture content of the atmospheric profile. Hence, the K index

quantifies the thunderstorm potential conditional on the low-level moisture content and its vertical extent. On the other hand,

both SLI and CAPE consider the temperature difference between the environment and the lifted parcel rising with the convec-

tive air mass. Particularly, SLI is a "two-level" index (based on the temperature difference between the ambient and the rising

parcel at 500 hPa), while CAPE is an integrated measure of buoyancy over the entire vertical column.195
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Additionally, organized thunderstorms in the form of multicells, supercells, or mesoscale convective systems (MCS) are

more likely to produce hail. The degree of organization of a storm is usually quantified with the 0-6 km wind vector difference

(deep layer shear - DLS; Markowski and Richardson, 2011), which is frequently used for investigating hail-favoring conditions

(e.g., Trapp et al., 2007; Wellmann et al., 2020). Hence, DLS is included in the OTs filtering procedure.

Finally, the amount of moisture available below the freezing level has an influence on the hydrometeor density in the updraft,200

and hence potentially on the growth rate of the hailstones (Johnson and Sugden, 2014; Allen et al., 2015). On the one hand, too

low a freezing level may limit the amount of supercooled water in the updraft necessary for hail growth (Prein and Holland,

2018). On the other hand, thunderstorms with a high freezing level (H0) are less likely to produce hail on the ground owing to

enhanced melting during hailfall (Dessens et al., 2015). This causes, for example, the lower hail probability observed near the

tropics where the surface atmospheric layers are generally warmer and the tropopause higher (Prein and Holland, 2018). Hence,205

H0, defined as the altitude of the 0°C isotherm above mean sea level, is employed to filter out OTs associated to conditions that

are unsupportive to hail development.

While CAPE, SLI, and H0 are direct outputs of SPHERA, DLS and K index are computed from temperature and wind

profiles. Every parameter is available at hourly frequency at the native horizontal resolution of 0.02° (i.e., ∼2.2 km). However,

local rapidly evolving deep convective processes are characterized by a low intrinsic predictability and this may affect the210

representativity of the local indices considered. Hence, SPHERA fields are remapped to a common grid of 10 km to avoid

possibly “noisy” estimates and to reduce data representativity issues.

3 OT-reanalysis filter design

Recent findings suggest links between convective storm severity and specific characteristics of the OT detections, such as

their spatial extension (Marion et al., 2019) or the temperature gradient between the OT and the tropopause (Khlopenkov215

et al., 2021). However, some OTs with intense updrafts reaching the tropopause and penetrating the lower stratosphere may

be associated with convective environments not necessarily supportive of severe weather phenomena such as hail. The neces-

sary discrimination between hail- and non-hail-producing OTs can be attained by additionally considering convection-related

environmental conditions estimated with reanalysis (Punge et al., 2017; Bedka et al., 2018; Punge et al., 2023).

SPHERA predictors are extracted around each OT detection in a spatio-temporal neighborhood of 0.63° x 0.63° (approx-220

imately 70 km x 70 km) over the three hours preceding an OT and the hour at which the OT is issued. This relatively large

spatial matching window is required owing to the extremely localized and rapidly-evolving nature of hailstorms in order to

limit double-penalty issues due to the difficulties of the models to predict the exact localization of convective processes (Ebert,

2008; Marsigli et al., 2021). Additionally, to take into account pre-convective conditions from SPHERA, a temporal window

before the OT event is considered. Within this spatio-temporal neighborhood, the maximum (for CAPE, K index, and DLS) or225

minimum (for SLI and H0) values of these parameters are extracted.

The filter to select potential hail-related OTs is then constructed by employing confirmed ESWD hail reports. The environ-

mental parameters are selected in the vicinity of the reports by considering the same spatio-temporal neighborhood used for
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Figure 4. Cumulative density functions of the five parameters selected from SPHERA in the presence of ESWD hail reports. Hail reports are

divided into different classes: all reports (blue lines), small hail (<3 cm, purple lines), large hail (⩾3 cm, green lines), and very large hail (⩾5

cm, red lines). The blue dashed vertical lines indicate the thresholds selected for defining the OT hail filter reported in Table 1. The shadowed

portion of the distributions indicates the range of values where the filter is effective. a) DLS, b) H0, c) K index, d) SLI, and e) CAPE.

the OTs (i.e., 0.63° x 0.63° spatial window, 0-3 hours temporal window), and the thresholds are defined as percentiles pth of

the distributions of the parameters (following the approach of Punge et al., 2017). Conversely to Punge et al. (2017), where230

thresholds based on the 2nd or 98th percentiles were prescribed, here the slightly more stringent 5th percentile (for CAPE,

K index, and DLS) or 95th percentile (for SLI and H0) is selected. This is justified by the higher spatio-temporal resolution

of SPHERA reanalysis (2.2 km - 1 h), which, compared to ERA-Interim (79 km - 6 h) considered by Punge et al. (2017) is

expected to significantly enhance the representation of the atmospheric conditions described by the indices (e.g., in the form

of sharper peaks in the parameter distributions owing to clearer distinction of the modeled dynamical features).235

The ESWD-based cumulative density functions (CDFs) of the predictors are reported in Fig. 4. To investigate the relationship

between each parameter and hailstorm severity, the CDFs are shown for the distribution of the entire hail reports set, and

separated between small, large, and very large hail. A general shift of the predictors towards severe-convective environments

is detected for increasing hail sizes. Indeed, moving from the purple to the red lines in Fig. 4, increased instability (greater

CAPE and K index and lower SLI), enhanced organization (greater DLS), and higher freezing levels are noted. This suggests240

the ability of the numerical proxies to identify hail-related ambient conditions. The shaded areas in Fig. 4 indicate the tail of

the CDFs (corresponding to the 5th or 95th percentile portions) where the filter is active.
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Table 1. Variables and thresholds used in the OT filter, relative number and fraction of OTs filtered, and number of days with active OT

filtering (with fractions expressed out of the 872 days when at least one OT is detected).

