

1 Factors controlling spatiotemporal variability of soil carbon accumulation and stock estimates in a tidal
2 salt marsh

3 Author Information:

4 ^{1,5} Sean Fettrow ORCID: 0000-0003-1191-4484

5 ² Andrew Wozniak ORCID: 0000-0002-7079-3144

6 ^{3,4} Holly A. Michael ORCID: 0000-0003-1107-7698

7 ^{1,3} Angelia L. Seyfferth ORCID: 0000-0003-3589-6815

8

9 ¹Department of Plant and Soil Sciences, University of Delaware, Newark DE, USA

10 ²School of Marine Science and Policy, University of Delaware, Lewes DE, USA

11 ³Department of Earth Sciences, University of Delaware, Newark DE, USA

12 ⁴Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, USA

13 ⁵Oak Ridge National Laboratory, Environmental Sciences Division

14

15 * Corresponding Author: Angelia Seyfferth, angelias@udel.edu

16

17

18 **Abstract**

19 Tidal salt marshes are important contributors to soil carbon (C) stocks despite their relatively small land
20 surface area. Although it is well understood that salt marshes have soil C burial rates orders of magnitude
21 greater than those of terrestrial ecosystems, there is a wide range in ~~storageaccrual~~ rates among spatially
22 distributed marshes. In addition, wide ranges in C ~~storageaccrual~~ rates also exist within a single marsh
23 ecosystem. Tidal marshes often contain multiple species of cordgrass due to variations in hydrology and
24 soil biogeochemistry caused by microtopography and distance from tidal creeks, creating distinct subsites.

25 Our overarching objective was to observe how soil C concentration ~~changesand dissolved organic carbon~~
26 ~~(DOC) vary~~ across four plant phenophases and across three subsites categorized by unique vegetation;
27 ~~and hydrology, and biogeochemistry, while. We also investigatinginvestigated the~~ dominant
28 biogeochemical controls on ~~the spatiotemporal variability of~~ soil C ~~eonecentrationand DOC~~
29 ~~concentrations~~. We hypothesized that subsite biogeochemistry drives spatial heterogeneity in soil C
30 concentration, and this causes variability in ~~total~~ soil C ~~and DOC~~ concentration at the marsh scale. In
31 addition, we hypothesized that soil C concentration and porewater biogeochemistry vary temporally
32 across the four plant phenophases (i.e., senescence, dormancy, green-up, maturity)~~, causing further~~
33 ~~variation in marsh soil C that could lead to uncertainty in soil C estimates.~~). To test these ~~interrelated~~
34 hypotheses, we quantified soil C ~~and DOC~~ concentrations in 12 cm sections of soil cores (0-48 cm depth)
35 across time (i.e., phenophase) and space (i.e., subsite), alongside several ~~porewater biogeochemical~~
36 ~~variables including dissolved organic carbon (DOC), EEMs/ UV VIS, redox potential, pH, salinity,~~
37 ~~reduced iron (Fe²⁺), reduced sulfur (S²⁻), and total porewater element (Fe, Ca) concentrations in three~~
38 ~~distinct subsites other porewater biogeochemical variables.~~ Soil C concentration varied significantly
39 (p<0.05) among the three subsites and was significantly greater during plant dormancy. Soil S, porewater
40 sulfide, redox potential, and depth predicted 44% of the variability in soil C concentration. ~~There were~~
41 ~~also significant spatial differences in the optical characterization properties of DOC across subsites.~~ Our
42 results show that soil C varied spatially across a marsh ecosystem up to 63% and across plant phenophase
43 by 26%, causing variability in soil C ~~storageaccrual~~ rates and stocks depending on where and when

44 samples are taken. This shows that hydrology, biogeochemistry, and ~~ecological function~~plant phenology
45 are major controls on ~~saltmarsh~~salt marsh C content. It is, ~~therefore~~, critical to consider ~~spatial and~~
46 ~~temporal~~spatiotemporal heterogeneity in soil C concentration and por~~water~~ biogeochemistry to account
47 for these sources of uncertainty in C stock estimates. We recommend that multiple locations and sampling
48 timepoints are sampled when conducting blue C assessments to account for ~~soil carbon~~ecosystem-scale
49 variability ~~and uncertainty in C stock estimates.~~

50

51 1 Introduction

52 Coastal blue carbon (C) cycled in tidal salt marshes is critically important for global soil C
53 sequestration despite the small relative land area (McOwen et al. 2017). High primary productivity
54 coupled with high sedimentation rates and slowed organic C decomposition due to flooded anoxic soils
55 allow salt marshes to rapidly accrete and preserve soil C (Arias-Ortiz et al. 2018). Soils in such
56 ecosystems retain approximately 15% of their yearly primary productivity in soils compared to just 1%
57 for tropical rainforests (Duarte 2017). Restoring, protecting, and artificially creating salt marshes can
58 facilitate removal of CO₂ from the atmosphere and storage in soils on timescales conducive to climate
59 change mitigation goals. These ecosystems should therefore be included in climate mitigation policy
60 (Ewers Lewis et al. 2019; Serrano et al. 2019). However, a wide range of global salt marsh soil C
61 sequestration rates of ~ 1 to >1100 g C m⁻² year⁻¹ has been reported (Wang et al. 2021). The inclusion of
62 salt marshes in improved climate mitigation policy is, in part, contingent upon improving our
63 understanding of the environmental variables causing wide ranges in marsh soil C concentration and thus
64 soil sequestration rates (Saintilan et al. 2013; Macreadie et al. 2019). Understanding key controls on salt
65 marsh soil C variability will also decrease uncertainty in Earth System Models and inform new policy
66 aimed at protecting these valuable ecosystems.

67 Soil C concentrations in salt marsh ecosystems vary spatially across the globe. Part of this
68 variation is explained by regional environmental controls such as average annual air temperature (Chmura

69 et al. 2003), geomorphic setting (van Ardenne et al. 2018), salinity gradients, inundation frequency (van
70 de Broek et al. 2016; Baustian et al. 2017; Luo et al. 2019), rainfall patterns (Sanders et al. 2016;
71 Negandhi et al. 2019), soil controls such as pH, soil moisture, and soil type, as well as plant controls such
72 as the dominant plant species and soils (Bai et al. 2016; Ford et al. 2019). Soil C accumulation rates also
73 vary based on the age of the marsh and tend to be highest in newly expanding marsh edges (Miller et al.
74 2022). Other logistical factors contributing to variability and heterogeneity in salt marsh blue C estimates
75 include the type of corer used (Smeaton et al. 2020) and the depth of soil that is integrated into storage
76 soil C accrual rates (Bai et al. 2016; Van De Broek et al. 2016; Mueller et al. 2019). While understanding
77 global and regional controls on soil C is important for reducing uncertainty in C estimates, understanding
78 site-level factors is also critical because ecosystem-level variability can be just as high as regional- to
79 global-level variability (Ewers Lewis et al. 2018). Belowground biogeochemical heterogeneity is often
80 noticeable in can be attributed to the aboveground vegetation and plant controls due to striking zonation
81 of marsh grass species across the marsh platform. This is often attributable toassociated with small
82 spatial-scale changes in hydrologic patterns (Guimond et al. 2020b, a) based on proximity to the tidal
83 channel that drives unique subsite biogeochemistry (Seyfferth et al. 2020) which subsequently determines
84 the type of vegetation that can survive within a given tidal zone (Davy et al. 2011). While tidal zonation
85 alters vegetation and belowground biogeochemistry, it remains unclear if soil C concentrations are
86 directly or indirectly altered by these dynamicscoupled plant and soil biogeochemical controls.

