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Abstract. Plant and microbial nitrogen (N) dynamics and N availability regulate the photosynthetic capacity and capture, 

allocation, and turnover of carbon (C) in terrestrial ecosystems. Studies have shown that a wide divergence in representations 

of N dynamics in land surface models leads to large uncertainties in the biogeochemical cycle of the terrestrial ecosystems and 15 

then in climate simulations as well as the projections of future trajectories. In this study, a plant C-N interface coupling 

framework is developed and implemented in a coupled biophysical-ecosystem-biogeochemical model (SSiB5/TRIFFID/ 

DayCent-SOM v1.0). The main concept and structure of this plant C-N framework and its coupling strategy are presented in 

this study. This framework takes more plant N-related processes into account. AThe dynamic C/N ratio (CNR) for each plant 

functional type (PFT) is introduced to consider plant resistance and adaptation to N availability to better evaluate the plant 20 

response to N limitation. Furthermore, when available N is less than plant N demand, plant growth is restricted by a lower 

maximum carboxylation capacity of Rubisco (VmaxVc,max), reducing gross primary productivity (GPP). In addition, a module 

for plant respiration rates is introduced by adjusting the respiration with different rates at different plant components at the 

same N concentration. Since insufficient N can potentially give rise to lags in plant phenology, the phenological scheme is 

also adjusted in response to N availability. All these considerations ensure a more comprehensive incorporation of N 25 

regulations to plant growth and C cycling. This new approach has been tested systematically to assess the effects of this 

coupling framework and N limitation on the terrestrial carbon cycle. Long-term measurements from flux tower sites with 

different PFTs and global satellite-derived products are employed as references to assess these effects. The results show a 

general improvement with the new plant C-N coupling framework, with more consistent emergent properties, such as GPP 

and leaf area index (LAI), compared to the observations. The main improvements occur in tropical Africa and boreal regions, 30 

accompanied by a decrease in the bias in global GPP and LAI by 16.3% and 27.1%, respectively. 
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1 Introduction 

Land surface processes substantially affect climate (Foley et al., 1998; Ma et al., 2013; Sellers et al., 1986; Xue et al., 2004, 

2010, 2022) and are influenced by climate in turn (Bonan, 2008; Liu et al., 2019, 2020; Zhang et al., 2015), forming complex 

feedback loops to climate change (Friedlingstein et al., 2006; Gregory et al., 2009). To study these processes, the land surface 35 

components of Earth System Models (ESMs) have evolved from those that represent only physical processes (i.e., hydrology 

and the energy cycle) to those that include the terrestrial carbon (C) cycle, vegetation dynamics, and nutrient processes (Cox, 

2001; Dan et al., 2020; Foley et al., 1998; Oleson et al., 2013; Sellers et al., 1996; Sitch et al., 2003; Wang et al., 2010; Zhan 

et al., 2003). 

Current land surface models (LSMs), however, have large uncertainties in predicting historical and recent C exchanges (Beer 40 

et al., 2010; Kou-Giesbrecht et al., 2023; Richardson et al., 2012), and the dynamic vegetation models tend to overestimate 

terrestrial C sequestration (Anav et al., 2015; Heikkinen et al., 2021; Murray-Tortarolo et al., 2013; Oliveira et al., 2021). The 

uncertainty/errors in predictions using land models have been attributed to many factors. The parameterization of some 

processes has been criticized for being oversimplified from an ecological point of view (Ali et al., 2015; Lawrence et al., 2019; 

Reich et al., 2006). The inclusion or exclusion of nutrient limitations on productivity is one of the critical factors. The C-only 45 

models ignore significant nitrogen (N) impacts and therefore overestimate C sequestration by terrestrial ecosystems under 

climate change (Peñuelas et al., 2013; Zaehle et al., 2015). Ecosystem N cycling processes are among the dominant drivers of 

terrestrial C-climate interactions through their impacts, mainly N limitation, on vegetation growth and productivity (Reich et 

al., 2006), especially in N-poor younger soils at high latitudes (LeBauer & Treseder, 2008; Vitousek and Howarth, 1991), and 

on microbial decomposition of organic matter (Hu et al., 2001). As such, the N cycle and its effect on C uptake in the terrestrial 50 

biosphere have been incorporated into land surface models (LSMs) of ESMs (Davies-Barnard et al., 2020; Kou-Giesbrecht et 

al., 2023) with various representations of N processes (Ali et al., 2015; Asaadi et al., 2021; Ghimire et al., 2016; Goll et al., 

2017; Lawrence et al., 2019; Oleson et al., 2013; Smith et al., 2014; Thum et al., 2019; Wiltshire et al., 2020). 

Adequate C-N coupling in plant N processes, however, has been indicated as an area that still needs intensive investigation 

(Thum et al., 2019; Ghimire et al., 2016; Goll et al., 2017; Yu et al., 2020; Zaehle et al., 2015; Zhu et al., 2019). The 55 

fundamental aspects of N cycling for terrestrial biosphere models, such as N limitation of vegetation growth, strategies in 

which vegetation invests C to increase the N supply under N-limited conditions, and N limitation of decomposition, have been 

identified as important challenges for representing N cycling in terrestrial biosphere models (Meyerholt et al., 2020; Peng et 

al., 2020; Zaehle et al., 2015). Some key plant N processes, such as N limitation on gross primary productivity (GPP), the 

effect of biomass N content on autotrophic respiration, plant N uptake, ecosystem N loss, and biological N fixation, have been 60 

introduced into LSMs with various complexities to determine the effects of N limitation in current land models. These methods 

include, for instance, using N to scale down the photosynthesis parameter V(c, max) (Ghimire et al., 2016; Zaehle et al., 2015) 

or potential GPP to reflect N availability (Gerber et al., 2010; Oleson et al., 2013; Wang et al., 2010), defining the C cost of N 

uptake (Fisher et al., 2010a) and optimizing N allocation for leaf processes (Ali et al., 2015). The wide variety of assumptions 
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and formulations of N cycling processes and C-N coupling reflects knowledge gaps and divergent theories, and further 65 

investigation is imperative (Kou-Giesbrecht et al., 2023). The coupling of N processes is still an area of model development. 

In the latest Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016), although there were 112 different 

coupled models with various land surface models from 33 research teams, only about 10 models incorporated an N cycle 

module (Arora et al., 2020).Several parameterizations have been developed in LSMs with various complexities to determine 

the effects of N limitation.  These methods include, for instance, using leaf N availability to scale down the photosynthesis 70 

parameter Vc,max (Ghimire et al., 2016; Zaehle et al., 2015) or potential GPP (Gerber et al., 2010; Oleson et al., 2013; Wang et 

al., 2010), defining the energetic cost of N uptake (Fisher et al., 2010) and optimizing N allocation for leaf processes (Ali et 

al., 2015).  There are wide variety of assumptions and formulations of N cycling processes and C-N coupling in land models.  

Furthermore, in the latest Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al., 2016), although there were 

112 different coupled ESMs with various land surface models from 33 institutions, only 6 ESMs that incorporated an N cycle 75 

module contributed to the CMIP6 model intercomparison study on carbon concentration and carbon–climate feedback (Arora 

et al., 2020). In CMIP5, there were only 2 ESMs with N cycle modules included in the same model intercomparison study 

(Arora et al., 2013). The current status of C-N coupled models in the CMIP model intercomparisons and knowledge gaps and 

divergent theories in C-N coupling parameterizations suggest coupling of N processes in ESM is still an important area of 

model development (Ghimire et al., 2016; Yu et al., 2020). 80 

This paper presents a recently developed process-based plant C-N coupling framework with a consistent coupling strategy 

between biophysical and biogeochemical processes. The framework mainly focuses on the effects of N limitation on plant 

photosynthesis (Section 2.2.3), plant respiration (Section 2.2.4), and plant phenology (Section 2.2.5) with a dynamic C/N ratio 

(CNR, section (Section 2.2.2). The dynamic plant CNR is a more realistic representation than the fixed plant CNR in assessing 

the effect of N limitation on plant C processes and interactions between plant C and N processes. We implement this plant C-85 

N framework by coupling a soil organic matter and nutrient cycling model (DayCent-SOM; Del Grosso et al., 2000; Parton et 

al., 1998, 2010)with a biophysical/dynamic vegetation model (SSiB5/TRIFFID, the Simplified Simple Biosphere Model 

version 5/Top-down Representation of Interactive Foliage and Flora Including Dynamics Model, Cox, 2001; Harper et al., 

2016; Liu et al., 2019; Xue et al., 1991; Zhan et al., 2003; Zhang et al., 2015). The SSiB and TRIFFID have been extensively 

used for the land-atmosphere interaction studies (Harper et al., 2016; Xue et al., 2004, 2010, 2022, 2023). DayCent-SOM, 90 

which includes only the soil organic matter (SOM) cycling and trace gas subroutines from the DayCent ecosystem model 

(Parton et al., 1998, 2010), represents SOM transformations, below-ground N cycling, soil N limitation to microbial processes 

and plant growth, and nitrification/denitrification processes. In the coupled model, the potential N uptake depends on plant N 

demand fromaccording to a biophysical and dynamic vegetation model, SSiB5/TRIFFID. The actual plant N uptake is limited 

based on soil N availability, as predicted by DayCent-SOM (Del Grosso et al., 2000; Parton et al., 1998, 2010). Although this 95 

plant C-N coupling framework is developed based on SSiB5, TRIFFID, and DayCent-SOM, the methodology and approach 

in this study could be applied to other process-based land models with similar physical, biological, and ecological principles. 