Variable Threshold OTs filtered Fraction Days w. active filter

SLI < p95 =−2.16 °C 111,042 11.2% 679 (78%)

CAPE > p5 = 666.16 J kg−1 98,051 9.9% 669 (77%)

K index > p5 = 32.5 °C 91,794 9.3% 583 (67%)

DLS > p5 = 7.56 m s−1 88,796 8.6% 414 (48%)

H0 < p95 = 4098 m 69,347 7.0% 244 (28%)

Full filter All those above 267,900 27.0% 824 (95%)

3.1 Reanalysis parameters contribution to OT filtering

Table 1 reports the thresholds obtained, the numbers of OTs and the relative fractions filtered by applying the five parameter

conditions together (hereafter referred to as full filter) and for each parameter. Singular parameter contributions to the filter245

vary from 7.0 to 11.2%. Since the same OTs are sometimes filtered by more than one variable, the fraction of removed OTs

with the full filter is lower than the sum of the singular filters and reaches 27.0%. The fraction of days when instability-index

filters (SLI, CAPE, and K index) are active amount to ∼ 70 % and beyond. This suggests their dominant contribution in the OT

selection compared to DLS, which filters in roughly half of the days, or to H0, being active in less than one third of the days.

The resulting full filter is active in almost the totality (95%) of days with at least one detected OT.250

To understand the impacts of the different parameters in the OT filtering, their spatio-temporal contributions are investigated.

Figure 5 shows the spatially-distributed filtered fractions of OTs for the single-parameters filters (Fig. 5a-e) and for the full

filter (Fig. 5f). Instability parameters (Fig. 5a-c) filter mainly over certain areas of the sea (especially in the southern and

western Mediterranean) and the Alpine crest, particularly along the Italian-Swiss border. The largest contribution over the sea

is given by K index, while over land CAPE and SLI are more active. This is presumably owing to the explicit inclusion of the255

water vapor content in the atmospheric column in the K index, that weights more over the sea. H0 (Fig. 5d) filters most OTs

over lower latitudes (Tunisia and Algeria) and high-elevation terrains, especially over the whole Alpine crest. This enhanced

removal is attributable to the generally colder atmospheric profiles found over the Alps (compared to lower-elevation regions)

where the simulated topography reaches elevations as high as 3950 m in SPHERA reanalysis (Fig. 3a), and the freezing level

usually exceeds the imposed threshold of 4098 m. However, as seen by the spatial distributions of ESWD reports (Fig. 2a) and260

OTs (Fig. 3b), the Alpine crest is the least populated region of the domain in terms of hail reports and prominent OTs. This

is attributed to the difficulties for deep-organized convective systems to develop in extremely complex terrains, in agreement

with a recent climatology of lightning flashes and associated conditions for convective initiation over the Alpine area (Manzato

et al., 2022b). Hence, it is believed that the chosen H0 threshold is not detrimental to the analysis presented here (a possible

proposal for a more sophisticated H0-filtering could be topography-dependent).265
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Figure 5. Percentage of filtered OTs per grid cell (on a 10-km regular grid). a) SLI, b) CAPE, c) K index, d) H0, e) DLS, and f) full filter.

The DLS filter (Fig. 5e) shows less prominent spatial peaks than other parameters, but enhanced activity in the northern part

of the domain (i.e., southern Germany and northern Austria) and in the south-eastern Mediterranean sea.

The combination of the five individual filters (Fig. 5f) delivers maximum filtering (∼100%) along the northern Italian border

where the main mountain peaks of the Alps are located, and substantially high (∼60%) but locally variable filtering over the

western and southern Mediterranean sea, southern Germany and eastern Austria.270

Figure 6 shows the fractions of filtered OTs for the different parameters depending on the hour of the day (upper row)

and the month of the year (lower row), aggregated over the whole spatial domain. Further, panels g) and o) shows the total

number of OTs detected per hour of the day and month, respectively. It should be kept in mind that the local time zone over

the considered region, the Central European Summer Time (CEST), is two hours ahead of the UTC time zone. The OT activity
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Figure 6. Percentage of filtered OTs aggregated over the spatial domain per hour of the day (top row) and per month (bottom row) considering

singular parameters filters: a) & h) SLI, b) & j) CAPE, c) & k) K index, d) & l) H0, e) & m) DLS, and f) & n) the full filter. The total number

of OTs per hour of the day and per month are reported in panels g) and o) respectively.

shows a well-defined diurnal cycle (with the maximum number of detections at 15 UTC), and a decisive increase from spring275

to summer, which further rises in August and September. Instability parameters (SLI, CAPE, and K index) filter mainly during

the night and early morning (reaching 20% around 4-7 UTC), and in April (exceeding 50%), May, and October. This reflects

the lower likelihood of hail-favoring convective conditions at these times of the day and year. Conversely, their contribution to

the filter is minimal when the increased heating of the boundary layer enhances the potential for convective activity and reduces

convective inhibition, increasing the possibility for hail formation (e.g., Markowski and Richardson, 2011), i.e., in the central280

hours of the day (with less than 10% removal around 14-16 UTC) and during JJA (June July August). No evident differences

among the three parameters are detected.

The H0 contribution (Fig. 6d-l) is roughly opposite to that of the instability. The largest removal is found in the afternoon

(∼12% at 16-18 UTC) and in late summer, especially in August (about 20%). This seasonal variation is likely linked to the

warming of the lower troposphere peaking in August in this region, owing to the annual cycle of solar insolation, producing285

an upward shift of the freezing level. On the other hand, the daily cycle in H0 filter cannot be generally related to the diurnal

cycle of boundary layer warming. In fact, at altitudes of ∼4 km above sea level (a.s.l.), temperature changes are mainly driven

by horizontal advective processes, rather than by vertical sensible heat fluxes, which are little affected by low-level daily

variability. The largest fraction of H0-driven OT removal is found over the main Alpine crest (Fig. 5d), where the atmospheric

boundary layer could extend over 4 km a.s.l., despite being very shallow, implying a possible diurnal impact on the H0 variation.290

In any case, this does not constitute a critical issue for the purpose of the analysis here presented, as indicated by the almost

complete lack of multiple hail proxy signals in the Alpine region (i.e., hail reports, OT and lightning detections).