87 Primary production rates may partially control soil C concentration and may vary among
88 vegetative zones. For example, the short form of *Spartina alterniflora* has a lower primary production rate
89 than the tall form (Roman and Daiber 1984) and *Phragmites australis* has above and below ground
90 production rates two times that of the shorter *Spartina patens* (Windham 2001). Belowground
91 productivity includes root exudates (Luo et al. 2018) in the formproduction of dissolved organic carbon
92 (DOC), which could can arise from root exudation (Luo et al. 2018) and influence soil C concentration
93 because belowground productivity often exceeds above-ground productivity in these ecosystems (Frasco
94 and Good 1982). Even though DOC exudates are considered to be labile (Yousefi Lalimi et al. 2018),

95 they may contribute to soil C accumulation over time due to microbial transformation (Valle et al. 2018)
96 and association with soil minerals such as Fe oxides (Chen et al. 2014; Chen and Sparks 2015; Sowers et
97 al. 2018a, b, 2019). The optical characterization of DOC-~~quantified by optical properties~~ of chromophoric
98 dissolved organic carbon (CDOM) can also affect degradability (Clark et al. 2014) and may differ across
99 the marsh platform as a result of differing plant species.

100 SubsitesVegetation zones or subsites can have unique biogeochemical signatures based on soil
101 redox conditions and inundation extent and frequency. For example, high marsh areas and areas near tidal
102 channels have soils which are at least periodically oxic to sub-oxic and are dominated by iron (III)
103 reduction, whereas low marsh areas have continuously inundated soils and are dominated by sulfate
104 (SO_4^{2-}) reduction (Seyfferth et al. 2020). While these biogeochemical characteristics can directly
105 influence vegetation (Moffett and Gorelick 2016) and thus indirectly influence soil C concentrations,
106 theythese heterogeneous biogeochemical characteristics may also directly affect soil C through the
107 interactions of soil C cycling with soil minerals. Fe oxides have an intimate role in the C cycle and C
108 stabilization in soils experiencing dynamic redox fluctuation (Sodano et al. 2017), as previous work has
109 shown that 99% of the dissolved Fe in the ocean is complexed with organic ligands (Whitby et al. 2020)
110 and ~21% of all organic C in marine sediments is bound to reactive Fe species (Lalonde et al. 2012). Fe
111 oxides may play an important role in C stabilization in soils experiencing dynamic redox fluctuation. Fe
112 oxides can protect DOC against microbial degradation through physiochemical protection (Blair and Aller
113 2012; Chen and Sparks 2015; Sodano et al. 2017; Sowers et al. 2018a; Dorau et al. 2019; Wordofa et al.
114 2019), but these organo-mineral assemblages can be dissociated under reducing conditions (Riedel et al.
115 2013; Wordofa et al. 2019; Lacroix et al. 2022; Fettrow et al. 2023a). Therefore, examining the spatial
116 variability in soil biogeochemistry and relating those variables to soil C concentration may elucidate
117 important mechanisms that cause the wide range in salt marsh soil C concentrations.

118 While it is critical to assess spatial heterogeneity in soil C concentration, it is also important to
119 assess temporal variability. The temporal assessment of soil C in salt marshes often considers long-term
120 trends of historic C burial rates (Cusack et al. 2018; McTigue et al. 2019; Breithaupt et al. 2020; Cuellar-

121 Martinez et al. 2020), but variability of salt marsh soil C concentrations may also occur on shorter time
122 scales such as across a single year. Several studies suggest salt marsh soil C does not significantly change
123 across seasons throughout the year (Yu et al. 2014; Zhao et al. 2016), even though major changes in soil
124 biogeochemical variables occur on this timescale (Koretsky et al. 2005; Negrin et al. 2011; Seyfferth et al.
125 2020; Trifunovic et al. 2020; Zhu et al. 2021). While soil C concentration may be stable across seasons, it
126 is unclear if soil C concentration changes based on site-specific plant phenology. The phenophase of a
127 marsh is associated with the greenness index of vegetation (Trifunovic et al. 2020) and is strongly
128 associated with C dynamics in wetland systems (Desai 2010; Kang et al. 2016). Soil C concentration
129 should be measured across plant phenophase to determine if temporal changes in phenology alter soil C
130 concentration ~~and cause another source of, adding to~~ variability in ~~ecosystem scale~~blue C estimates.

131 To address these knowledge gaps, we conducted a year-long study of a temperate tidal salt marsh
132 to assess how soil C concentration and porewater biogeochemistry change in space (subsite) and time
133 (phenophase). Our overarching research objectives were to understand how soil C ~~and porewater DOC~~
134 concentration and ~~soil biogeochemistry properties~~ change across spatial and temporal scales, and to
135 investigate key biogeochemical ~~mechanisms influencing soil drivers of these~~ C
136 ~~concentration concentrations~~ at the ecosystem level. We hypothesized that subsites would contain
137 significantly different concentrations of soil C due to differences in soil biogeochemistry across the marsh
138 platform. We further hypothesized that soil C concentration and associated ~~porewater DOC and~~
139 biogeochemistry would significantly differ across plant phenophase. Our results improve understanding
140 of mechanistic controls on salt marsh soil C with implications for characterizing and reducing uncertainty
141 in C sequestration estimates, while also adding to the body of literature that shows tidal salt marshes are
142 critical reservoirs of sequestered C.

143 **2.0 Methods and Materials**

144 **2.1 Field Site**

145 This study was conducted at the St. Jones National Estuarine Research Reserve located in Dover,
146 Delaware (Figure 1). The ecosystem is classified as a temperate mesohaline tidal salt marsh with a tidal

147 creek salinity ranging from 5 to 18 ppt (Capooci et al. 2019). Three separate subsites were previously
 148 identified at this site, each with a different vegetation type and hydrology (Guimond et al. 2020a; Seyfferth
 149 et al. 2020). The subsite nearest the channel is primarily colonized by the tall form of *Spartina alterniflora*
 150 and has semidiurnal tidal oscillation. This subsite is hereafter referred to as Tall Spartina (TS). Farther from
 151 the tidal channel, the elevation is slightly higher due to a natural levee and flooding of the upper 25 cm of
 152 soil occurs only during spring tides; this location has the larger cordgrass *S. cynosuroides* and is hereafter
 153 referred to as Tall Cordgrass (TC). The third subsite is farthest from the tidal channel, lowest in elevation,
 154 and is primarily colonized by the short form of *S. alterniflora* due to near continuous inundation; this subsite
 155 is hereafter referred to as Short Spartina (SS). These subsites have distinct hydro-biogeochemistry and
 156 vegetation that varies across small spatial scales and thus provides an ideal setting to understand site-level
 157 variability in soil C concentration, porewater biogeochemistry and their relationships.

158

159 **Figure 1.** Map of the field site located at the St Jones Reserve near Dover, DE. Three unique subsites (TS,
 160 TC and SS) have been characterized based on previous studies at this field site showing subsite specific
 161 hydrology, vegetation, and biogeochemistry based on distance from the tidal creek (Guimond et al.¹⁶² 2020a;
 Seyfferth et al.¹⁶² 2020). The coring locations were sampled in triplicate (Core A, B and C), with core A

163 starting closest to the creek and each subsequent core in each subsite being ~30cm from one another.
164 The base layer for the map was obtained from public base layers in QGIS (© Google Maps).

165
166
167

2.2 Soil Sampling and Analysis

168 Soil cores were obtained from each of the three subsites (TS, TC, SS) in triplicate during each sampling
169 event. Replicates were taken approximately 30cm from one another and are labeled cores A, B, and
170 C based on distance to the tidal channel with A being closest to the channel and C the farthest (Figure 1).