The coupled model is verified at thirteen flux tower sites (Lund et al., 2012; Pastorello et al., 2020) with different plant 



 

4 
 

functional types (PFTs) and is used to conduct several sets of global 2-D offline simulations from 1948 to 2007 to assess the 

effects of the coupling process. Model predictionssimulations of global GPP and LAI have been evaluated against satellite-100 

derived observational data(Jung et al., 2009; Sheffield et al., 2006; Zhu et al., 2013). The results demonstrate the relative 

importance of different plant N processes in this C-N framework. In addition, the effects of N limitation on heat fluxes are also 

preliminary assessed with station data (Section 4.1). The results indicate that because the atmospheric forcings (such as 

downward radiation) in our offline experiment are the same for both the control and sensitivity runs, the heat flux response 

due to N limitation is limited. In this paper, we mainly focus on the GPP and LAI. A comprehensive assessment of the effect 105 

of N limitation on heat fluxes and atmospheric circulation needs to be conducted in a fully coupled atmosphere-land model. 

The model used in this paper is presented in section 2.1. The development and implementation of this plant C-N framework 

are presented in section 2.2. The model forcing and validation data used in this paper are presented in section 2.3. In section 

3, the experimental design is described. In section 4, the measurements from the flux tower sites with different PFTs and the 

global satellite-derived observations from 1982-2007 are used as references to assess the effect of the C-N coupling process 110 

on the long-term mean vegetation distribution using the offline SSiB5/TRIFFID/DayCent-SOM. Some issues and 

conclusionssummary are presented in section 5 and section 6, respectively. 

2 Methods 

2.1 Model description 

2.1.1 SSiB4/TRIFFID model 115 

The Simplified Simple Biosphere Model (SSiB, Xue et al., 1991; Sun and Xue, 2001; Zhan et al., 2003) is a biophysical model 

that simulates fluxes of surface radiation, momentum, sensible heat, and latent heat, as well as runoff, soil moisture, surface 

temperatures, and vegetation GPP, based on energy and water balance and photosynthesis processes. The SSiB was coupled 

with a dynamic vegetation model, the Top-down Representation of Interactive Foliage and Flora Including Dynamics Model 

(TRIFFID), to calculate net primary productivity (NPP), leaf area index (LAI),, canopy height, and PFT fractional coverage 120 

according to the C balance (Cox, 2001; Harper et al., 2016; Liu et al., 2019; Zhang et al., 2015). Moreover, the surface albedo 

and aerodynamic resistances are also updated based on the vegetation LAI, vegetation cover, vegetation height, and greenness. 

Previous work has improved the PFT competition strategy and plant physiology processes to make the SSiB4/TRIFFID 

suitable for seasonal, interannual, and decadal studies (Zhang et al., 2015). SSiB4/TRIFFID includes seven PFTs: (1) broadleaf 

evergreen trees (BET), (2) needleleaf evergreen trees (NET), (3) broadleaf deciduous trees (BDT), (4) C3 grasses, (5) C4 125 

plants, (6) shrubs, and (7) tundra. PFT coverage is determined by NPP, competition between species, and disturbance, which 

includes mortality due to fires, pests, and windthrow. A detailed description and validation of SSiB4/TRIFFID can be found 

in Zhang et al. (2015), Liu et al. (2019), and Huang et al. (2020). In this study, DayCent-SOM (see the next section) is 

introduced and coupled with SSiB5/TRIFFID using the C-N interface coupling framework introduced in this study, which will 

be discussed in section 2.2. 130 
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2.1.2 DayCent-SOM model 

DayCent-SOM, a subset of DayCent that excludes plant growth, soil hydrology, and soil temperature subroutines, consists of 

soil mineral N pools (ammonium and nitrate) and six types of organic C and N pools consisting of two non-woody plant litter 

pools (metabolic and structural), three coarse woody debris pools (from the death of large wood, fine branches, and coarse 

roots), and three kinetically defined organic matter pools (active, slow, and passive); all types of organic pools except the 135 

passive pool have both aboveground and belowground counterparts (Table 1). Non-woody plant litter is partitioned into 

structural (lignin + cellulose) and metabolic (labile) litter based on the lignin:N ratio of the plant material (Parton et al., 1994). 

The coarse woody debris pools decay in the same way that the structural pool decomposes, with lignin and cellulose going to 

the slow soil organic matter pool and the labile fraction going to the active soil organic matter pool. Each type of organic pool 

has its own intrinsic rate of decomposition, which is modified by temperature and moisture (Parton et al., 1994). Additionally, 140 

the decomposition rates of the structural material and coarse woody debris pools are functions of their respective lignin 

fractions. DayCent’s litter decay model has been validated using extensive data from LIDET litter decay experiments from all 

over the world (Bonan et al., 2013). 

 

Table 1. The Nitrogen Pools in DayCent-SOM 145 
 

 

 

 

 150 

 

 

 
Note: dead N refers to woody debris N pools generated from the death of large wood, fine branches, and coarse roots. 
 155 

2.2 Development of a plant carbon–nitrogen (C–N) interface coupling framework 

2.2.1 Conceptual considerations and coupling strategy 

To represent C and N interactions, we develop a plant C-N interface framework to couple biophysical and biogeochemical 

processes in the terrestrial C and N cycles. In this study, we applied the coupling framework to SSiB5/TRIFFID/DayCent-

SOM. The conceptual considerations in developing this framework are presented in this section. For a process-based model, 160 

introducing a consistent coupling philosophy between biophysical and biogeochemical processes is necessary. The surface 

water, radiation, carbon fluxes, and plant litter are calculated by SSiB5/TRIFFID. The soil N dynamics model (DayCent-SOM) 

  Aboveground Belowground 

Mineral N pool   Soil mineral N pools 

Organic N pool 

non-woody litter pools Surface structural N 
Surface metabolic N 

Soil structural N 
Soil metabolic N 

woody debris pool Surface dead N  

kinetically defined 
organic matter pools 

Surface active N 
Surface slow organic N 

Soil active organic N 
Soil slow organic N 
Soil passive organic N 
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is directly driven by soil temperature, soil moisture, net radiation and plant C and N litter inputs into the soil organic pool, 

which are provided by the SSiB5/TRIFFID. DayCent-SOM then computes daily changes in all organic matter and mineral soil 

pools, estimates losses of N from nitrate leaching and N2O, NOx, and N2 emissions, predicts the amount of inorganic N 165 

available to plants, and updates inorganic N pools after accounting for plant N uptake by SSiB5/TRIFFID. Following plant N 

uptake from DayCent-SOM, our plant C-N interface framework describes the effects of N on photosynthesis, plant autotrophic 

maintenance and growth respiration, and plant phenology (Fig. 1). All these effects are associated with a dynamic CNR. In the 

original land surface model (SSiB4/TRIFFID), with assumed unlimited N availability and fixed CNR based on PFT, the 

assimilated C determined the N contents of leaves, stems, and roots, which influenced photosynthesis, autotrophic respiration, 170 

NPP, and LAI. However, more evidence indicates that the CNR is not fixed in plant life, which will be further discussed in 

section 2.2.2. With the dynamic CNR, the effect of N limitation on Rubisco capacity and photosynthesis is assessed (section 

2.2.3). 

 
 175 

Figure 1. Schematic diagram of plant biogeochemistry and nitrogen impacts in SSiB5/TRIFFID/DayCent-SOM. 
Notes: (1) Different background colors represent three different modules: SSiB, TRIFFID, and DayCent/SOM; (2) White boxes indicate the 
main processes involved in C-N coupling in different modules; (3) Vermeil boxes indicate how nitrogen influences plant biogeochemistry 
through the C-N framework. 
 180 

Moreover, nitrogen is not the only dominant regulator of photosynthesis and vegetation dynamics. Reich et al., (2008) 

demonstrated strong relationships between respiration and N limitation based on observational data from various species. In 

the common N concentration range, respiration rates are consistently lower on average in leaves than in stems or roots. 

Therefore, this framework introduces two parameters for stems and roots based on PFT and available N, respectively, to adjust 

the respiration rate (section 2.2.4). Furthermore, N also affects plant phenology and can be remobilized to supply spring bud 185 

break or vegetative shoot extension (Cox, 2001; Kolb and Evans, 2002; Marmann et al., 1997; Millard, 1994; Neilsen et al., 
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1997). The framework includes the impact of N on plant phenology by introducing an N limitation parameter, which will be 

discussed in section 2.2.5. With consideration ofConsidering the effect on phenology, the N limitation effect during the growth 

season is emphasized. All these considerations in the framework should help to understand the effects of N processes toon the 

C cycle more comprehensively. 190 

2.2.2 Dynamic C/N ratioDynamic CNR based on plant growth and soil nitrogen storage 

Plants often face significant challenges in obtaining an adequate supply of nutrients to meet the demands of basic cellular 

processes. Nutrient deficiency may result in decreased soil fertility and/or plant productivity and/or plant fertility(McDowell 

et al., 2008; Morgan and Connolly, 2013; Stenberg and Muola, 2017). Evidence has shown that plant CNR can change with 

nutrient availability (Chen and Chen, 2021; McGroddy et al., 2004; Meyer-Grünefeldt et al., 2015; Sardans et al., 2012; Smith, 195 

1991). Plant cell CNRs are influenced by the accumulation of C polymers, such as carbohydrates, and are greater when cells 

are nutrient starved or exposed to high levels of photosynthetically active radiation (PAR) (Aber et al., 2003; MacDonald et 

al., 2002; Talmy et al., 2014). The studies of ecological stoichiometry (Sterner and Elser, 2002), which investigatesinvestigate 

how the availability of multiple elements, including carbon, nitrogen, and phosphorus, constrains ecological interactions, have 

revealed that plants respond and adapt to lower N availability. Studies show that plants resorb only aboutapproximately 50% 200 

of leaf N on average (Aerts, 1996) to conserve nutrients (Clarkson and Hanson, 1980) and to increase nutrient use efficiency 

(Herbert and Fownes, 1999; Vitousek, 1982). These processes cause changes in the CNR to reduce the impact of N limitation 

(Talhelm et al., 2011; Vicca et al., 2012). 