The DLS filter (Fig. 6e-m) shows the least diurnal and seasonal variations, with slightly higher OT removal rates around 10

UTC (∼12%) and in April (∼15%). The reduced variability in DLS filtering compared to all the other parameters is most likely

attributed to its kinetic (rather than thermodynamic) nature, and to its direct relationship with synoptic-scale forcings. Indeed,295
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Figure 7. a) Same as Fig. 3b, but for OTs retained after the hail-specific filter. b) The resulting average number of potential hail days (PHDs)

per year over 2016-2020 estimated from the hail-related OTs distribution in a) after spatial smoothing with a Gaussian filter.

during the considered warm season of the year, the typical synoptic conditions found in the study region are dominated by a

persistent anticyclonic ridge. This large-scale forcing produces a general less variable and lower wind magnitude difference

between the surface and at ∼6 km altitude compared to its cold season counterpart, which is characterized by more dynamism

(e.g., stronger jet streams), and associated with the DLS climatological maximum (Taszarek et al., 2018).

The resulting full filter on the daily term (Fig. 6f) shows maximum removal of more than 30% in the morning and evening300

(4-7 and 20-23 UTC respectively) and to a minimum of ∼23% around 13-15 UTC. Considering the seasonal cycle (Fig. 6n),

the parameters combination shows enhanced filtering in spring (April with almost 80% and May with almost 40%) followed

by August with a removal above 30%. Hail-favoring conditions are most likely to be estabilished in July and June, where

minimum OTs removal of ∼13% and ∼22% are issued, respectively. This tendency is in good accordance with the observed

hailstorms distribution over the years considered (Fig. 2e), and with more robust 28-year ESWD-based hail climatology (Púčik305

et al., 2019).

4 Hail frequency and ambient conditions

4.1 Spatio-temporal characterization

Figure 7a shows the spatial distribution of the 723,142 OTs retained after applying the filtering described in the previous section

over the five extended warm seasons considered. Compared to the original distribution (Fig. 3b), a decrease in the number of310
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Figure 8. Same as Fig. 7b, but separating among a) April, b) May, c) June, d) July, e) August, f) September, and g) October.

OTs over the main Alpine crest is evident, associated with the maximum removal rate in that area (Fig. 5f). Fewer OTs are

also detected over land at lower latitudes (Algeria and Tunisia), over the Mediterranean sea, throughout the Apennines, and in

north-eastern continental areas (Austria, Slovenia, Croatia, and Bosnia). The main hotspot of OT frequency in the region along

the southern pre-Alps and northern Po valley is well preserved after filtering. Further, the resulting contrast with the minimum

OT frequency found over the main Alpine crest is more pronounced than before filtering. This suggests the identification of315

preferential areas for hail formation, which show good agreement with findings from Punge et al. (2017) and recent radar-based

hail climatology (Nisi et al., 2020).

Hail frequency in a certain area is usually estimated as the number of hail days per year rather than counting every single

hailstorm (Punge and Kunz, 2016). In this case, a potential hail day (PHD) is defined as a day when at least one hail-related

OT is detected per reference area of 10 x 10 km2. The sensitivity tests performed by increasing the number of OTs defining320

a PHD showed stable and mutually consistent spatial structures (only from > 10 OTs per day the distributions started to lose

too much detail). The resulting average PHD distribution is reported in Fig. 7b after spatial smoothing with a Gaussian filter.
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Figure 9. Distributions of hail-related OTs per month separately over land (panel a) and sea (panel b).

This is done to minimize potential uncertainties arising from spatio-temporal shifts between the OT proxy and the occurrence

of hail on the ground, and to homogenize the gridded distribution. The result suggests a maximum hailstorm frequency of ≥ 7

PHDs per year in proximity of the southern Alpine slopes and ∼ 0 PHDs over the Alpine crest.325

The intra-annual variations in hail frequency are estimated on a monthly basis in terms of the geographical distribution of

PHDs per month (Fig. 8), and with histograms of hail-related OTs over the whole domain separately for land and sea areas

(Fig. 9). Hail frequency is found to be almost zero in early spring, but increasing from April to May, when the cooler tem-

peratures over land and sea surface lead to lower low-level moisture, which limits the development of deep moist convection.

Hail likelihood rapidly increases in June and July over continental areas, with a well-defined peak around the Alpine region.330

Particularly in July, besides the widespread maximum over the southern pre-Alps in northern Italy, circumscribed hotspots over

central Switzerland and south-western Germany are detected, in accordance with Nisi et al. (2016). Starting from August and

extending to September, a significant reduction in hail-filtered OT rate over land is evident (Fig. 8e-f and 9a), coupled with a

gradual increase in thunderstorm development over the warm waters of the Tyrrhenian and Adriatic seas (Fig. 9b). Finally, in

October (Fig. 8g) a further shift of hailstorm activity towards lower latitudes of the southern Mediterranean sea is detected,335

while maintaining the hail hotspot over the Thyrrenian sea. This is linked to the increased cooling of the continental surface

and the growing likelihood of mid-latitude cyclone formation in this region resulting from the maintenance of warm sea surface

temperatures (e.g., Flaounas et al., 2022).

Figure 10 shows the diurnal cycle of hail-related OT activity separated between land and sea areas. Over land, very infrequent

OT detections are revealed during the night and early morning, with a rapid increase starting from 10 UTC and peaking at 15340

UTC (i.e., 17 CEST). This reflects the maximum diurnal heating of the near-surface troposphere, which reduces convective

inhibition and increases the likelihood for atmospheric instability conditions. During the afternoon, a slightly more gradual

decrease is detected. Over the sea, OTs are more likely to form during the night and early morning (from 23 to 9 UTC)

compared to land, with a local maximum at 3 UTC. This is most likely linked to the north-eastern Adriatic hotspot of nocturnal

hailstorm generation (discussed in the next paragraph - Fig. 11b). Afterwards, a gradual decrease in marine OT activity is345
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Figure 10. Hourly fraction of hail-related OTs separating land (in red) from sea surface (in blue) and aggregating over the whole spatial

domain.

detected after around 12 UTC, when OT frequency slightly fluctuates during the afternoon and increases during the evening.