171 Sampling events occurred at four separate times of the year to coincide with each of the phenophases (i.e.,
172 senescence on 10/3/2019, dormancy on 12/3/2019, green-up on 4/29/2020, maturity on 8/13/2020), which

173 were previously determined using the Greenness Index (Trifunovic et al. 2020). Cores were obtained at
174 the same tidal inundation cycle each season to ensure consistent saturation during each campaign. Each
175 sampling campaign resulted in 36 total cores (or 144 core sections, see below) that we used to understand
176 spatiotemporal variability; unfortunately, we could not obtain more cores due to conditions of the strict
177 soil coring permit at the estuarine preserve. Soil cores (6 cm x 48 cm) were extracted using a gouge auger
178 that has been shown to be an effective coring technique for reducing compaction in soft marsh soils

179 (Smeaton et al. 2020). Soil cores were quickly sectioned in the field into 12 cm increments (0-12cm, 12-
180 24cm, 24-36cm, 36-48cm and 48-60cm relative to the soil surface) and preserved
181 under anoxic conditions following previous methods (Seyfferth et al. 2020). For reference, the rooting
182 zone of *Spartina* grasses is between 8-20cm (Muench and Elsey-Quirk 2019), so the upper two
183 sections likely include C from fresh root exudates. The 12cm increments were chosen because
184 many soil C stock papers use increments between 10-15 cm and there tends to be little variation across the

185 ~10 cm increment in a variety of wetland soils (Baustian et al. 2017). Briefly, the soil sections were
186 placed into 250 ml HDPE bottles which were left uncapped in gas-impermeable bags that contained
187 oxygen scrubbers (AeroPack-Aero, Mitsubishi), and the bags were vacuum-sealed in the field. The soil
188 samples were placed on ice during transport back to the lab. Once back in the lab, the soil sections in the
189 gas-impermeable bags were immediately placed inside an anoxic glove bag containing ~5% hydrogen and

Formatted: Font color: Auto

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black

190 ~95% nitrogen. A subsample of soil was dried, ground, sieved (~~2mm~~2 mm), and powdered for analysis of
191 total C and S (Vario EL Cube, Elementar). We clarify that we did not separate inorganic versus organic soil C
192 and report only total soil C. Soil C and S are reported as % C (= 100% * g C/g soil dry wt.) and % S (= 100% * g S/g soil dry wt.). The remaining field moist soil was left inside the HDPE vial, capped inside the glove bag, and centrifuged for extraction of porewater using methods in the following section. We used soil C % to calculate soil C stocks using previously obtained bulk density measurements at our field site (Wilson and Smith 2015), and we calculated soil C accrual rates using previously obtained sedimentation rate values (Tucker 2016). The remaining field-moist soil was left inside the HDPE vial, capped inside the glove bag and centrifuged for extraction of residual porewater. The amount of porewater we obtained was a function of soil saturation that was consistent during each campaign because we sampled at the same tidal cycle each season. After centrifugation, the remaining soil sample was further dried inside of the glove bag. While this drying procedure could have introduced artificial H₂-fueled metabolism, this should be negligible because the soils were rapidly dried within the glove bag with freshly replaced desiccant and because the saturated sample was only minimally in contact with the H₂ atmosphere.

Formatted: Condensed by 0.25 pt

205 2.3 Porewater Extraction and Analysis

206 Porewater was extracted from each 12-cm soil section by centrifugation for 2 minutes under an
207 anoxic atmosphere at 2,500 rpm. A portion of the porewater was filtered with 0.45 μ m PTFE syringe
208 filters while the rest was vacuum filtered using glass fiber filters (0.7 μ m). The 0.45 μ m PTFE filtered
209 porewater was immediately analyzed for Fe²⁺ using the ferrozine colorimetric method (Stookey 1970),
210 S²⁻ using the methylene blue method (Cline 1969), redox potential with a ~~220mV~~220 mV offset, pH, and
211 conductivity using calibrated probes (Orion Ross Ultra pH/ATC Triode, Orion 9179E Triode, Orion
212 DuraProbe Conductivity Cell), and the remaining sample was acidified to 2% HNO₃ for elemental
213 analysis using an ICP-OES. The porewater filtered with glass fiber (0.7 μ m) was acidified with HCl
214 and analyzed for DOC (Vario TOC Analyzer, Elementar). To characterize the DOC, unacidified DOC
215 samples from the plant maturity sampling event were analyzed via ultraviolet-visible (UV-VIS)/

216 excitation-emission matrix spectroscopy (EEMs) (Aqualog Spectrophotometer, Horiba). The Aqualog
217 was zeroed with double deionized water blanks, checked using the manufacturer's excitation check,
218 corrected for inner filter effects, applied first and second order Rayleigh masking and data were
219 normalized using the average Raman area (Gao et al. 2011; Clark et al. 2014). Measurements were taken
220 over the wavelengths of 200-730nm with 2nm steps. Fluorescence and absorbance peaks and indices were
221 calculated using previously established equations (Table S1).

222 **2.4 Statistical Analysis**

223 ~~Statistical~~A three-way analysis of variance (ANOVA) was performed to understand significant
224 ~~interactions between factors of subsite, depth, and phenophase on soil and porewater variables.~~
225 ~~Subsequently, statistical~~ differences between subsites and phenophase were analyzed using repeated
226 measures ~~analysis of variance (ANOVA) ($\alpha=0.05$)~~ with a post-hoc Tukey-HSD analysis to determine
227 differences between individual subsites and ~~phenophase:phenophases. Assumptions of ANOVA were met by~~
228 ~~assessing for normality with Q-Q plots prior to analysis and transforming when necessary. Equal variance was tested to~~
229 ~~ensure homogeneity of variance between subgroups using Levene's test.~~ Correlations with depth were analyzed
230 using linear regression and only the significant ($p<0.05$) relationships are reported. Relationships among
231 all measured variables were assessed using principal components analysis. In addition, a stepwise
232 regression model was built to determine variables that significantly predict soil C concentration. ~~This was~~
233 ~~done by maximizing the R^2 -value of the model while using the least amount of variables to explain the variance. All~~
234 statistical analyses were conducted in JMP (Version 16.2).

Formatted: Condensed by 0.55 pt

235 **3.0 Results**

236 **3.1 Soil Carbon and Sulfur**

237 To explore the spatiotemporal heterogeneity of soil carbon (C) and sulfur (S) at each subsite,
238 subsamples of each collected soil increment were combusted for soil C and S concentration.
239 Concentrations of soil C were highly variable among subsites, phenophase, depth, and replicate cores
240 (Figure 2), indicating several ~~possible~~spatiotemporal sources of variability in marsh soil C ~~stock~~
241 estimates. SS ~~showed the highest~~appeared to have higher soil C concentrations, as illustrated by darker

242 colors in the heat map, compared to both TS and TC. Soil C ~~was~~ also appeared higher at TS than TC,
243 illustrated by relatively darker colors in the heat map. For all subsites, soil C concentrations changed
244 throughout the year ~~with the highest values, appearing higher~~ during plant dormancy and ~~the lowest~~lower
245 during green-up. However, variability across individual replicates A, B, and C and with depth
246 complicated generalities across time and space. For example, at subsite SS from 24-36 cm during
247 senescence, core A is ~5% soil C while core C is ~10% soil C, a factor of 2 difference ~~within~~between
248 replicates. Large ranges among replicates were also observed during green-up at TS from 12-24 cm and
249 during maturity at TC from 36-48 cm. This exemplifies the high spatial and temporal heterogeneity
250 inherent in marsh soils, and ~~a source~~indicates several sources of ~~variation~~uncertainty in marsh soil C
251 estimates.