For the response of vegetation to N limitation, i.e., the strategies in which vegetation invests C to increase N supply under N-

limited conditions, some models represent flexible C/N stoichiometry, while others represent time-invariant C/N stoichiometry 205 

(Kou-Giesbrecht et al., 2023). Importantly, flexible vs. time-invariant C/N stoichiometry determines terrestrial C storage per 

unit N, followed by plant C allocation and partitioning. Plant responses are limited under a fixed CNR, which affects plant 

productivity and litter N content, thus affecting underground biogeochemistry and ultimately C and N uptake and storage. 

Comparing field measurements, it was found that allowing adaptations in the stoichiometry of C and N helped the land model 

improve the terrestrial surface C and N cycle simulation(Drewniak and Gonzalez-Meler, 2017; Medlyn et al., 2015). 210 

In this study, dynamic CNRs are introduced into SSiB5/TRIFFID. This dynamic CNR can enable vegetation to increase N 

uptake under N-limited conditions, reduce N limitation, and sustain terrestrial C sequestration. Plant resistance and adaptation 

to N availability (𝑁!"!#$) are represented by dynamic CNRs in SSiB5. The N availability (𝑁!"!#$) for new growth limits the C 

assimilation rate through the CNRs, i.e., the model-simulated NPP should be no more than the 𝑁!"!#$ × CNR of new plant 

material. In the original TRIFFID parameterization, the CNRs for different plant components (leaf, root, and stem) are fixed 215 

based on plant functional types (Cox, 2001), and the change in CNR that occurs over the ecological process and varies with 

nutrient availability was not considered. A relationship between the CNR and 𝑁!"!#$, based on DayCent’s parameterization, is 

introduced to the SSiB5/TRIFFID/DayCent-SOM for each PFT component (Fig. 2, Eq. 1). 
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𝐶𝑁𝑅 = &

𝐶𝑁𝑅%!& ,																																																																																																																											𝑁!"!#$ ≤ 𝑁%#'
(!"!#$)(,&!'
(&#()(&!'

× 𝐶𝑁𝑅%#' +
(!"!#$)(&#(
(&!')(&#(

× 𝐶𝑁𝑅%!&																																				𝑁%#' < 𝑁!"!#$ < 𝑁%!&
𝐶𝑁𝑅%#',																																																																																																																												��!"!#$ ≥ 𝑁%!&

                 (1) 

where 𝑁!"!#$ is the amount of soil mineral nitrogen that was available at the end of the previous day (g N m-2) calculated from 220 

DayCent-SOM. 

 

Figure 2. The relationship between soil nitrogen availability and plant carbon-nitrogen ratios. 
 

The minimum and maximum amounts of nitrogen (𝑁%#', 𝑁%!&) necessary for the potential 𝑁𝑃𝑃* (g C m-2 day-1), which is 225 

first calculated from the SSiB5/TRIFFID with unlimited N, are: 

𝑁%#' =
(++	*

,(-&!'
	                                                (2) 

𝑁%!& =
(++	*
,(-&#(

 	                                       (3) 

where 𝐶𝑁𝑅%#' and 𝐶𝑁𝑅%!& are the minimum and maximum CNRs, respectively, for each PFT component from DayCent 

(Table 2). Allometric relations and empirical datasets are used to constrain the range of possible CNRs. The CNRs of leaves, 230 

fine roots, and stems were obtained from DayCent’s user manual and other published papers (Parton et al., 1993, 2007). Note 

that Eq. (2) and Eq. (3) are calculated based on the potential NPP; the CNR that is calculated based on Eqs. 1-3 ensures that 

when 𝑁!"!#$ varies between 𝑁%#' and 𝑁%!&	, the plant can adjust the CNR to support this potential NPP (as demonstrated in 

the schematic diagram in Figure 2). That said, N limitation will have no effect on C assimilation as long as 𝑁!"!#$ is greater 

than 𝑁%#' . However, the N content of plant litter falling to the soil was determined by this dynamic CNR. Compared with the 235 
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constant CNR, the range of possible plant carbon variation with dynamic CNR is smaller, reducing the impact of N limitation. 

As reviewed at the beginning of this section, a number of recent studies have demonstrated that allowing adaptations in the 

stoichiometry of C and N would improve plant responses; for instance, an increase in available foliar N decreases the CNR in 

leaves, driving an increase in productivity. 

 240 
Table 2. C-N ranges of leaves, fine roots, and stems for each plant function type (PFT). 

 

 
Plant component 𝐶𝑁𝑅𝑚𝑖𝑛 𝐶𝑁𝑅𝑚ax 

Broadleaf deciduous 
Leaves 20 50 
Roots 40 70 
Stems 200 500 

Broadleaf Evergreen 
Leaves 20 40 
Roots 40 70 
Stems 150 300 

Needleleaf Evergreen 
Leaves 30 60 
Roots 40 60 
Stems 400 800 

C3 grass 
Leaves 20 40 
Roots 40 50 
Stems 40 80 

C4 plants 
Leaves 20 60 
Roots 60 100 
Stem 60 100 

shrub 
Leaves 20 40 
Roots 40 70 
Stems 200 400 

tundra 
Leaves 20 40 
Roots 40 80 
Stems 300 700 

 
Note: The 𝐶𝑁𝑅𝑚𝑖𝑛 and 𝐶𝑁𝑅𝑚𝑎𝑥 data for each PFT component are from DayCent’s user manual and other publications (Parton et al., 1993, 
2007) 
 245 

The DayCent-SOM only provides the total available nitrogen (𝑁!"!#$) for the plant within one grid box (the soil is 3.2 m in 

depth), which consists of several PFTs. To apply equation 1, the nitrogen available for each PFT and its plant components in 

the grid box is calculated as 

𝑁!"!#$(i) = 𝑁!"!#$ ∗ 𝑓𝑟𝑎𝑐# 	                                (4) 

𝑁!"!#$(i, j) = 𝑁!"!#$(i) * ΔCj / Σj ΔCj                  (5) 250 
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where 𝑓𝑟𝑎𝑐# is the fraction of PFT i in one grid, and ΔCj is the fraction of carbon allocated to plant component j, which consists 

of leaves, roots, and stems and is calculated in TRIFFID. 

Furthermore, the dynamic CNR in this framework depends on the degree to which the N demands of different plant components 

(e.g., leaves, roots, and stems) have been satisfied over the past several days, and Eq. 1 prevents unrealistic instantaneous 

downregulation of potential photosynthesis rates. “Instantaneous downregulation” refers to the fact that photosynthesis rates 255 

are limited as soon as N (either in leaves or soil) is not sufficient (Reich et al., 2006; Ghimire et al., 2016), which has been 

applied in some N-limited models (Davies-Barnard et al., 2020). In our framework, by adjusting C/N ratios, the N limitation 

effect under certain conditions does not instantaneously respond to available N. The N limitation will produce effects only 

when available N passes some critical value (see further discussions“Instantaneous downregulation”, which has been applied 

in some N-limited models (Davies-Barnard et al., 2020), refers to the fact that photosynthesis rates are limited as soon as N 260 

(either in leaves or soil) is not sufficient (Reich et al., 2006; Ghimire et al., 2016). In our framework, by adjusting CNRs, the 

N limitation effect under certain conditions does not instantaneously respond to available N. The N limitation will occur only 

when available N exceeds a certain critical value (see further discussion in section 2.2.3). 

 2.2.3 Effect of nitrogen limitation on photosynthesis based on soil available nitrogen and the plant C/N ratioCNR 

The widely used parameterization of photosynthetic C assimilation by the terrestrial biosphere in ESMs, including our model, 265 

is represented by the Farquhar, von Caemmerer, and Berry (FvCB) model of photosynthesis (Collatz et al., 1991; Farquhar et 

al., 1980). At high levels of PAR, the photosynthetic rate is limited by the amount of Rubisco in the leaf and its cycling rate. 

Nitrogen is an important constituent of the Rubisco enzyme and mitochondrial enzymes that regulate respiration and adenosine 

triphosphate (ATP) generation (Makino and Osmond, 1991). As one of the most important photosynthetic model parameters, 

the maximum carboxylation rate by the Rubisco enzyme (V6,89:) is a key parameter in the FvCB model (Farquhar et al., 1980) 270 

and has an extensive range across the models depending on the plant N content (Rogers, 2014). Therefore, leaf N content will 

affect V6,89: and thus GPP. However, the original FvCB model did not explicitly consider the effect of N on photosynthesis. 

While N limitation was introduced to terrestrial biosphere models, they differ in how N limitation in the plant C process is 

represented (Thomas et al., 2015; Fisher et al., 2010b). In a number of LSMs, an empirical relationship is applied to relate 

V6,89: to leaf N content N;<9= to determine the effect of N on photosynthesis, e.g., V6,89: = i> + s> × N;<9=, where the intercept 275 

(i>) and slope (s>) are derived for each PFT based on observations (Kattge et al., 2009; Raddatz et al., 2007). Some studies 

applied the same N limitation factor to NPP or GPP (Ali et al., 2015; Fisher et al., 2010; Ghimire et al., 2016). If NPP is 

adjusted, the same N limitation for photosynthesis is applied for plant respiration, which is not reasonable based on plant 

physiology (Högberg et al., 2017). Such approaches may distort the ratio of NPP and respiration. On the other hand, if only 

the GPP is adjusted for N limitation, then the N limitation for respiration is ignored. 280 

We chose the most physiological method by adjusting the maximum Rubisco carboxylation rate (𝑉?,89:	),	which is proportional 

to the nitrogen content of the Rubisco leaf reserve) during photosynthesis rather than adjusting the NPP at the end of 
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photosynthesis. 𝑉?,%!& regulates both C assimilation and autotrophic respiration, and the photosynthesis assimilation product, 

GPP, is proportional to 𝑉?,%!& ,. Empirical evidence has shown that 𝑉?,%!& decreases with decreasing leaf N (Walker et al., 

2014). We therefore introduce a downregulation of the canopy photosynthetic rate based on the available mineral N for new 285 

growth (𝑁!"!#$) using the N availability factor 𝑓(𝑁). 