These findings are in good agreement with the spatio-temporal distribution of the European OT characterization (over 2004-

2009) of Bedka (2011).

Following these results, a separation between daytime (10 to 21:45 UTC) and nighttime (22 to 9:45 UTC) is proposed in

Fig. 11. Hail is found to be generally more frequent over land during daytime (Fig. 11a) and over the sea during nighttime350

(Fig. 11b). Hail likelihood during daytime is highest over southern pre-Alpine areas and significantly pronounced over high-

elevation terrains, especially in the eastern continental part of the domain (Austria, Slovenia, and the Balkans) and over the

central-southern Italian peninsula. During nighttime, the north Adriatic sea is an evident hail hotspot, with the maximum along

the western Croatian coast. This may be linked to the combination of the north-eastern mountains, supporting convective de-

velopment, with local near-surface wind convergence, causing the formation and organization of convective cells over coastal355

areas during the afternoon and early evening (Mikuš et al., 2012; Jelić et al., 2020). A further relevant nighttime hotspot is

detected over north-western Italy along the border with Switzerland and all along the pre-Alpine southern flank area. This is

presumably linked to late-evening thunderstorm formation over the foothills, most likely imputable to katabatic winds inter-

acting with thermally-driven Alpine Pumping circulation (Bica et al., 2007). The interaction between these flows produces

local convergences, enhances vertical wind shear and orographic lifting, and ultimately promotes convection initiation over360

the region (Nisi et al., 2020). Finally, the western Italian coast also shows prominent (to a lesser extent) nocturnal potential

hail signals, which are mostly underestimated by ESWD-based estimates (Fig. 2d) likely owing to the reduced observational

activity during nighttime (Fig. B1).
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Figure 11. Same as Fig. 7b, but separating between a) Daytime (i.e., 10-21:45 UTC) and b) Nighttime (i.e., 22-9:45 UTC).

4.2 Hail proxy matching with ESWD hail reports

The appropriateness of the hail proxy is evaluated by comparing both filtered and unfiltered OT detections with ESWD hail365

reports. The objective is to quantify how often an OT is found in the spatio-temporal proximity of observed and confirmed

hailstorms. The same ESWD sample used to define the environmental thresholds of the reanalysis parameters to filter the OTs

(Sect. 3) has been used to validate the final dataset. However, the comparison between reports and hail-related OT detections

is believed not to be affected by any substantial overfitting issue. This holds given that the main source of information used

to build the proxy is that on OTs, while the SPHERA indices are only used to filter these data in a very conservative way,370

that is by removing the events when hail is unlikely to occur because the SPHERA parameter values fall in the tail of their

respective distributions. Unfortunately, a complete assessment of the performance of the hail proxy is not possible because

of the incomplete information provided by crowd-sourced reports, as discussed in Sect. 2.1. Several events may be missed or

under-reported in the crowd-sourced data (e.g., in sparsely populated areas such as mountainous regions, or during nighttime),

which is recognized to be a dominant issue of the ESWD database (Púčik et al., 2019). Statistically, this implies that in the375

contingency table we can only assess the hit and the miss rates describing the joint distribution of the "forecast" (OT detections)

and observations (hail reports), and not the false alarms or the correct negatives.

The matching condition between satellite detections and hail reports consists of a temporal window of ± 1 h around the

OT detection time and 25 km from each OT location. This relatively sharp temporal window is considered given the temporal
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Table 2. Comparison between OT detections and ESWD reports (with quality level QC1 or superior) considering the two spatio-temporal

matching of 25 km / ±1 h and 75 km / ±3 h, both for the original “Orig OT” and the hail-filtered “Filt OT“ datasets, only over land. The

fractions of ESWD reports matching OT detections (Hit ESWD rep. row), and the fractions of OTs hitting at least one ESWD report (OTs

hitting ESWD row) are reported. The comparison when considering only ESWD reports with high Temporal Accuracy (TA ≤ 15 min) is

reported in blue.

Spatio-temporal matching 25 km / ±1 h (TA ≤ 15 min) 75 km / ±3 h

Filt OT Orig OT Filt OT Orig OT

Number of ESWD rep. 2,293 (1,720) 2,293

Hit ESWD rep.
1,410 (1,077)

61.5% (62.6%)

1,552 (1,186)

67.7% (68.9 %)

1,788

78.0%

1,934

84.3%

Number of OTs 433,862 597,547 433,862 597,547

OTs hitting ESWD rep.
12,501 (9,863)

2.88% (2.27 %)

14,158 (11,179)

2.37% (1.87 %)

45,868

10.57%

52,643

8.81%

accuracy ≤ 1 h characterizing more than 98% of ESWD reports (Fig. 2b). The 25-km distance criterion is retained from Bedka380

(2011) and Punge et al. (2017) and accounts for a maximum storm motion of 60 km h−1 and possible latitude/longitude

uncertainty for ESWD reports. The matching with the set of hail reports having a quality level QC1 or superior (2,293 reports)

is considered for both the original and the hail-filtered OT datasets (over land only), to highlight possible differences owing to

the filter procedure. Further, the subset of 1,720 ESWD reports presenting high Temporal Accuracy (TA) ≤ 15 min is separately

considered in the matching to investigate the impact of a lower temporal uncertainty in the surface reference state. Additionally,385

to investigate the sensitivity of the matching conditions between the hail proxy and observations, a less conservative spatio-

temporal constraint of ± 3 h over 75 km is proposed. The results are listed in Table 2.