252

253 **Figure 2.** Heat maps of soil C concentration with depth at the three subsites (SS, TC, and TS), four
 254 phenophases, and for each replicate core (A (closest to channel), B, and C (farthest from channel)). No
 255 measurement was able to be obtained for some 12-cm sections as shown by white rectangles.

256

257 There was also variability in soil C concentration with depth (Figure 3). Subsite SS had the
 258 highest mean soil C concentration at all four depths, as well as the largest range in values. TS had the
 259 second highest mean soil C values at all four depths as well as the second largest range in values. TC had
 260 the lowest mean soil C at all four depths as well as the smallest range in values at each depth. It is clear
 261 from this graph that SS contains higher overall concentrations of soil C, followed by TS and then TC.

262 [Soil When observing linear trends with depth, soil](#) C at TS during dormancy significantly decreased with

263 depth ($R^2=0.44$, $p=0.02$) and soil C at SS during maturity significantly increased with depth ($R^2=0.41$,
264 $p=0.02$). No other linear correlations in soil C existed with depth.

266 We also assessed differences in soil C and S with depth by averaging by phenology and subsite

267 replicates (Figure 3). These results showed that there were no significant differences in soil C with depth For
268 soil S, only the first and second depths were significantly different from one another at site SS and at TC,
269 the deepest cores had significantly more soil S than all other depths.

270

272 **Figure 3.** Box and whisker plot of soil C and S concentrations across the three subsites and separated by
273 the four sampling depths. This indicates the difference in soil C and S variability among subsites and with
274 depth. Whiskers indicate the minimum and maximum values, and the box indicates the upper and lower
275 quartiles. The line in the box indicates the median. Letters with significant differences ($p<0.05$) with depth
276 for each subsite are shown by different letters; subsites and depths with no letters are statistically similar.

277
278 Soil S also varied across 12 cm sampling increment depths (Figure 3). SS had the highest mean
279 soil S concentration at each depth, and the range of values initially increased with depth. TS has a higher
280 mean concentration than TC at all depths except at the bottom core section. The range of soil S values
281 increased with depth at TC while the range was more consistent with depth at TS, except for the wide
282 range of values measured at the 18em18 cm depth interval. Soil S at SS during maturity significantly
283 increased with depth ($R^2=0.50$, $p=0.01$), as did TC during dormancy ($R^2=0.88$, $p<0.0001$), green-up
284 ($R^2=0.51$, $p=0.01$), and senescence ($R^2=0.42$, $p=0.02$). ~~No other correlations between soil S existed with~~
285 ~~depth.~~

286 3.2 Porewater Data

287 3.2.1 Porewater DOC and Characterization

288 Porewater DOC was highly variable across subsites, phenophase, depth, and replicate cores (Figure 4).
289 Note that the data in Figure 4 have been log transformed (natural log) due to large ranges in values across
290 the one-year sampling campaign. Unlike soil C, which was relatively consistent with depth, DOC
291 concentrations were highly variable with depth and even more so among replicate cores. Some of the
292 highest individual concentrations of DOC were detected nearest the surface and rooting zone, which can
293 extend to 20 cm below the surface (Muench and Elsey-Quirk 2019), but also at depth at SS during
294 senescence. DOC concentrations decreased with depth at SS during green-up ($R^2=0.44$, $p=0.02$) and
295 maturity ($R^2=0.37$, $p=0.03$) and increased with depth at TC during dormancy ($R^2=0.76$, $p=0.0002$). These
296 results indicate the highly variable nature of porewater DOC concentrations, possibly leading to
297 additional and complexity in marsh soil C estimates. In addition, we summarized DOC concentrations
298 across depths and subsite (Figure 5) to better understand variability with depth. The top depth increment
299 at 6 cm appeared to contain the greatest variability, particularly at subsite TC. Variability at TC decreased
300 with depth, as did variability at SS. This is apparent because the range tends to decrease with depth at
301 both TC and SS. Overall, TC seems to contain the most variability followed by TS and SS appears to
302 contain the least amount of variability at each depth increment.

Formatted: Font: 11 pt

Formatted: Font: 11 pt

Formatted: Font: 11 pt

305 **Figure 4.** Heat maps of porewater DOC (natural log) concentration with depth at the three subsites (SS,
 306 TC, and TS), four phenophases, and for each replicate core (A (closest to channel), B, and C (farthest
 307 from channel)). No measurement was able to be obtained for some 12-cm sections as shown by white
 308 rectangles.
 309

310

311 **Figure 5.** Box and whisker plot of porewater DOC concentrations plotted on log scale across the three
 312 subsites at all phenophases and separated by the four sampling depths. Whiskers indicate the minimum
 313 and maximum values, and the box indicates the upper and lower quartiles. Points outside the boxes indicate
 314 outliers. Due to large variability present across depths, there are no statistically significant differences
 315 between depths.

316

317 Porewater ultraviolet-visible (UV-VIS) and excitation emission matrices (EEMs) data were
 318 collected only from the maturity sampling event to further characterize DOC molecular properties (Figure
 319 5). Optical properties (i.e., peaks, indices) from spectroscopic data were calculated and interpreted
 320 following previous studies cited in the supplemental table (Table S1). These data show significant trends
 321 with depth at SS. At SS, coble peak intensities T ($R^2=0.55$, $p=0.01$), B ($R^2=0.49$, $p=0.01$), A ($R^2=0.57$,
 322 $p=0.004$), M ($R^2=0.55$, $p=0.01$) and C ($R^2=0.49$, $p=0.01$) all significantly decreased with depth, as did the
 323 fluorescence index (FI) ($R^2=0.79$, $p=0.0001$), the biological index (BIX) ($R^2=0.50$, $p<0.01$) and
 324 absorbance at 254nm (Abs_{254}) ($R^2=0.36$, $p=0.04$), indicating decreases in CDOM with depth. To ensure
 325 the coble peaks represented changes in CDOM properties and not DOC concentration, they were
 326 normalized to DOC concentration and the relationships remained significant ($p<0.05$), except for the
 327 Coble B peak ($R^2=0.11$, $p=0.20$). The E₂:E₃ ($R^2=0.50$, $p=0.01$) and SUVA₂₅₄ ($R^2=0.53$, $p=0.007$)
 328 significantly increased with depth at SS, indicating a decrease in molecular weight and an increase in

329 aromaticity with depth. No significant trends with depth were present at TC or TS. Differences in DOC
330 molecular properties among subsites are apparent for many of the calculated indices and peaks.

331
332 **Figure 5.6.** Depth profiles of porewater EEMs/ UV-VIS peaks and indices down to 48cm taken during the
333 maturity sampling event. Each point represents the mean between replicates (n=3) with error lines
334 indicating the standard deviation (± 1 SD).
335

336 3.2.2 Porewater Chemistry

337 Measured porewater biogeochemistry was variable across subsites, phenophase, and depth
338 (Figure 6). Porewater redox potentials showed minimal trends with depth, except for a significant
339 decrease with depth at SS during maturity ($R^2=0.58$, $p=0.004$), though redox showed variability between
340 replicates (Figure S2). The pH was relatively consistent with depth, except for a significant increase with

341 depth at TC during dormancy ($R^2=0.42$, $p=0.02$), and a significant decrease with depth at TS during
 342 dormancy ($R^2=0.56$, $p=0.005$). Redox potential and pH formed a significant but weak negative correlation
 343 ($R^2=0.12$, $p<0.0001$) across the entire 1-year dataset.