𝑉?,%!&,($#%#A = 𝑉?,%!& ∗ 𝑓(𝑁)                              (6) 

The 𝑓(𝑁) is determined by nitrogen availability: 

𝑓(𝑁) = ;
(!"!#$
(&#(

																𝑁!"!#$ ≤ 𝑁%#'
	1																										𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (7) 

Because plants can adjust the relative allocations of C and N during N uptake via N remobilization and resorption to reduce 290 

the impact of N limitation, as discussed in the previous section for dynamic CNR, the N limitation effect on photosynthesis 

only applies when nitrogen availability is lower than the minimum amount of nitrogen (𝑁%#')	necessary for the potential 𝑁𝑃𝑃. 

We take into account the fact that plant responses include resistance and adaptation through this approach along with the 

dynamic CNR to make the N-limiting effect neither linear nor instantaneously downregulate the available N content, as 

discussed in the last section. A linear relationship between 𝑓(𝑁) and 𝑁!"!#$ is valid only when N availability is not sufficient 295 

for the minimum N demand for new growth. 

2.2.4 Improvement in the impact of nitrogen on respiration rates based on field observations 

Based on a database (Reich et al., 2008) of 2510 measurements from 287 species, the relationships between the mass-based 

dark respiration rate and nitrogen concentration of leaves, stems and roots were assessed. The results indicate strong 

respiration–nitrogen scaling relationships for all observations and for data averaged by species. At usual N concentrations, 300 

respiration rates are consistently lower on average in leaves than in stems or roots. In the original SSiB4/TRIFFID, the total 

maintenance respiration (𝑅*%) is given by Cox (2001): 

𝑅*% = 0.012𝑅B?
($C(5C(6

($
	                                                  (9) 

where 𝑅B? is canopy dark respiration and is linearly dependent on 𝑉?,%!&. The introduced N limitation of 𝑉?,%!& in section 2.2.3 

also influences the effect of N on maintenance respiration. 𝑁$ , 𝑁D  and 𝑁E  are the N contents of the leaf, stem, and root, 305 

respectively, and the factor of 0.012 is from the unit conversion. Eq. (9) assumes that the respiration rates in roots and stems 

have the same dependence on the N content as that in leaves. 

Based on the information derived from field measurements for different PFTs (Reich et al., 2008; Wang et l., 2006; Yang et 

al., 1992), we introduce two PFT-specific parameters (𝑅𝑒𝑠𝐴F, 𝑅𝑒𝑠𝐴-) to adjust root and stem respiration. Their values are 

listed in Table 3. 310 

𝑅*%,($#%#A = 0.012𝑅B?
($C-GDH7∗(5C-GDH8∗(6

($
                                    (10) 
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Table 3. The values of 𝑹𝒆𝒔𝑨𝑺 and 𝑹𝒆𝒔𝑨𝑹 for each plant function type (PFT). 

PFT 
Broadleaf 

deciduous 

Broadleaf 

Evergreen 

Needleleaf 

Evergreen 
C3 grass C4 plants shrub tundra 

𝑅𝑒𝑠𝐴! 1.36 1.36 1.44 1.0 1.0 1.25 1.25 

𝑅𝑒𝑠𝐴" 1.72 1.72 1.95 1.3 1.3 1.40 1.40 

 

Since 𝑅𝑒𝑠𝐴F and 𝑅𝑒𝑠𝐴- are generally larger than 1, new 𝑅*% is larger than the original one, and the increased respiration due 315 

to the nitrogen limitation will decrease the NPP. 

2.2.5 Effect of N limitation on the LAI based on plant phenology 

Nutrient availability affects vegetation activity and thus plant phenology (May and Killingbeck, 1992; Millard, 1994; Neilsen 

et al., 1997; Piao et al., 2019; Thomas et al., 2015; Vitasse et al., 2021; Zhou et al., 2022). Studies have demonstrated that 

variations in nitrogen availability could change the spring and fall phenology, such as spring bud break or vegetative shoot 320 

extension (Yang et al., 2016; Yin et al., 2017; Fu et al., 2019), as well as the length of the growing season (Wang and Tang, 

2019; Zhou et al., 2022). Increased soil nitrogen availability could supplement nutrient deficiencies and thus stimulate plant 

growth under low temperatures in early fall (Luke McCormack et al., 2014; Delpierre et al., 2016; Yin et al., 2017) and delay 

the end of the growing season (Wingler et al., 2006). 

In TRIFFID, the leaf mortality rate and a leaf phenology parameter, 𝑝, (Cox, 2001), are introduced to represent the vegetation’s 325 

phenological status (Eqs. 11 and 12) and to adjust the model-simulated seasonal maximum possible leaf area index (𝐿𝐴𝐼J!$!'?G), 

which is based on surface carbon balance (Cox, 2001; Enquist et al, 1998), to determine the actual LAI and produce realistic 

phenology. 

𝐿𝐴𝐼 = 𝑝 × 𝐿𝐴𝐼J!$!'?G                                                      (11) 

B*
BA
= K

−𝛾*																																								𝛾$% > 2𝛾K
	

𝛾*(1 − 𝑝)                          𝛾$% ≤ 2𝛾K
                              (12) 330 

where the leaf constant absolute drop rate 	𝛾* = 20	𝑦𝑟)L, the leaf mortality rate 𝛾$% is a function of temperature 𝑇 (Cox, 2001), 

and the minimum leaf turnover rate 𝛾K = 0.25 (Cox, 2001). This phenology in SSiB4/TRIFFID modulates LAI seasonal 

evolution, which considers leaf mortality and the temperature threshold for leaf drop, but it is not directly linked to N. The 

phenology parameter 𝑝 indicates that “full leaf” is approached asymptotically during the growing season, and 𝑝 is reduced at 

a constant absolute rate when the mortality rate is greater than a certain threshold value. Otherwise, 𝑝 increases, but the rate 335 

of increase decreases as the growing season progresses. 
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Since different N states and supplies affect phenology, as discussed above, this framework includes the impact of N on plant 

phenology by introducing N limitation in SSiB5/TRIFFID/DayCent-SOM to take into account the effects of N on phenology. 

We assume that 𝑝 is limited by N availability, with the new nitrogen limitation 𝑝(	M#%#A determined by 

𝑝(	M#%#A = 𝑓(𝑁) × 𝑝	                                           (13) 340 

where 𝑓(𝑁) is calculated as described in section 2.2.3. 

2.2.6 The computational flow of SSiB5/TRIFFID/DayCent-SOM 

In SSiB5/TRIFFID/DayCent-SOM, SSiB5 provides GPP, autotrophic respiration, and other physical variables, such as canopy 

and soil temperatures and soil moisture, every 3 hours for TRIFFID (Fig. 3). The TRIFFID accumulates the GPP from SSiB5 

and produces biotic C, PFT fractional coverage, vegetation height, and LAI every ten days, which are used to update surface 345 

properties in SSiB5, such as albedo, surface roughness length, and aerodynamic and canopy resistances. The plant C-N 

framework uses meteorological forcings (i.e., air temperature, humidity, wind, radiation, and precipitation) and physical 

variables (i.e., soil moisture and soil temperature) provided by SSiB5 every 3 hours and biophysical properties (vegetation 

fraction and biotic C) provided by TRIFFID, which are updated every ten days. The plant C-N interface framework calculates 

the dynamic CNR, N-limited photosynthesis, and N-impacted respiration rate every 3 hours. C loss and potential N uptake 350 

accumulate within one day in the C-N interface framework, and plant C and N litterfall are transferred to DayCent-SOM at the 

end of the day. DayCent-SOM calculates the amount of inorganic N available for plant N uptake (𝑁!"!#$) and the N losses 

from nitrate leaching and N-trace gas emissions each day. The TRIFFID updates the vegetation dynamics based on the C 

balance on day 10, including PFT competition. The updated vegetation dynamics are transferred to SSiB5 to calculate N-

limited phenology to reflect the impact of N on the C cycle, which is significant during the growth season. 355 
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Figure 3. Flowchart of plant carbon-nitrogen interactions in SSiB5/TRIFFID/DayCent-SOM; the main variables between the two modules 
are listed. 
Notes: Tc: canopy temperature; Ts: land surface temperature; SM: soil moisture; GPP: gross primary productivity; Res: autotrophic 360 
respiration. 
 

2.3 Model forcing and validation data 

Long-term measurements from flux tower sites with different PFTs and global satellite-derived products are employed as 

references to systematically assess the effects of this coupling framework and N limitation on the terrestrial carbon cycle. Flux 365 

tower site data are presented in section 2.3.1. The global meteorological forcing and validation data are listed in sections 2.3.2 

and 2.3.3, respectively. 

2.3.1 Ground measurement data 

To validate the coupled model, thirteen sites with representative biome types and climate zones were selected to evaluate the 

simulations of the seasonal patterns of GPP, sensible heat flux, and latent heat flux. All driving data were a half-hourly dataset, 370 

including air temperature, specific humidity, wind velocity, air pressure, precipitation, and shortwave and longwave radiation 
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data from the FLUXNET 2015 dataset (Pastorello et al., 2020). The GL-ZaH data were obtained from a tundra heath site (Lund 

et al., 2012). The geographical distribution of the selected FLUXNET 2015 sites is displayed in Figure 4, and the detailed site 

information is listed in Table 4. 

 375 
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Figure 4. Geographical distribution of selected FLUXNET 2015 sites. The information on these FLUXNET sites is listed in Table 4. 

 

 380 

 
Table 4. The FLUXNET sites, latitude (LAT), longitude (LONG), plant function type (PFT), and time frame (Time) used for the SSiB5/ 
TRIFFID/DayCent-SOM model validation. 