With respect to the 25 km / ±1 h matching, an OT of the unfiltered dataset is found in the vicinity of 67.7% of the ESWD

hail reports, while for hail-filtered OTs, the hit rate reduces to 61.5%. When considering only reports with high temporal

accuracy (≤ 15 min), the fractions slightly increase to 68.9% and 62.6%, respectively. To give an objective evaluation of these390

results, a comparison with the similar analysis previously performed by Punge et al. (2017) is proposed. However, given several

differences in the research design, it is necessary to focus only on the qualitative aspects. The main differences between the

present study and that of Punge et al. (2017) are: a larger spatial domain covering all of Europe (extending from England to

Russia and from Norway to Egypt) over ten years (2004-2014), the consequent different spatial coverage in the distribution

of ESWD reports (which are only scarcely available in some regions such as France or Portugal during their analysis period),395

the employment of the former non-probabilistic version of the OT detection algorithm from satellite infrared imagery, and the

substantially coarser description of hail-favoring convective environments owing to ERA-Interim reanalysis. Using the same

spatio-temporal window here considered they found a hit rate decreasing from 40.3% to 39.7% for the unfiltered and filtered

OT datasets, respectively, for a subset of 2,475 ESWD reports (with quality level ⩾QC1 and temporal accuracy ⩽ 15 min).

This indicates that the proxy obtained in the present analysis has improved by roughly 23% over that obtained by Punge et al.400

(2017) in terms of match with hail reports. The main reason for this improvement is likely the new probablilistic OT detection
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algorithm of Khlopenkov et al. (2021) allowing the identification of weaker looking satellite features that were previously

harder to detect with fixed temperature thresholds. Further, this is also accompanied by a reduction of false OT detections. As

a possible indication of this, the fraction of OTs found in the vicinity of hail reports by Punge et al. (2017) increased from

0.67% to 0.84% after the filter, conversely to the detected values of 1.87% and 2.27%, respectively (for TA ≤ 15 min - Table405

2). Considering the more generous spatio-temporal window of 75 km / ±3 h, a decisive increase for all hit rates is noted: the

fractions of hail reports detected by the filtered and unfiltered OTs sets are 78.0% and 84.3%, and the respective OT rates

matching ESWD are 10.57% and 8.81%.

The inter-monthly and inter-daily variability of the hit rates are analyzed in Fig. B1. The differences found between the

filtered and unfiltered OTs matching the ESWD for the whole temporal aggregation tend to persist for every temporal sub-410

period. An increase in both hit rates is noted when moving from spring to summer, while a slight decrease is detected when

moving from day- to nighttime.

Even if an increase in the fraction of OTs associated with hail reports is detected, its absolute value remains low. This

may be related to under-reporting issues in the ESWD dataset, or the limits of the conservative design of the filter proposed.

The relevance of the under-reporting problems of the hail database is highlighted by the strong year-to-year variability in the415

fractions of filtered OTs found in the vicinity of ESWD reports (not shown). Considering the 75 km / ±3 h matching, in

the year with the largest number of reports (2019, with 659 reports) the fraction of OTs in their vicinity exceeds the 18%.

Conversely, when the lowest number of hail reports were issued (2016, with 298 reports) the amount of matching satellite

detections is slightly less than 7%. With respect to the limits of the OT filtering procedure designed, the aim of the minimum

conditions imposed is to remove all possible situations that are unsupportive to hail development in a thunderstorm. The420

retained environmental characteristics and the associated OTs are shared also by storms producing other severe weather than

hail. A potential way forward to more sharply discriminate specifically hail environments within this superposition could be

to include additional hail-related observations to expand the sample of ambient conditions, such as hailpad records. However,

hailpad networks cover only a smaller part of the selected region, which prevents a substantial enlargement of the validated OT

data sample. Therefore, ESWD still represents the best available dataset for ground-truth hail occurrence.425

4.3 Hailstorm environmental signatures

To better understand under which conditions hail reports are correctly identified or missed by the OT-based approach, the

associated environmental conditions described with the CP reanalysis predictors are investigated. Parameter distributions are

analyzed separately for hit or missed reports. Further, to take into account the role of hail severity, only the subset of 2,249

ESWD reports with information on the maximum hailstone size is considered (in the following referred to as ESWD-S), and430

results are reported separating between small (< 3 cm) and large hail (⩾ 3 cm). For some hailstorms more than one report is

issued, which share the same ambient conditions at a specific temporal stage of the storm. For this reason, duplicate values of

the parameter distributions that at the same hour present exactly the same values of all five SPHERA parameters are discarded,

and only those associated with the report presenting the largest maximum hailstone size are kept. This is necessary to avoid
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Figure 12. Cumulative density functions of the five parameters selected from SPHERA in the presence of ESWD-S hail reports. The same

criteria described in Sect. 3 apply to spatio-temporally aggregate the parameters in the vicinity of hail reports. Reports are divided into small

hail (< 3 cm, dashed lines) and large hail (⩾ 3 cm, solid lines) when hit (in blue) or missed (in red) by the hail-specific OT dataset. The black

dashed vertical lines indicate the thresholds identified for filtering (Table 1). The shadowed portion of the distributions show when the filter

is active. a) DLS, b) H0, c) K index, d) SLI, and e) CAPE.

artificial deviations owing to repetitions of the samples in the resulting distributions. Finally, the satellite-measured cloud-top435

thermal characteristics in presence of ESWD-S reports are analyzed to further detail hailstorm ambient features.