344

345 **Figure 67.** Depth profiles of porewater chemistry variables down to 48cm for sampling events that
346 occurred during plant (a) senescence, (b) dormancy, (c) green-up and (d) maturity. Each point represents
347 the mean between replicates (n=3) with error lines indicating the standard deviation (± 1 SD).

348
349 Porewater S^{2-} varied significantly with depth. S^{2-} increased significantly with depth across the
350 entire 1-year dataset ($R^2=0.04$, $p=0.03$). S^{2-} increased significantly with depth at SS during green-up
351 ($R^2=0.51$, $p=0.01$) and maturity ($R^2=0.86$, $p<0.0001$). TS S^{2-} increased significantly during green-up
352 ($R^2=0.46$, $p=0.02$) while TC S^{2-} increased significantly during maturity ($R^2=0.36$, $p=0.04$). Porewater Fe^{2+}
353 trended negatively with S^{2-} ($R^2=0.06$, $p=0.004$) and decreased with depth ($p=0.01$, $R^2=0.05$) across the
354 entire 1-year dataset. Significant decreases were observed at TS during green-up ($R^2=0.68$, $p=0.001$), and
355 at SS during maturity ($R^2=0.41$, $p=0.02$). Total Fe concentration followed similar depth trends to Fe^{2+} ,
356 with a significant decrease with depth across the entire 1-year experiment ($R^2=0.06$, $p=0.01$). Total Fe
357 decreased with depth at TS during senescence ($R^2=0.41$, $p=0.03$) and green-up ($R^2=0.58$, $p=0.004$), and at
358 SS during maturity ($R^2=0.57$, $p=0.01$).

359 Porewater salinity formed varying relationships with depth. Salinity significantly decreased with
360 depth at TC during senescence ($R^2=0.52$, $p=0.01$), and at SS during maturity ($R^2=0.62$, $p=0.002$) while
361 salinity significantly increased with depth at TC during green-up ($R^2=0.69$, $p=0.001$) and at TS during
362 maturity ($R^2=0.87$, $p<0.0001$). Salinity and total Ca generally increased together ($p>0.0001$, $R^2=0.42$)
363 across the entire 1-year experiment. Total Ca increased significantly with depth at TC during green-up
364 ($R^2=0.86$, $p<0.0001$) and at TS ($R^2=0.80$, $p<0.0001$) and TC ($R^2=0.47$, $p=0.01$) during maturity. SS total
365 Ca significantly decreased with depth during maturity ($R^2=0.60$, $p=0.005$).

366 **3.3 Analysis of Variance (ANOVA) Among Subsite, Depth, and Phenophase**

367 A three-way ANOVA was run to assess the interaction between the three factors of phenology,
368 subsite, and depth and to understand which factors are the most predictive for each variable (Table 1). Of
369 the measured variables, only porewater DOC, sulfide, and salinity had significant interactions between all
370 three factors; for these, one-way ANOVAs were run on subsite and phenophase mean values performed.
371 These analyses showed that were obtained by averaging samples from all DOC was significantly higher
372 during senescence at TS and TC in the surface than the other depths across all four subsites, and

373 phenophases (for subsite comparisons) and all depths across, and that salinity was highest in the surface at
374 all three subsites during senescence. In contrast, sulfide was highest during maturity at SS in the deepest
375 core section compared to the other depths, subsites, and phenophases. For the variables without
376 significant interaction, the three-way ANOVA showed that subsite was highly significant for soil C while
377 phenology and depth were not significant. In contrast, phenology was only significant for porewater pH
378 and Fe(II) while depth and subsite were not significant, and depth was only significant for soil S and
379 sulfide (Table 1).

380

381 **Table 1** Three-way ANOVA results for all variables, with interaction results of subsite, phenology
382 and depth. Bolded p-values indicate significance ($p < 0.05$).

383 296

<u>Variable</u>	<u>Phenology</u>	<u>Subsite</u>	<u>Depth</u>	<u>Phenology*Subsite*Depth</u>
<u>Soil C (%)</u>	<u>0.06</u>	<u><0.0001</u>	<u>0.95</u>	<u>0.96</u>
<u>Soil S (%)</u>	<u>0.99</u>	<u>0.89</u>	<u>0.01</u>	<u>0.99</u>
<u>DOC (mM)</u>	<u>.17</u>	<u>.91</u>	<u>.02</u>	<u>.004</u>
<u>Redox (mV)</u>	<u>.07</u>	<u>.31</u>	<u>.36</u>	<u>.77</u>
<u>pH</u>	<u><0.0001</u>	<u>0.43</u>	<u>0.77</u>	<u>0.92</u>
<u>Fe²⁺ (mM)</u>	<u><0.0001</u>	<u>0.06</u>	<u>0.39</u>	<u>0.91</u>
<u>Sulfide (mM)</u>	<u>0.80</u>	<u>0.91</u>	<u>0.01</u>	<u>0.05</u>
<u>Salinity (ppt)</u>	<u><0.0001</u>	<u><0.0001</u>	<u>0.99</u>	<u>0.003</u>
<u>Total Fe (mM)</u>	<u>0.98</u>	<u>0.27</u>	<u>0.21</u>	<u>0.75</u>
<u>Total Ca (mM)</u>	<u>0.0001</u>	<u>0.003</u>	<u>0.41</u>	<u>0.37</u>

384

385 In addition to the three-way ANOVA, we also averaged variables by phenophase, subsite, or
 386 depth and performed one-way ANOVAs with post-hoc Tukey tests (Tables 2, 3, and Supplementary Table 2).
 387 When averaged by subsite, all three subsites (for phenophase comparisons). These results show
 388 significant spatial and temporal variability in many of our measured variables. All three subsites contain
 389 significantly subsites contained significantly different average concentrations of soil C, with SS having the
 390 highest average (7.5% C), followed by TS (5.8% C) and TC (4.6% C) (Table 2). This indicates that on
 391 average, subsite SS contains ~29% more soil C than TS and 63% more soil C than TC. In addition Site
 392 SS also had higher soil S, sulfide, and salinity and lower redox potential and Fe(II) than the other subsites.
 393 When grouped by phenophase, plant dormancy contained significantly more soil C than plant green-up.
 394 While soil S did not significantly vary across phenophase, soil S at SS was significantly higher in
 395 concentration by a factor of two than both TS and TC. (Table 3). In addition, plant dormancy had
 396 significantly higher redox potential and the lowest Fe(II) and DOC than the other plant phenophases (Table 3).
 397 When averaged by depth, soil S was nearly 2x higher at the deepest depth (36-48 cm) than the surface (0-12 cm)
 398 (Supplementary Table 2).

399
 400 **Table 4. One-way2.** ANOVA and Post-hoc Tukey results for all assessed soil and porewater
 401 biogeochemical variables. Mean values represent average values for each subsite for subsamples from all
 402 depths and phenophasephenophases. The mean is reported (\pm SD) along with a connecting letter report.
 403 Means with letters that do not connectdiffer are significantly ($p < 0.05$) different.