Site_ID Site name LAT LONG PFT Time 

AU_DaP Daly River Savanna -14.06 131.32 C4 plants 2007-2013 

BR-Sa1 Santarem-Km67-Primary Forest -2.86 -54.96 Broadleaf Evergreen 2002-2011 

CA_Qfo Quebec - Eastern Boreal, Mature Black Spruce 49.69 -74.34 Needleleaf Evergreen 2003-2010 

CN-Dan Dangxiong 30.50 91.07 C3 grass 2004-2005 

DE_Lkb Lackenberg 49.10 13.30 Needleleaf Evergreen 2009-2013 

FI_Hyy Hyytiala 61.85 24.29 Needleleaf Evergreen 1996-2014 

MY_PSO Pasoh Forest Reserve 2.97 102.31 Broadleaf Evergreen 2003-2009 

RU_Ha1 Hakasia steppe 54.73 90.00 C3 grass 2002-2004 

US_Ha1 Harvard Forest EMS Tower (HFR1) 42.54 -72.17 Broadleaf deciduous 1991-2012 
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US_IB2 Fermi National Accelerator Laboratory- Batavia (Prairie site) 41.84 -88.24 C3 grass 2004-2011 

US-KS2 Kennedy Space Center (scrub oak) 28.61 -80.67 Shrub 2003-2006 

US_Prr Poker Flat Research Range Black Spruce Forest 65.12 -147.49 Needleleaf Evergreen 2010-2014 

GL_ZaH Zackenberg Heath 74.47 -20.55 Tundra 2000-2014 

 

2.3.2 Meteorological forcing data 385 

The Princeton global meteorological dataset for land surface modeling (Sheffield et al., 2006) was used to drive the 

SSiB4/TRIFFID global simulations from 1948 to 2007 at 1o x 1o spatial resolution and a 3-hour temporal interval. This dataset, 

which included surface air temperature, pressure, specific humidity, wind speed, downward shortwave radiation flux, 

downward longwave radiation flux, and precipitation, was constructed by combining a suite of global observation-based 

datasets with the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis data. 390 

2.3.3 Global remote-sensing data 

To assess the climatological status, variation, and trends of the simulated LAI, two widely used global LAI products were used 

as references in this study: the Global Inventory Modeling and Mapping Studies (GIMMS) LAI and the Global LAnd Surface 

Satellite (GLASS) LAI. GIMMS-LAI is based on the third generation of the normalized difference vegetation index (NDVI3g) 

from the GIMMS group and an artificial neural network model (Zhu et al., 2013). GIMMS-LAI provides 15-day composites 395 

with a 1/12-degree resolution, 15-day composites, and spans from July 1981 to December 2011. GLASS-LAI is generated 

from Advanced Very High Resolution Radiometer (AVHRR) (from 1982 to 1999 with 0.05-degree resolution) and Moderate 

Resolution Imaging Spectroradiometer (MODIS, from 2000 to 2012 with 1 km resolution) reflectance data using general 

regression neural networks (Xiao et al., 2014). The GIMMS and GLASS LAIs and the meteorological forcing data for the 

overlap period from 1982 to 2007 were remapped to a 1-degree spatial resolution and a monthly temporal interval. 400 

The Model Tree Ensemble (MTE) GPP product (Jung et al., 2009) was used as a reference to evaluate the simulated GPP. 

MTE is based on a machine learning technique in which the model is trained to predict the five C fluxes at FLUXNET sites 

driven by observed meteorological data, land cover data, and the remotely sensed fraction of absorbed photosynthetically 

active radiation (Jung et al., 2009). The trained model was then applied at the grid scale driven by gridded forcing data. The 

MTE-GPP data were resampled to a 1-degree spatial resolution and a monthly temporal resolution. However, the MTE data 405 

do not include CO2 fertilization. Liu et al. (2019) discussed this issue and indicated that the lack of CO2 fertilization mainly 

affects the trend. Since this paper focuses on climatological means as well as differences between different experiments in 

which the CO2 fertilization effect is largely cancelled, the lack of CO2 fertilization in FLUXNET-MTE is not a factor in 

interpreting our results. 
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3 Experimental designs 410 

To illustrate the reliability of the schemes that represent different processes of plant N in our framework, we first evaluated 

the model’s short-term performance using in situ measurements (section 3.2). Then, four sets of sensitivity experiments were 

designed to quantify the major effects of the plant N process and the relative contributions of different plant N processes on 

the terrestrial ecosystem carbon cycle (section 3.3). 

3.1 Initial conditions for the dynamic vegetation model 415 

The initial condition of the dynamic vegetation SSiB4/TRIFFID needs to be obtained from a long-term equilibrium simulation 

(Zhang et al., 2015). There are different ways to initialize the surface conditions for quasi equilibrium simulations. Following 

previous SSiB4/TRIFFID studies (Huang et al., 2020; Liu et al., 2019; Zhang et al., 2015), we set up the initial conditions for 

the run using the SSiB vegetation map and SSiB vegetation table, which are based on ground surveys and satellite-derived 

information (Dorman and Sellers, 1989; Sellers et al., 1986; Xue et al., 2004; Zhang et al., 2015) with 100% occupation at 420 

each grid point for the dominant PFT and zero occupation for other PFTs. We then ran the SSiB4/TRIFFID model with climate 

forcing and the atmospheric CO2 concentration at the 1948 level for 100 years to reach equilibrium. The vegetation and soil 

conditions from the equilibrium results were used as the initial conditions for the subsequent model runs. 

Determining the initial conditions for SSiB5/TRIFFIID/DayCent-SOM was carried out as described for SSiB4/TRIFFID with 

one additional step to initialize the global soil C and N levels. We saved 60 years of daily litter C/N inputs and soil temperature 425 

and moisture conditions from the SSiB4/TRIFFID, which were based on historical meteorological forcings (1948-2007). An 

offline version of DayCent-SOM was run for 2000 years for each grid cell using these 60 years of data, repeated repeatedly, 

to determine the quasi-equilibrium soil C and N levels; these soil C and N values were read in by SSiB5/TRIFFIID/DayCent-

SOM at the start of the global simulation in 1948. This approach was applied for both measurement sites and global 2-D 

simulations. 430 

3.2 Site-level validation 

This paper focuses on the impact of N processes on the climatology of the global carbon cycle. Most current dynamic global 

vegetation models (DGVMs) are mainly focused on long-term (decadal to thousands of years or even longer) simulations at 

the global scale; diurnal and seasonal variations are not the subject of their modeling. Moreover, adequate long-term in situ 

measurements are not available for comparison. However, since the SSiB5/TRIFFID is a process-based model, we can evaluate 435 

the model’s short-term performance using in situ measurements. 

Thirteen sites with representative biome types and climate zones (Table 4 and Fig. 4) were selected to evaluate the simulations 

of seasonal patterns of fluxes across these sites. Site-level simulations were conducted by SSiB4/TRIFFID (a C-only model) 

and SSiB5/TRIFFID/DayCent-SOM separately to validate the model’s performance. The model results were compared against 

the observed daily data obtained by the flux tower, including the GPP, sensible heat flux, and latent heat flux. 440 
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3.3 Global 2D offline control runs and sensitivity runs 

In this study, SSiB4/TRIFFID and SSiB5/TRIFFID/DayCent-SOM were applied to conduct a series of global 2D offline runs 

(Table 5). All these runs employed the quasi-equilibrium simulation results as the initial conditions and were then driven by 

the historical meteorological forcing from 1948 through 2007. The run using SSiB4/TRIFFID is referred to as the control run 

(Exp. SSiB4 hereafter). Using the control simulation, we first evaluated the ability of the model to produce the climatology 445 

and variability of several biotic variables by comparing the results to multiple observation-based datasets. In addition to the 

control run, four sets of sensitivity experiments were conducted to quantify the major effects of the N process and C‒N interface 

coupling methodology on the C cycle. These sensitivity experiments were designed as follows: 

(1) Nitrogen limitation on photosynthesis (Exp. NlPSN): The same meteorological forcing used for the control (Exp. SSiB4) 

drives the model, but dynamic CNR and N limitation on 𝑉?,%!& (Eq. 6) are introduced. The difference between Exp. SSiB4 450 

and Exp. NlPSN indicates the effect of N limitation on photosynthesis. 

(2) Nitrogen impact on respiration rate (Exp. NlResp): The model was driven by the same meteorological forcing used for Exp. 

SSiB4, but dynamic CNR and N impacts on autotrophic respiration (Eq. 10) are introduced. The difference between Exp. 

SSiB4 and Exp. NlResp indicates the effect of N on the respiration rate. 

(3) Nitrogen limitation on Phenology (Exp. NlPhen): The model was driven by the same meteorological forcing used for Exp. 455 

SSiB4, but dynamic CNR and N impacts on phenology (Eq. 13) were introduced. The difference between Exp. SSiB4 and Exp. 

NlPhen indicates the effect of nitrogen limitation on phenology. 

(4) SSiB5/TRIFFID/DayCent-SOM (Exp. SSiB5): The model was driven by the same meteorological forcing used for Exp. 

SSiB4, but all four C-N coupling processes in the framework, i.e., dynamic CNR, N impacts on photosynthesis, autotrophic 

respiration, and phenology, are introduced. The difference between Exp. SSiB4 and Exp. SSiB5 indicates the effect of N 460 

dynamics, especially the sensitivity of C cycle variability and trends to N process coupling. Furthermore, the difference 

between Exp. NlPSN and Exp. SSiB5 indicates uncertainty (or possible errors) due to missing N effects on autotrophic 

respiration and phenology in the coupling framework. 

Although the model runs were from 1948 to 2007, we only present the results from 1982-2007 to avoid spinning up for the 

SSiB5/TRIFFID/DayCent-SOM after SSiB4/TRIFFID and DayCent-SOM each reached their historical equilibrium conditions. 465 

Since the results from Exps. SSiB5 and NlPSN showed statistically significant differences from Exp. SSiB4 over many parts 

of the world; in the following discussion, we will mainly focus on the differences between these two experiments and Exp. 