The cumulative density functions of SPHERA parameters in the presence of ESWD-S reports, separated into four categories

based on matching and hail severity conditions, are presented in Fig. 12. 66% reports are successfully detected by the filter-

based proxy, the majority of which (69%) pertains to large hail, while missed cases are similarly associated with small (46%)

and large hail (54%). By increasing the hailstone size, the distributions tend to shift towards values with enhanced potential for440

severe convection (i.e., larger CAPE, K index, and DLS, and smaller SLI) and higher H0. The most evident separation for all

parameters (including DLS, but to a lesser extent) emerges for the missed–small hail class (Fig. 12 - dashed red lines), showing

cumulative density curves systematically shifted towards less unstable, less sheared and warmer environments. Interestingly,

only 4% of hit ESWD-S reports show at least one parameter falling in its filtered data range (i.e., shadowed areas in Fig. 12),

while the fraction decisively increases to 42% for missed reports.445

To investigate the inter-relationships between ambient descriptors, hailstorm severity and matching conditions, the parame-

ters spaces for the four hail reports classes are considered in the form of bi-variate histograms. Figure 13 shows the joint distri-

butions of H0 and K index for the four hailstorm classes. A joint increase of freezing level height with atmospheric instability
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Figure 13. Bi-variate histogram distributions of H0 vs K index in presence of ESWD-S hail reports for the separation considered in Fig. 12:

a) hits–large hail, b) hits–small hail, c) misses–large hail, and d) misses–small hail. The blue dashed vertical and horizontal lines represent

the median (p50) and the interquartile (IQR) range values (p25 and p75) of the distributions. The black dotted lines report the thresholds used

for the filter defined in Table 1.

and low-level moisture content is noted, suggesting a positive linear relationship between H0 and K index. The distributions

for hits (13a-b) are compact and do not present relevant differences among hail sizes. On the other hand, misses counterparts450

(13c-d) extend over wider ranges and show evident shifts between small and large hail (with H0 and K index medians greater

by roughly 300 m and 2.3°C, respectively). This suggests that missed-large hail events are characterized by generally warm

vertical atmospheric profiles (with ∼ 20% freezing level heights above the imposed threshold), while missed-small hail tends

to form in lower-instability and colder ambient conditions.

More dispersion characterizes the joint H0-DLS distributions (Fig. 14). In all four classes, DLS covers a broad spectrum455

with interquartile ranges (IQRs) of ∼10 m s−1, confirming the difficulty in separating events by their hailstone sizes through
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Figure 14. Same as Fig. 13, but for H0 and DLS.

the vertical wind shear (Kunz et al., 2020). The difference of roughly 7 m s−1 in median DLS values from misses-small hail

(14.39 m s−1) to hits-large hail (21.24 m s−1) suggests the increase in hail severity with storm organization.

Significant spread characterizes also the CAPE-DLS spaces describing the relationship between atmospheric instability

and storm organization (Fig. 15). Also in this case, the most different conditions emerge for the missed–small hail class,460

characterized by generally pronounced low-CAPE (median 1,286 J kg−1) and low-DLS environments.

A factor playing a central role in the identification of an OT from satellite scans data is the thermal characteristic of the

cloud top where the OT can be found. Previous research showed how OTs linked to deep convective clouds can be detected as

cold pixels in infrared satellite imagery scans (e.g., Morel and Senesi, 2002; Mikuš and Mahović, 2013). These cold spots are

associated with small and sharp infrared brightness temperature (IRBT) minima that are near to or colder than the tropopause465

temperature associated with the anvil cirrus cloud. Hence, a critical variable included in the Khlopenkov et al. (2021) algorithm

for automatic OT detection is the temperature difference ∆T between infrared brightness and tropopause temperatures. A large
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Figure 15. Same as Fig. 13, but for CAPE and DLS.

∆T (> 6 K) indicates a penetration of the updraft through the anvil of at least 1-2 km (Griffin et al., 2016). The investigation

of the cloud-top thermal conditions in the presence of true hailstorms could help understand why these have been correctly

identified or not with the OT filter approach. For this reason, the minimum IRBT and ∆T distributions in the presence of470

ESWD-S reports are considered (for any OT probability of occurrence and not only for >50% as imposed up to now). The

distributions are separated among hit and missed reports for small, large, and very large hail occurrences (Fig. 16). Sharp

IRBT minima distributions characterize hit reports of all hailstone size (Fig. 16a), with mean values of ∼211 K and rarely

exceeding higher temperatures than 224 K. The relative ∆T minima (Fig. 16c) show almost no positive values, meaning that

IRBT is almost always colder than the tropopause temperature. Further, the central values of all ∆T populations are below475

-4 K, as expected from severe thunderstorms producing prominent OTs (e.g., Scarino et al., 2023). Missed reports (Fig. 16b)

present more blunted and higher IRBT minima distributions, extending to temperatures as high as 239 K. The associated mean

values suggest a more pronounced separation among hail severity classes, especially in case of very large hail (∼5 K colder
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Figure 16. Normalized distributions of minimum IRBT (a b) and ∆T (c d) in presence of hit (a c) and missed (b d) hail reports. The

histogram bars quantify the normalized frequency of OTs in the presence of the ESWD-S subset for small (light blue), large (purple), and

very large hail (red). Indicated are the mean values (x̄) for each distribution. The kernel-density estimated probability density functions are

shown with dashed curves in respective colors, additionally, the density functions for the whole ESWD set (including also those reports

without maximum hailstone size information) are displayed with black dashed curves.

than for small hail). ∆T minima (Fig. 16d) confirms and strengthens these results: the majority (i.e., 54%) of missed ESWD

reports are associated with positive ∆T , reaching values as large as +15 K. These conditions indicate tropopause temperatures480

substantially lower than those of the detected OT, suggesting not prominent IR signatures. The enhanced separation in ∆T

distributions between small and very large hail, the latter being on average more than 3 K colder, indicates the difficulty for

large hailstones to form in these environments.