Variable	Tall Spartina (TS)	Tall Cordgrass (TC)	Short Spartina (SS)
Soil C (%)	5.8 \pm (1.2) ^B	4.6 \pm (1.3) ^C	7.5 \pm (1.4) ^A
Soil S (%)	1.1 \pm (0.5) ^B	1.0 \pm (0.6) ^B	2.0 \pm (0.7) ^A
DOC (mM)	11.9 \pm (27) ^A	13.6 \pm (27) ^A	7 \pm (9) ^A
Redox (mV)	179 \pm (176) ^{AB}	211 \pm (185) ^A	93 \pm (235) ^B
pH	8.12 \pm (0.8) ^A	7.99 \pm (0.7) ^A	8.13 \pm (0.6) ^A
Fe ²⁺ (mM)	0.15 \pm (0.1) ^A	0.22 \pm (0.3) ^A	0.04 \pm (0.1) ^B

Sulfide (mM)	$0.02 \pm (0.01)^B$	$0.02 \pm (0.01)^B$	$0.6 \pm (0.6)^A$
Salinity (ppt)	$8.8 \pm (3.1)^B$	$9.7 \pm (3)^{AB}$	$11 \pm (2)^A$
Total Fe (mM)	$0.21 \pm (0.2)^A$	$0.26 \pm (0.3)^A$	$0.08 \pm (0.1)^B$
Total Ca (mM)	$4.7 \pm (1.3)^B$	$5.4 \pm (1.2)^A$	$5.8 \pm (0.8)^A$

405
406

407 **Table 2.** One-way³ ANOVA and post-hoc Tukey results for all assessed soil and porewater
 408 biogeochemical variables. Mean values represent average values for each phenophase for subsamples
 409 from all depths and subsites. The mean is reported (\pm SD) along with a connecting letter report. Means
 410 with letters that do not connect differ are significantly ($p < 0.05$) different.

Variable	Senescence	Dormancy	Green-up	Maturity
Soil C (%)	5.7 \pm (1.5) ^{AB}	6.7 \pm (1.1) ^A	5.3 \pm (1.5) ^B	6.1 \pm (1.8) ^{AB}
Soil S (%)	1.4 \pm (0.7) ^A	1.4 \pm (0.9) ^A	1.4 \pm (0.7) ^A	1.3 \pm (0.7) ^A
DOC (mM)	22.2 \pm (42) ^A	1.6 \pm (1) ^B	12.3 \pm (14) ^{AB}	7.9 \pm (10) ^B
Redox (mV)	193 \pm (60) ^B	453 \pm (58) ^A	-42 \pm (98) ^D	83 \pm (111) ^C
pH	7.89 \pm (0.4) ^B	7.45 \pm (0.2) ^C	7.96 \pm (0.6) ^B	8.94 \pm (0.5) ^A
Fe²⁺ (mM)	0.1 \pm (0.2) ^{BC}	0.03 \pm (0.1) ^C	0.2 \pm (0.2) ^{AB}	0.2 \pm (0.2) ^A
Sulfide (mM)	0.2 \pm (0.4) ^{AB}	0.04 \pm (0.04) ^B	0.2 \pm (0.4) ^{AB}	0.3 \pm (0.6) ^A
Salinity (ppt)	12.9 \pm (2.4) ^A	9.0 \pm (1.8) ^{BC}	8.0 \pm (2.1) ^C	9.6 \pm (2.4) ^B
Total Fe (mM)	0.1 \pm (0.1) ^B	0.1 \pm (0.2) ^B	0.3 \pm (0.2) ^A	0.3 \pm (0.2) ^A
Total Ca (mM)	5.8 \pm (1.0) ^A	5.5 \pm (0.7) ^A	4.5 \pm (0.9) ^B	5.3 \pm (1.6) ^A

411

412 DOC concentration also varied among subsites (Table 42) and phenology (Table 23). The average
 413 DOC concentration at SS was approximately half of that found at TS and TC, but these results are not
 414 statistically significant due to large variability and ranges in concentration observed across the 1-year
 415 experiment. This large variability is exemplified by standard deviations that are larger than the means. In
 416 addition, DOC also varied across phenophases. Dormancy had the lowest mean DOC concentration and
 417 was significantly lower than senescence by an order of magnitude. Maturity and green-up did not have
 418 statistically different DOC concentrations. The EEMs/ UV-VIS dataset from plant maturity was analyzed
 419 based on subsites (Table 34). There were significant differences in peaks and indices between subsites.
 420 Coble peaks T, A, M, C and Abs₂₅₄ were significantly lower at TS than at both TC and SS by at least a
 421 factor of two which is in line with the lower DOC concentrations observed for TS at maturity (Fig. 4).
 422 Subsite SS had a significantly lower HIX and E₂:E₃ than both TS and TC suggesting it to have DOM with

423 less relative humic content and higher average molecule weight. These results indicate significantly
 424 different DOC molecular characteristics across subsites. EEMs/ UV-VIS data could not be assessed
 425 across phenology since these data were collected only during plant maturity.

426 **Table 34.** One-way ANOVA results for UV-VIS EEMs during the plant maturity phenophase. Mean
 427 values represent average values for each subsite for subsamples from all depths. The mean is reported (\pm
 428 SD) along with a connecting letter report. Means with letters that ~~do not connect~~differ are significantly
 429 ($p < 0.05$) different.

Parameter	Tall Spartina (TS)	Tall Cordgrass (TC)	Short Spartina (SS)
Abs₂₅₄	0.7 \pm (0.2) ^B	1.7 \pm (0.9) ^A	1.7 \pm (1.3) ^A
SUVA₂₅₄	0.2 \pm (0.1) ^A	0.2 \pm (0.1) ^A	0.2 \pm (0.1) ^A
s_r	1.39 \pm (0.95) ^A	1.27 \pm (0.33) ^A	1.46 \pm (0.28) ^A
E₂:E₃	5.5(0.4) ^A	5.4 \pm (1.1) ^A	4.7 \pm (0.7) ^B
Coble T	4.1 \pm (3.8) ^B	14.7 \pm (10.3) ^A	22.6 \pm (16.2) ^A
Coble A	6.6 \pm (2.1) ^B	16.9 \pm (7.02) ^A	13.5 \pm (4.2) ^A
Coble M	4.0 \pm (1.4) ^B	10.2 \pm (4.4) ^A	8.6 \pm (3.1) ^A
Coble C	3.7 \pm (1.2) ^B	9.2 \pm (4.0) ^A	7.8 \pm (2.3) ^A
FI	1.3 \pm (0.6) ^A	1.3 \pm (0.02) ^A	1.3 \pm (0.03) ^A
HIX	5.1 \pm (3.0) ^A	4.4 \pm (3.1) ^A	1.9 \pm (0.6) ^B
BIX	0.7 \pm (0.7) ^A	0.7 \pm (0.03) ^A	0.7 \pm (0.02) ^A

430

431 Differences in porewater chemistry among subsites (Table 42) and phenophase (Table 23) were
 432 also significant. SS had the lowest average redox potential and was significantly different from TC which
 433 had the highest, while TS was not significantly different from either SS or TC. Redox potentials were
 434 even more variable between phenophase where all four phases had significantly different means. The
 435 highest mean was measured during dormancy and decreased significantly in the order senescence,
 436 maturity and green-up. The pH was not significantly different across any of the subsites but did change

437 significantly with phenology. Dormancy had the lowest pH which was significantly different from all
438 other phenophases. Senescence and green-up had a statistically similar mean pH values that were higher
439 than dormancy, and the porewater pH during maturity was statistically higher than all other phenophases.

440 S^{2-} also varied significantly among subsites. SS contained on average more than an order of
441 magnitude greater S^{2-} than both TS and TC. S^{2-} is lowest during dormancy but is only significantly
442 different than maturity which has the highest S^{2-} mean. Variability in Fe^{2+} between subsites was opposite
443 of S^{2-} . While TS and TC had low concentrations of S^{2-} , they had high concentrations of Fe^{2+} , which were
444 more than double and significantly higher than Fe^{2+} at SS. Fe^{2+} concentrations varied with phenology
445 similar to S^{2-} where dormancy had the lowest mean which was significantly different only from maturity
446 when the highest levels of Fe^{2+} were detected. Differences between subsite total Fe followed the same
447 trend as Fe^{2+} , where SS was significantly lower than both TS and TC. Total Fe was lowest during
448 dormancy and senescence, which were both statistically similar, but different from green-up and maturity.