SSiB4. 

 
Table 5. Experimental design 470 

100-year equilibrium Real-forcing simulation 

1948-2007 

Initial condition 
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Fixed climatology forcing Transient forcing 

Control experiment SSiB4:           Control experiment 

NlPSN:          Nitrogen limitation on photosynthesis (VmaxVc,max), Eq.6 

NlResp:         Nitrogen impact on Respiration rate, Eq.10 

NlPhen:         Nitrogen limitation on Phenology, Eq. 13 

SSiB5:           including all four nitrogen processes 

 

4. Results 

To test this framework, measurements from flux tower sites with different PFTs and global satellite-derived products from 

1982–2007 are employed as references. The results from site simulation and global 2-D simulations are presented in sections 

4.1 and 4.2, respectively. As mentioned in section 2, the framework takes some plant N metabolism processes into account. 475 

To illustrate the relative contributions of different plant N processes to the terrestrial ecosystem carbon cycle, four sets of 

sensitivity experiments were designed (Table 5). The analyses are presented in section 4.2. 

4.1 Evaluations using measurements from flux tower sites 

Land models with dynamic vegetation and nitrogen processes normally focus on long-term climate simulations at large spatial 

scales. In this section, we validate the model performance for thirteen sites with several years of simulation (Table 4) to ensure 480 

that, as a process-based model, the short-term SSiB5/TRIFFID simulation is still able to properly represent the surface 

processes at seasonal scales after the introduction of DayCent-SOM through the interface coupling framework. This evaluation 

also provides a glance at the model’s performance at several sites with various climates and PFTs (Table 4) with short-term 

data to gain preliminary confidence for further evaluation. 

Figures 5, 6, and 7 show that both SSiB4 and SSiB5/TRIFFID/DayCent-SOM produce a reasonable seasonal cycle for GPP, 485 

sensible heat, and latent heat fluxes, respectively, and that the results are close to the observations. Table 6 summarizes the 

major results. We use bias, root-mean-square error (RMSE), and standard deviation to assess model performance against in 

situ site measurements. And the improvement in the SSiB5 model bias compared to SSiB4 that are presented in Table 6, are 

all statistically significant at the α = 0.05 level of the t test values. When we evaluated the average of the 13 sites, the biases 

for GPP and sensible and latent heat fluxes decreased by approximately 7%, 17%, and 2%, respectively. The average RMSEs 490 

over the 13 sites for these three variables also decreased by approximately 2%, consistent with the reduction in bias. 

Furthermore, SSiB5/TRIFFID/DayCent-SOM produced a closer standard deviation for GPP, sensible heat flux, and latent heat 

flux than did SSiB4/TRIFFID for the 13-site averages. Overall, in these short-term simulations with specified initial vegetation 

conditions, both SSiB4 and SSiB5 produce reasonable GPP and surface heat fluxes compared with in situ measurements, but 
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adding N processes (SSiB5) slightly improved the 13-site average. Although these improvements are rather marginal (except 495 

for the bias reduction for sensible heat), the results nevertheless demonstrate that, with short-term simulation, the improvement 

in the model simulations is rather consistent. 

With closer checking of the SSiB4 to SSiB5 results at each site, the results display various characteristics. For instance, while 

some sites showed improvements in all three variables (GPP and latent and sensible heat fluxes), others only showed 

improvements in one or two variables. It should be noted that SSiB4 and SSiB5 are mainly used for global studies. For the 500 

validation of in situ measurements, proper optimization of some site-specific soil and vegetation parameters is necessary (Xue 

et al., 1996, 1997). In this study, no model parameters were optimized during this validation exercise for a better fit between 

the simulated results and FLUXNET measurements. The discussions above led us to conduct long-term experiments at a global 

scale to comprehensively investigate the effects of N processes and to help understand the mechanisms governing the global 

carbon cycle, which will be discussed in the following section. 505 
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Figure 5. Simulated seasonal variations in GPP against observations at thirteen sites representing different SSiB5 PFTs. 

Note: The information about these FLUXNET sites is listed in Table 4.  510 
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Figure 6. Same as Figure 5 but forSimulated seasonal variations in sensible heat flux against observations at thirteen sites representing 

different SSiB5 PFTs. 
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Figure 7. Same as Figure 5 but for theSimulated seasonal variations in latent heat flux. against observations at thirteen sites representing 

different SSiB5 PFTs.  
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Table 6. The GPP, sensible heat flux, and latent heat flux comparisons of bias, standard deviation and RMSE between SSiB4 and SSiB5 at 

the thirteen sites.  520 
 

Site_ID 
Bias Standard deviation RMSE 

 SSiB4 SSiB5 Fluxnet SSiB4 SSiB5 SSiB4 SSiB5 
GPP 
(g C d-1) 

AU_DaP 0.05 -0.05 3.11 2.46 2.33 2.60 2.61 
BR-Sa1 -1.07 -1.20 1.31 0.57 0.55 1.77 1.84 
CA_Qfo -0.05 -0.11 1.71 1.99 1.92 0.78 0.75 
CN-Dan 0.70 0.08 0.92 1.08 1.03 0.80 0.33 
DE_Lkb 0.34 0.25 1.50 1.80 1.71 0.80 0.74 
FI_Hyy -0.11 -0.22 2.93 3.47 3.32 1.51 1.44 
MY_PSO -1.02 -1.20 0.65 1.28 1.21 1.63 1.72 
RU_Ha1 -0.24 -0.27 1.29 1.31 1.27 0.69 0.69 
US_Ha1 0.36 0.27 3.31 3.36 3.30 1.31 1.28 
US_IB2 0.56 0.42 2.91 2.70 2.57 1.80 1.79 
US-KS2 -0.28 -0.52 1.37 1.76 2.01 1.35 1.54 
US_Prr -0.08 -0.10 1.43 1.30 1.28 0.86 0.86 
GL_ZaH 0.28 0.25 0.50 0.53 0.37 0.48 0.43 

13-site average 0.40 0.37 1.76 1.82 1.76 1.26 1.23 
Sensible 
Heat 
Flux 
(W m-2) 

AU_DaP 32.47 23.13 28.26 19.64 21.05 36.24 36.32 
BR-Sa1 45.29 40.94 4.04 16.32 15.98 25.61 25.07 
CA_Qfo -7.04 -2.34 27.77 33.18 29.37 9.54 9.20 
CN-Dan 17.96 18.53 14.44 22.38 20.75 25.60 26.99 
DE_Lkb -3.12 0.16 25.13 35.39 36.91 17.83 18.15 
FI_Hyy 5.53 7.20 28.17 33.57 33.63 8.99 10.91 
MY_PSO 20.49 10.86 10.03 11.30 11.98 39.22 37.99 
RU_Ha1 -0.14 0.84 21.71 39.19 38.02 29.42 29.67 
US_Ha1 -18.34 -15.80 24.40 33.71 29.42 24.33 24.66 
US_IB2 20.21 18.26 11.95 32.89 29.19 23.16 28.72 
US-KS2 27.74 20.81 21.01 19.17 20.14 27.31 24.73 
US_Prr 8.10 9.35 20.93 36.84 35.45 12.02 12.01 
GL_ZaH 2.24 5.03 27.08 36.04 31.48 29.20 27.37 

13-site average 16.05 13.33 20.38 28.43 27.18 23.73 23.98 
Latent 
Heat 
Flux 
(W m-2) 

AU_DaP -11.02 -10.83 45.72 30.03 33.93 36.24 36.32 
BR-Sa1 -20.47 -19.82 16.15 9.44 8.47 25.61 25.07 
CA_Qfo 2.21 0.96 18.06 18.63 17.56 9.54 9.20 
CN-Dan -12.63 -12.57 42.39 22.13 20.77 25.60 26.99 
DE_Lkb -7.39 -10.00 22.81 24.57 20.79 17.83 18.15 
FI_Hyy -3.06 -4.84 23.22 19.21 16.64 8.99 10.91 
MY_PSO -38.18 -36.18 7.07 9.24 11.64 39.22 37.99 
RU_Ha1 -22.89 -23.10 25.68 10.43 10.08 29.42 29.67 
US_Ha1 -11.94 -13.14 27.06 15.53 14.71 24.33 24.66 
US_IB2 -12.90 -17.38 36.91 24.68 20.70 23.16 28.72 
US-KS2 -17.74 -13.41 27.63 20.28 19.65 27.31 24.73 
US_Prr -1.90 -1.87 16.44 9.62 9.68 12.02 12.01 
GL_ZaH 2.76 2.26 10.17 9.67 9.17 11.15 10.48 

13-site average 12.80 12.70 24.56 17.19 16.45 22.68 22.34 
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4.2 Evaluation of GPP and LAI at the Global Scale 

The SSiB model is mainly used for global climate studies. It is important to adequately produce the observed global GPP and 

LAI. The model’s performance in these aspects is evaluated in this section. The SSiB4/TRIFFID-simulated global PFT 

distribution has been extensively discussed inby Zhang et al. (2015) and Liu et al. (2019). The simulation results are generally 525 

consistent with observation.the observations. The spatial distribution from theof SSiB5/TRIFFID/DayCent-SOM did not show 

substantial differencedifferences and will not be discussed here. The simulated GPP averaged over 1982-2007 was compared 

to the FLUXNET-MTE GPP (Jung et al., 2011) to examine the impact of N processes and their coupling with C and ecosystem 

processes. Both SSiB4/TRIFFID (Exp. SSiB4) and SSiB5/TRIFFID/DayCent-SOM (Exp. SSiB5) capture the distribution of 

global GPP (Fig. 8) and its latitudinal distribution (Fig. 9a).  530 

 

 
Figure 8. The 1982-2007 average gross primary production comparison for (a) FLUXNET-MTE GPP (OBS), (b) SSiB4/TRIFFID (SSiB4), 

and (c) SSiB5/TRIFFID/DayCent/SOM (SSiB5) and the difference between (d) SSiB4-OBS, (e) SSiB5-OBS, and (f) SSiB5-SSiB4. 