5 Discussion

In this manuscript a new method for potential hail hazard assessment and for characterizing the associated environmental485

conditions have been presented and applied over a 5-year test period. The obtained results show good agreement with recent

hail climatologies over the study region (Punge and Kunz, 2016). The least hail-prone area over the whole spatial domain is

the main Alpine crest, owing to the difficulties for organized convective systems to develop in extremely complex terrains,

and is in agreement with radar- (Nisi et al., 2018, 2020) and lightning-based (Manzato et al., 2022b) climatologies over the

Alps. Pre-mountainous regions over the eastern Alps show enhanced likelihood for hail formation as described by the OT-hail490
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proxy, with local maxima over south-eastern Austria and Slovenia, in good accordance with Svabik et al. (2013). Moderate

hail frequency is detected in southern Germany, which is considered a main European hotspot for hail hazard (Punge et al.,

2014, 2017; Fluck et al., 2021); this may be caused by the limited temporal extent of the analysis. The northern Adriatic sea

represents the primary marine hotspot for hailstorms, particularly enhanced along the Croatian coastline during nighttime in

late summer (August-September), similar to Jelić et al. (2020). The most favorable conditions for hail are found along the495

Italian pre-Alps, but the potential for hailstorm formation is met throughout north-central Italy. This agrees with several hail

climatologies on the national (Baldi et al., 2014), or regional level over north-western (Davini et al., 2012) and north-eastern

Italy (Giaiotti et al., 2003; Sartori, 2012; Manzato et al., 2022a). On the seasonal scale, the detected intra-annual variability

well agrees with the recent Italian ERA5-and-ESWD-based hail characterization of Torralba et al. (2023) over 1979-2020.

Good temporal matching is also found with the ESWD reports statistics during 1990-2018 over Europe (Púčik et al., 2019).500

The hail-related environmental conditions identified and the relative tendencies depending on hailstone dimensions are also

in line with previous works, highlighting a high degree of variability in the environmental conditions leading to hail, which

confirms recent findings (Nixon et al., 2023). Torralba et al. (2023) found CAPE > 900 J kg−1 and a median K index of 30°C

for hail occurrence, with increasing values with hail severity, indicating enhanced instability for severe hail development, as

expected (e.g., Púčik et al., 2015; Marcos et al., 2021). Kunz et al. (2020), separating between <3 cm and ⩾5 cm hailstones,505

identified scattered DLS distributions ranging ∼0-30 m s−1 for the former and ∼5-30 m s−1 for the latter, confirming a high

degree of dispersion between hail severity and storm organization, and corroborated by proximity radiosounding data (Púčik

et al., 2015). The CAPE-DLS space has been used in numerous studies as a proxy for hail. Wide ranges in the joint distribution

have been found by Púčik et al. (2023) and Púčik et al. (2015), but with a clear lack of severe events in low-CAPE and low-DLS

environments (which tend to concentrate on the opposite high-CAPE and high-DLS range), similarly to the tendency found510

in this analysis, as well as by Taszarek et al. (2020). The freezing level characterization is also in accordance with previous

studies: Jelić et al. (2020) found an upper limit of ∼4000 m above which no hail on the ground has been observed. Finally, the

positive relationship between freezing level height and instability, for which large hail can form in stabler environments if H0

is low while more instability is needed if H0 is higher, has been detected also by Prein and Holland (2018).

The proposed method for hail characterization has demonstrated enhanced appropriateness for the identification of large hail-515

producing storms. This is revealed by the large fraction of hit ESWD reports having large maximum hail diameters and sharper

distributions of their environmental characteristics. In case of smaller hailstones, a larger degree of uncertainty is revealed

by less explicit OT signatures, related to higher cloud top temperatures, and by environments with lower freezing levels and

instability (associated with weaker updrafts that are less evident from the OT perspective). Hence, the fixed thresholds of the

high-resolution reanalysis parameters introduced to filter the OTs could mask these occasions. In any case, since the primary520

interest is to enhance the characterization of the most damaging hailstorms, the developed methodology has demonstrated to

be appropriate for this scope.
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6 Conclusion

A method for hailstorm identification obtained by combining convection-permitting SPHERA reanalysis environmental pre-

dictors, satellite MSG OT detections, and crowd-sourced ESWD hail reports has been presented. The analysis over 2016-2020525

during the extended summer season (April-October) allows to assess the appropriateness of the hail proxy over south-central

Europe for a sample period, and to investigate the environmental conditions associated with hail. The proxy is based on a

filter to identify convective updrafts potentially linked to the formation of hailstones in a thunderstorm by considering the sur-

rounding environment. Five numerical predictors, quantifying key ingredients for hail development (i.e., most unstable CAPE,

K index, SLI, DLS, and freezing level height), are employed to filter OT detections. Single predictors give different spatio-530

temporal contributions in the identification of hail-related conditions, and their joint use enables to single out satellite-detected

updrafts where hail is possible. Indeed, the resulting hail proxy shows a maximum hail potential over northern Italy pre-Alpine

areas in June and July peaking at 15 UTC. A hail-related OT is found in the vicinity of 62.6% of ESWD reports, exceeding

roughly 23% more than the previous OT-filter estimate over Europe (Punge et al., 2017), and suggesting an improved appro-

priateness of the new method. Enhanced suitability of the proxy is observed in case of severe hailstorms: the majority (69%)535

of correctly identified reports are linked to hailstones exceeding 3 cm diameters. Furthermore, the analysis of the ambient

conditions for different hail severity classes suggests the tendency for large (small) hail to form in environments with higher

(lower) instability and wind shear, and within warmer (colder) atmospheric vertical profiles, as expected. However, consider-

able spread in the associated parameters distributions is found, especially for the missed-small hail class, which also shows the

most distinct environmental signature. Additionally, the analysis of the observed thunderstorm top temperature minima reveals540

systematically warmer conditions when ground hail reports are missed.

The five years considered in this study constitutes one of the main limitation owing to the large year-to-year variability

associated with hail. Indeed, a period of few years is insufficient for a robust assessment of hail frequency. However, it is

appropriate for the purpose to present the novel methodology and to assess its potential. Possible future temporal extensions

of the analysis could decisively enhance its robustness with the purpose to develop a sound climatology for hail. Further, the545

selection of other numerical parameters should also be tested in future works with the aim to improve the identification of hail-

producing environments. Possible choices could include the CAPE above the -10°C-isotherm, which recently demonstrated

enhanced skill for hail detection over Europe (Battaglioli et al., 2023), or the storm depth and the storm-relative flow below the

hail-growth-layer, which may enhance the prediction of the maximum potential hailstone size (Kumjian and Lombardo, 2020;

Nixon et al., 2023). Additionally, a promising direction for further research developments in the field is given by machine550

learning approaches which allow greater dimensionality within forecast parameters and consent to objectively select optimal

predictors for hail in a certain region (Gagne et al., 2017; Gagne II et al., 2019; Gensini et al., 2021; Torralba et al., 2023;

Scarino et al., 2023). Hence, in future extensions of this work these methods should be considered to potentially improve the

environmental characterization associated with hail.