449 SS had the highest mean salinity and was significantly different only from TS which had the
450 lowest mean salinity. Green-up had a significantly lower mean salinity than all other phenophases except
451 dormancy. Dormancy was only significantly different from senescence, which had the highest mean
452 salinity. Subsite differences in Ca were similar to salinity where SS had a significantly higher mean Ca
453 concentration than TS, but not TC. Green-up had the lowest mean Ca concentration which was
454 significantly different from all other phenophases.

455 **3.4 Stepwise Regression Model Results**

456 A stepwise regression model was run across the entire 1-year experiment to determine the most
457 important biogeochemical predictors of soil C concentration in our dataset (Table 45). The model results
458 indicate that depth, redox potential, soil S, and sulfide are the best predictors of soil C concentration. The
459 model R^2 value of 0.44 indicates that these variables explain 44% of the variability in our soil C
460 concentration data and the model is highly significant ($p < 0.0001$). Sulfide, redox potential, and soil S
461 each have positive estimates, meaning that these variables increase as soil C increases while depth had a

462 negative estimate, meaning that soil C tends to decrease with depth across the entire dataset. Each
463 individual predictor variable is also significant ($p < 0.05$).

464

465 **Table 45.** Stepwise regression results for predicting soil carbon.

Parameter	Estimate	P-Value	Model R ²	Model P-Value
Depth	-0.03	0.003	0.44	<0.0001
Sulfide	0.96	0.04		
Redox	0.002	0.002		
Soil S%	1.3	<0.0001		

466

467 **4.0 Discussion**

468 **4.1 Subsite Differences in Soil C and Biogeochemistry**

469 We hypothesized that soil C concentration and soil biogeochemistry would differ across our
470 subsite locations. Our results support this hypothesis and suggest significant differences in both soil C
471 concentration and porewater biogeochemistry among subsites, which is consistent with prior work at this
472 field site (Seyfferth et al. 2020; Guimond et al. 2020a). This finding illustrates the importance of
473 considering multiple sampling locations when conducting blue C assessments to account for ecosystem-
474 scale variability. At SS, average soil C concentrations were 63% higher than at TC and 29% higher than
475 at TS. Even though these subsites are several to tens of meters from one another, they each had
476 statistically different mean soil C concentrations. Higher soil C at SS is not related to higher primary
477 productivity because the *Spartina alterniflora* at SS are stunted. The short form of *S. alterinflora* is
478 generally less productive than the tall form (Roman and Daiber 1984) and likely exudes less DOC from
479 the smaller root mass. This is supported by a lower average DOC concentration at SS. Also, the
480 chromophoric dissolved organic matter (CDOM) properties at SS were different than at the other subsites.
481 SS CDOM had a significantly lower E₂:E₂ than TS and TC, indicative of higher molecular weight DOC at

482 SS. In addition, the humification index (HIX) was significantly lower at SS indicating that the DOC at SS
483 has been reworked by microbes less than it has been at TS and TC. Furthermore, SS consistently had
484 lower porewater redox potentials than the other subsites; while our data represent a snapshot in time for
485 each phenophase and subsite location, they are consistent with prior work of higher resolution porewater
486 over time that shows SS being more strongly reducing than areas closer to the tidal channel (Guimond et
487 al., 2020a; Seyfferth et al. 2020). Redox potentials at SS were low enough to support sulfate reduction.
488 This is confirmed by our elevated S^{2-} porewater concentrations measured at SS. Therefore, the greatest
489 controls on soil C concentration at SS is slower microbial oxidation of C due to strongly reducing
490 conditions caused by nearly constant inundation and limited flushing of oxygenated surface water
491 (Guimond et al. 2020b, a; Seyfferth et al. 2020). These conditions lead to CDOM that is less affected by
492 microbial degradation (i.e., low HIX, low E₂:E₃) and a less energetically favorable metabolism (i.e.,
493 sulfate reduction) resulting in more soil C storageaccrual. This has important implications for soil C stock
494 uncertainty because a greater amount of the area at St Jones is composed of subsite SS (Seyfferth et al.
495 2020). Sampling only near the tidal creek (TS and TC) could significantly underestimate soil C stocks,
496 while sampling only in the marsh interior could lead to an oversimplification of soil biogeochemistry and
497 DOC molecular properties in salt marsh ecosystems.

498 In contrast to SS, soil redox potentials were significantly higher at TC and soil C was
499 significantly lower. This is likely due to TC having a slightly higher elevation on a natural levee and less
500 reducing surface soils (Seyfferth et al. 2020). The redox potential is not low enough to support sulfate
501 reduction but is low enough to support Fe reduction. This is supported by the abundant amount of Fe²⁺
502 measured in the porewater at TC. A higher redox potential and more energetically favorable electron
503 acceptor (Fe³⁺) likely leads to higher rates of C mineralization and explains the lower soil C concentration
504 at TC. On the other hand, we found some of the highest concentrations of DOC at TC, particularly closer
505 to the surface near the rooting zone. This can be explained by a greater root mass and correspondingly
506 higher root exudation rate of the taller *S. cynosuroides* coupled with porewater flushing occurring only on
507 a spring-neap pattern, which allows DOC to build up in porewater over time (Guimond et al. 2020a, b). A

508 higher concentration of freshly produced DOC and a lower concentration of soil C is also consistent with
509 the priming effect which posits that high concentrations of freshly produced and microbially labile DOC
510 can stimulate microbial growth leading to the degradation of older, more stable soil C (Textor et al. 2019;
511 Zhang et al. 2021). In addition, TC CDOM fluorescence peaks (Coble, A, M, C, T), were similar to SS,
512 indicating that SS and TC have strong sources of fluorescent CDOM.

513 Though TS and TC are biogeochemically more similar than SS, TS had significantly higher soil C
514 than TC likely due to different dominant vegetation and hydrology. TS is lower in elevation and
515 experiences diurnal tidal oscillations with slightly lower average porewater redox values than TC (Table
516 1), which experiences tidal oscillations on a spring-neap cycle (Guimond et al. 2020a). These differences
517 in hydrology may cause soil C to accumulate more so under slightly stronger reducing conditions at TS
518 compared to TC. Another unique attribute of subsite TS is the CDOM signature. The coble peaks (A, T,
519 C, and M) and Abs_{254} were significantly lower at TS than both TC and SS, which indicates a decreased
520 concentration of terrestrially-derived CDOM. This is likely because TS is nearest the tidal creek and
521 therefore porewater solutes are exported to the tidal channel twice daily during ebb tide (Fettrow et al.,
522 2023b), decreasing the marsh grass derived terrestrial CDOM signature in the near-channel porewater.

523 **4.2 Phenophase Differences in Soil C and Biogeochemistry**

524 We further hypothesized that soil C concentration and biogeochemistry would vary across plant
525 phenophase, and our data support this hypothesis. Soil C was greatest during plant dormancy and was on
526 average 26% higher than green-up, 18% higher than senescence, and 10% higher than maturity. This
527 highlights the importance of considering the time of year soil samples are taken when conducting a blue C
528 assessment. Likewise, many of the biogeochemical variables also changed with phenophase. The redox
529 potential of all four phenophases were significantly different from one another, with the highest average
530 redox potential occurring during dormancy. Higher redox potentials during dormancy are associated with
531 significantly lower porewater Fe^{2+} and S^2- , indicating that microbial reduction is likely suppressed during
532 the winter months when labile DOC produced from root exudation is less available. Dormancy also had
533 the highest soil C concentration. We suggest this may be related to a suppressed priming affect due to low

534 porewater DOC concentrations and to Fe oxide formation during the high redox potential of dormancy,
535 allowing any remaining porewater C to be pulled out of solution and into the solid phase with oxidized Fe
536 minerals (Riedel et al. 2013; Sodano et al. 2017; ThomasArrigo et al. 2019).