Note: SCC indicates the spatial correlation coefficient between the model simulation and satellite-derived datasets (OBS). 535 

!"#$%&#'(%) !"#$%&#'(%)

SCC = 0.90 

SCC = 0.88 
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Figure 9. Intercomparisons of latitudinal LAI and GPP among OBS, SSiB4 (control), NlPSN (N limitation on photosynthesis only), and 

SSiB5 (all N processes) over the period of 1982-2007. 

Note: ObservedThe observed LAI is the GIMMS LAI. 540 

a) Latitudinal GPP 

b) Latitudinal LAI 
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Note: the numbers in parentheses are relative biases: (bias/MTE mean) 

 

The highest GPP occurs in tropical evergreen forests and generally decreases with increasing latitude according to both the 

observations and the model simulations (Figs. 8 and 9a). Exp. SSiB4-simulated GPP has a positive bias over many parts of the 545 

world (Fig. 8d), including tropical Africa and the North American and eastern Siberian boreal regions, but a negative bias in 

some regions, mainly in the Amazon tropical forest. The simulated global GPP is 1082.36 g C m-2 yr-1 (Table 7), which is 

higher than the estimated value of 862.86 g C m-2 yr-1 in FLUXNET-MTE (Jung et al., 2011). 
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Table 7. Regional and global GPP for (a) FLUXNET-MTE GPP (observation), (b) SSiB4 (control), (c) NlPSN (N limitation on 550 
photosynthesis only) and (d) SSiB5 (N limitation on photosynthesis, autotrophic respiration, and phenology). 

 

Note: the numbers in parentheses are relative biases (bias/MTE mean).  Except Regions Tibet, the improvement in the SSiB5 and NIPSN  

bias compared to SSiB4 are all statistically significant at the α = 0.05 level of the t test values  

 555 

After introducing N limitation for the three processes, SSiB5 reduced the positive bias in SSiB4 over many parts of the world 

(Figs. 8e, 8f, and 9a). Exp. SSiB5’s global GPP predictionsimulation, 941.81 g C m-2 yr-1, is closer to the observations than 

Exp. SSiB4, with a 16.3% reduction in the bias (Table 7). Furthermore, the interannual variability and annual cycle are also 

assessed. The correlation for interannual variability (Fig. 10a) in SSiB4 is already very high (0.98). SSiB5 continues keeping 

the high correlation as SSiB4.  However, the standard deviations for the observations of SSiB4 and SSiB5 are 14.7, 26.7, and 560 

19.9, respectively. SSiB5 is closer to the observations. The underestimation of interannual variability in terrestrial vegetation 

production by terrestrial ecosystem models (Lin et al., 2023: MacBean et al., 2021) does not appear in this study. The temporal 

correlation coefficients between the observed and simulated monthly/annual mean GPPs for the Northern and Southern 

Hemispheres increased from 0.4673/0.9850 (Exp. SSiB4) to 0.50/0.9975/0.55 (Exp. SSiB5), respectively (Fig. 10Figs. 10b 

and c), showing improvement in the simulation of the seasonal cycle in SSiB5. The correlation for interannual variability in 565 

SSiB4 is already very high (0.98). SSiB5 continues the high correlation of SSiB4. 
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Figure 10. Intercomparisons of (a) global annual mean GPPs among OBS, SSiB4 (control), NlPSN (N limitation on photosynthesis only), 

and SSiB5 (all N processes); (b) and (c). Monthly mean GPPs averaged over the period of 1982-2007 for the Northern Hemisphere (0° to 

50°N) and Southern Hemisphere (60°S to 0°). 570 
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Figure 11. Intercomparisons of (a) global annual mean LAIs among OBS, SSiB4, NlPSN, and SSiB5; (b) and (c). Monthly mean LAIs 

averaged over the period of 1982-2007 for the Northern Hemisphere (0° to 50°N) and Southern Hemisphere (60°S to 0°). 

Note: The observed LAI is the GIMMS LAI. 
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The improvement, however, is not homogeneous across the globe but displays apparent regional characteristics. The GPP 575 

biases in tropical Africa, the North American boreal region, the South American savanna, and the central U.S. showed 

substantial reductions (Fig. 8f), which helped improve the spatial distribution of SSiB5. The global spatial correlation 

coefficient increases from 0.88 to 0.90 (Fig. 8). Moreover, the GPP simulations did not improve in some regions, such as in 

temperate East Asian mixed forest-grassland regions and in some areas of Siberia (Fig. 8). In particular, the negative GPP bias 

in the Amazon increased (Fig. 8f). This phenomenon also appeared in the offline test at the Amazon site (the BR-Sa1 site, 580 

Table 4). Du et al. (2020) indicated that phosphorus (P) has a greater effect in tropical areas. We will further discuss this issue 

in section 5. 
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 585 
Figure 10. Intercomparisons of global monthly/annual mean GPPs among 12. The 1982-2007 average LAI comparison for (a) GIMMS LAI 

(OBS,), (b) SSiB4 (control), NlPSN (N limitation on photosynthesis only/TRIFFID (SSiB4), and (c) SSiB5 (all N processes) over/TRIFFID/ 

DayCent/SOM (SSiB5) and the period of 1982-2007.difference between (d) SSiB4-OBS, (e) SSiB5-OBS, and (f) SSiB5-SSiB4.  

Note: SCC indicates the spatial correlation coefficient between the model simulation and the GIMMS LAI (OBS). 

 590 
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Figure 11. Same as Figure 10 but for the LAI. 

Note: Observed LAI is the GIMMS LAI. 

 595 

Furthermore, the effect of N limitations on the LAI simulation was also investigated. Compared with satellite-derived products, 

both SSiB4 and SSiB5 exhibit reasonable spatial distributions (Figs. 12a-c). The highest LAI occurs in tropical evergreen 

forests and decreases with latitude in both the observations and the model (Fig. 9b). Compared with the control, Exp. SSiB5 

also generally reduced the positive bias in the simulated LAI (Fig. 12f). The simulated LAI in Exp. SSiB4 has a global positive 

bias. After introducing the three N limitation processes, the positive bias decreased over most parts of the world (Fig. 12f). 600 

Globally, Exp. SSiB5 has an LAI bias of 0.94/1.12 for GIMMS/GLASS, respectively (Table 8), which is lower than the LAI 

bias of 1.26/1.44 for GIMMS/GLASS, respectively, in Exp. SSiB4, with a substantial 31.1% reduction in the bias (compared 
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to GIMMS, Table 8). However, a substantial positive bias still exists across the globe (Fig. 12e). Our study showed that 

imposing N limitation is an adequate step to overcome dynamic vegetation models’ systematic LAI positive bias, but this issue 

has still not been resolved and requires further investigation. In addition, the correlation coefficients between the observed and 605 

simulated monthly/annual average LAIs (Fig. 11a) improved from 0.49/0.97 (Exp. SSiB4) to 0.51/0.98 (Exp. SsiB5) (Fig. 

11).11a), and the monthly mean LAIs for the Northern and Southern Hemispheres improved from 0.66 to 0.67 and from 0.34 

to 0.35, respectively (Figs. 11b and c). The improvement is statistically significant (p< 0.05) but rather marginal. 

 
Table 8. Regional and global LAI for (a) GIMMS LAI (observation), (b) GLASS LAI (second observation), (c) SSiB4 (control), (d) 610 
NlPSN (N limitation on photosynthesis only) and (d) SSiB5 (N limitation on photosynthesis, autotrophic respiration, and phenology). 

 
Figure 12. Same as Figure 8 but for the LAI. 

Note: SCC indicates the spatial correlation coefficient between the model simulation and the GIMMS LAI (OBS). 

 615 
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Note: The bias is relative to the GIMMS LAI; The numbers in parentheses are relative biases. The improvement in the SSiB5 and NIPSN  

bias compared to SSiB4 are all statistically significant at the α = 0.05 level of the t test values 

 

It is interesting to note that despite the global general LAI reduction, SSiB5 slightly increased the LAI estimation in North 620 

Africa and India (Fig. 12). The impacts of N on phenology and respiration cause a slight shift in vegetation from shrubs (N. 

Africa) or C4 plants (India) to C3 grasses in these areas, which contributes to the increases in GPP and LAI (Fig. 13). 

Furthermore, in areas such as the Amazon and East Asian mixed forest-grassland regions, SSiB5 improved only the LAI 

simulation and not the GPP simulation.  

 625 
Table 8. Regional and global LAI for (a) GIMMS LAI (observation), (b) GLASS LAI (second observation), (c) SSiB4 (control), (d) NlPSN 

(N limitation on photosynthesis only) and (d) SSiB5 (N limitation on photosynthesis, autotrophic respiration, and phenology). The bias is 

relative to the GIMMS LAI. 

 
Note: the numbers in parentheses are relative biases 630 
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Figure 13. The 1982-2007 average gross primary production difference (a) NlPSN-OBS, (b) NlPSN-SSiB4, (c) NIResp+NIPhen, and leaf 

area index difference (d) NlPSN- OBS, (e) NlPSN- SSiB4, (f) NIResp+NIPhen 

Note: NlPSN is N limitation on photosynthesis (Vc, max) only. 