The imperfect OT observations with the MSG IR satellite instrument constitutes a further source for improvement. Indeed,555

the majority of missed ESWD reports are associated with detected cloud top temperatures that are higher than those at the
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tropopause, which are more challenging to be identified with the automatic algorithm of Khlopenkov et al. (2021) applied to

the MSG SEVIRI. This difficulty, as noted by Cooney et al. (2021), may be linked to satellite scans performed when storm

tops are not optically thick enough at the initial stages of the storm development, resulting in outgoing radiation being scanned

in warmer and deeper regions of the cloud than the updraft top, likely owing to the insufficient density of the particles in this560

region (Sherwood et al., 2004). This results in smaller temperature differences between tropopause and cloud top, ultimately

reducing the probability of OT detection and, consequently, causing to miss the hail event. Hence, possible ways to overcome

this issue and to improve the OT detection methodology are the inclusion of visible channel textures together with IR detections

(Bedka and Khlopenkov, 2016), or the enhancement in the spatio-temporal resolution of the satellite scanning that in this study

are limited respectively to 3 km and 15 minutes (at the time of analysis the 5-minute rapid-scan data from MSG were not easily565

processable with the OT-detection algorithm). Particularly, a higher temporal frequency for detecting thunderstorm OTs, such

as that possible with the Geostationary Operational Environmental Satellites (GOES) 16 or 17, or with the novel Meteosat

Third Generation (MTG) satellite, is essential, given the rapidity of their formation and dissipation, which may be even below

15 minutes (Elliott et al., 2012).

In this study high-resolution numerical simulations are included to describe atmospheric ambient conditions, which is con-570

sidered a promising avenue of development in hail research (Allen et al., 2020). Indeed, coarser global datasets have been

generally employed in similar studies, whose simulations include physical parameterizations to account for deep moist convec-

tion, implying potential significant errors and inaccuracies (Prein et al., 2015). The present study benefits from the information

obtained from the new regional reanalysis SPHERA, whose 2.2 km horizontal resolution allows to switch off parameterization

schemes, as well as to use a finer surface topography. However, a quantification of the added value introduced by this innova-575

tion was not feasible, and, generally, no quantitative studies have been performed so far to assess the benefits of finer spatial

grid spacings configurations over coarser datasets specifically for the reproduction of hailstorm environments. Hence, possible

future studies could analyze in detail the sensitivity on the driver dataset describing hail environmental predictors to better

understand the role of km-scale simulations in this context.

Ultimately, this work offers a way to retrieve information on local-scale hail frequency and characteristics over south-580

central Europe, a region of the world particularly affected by damaging hail hazard, which can be valuable and desirable

for several reasons. Besides improving the scientific understanding of the atmospheric dynamical processes associated with

hail, the correct assessment of the related risk is essential for insurance agencies in order to provide adequate estimates for

specific portfolios. Further, other stakeholders may include several sectors that are highly vulnerable to hail hazard such as

the building construction and maintenance market, energy supply systems (e.g., solar thermal systems), and farmers or wine585

growing enterprises that need to decide on crop protection measures (Punge and Kunz, 2016).

Code availability. The python scripts developed to process and visualize reanalysis parameters, OT detections and hail reports datasets are

freely available at https://github.com/agiord/hail-analysis.
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Data availability. SPHERA reanalysis data are stored at the ARPAE-SIMC repository and available from the corresponding author upon

request (antonio.giordani3@unibo.it). Overshooting top detections data have been made available by NASA (contact K. Bedka for any590

inquiry: kristopher.m.bedka@nasa.gov). The access to ESWD hail reports was partly granted by ADA Life Project funding under contract

LIFE19 CCA/IT/001257 under the LIFE programme of the European Commission, and partly by the Karlsruhe Institute of Technology (KIT)

in collaboration with ESSL.

Appendix A: Thermodynamic parameters

In the following are reported the formulations of the thermodynamic parameters selected from SPHERA reanalysis:595

– MU CAPE:

CAPE = g

LZB∫
zi

Tvparc −Tvenvir

Tvenvir

dz (A1)

where g is the gravitational acceleration, zi is the altitude in the lowest 300 hPa where the equivalent potential tempera-

ture is at its maximum (i.e., most unstable conditions), LZB is the level of zero buoyancy (or equilibrium level) where

the virtual temperature of the parcel Tvparc
equals the virtual temperature of the surrounding environment Tvenvir

. CAPE600

represents the integrated amount of work over the vertical air column exerted by the upward buoyancy force over the air

parcel.

– K index:

K = (T850hPa −T500hPa)+Td850hPa − (T700hPa −Td700hPa) (A2)

where TxxhPa and TdxxhPa are respectively the temperature and the dew-point temperature at the isobaric level xx hPa.605

The terms entering the K index represents respectively the lapse rate, the low-level moisture content, and the moist layer

depth.

– SLI

SLI = T500hPaenvir
−T500hPaparc

(A3)

The SLI evaluates the temperature difference between the environment at 500 hPa and a parcel lifted dry adiabatically610

from the surface to the lifting condensation level and pseudo-adiabatically to 500 hPa.
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Appendix B: Matching with ESWD hail reports: inter-monthly and inter-daily variability

Figure B1. Inter-monthly (left panel) and inter-daily (right panel) variability of the performance described in Sect. 4.2 considering the 25

km / ± 1h spatio-temporal window for matching. Solid (dahsed) blue lines report the fraction of ESWD reports hit by the original (filtered)

OT set. Red lines counterparts report the fraction of OTs hitting ESWD reports. The bars indicate the number of ESWD reports detected per

month or time of the day (daytime, 10:00-21:45 UTC, or nighttime, 22:00-9:45 UTC).
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