 635 

We imposed N limitation on several processes. Among them, Exp. NIPSN has the largest and most significant impact. This 

paper mainly discusses the results from Exp. NlPSN, which applies Eq. (6) to scale down the 𝑉?,%!&.Exp. NIPSN has a lower 

global GPP bias (128.52 g C m-2 yr-1) than does Exp. SSiB4 (219.50 g C m-2 yr-1) (Fig. 13, Table 7), but it is larger than that 

of Exp. SSiB5, in which the bias is 79 g C m-2 yr-1 (Table 7). In addition, Exp. NlPSN has a global LAI bias of 1.13 (Fig. 13, 

Table 8), which is also lower than the LAI bias in Exp. SSiB4 (1.26) but higher than that in Exp. SSiB5 (0.94). The largest 640 

reductions in the magnitude of the LAI bias are in North America, the Eurasian continent, and tropical savanna regions in 

South America and Africa (Figs. 13b and 13e). That said, N limitation of photosynthesis plays a dominant role, contributing 

to approximately 65%/41% of the improvement in the GPP/LAI simulations in Exp. SSiB5, respectively. Adjusting 𝑉?,%!& is 

the most direct and process-based approach based on physiology and has the greatest impact. However, the effects of N 

limitation on the other two processes are still substantial. The N limitations on respiration and phenology have the greatest 645 

impact in tropical forest and savanna regions (Figs. 13c and 13f). The GPP also reduced the positive bias over boreal regions 

and the negative bias over polar regions. The results from Exp. NlResp or Exp. NlPhen individually did not show a statistically 

significant impact. However, the sum of these two N limitations still has substantial impacts on many parts of the world, as 

displayed in Fig. 13b, mainly in tropical rainforests and some midlatitude regions. In addition, the differences between Exp. 
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SSiB5, which includes three limitations, and Exp. NIPSN, as displayed in Figs. 10 and 11, also delineate the characteristics of 650 

the global impacts of these two effects at seasonal and interannual scales. 

5 Discussion and Conclusions 

Despite the general improvement in the global simulation of SSiB5/TRIFFID/DayCent-SOM, compared to that of SSiB4, there 

are several issues for which further research is warranted. The GPP simulation in temperate East Asian mixed forest-grassland 

regions seems to be worse with SSiB5 than with SSiB4. In some regions, such as the Amazon, while SSiB4 produced lower 655 

GPP than did the observations, the imposed N limitation in SSiB5 further increased the bias in these regions. Recently, the 

important influence of phosphorus availability on terrestrial ecosystem carbon uptake has been increasingly recognized (Du et 

al., 2020). Latest initiated ecosystem-scale manipulation experiments in phosphorus-poor environments (Fleischer et al., 2019) 

call for the need for new phosphorus-enabled LSMs to track these actions (Goll et al., 2017; Reed et al., 2015). We plan to 

incorporate other plant processes, such as plant/soil phosphorus processes, to further improve the performance of the model in 660 

the future. More evaluations of regions where N limitation is not dominant are necessary. 

Although the global GPP of SSiB5 was similar to the satellite-derived GPP, the positive bias for the LAI was still very large 

(Table 8). Recent review papers seem to confirm that overestimation of LAI is a common issue in current dynamic vegetation 

models. Murray-Tortarolo et al. (2013) and Anav et al. (2013) evaluated the performance of dynamic vegetation models in 

simulating LAI from a CMIP model intercomparison. The simulated LAI for almost every dynamic vegetation model is twice 665 

as large as the satellite-derived LAI. More recent studies (Zaehle et al., 2015; Mueller et al., 2019; Gristina et al., 2020; Oliveira 

et al., 2021; Heikkinen et al., 2021) have confirmed this shortcoming in current dynamic vegetation models. The cause(s) of 

this shortcoming need to be further investigated. 

Anthropogenic N input is one of the major factors affecting C–N coupling and N limitation. The anthropogenic N inputs to 

terrestrial ecosystems have been much greater than the vegetation N fixation in recent decades in some areas, such as eastern 670 

China and the central USA. As such, anthropogenic N input can relieve N limitations there (Tian et al., 2022). Due to the scope 

of this paper, we did not use anthropogenic N inputs to drive our model. This is an important issue for further investigations 

to comprehensively understand the effect of N limitation. 

Finally, this is an offline experiment in which the atmospheric forcing (such as downward radiation) is fixed. With a fixed 

atmospheric demand, the heat flux response due to the N limitation effect is also limited, as shown in section 4.1. A 675 

comprehensive assessment of the effect of N limitation on heat fluxes and atmospheric circulation needs to be conducted in a 

fully coupled atmosphere–land model. 

6. Summary 

This study presents improvements in modeling the C cycle compared to that of SSiB4/TRIFFID by introducing plant N 

processes into SSiB5/TRIFFID/DayCent-SOM, using. The DayCent-SOM to obtainprovides the amount of N available to 680 

plants and plant soil N uptake. The approach presented in this study can also be applied to other models with similar physical 
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and biological principles. The new C-N coupling framework allows us to usetakes a consistent coupling strategy between 

biophysical and biogeochemical processes and mainly focuses on the effects of N limitation on plant photosynthesis, plant 

respiration, and plant phenology. The dynamic plant CNR is used to represent plant resistance and response to N stress, which 

allows adaptations in the stoichiometry of C and N. Since these processes can increaseThis approach increases nutrient use 685 

efficiency and reduce the impact of N limitation throughtakes into account N remobilization and resorption,; the N limitation 

effect does not necessarily linearly or instantaneously respond to the available N content.  A linear relationship between the N 

limitation factor and available N is valid only when N availability is not sufficient for the minimum N demand for new growth. 

This is an advantage of our approach. With the new model structure, the impacts of N on GPP are predictedsimulated directly 

but not linearly with leaf N content, which is affected by the state of plant growthN sufficiency, autotrophic maintenance and 690 

growth respiration, and plant phenology. 

By comparing site-level results from SSiB4 and SSiB5 to FLUXNET GPP and surface heat fluxes from thirteen sites 

withobservations of representative biome types and climate zones, we gained confidence in the ability of the new N processes 

to enhance produce observed variations and encouraged us to carry out assessments of global model performance. We also 

evaluated for GPP and LAI simulations. The more realistic representation of the model performance against global satellite 695 

product datasets for GPP and LAI. Inplant C-N framework, including the dynamic CNR, leads to general, with improvements 

in the global C cycling simulations of SSiB5/TRIFFID/DayCent-SOM. With the new plant C-N coupling framework, 

SSiB5/TRIFFID/DayCent-SOM produced significantly less absolute bias for GPP and LAI than did the baseline version of 

SSiB4/TRIFFID (without N processes), with areduced the global decrease in the bias in GPP and LAI ofby 16.3% and 27.1%, 

respectively. The main improvements are found in tropical Africa and the boreal forest. The more realistic representation of 700 

the dynamic CNR and plant C-N framework leads to general improvements in the global C cycling simulations of 

SSiB5/TRIFFID/DayCent-SOM. From the perspective of plant physiology (Högberg et al., 2017), the downregulation of the 

canopy photosynthetic rate based on the available mineral N for the growth of plant tissues is more reasonable than the simple 

and direct downregulation of GPP or NPP. In fact, we conducted a test to directly downscale GPP and NPP, and our simulation 

results (not shown) support this viewpoint. This coupled model can better reproduce observed state variables and their 705 

emergent properties (such as GPP, NPP, LAI, and respiration).  

Despite the general improvement globally, the GPP simulation in temperate East Asian mixed forest-grassland regions seems 

to be worse with SSiB5 than with SSiB4. In some regions, such as the Amazon, while SSiB4 produced lower GPP than did 

the observations, the imposed N limitation in SSiB5 further increased the bias in these regions. Recently, the important 

influence of phosphorus availability on terrestrial ecosystem carbon uptake has been increasingly recognized (Du et al., 2020). 710 

Recently, initiated ecosystem-scale manipulation experiments in phosphorus-poor environments (Fleischer et al., 2019) call 

for the need for new phosphorus-enabled LSMs to track these actions (Goll et al., 2017; Reed et al., 2015). We plan to 

incorporate other plant processes, such as plant/soil phosphorus processes, to further improve the performance of the model in 

the future.  More evaluations for regions where N limitation is not dominant are necessary. 
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Although the global GPP of SSiB5 was similar to that of the satellite- derived GPP, the positive bias for the LAI was still very 715 

large (Table 7). Recent review papers seem to confirm that overestimation of LAI is a common issue in current dynamic 

vegetation models. Murray-Tortarolo et al. (2013) and Anav et al. (2013) evaluated the performance of dynamic vegetation 

models in simulating LAI from a CMIP model intercomparison. The simulated LAI for almost every dynamic vegetation 

model is twice as large as the satellite-derived LAI. More recent studies (Zaehle et al., 2015; Mueller et al., 2019; Gristina et 

al., 2020; Oliveira et al., 2021; Heikkinen et al., 2021) have confirmed this shortcoming in current dynamic vegetation models. 720 

Further investigations are necessary. 

Anthropogenic N input is one of the major factors affecting C–N coupling and N limitation. The anthropogenic N inputs to 

terrestrial ecosystems have been much greater than the vegetation N fixation in recent decades in some areas, such as eastern 

China and the central USA, which can relieve N limitations (Tian et al., 2022). Due to the scope of this paper, this issue is not 

addressed in this paper but is an important subject for further investigation to comprehensively understand the N limitation 725 

effect. Finally, this is an offline experiment in which the atmospheric forcing (such as downward radiation) is fixed. With a 

fixed atmospheric demand, the heat flux response due to the N limitation effect is also limited, as shown in section 4.1. A 

comprehensive assessment of the effect of N limitation on heat fluxes and atmospheric circulation needs to be conducted in a 

fully coupled atmosphere–land model. 

Although significant progress has been made in recent years in incorporating the N cycle and its effect on the C cycle in the 730 

terrestrial biosphere in a number of ESM LSMs (with various representations of N processes), our and other relevant studies 

suggest that there are still many important outstanding issues, some of which were discussed in Section 5, and further efforts 

in improving terrestrial biosphere modeling that represents the coupled C–N cycle are imperative for realistic process 

representation (Davies-Barnard et al., 2020; Kou-Giesbrecht et al., 2023) to better simulate N/C/climate interactions and future 

projections. We hope our efforts presented in this paper can stimulate more effort to work in this direction.  735 
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