537 We found that DOC concentrations are higher during senescence and significantly lower during
538 plant maturity. High porewater DOC during senescence agrees with previous work showing higher
539 belowground allocation of biomass in *Spartina* before the winter (Crosby et al. 2015). Belowground
540 allocation of C in *S. alterniflora* has been shown to increase late into the growing season (Lytle and Hull
541 1980) while concentrations of soil organics have been shown to decrease during the summer months due
542 to higher temperatures and higher rates of soil respiration (Caçador et al. 2004). Higher rates of
543 belowground C allocation during senescence are further supported by the higher rates of soil respiration
544 during senescence (Vázquez-Lule and Vargas 2021) due to increased labile DOC availability and
545 associated microbial activity previously reported at this field site.

546 **4.3 Biogeochemical Controls on Soil C**

547 Our data reveal important biogeochemical controls on soil C concentration across space and time.
548 The results of the stepwise regression model suggest that soil C concentrations are predicted by sulfide,
549 soil S, redox potential, and depth. Soil C increased significantly with increasing sulfide and soil S
550 concentration, indicated by the positive model estimate (Table 45). This is likely associated with the
551 lower elevation, and redox potential and greater accumulation of sulphate at SS due to less tidal flushing.
552 This may also be a result of sulfurization where inorganic sulfur, namely sulfide, may interact with
553 organic matter via abiotic reactions (Alperin et al. 1994). Evidence suggests that this interaction can help
554 preserve and stabilize soil C (Tegelaar et al. 1989), though spectroscopic evidence would be required to
555 determine if this is an important process at this study site.

556 Depth also has an important control on soil C concentration and the estimate was negative,
557 indicating that soil C decreases with depth. This is consistent with the literature suggesting higher soil C
558 concentration at the surface and decreasing with depth in coastal salt marshes (Bai et al. 2016). While
559 depth was an important predictor of soil C from the stepwise regression model, our depth profiles (Figure

560 4) indicate only small changes with depth. This may be a result of only sampling to 48 cm and integrating
561 across 12 cm increments, or it may be a result of our method design of extracting porewater from the soils
562 and running porewater DOC as a separate fraction of C from the solid phase soil C. Because our
563 porewater DOC results indicate higher concentrations near the surface, the removal of porewater DOC
564 prior to soil C analysis may lead to lower concentrations of soil C at the surface because in most studies,
565 porewater DOC is typically incorporated into the bulk soil C measurements upon soil drying and not
566 extracted as a separate fraction of C (i.e., porewater DOC). We suggest future studies consider porewater
567 DOC as a separate component of the overall soil C concentration, particularly because the variability with
568 depth is much higher for porewater DOC than soil C and porewater DOC is presumed to be more labile
569 and mobile than particulate OC. Therefore, when porewater is extracted from the soil, the measured soil C
570 concentration may appear less variable with depth and time leading to more consistent estimates of the
571 more stable solid-phase soil C.

572 Redox potential was the final significant predictor in the stepwise regression model and increased
573 significantly with soil C. We expected to see a negative relationship between soil C and redox potential
574 due to higher C preservation under reducing conditions, but an overall positive relationship between
575 redox potential and soil C in the model indicates an additional and possibly more important mechanism
576 related to shifting biogeochemistry throughout the year. We observed more oxic conditions at all subsites
577 during plant dormancy in the winter, probably due to the cold winter conditions that allow for the higher
578 dissolved oxygen concentrations in water and porewaters observed previously (Trifunovic et al. 2020).
579 Despite more oxygenated conditions and higher redox potentials in winter, the microbial activity likely
580 decreased during winter, allowing elevated soil C during the winter months when plants were dormant. In
581 addition, the less reducing and more oxygenated conditions in winter likely promoted the formation of Fe
582 oxides that incorporated solution-phase C into the solid phase via coprecipitation. While there is an
583 abundance of evidence showing the importance of Fe oxides in soil C storage in non-wetland ecosystems
584 (Lalonde et al. 2012; Riedel et al. 2013; Sowers et al. 2018a, b, 2019; Adhikari et al. 2019), recent studies
585 have shown the important role of Fe oxides in C cycling in tidal salt marshes (Seyfferth et al. 2020;

586 Fettrow et al. 2023a), but few studies track C cycling during the cool winter months. Variations in Fe
587 oxide complexation with C due to phenological phase should be further investigated.

588 **4.4 Variability in Soil Carbon StorageC Accrual Rates and Soil C Stocks**

589 ——————Based on soil accretion rates obtained from a previous study near our core locations
590 (Tucker 2016), bulk density at each of the three subsites previously obtained (Wilson and Smith 2015),
591 and our mean soil C concentrations averaged across depth for each subsite within phenophases, we
592 calculated the soil C accumulation rates and soil C stocks at each of the three subsites within each of the
593 four phenophases (Figure 7). These accumulation rates are in range of previously reported values for
594 mesohaline tidal salt marshes (Chmura et al. 2003; Lovelock et al. 2014; Ye et al. 2015; Mcleod et al.
595 2016; Macreadie et al. 2017, 2020), as are the soil C stock estimates (Zhao et al. 2016; Ewers Lewis et al.
596 2018; van Ardenne et al. 2018; Ouyang and Lee 2020; Gorham et al. 2021). These results further illustrate
597 that soil C storageaccrual rates and soil C stocks are highly dynamic and change based on time and space
598 within a single ecosystem. The largest difference between rates and stocks occurred between SS
599 dormancy and TC green-up, in which the average storageaccrual rates varied by 75% and the average
600 stocks varied by 96%. Therefore, within the same ecosystem and between phenophases, soil C
601 storageaccrual rates and stocks can vary substantially, leading to variability and uncertainty. To account
602 for spatial and temporal heterogeneity in soil C storageaccrual rates and stocks, we suggest taking soil
603 cores across multiple vegetation zones (if they exist) and across both the growing and non-growing
604 seasons. Our recommendation follows Howard et al. (2014), who suggest linear plot selection when an
605 obvious feature (i.e., tidal creek) is present and a feature that likely has a strong control on local
606 environmental conditions based on distance from this feature. But we also point out that selecting plot
607 locations based on variation in vegetation is also important, since changing aboveground vegetation is
608 often a sign of changing belowground biogeochemical conditions in tidal systems. This way, more the
609 source of variability can be accounted for, leading to less uncertainty in blue C estimates.

Formatted: Indent: First line: 0.5", Space After: 8 pt

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font: (Default) Times New Roman, Font color: Black

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

610

611 **Figure 78.** Conceptual diagram illustrating the spatial and temporal variability of soil C storageaccrual
 612 rates ($\text{g C m}^{-2} \text{yr}^{-1}$) and soil C stocks (kg C m^{-2}) based on subsites by phenophase. Soil C stocks are 0 to
 613 48cm depth. S= senescence, D= dormancy, G= green-up, M= maturity.

614

615 5.0 Conclusion

616 Our results highlight the variability in soil C in time and space at the site level. We found that
 617 some level of uncertainty in estimates of stocks and accumulation rates is likely related to spatial and
 618 temporal variability of soil C and biogeochemistry at the marsh scale. Subsites that were only a few
 619 meters from one another contained significantly different soil C concentrations, likely usedusing different
 620 metabolic pathways for C mineralization, contained significantly different porewater CDOM molecular
 621 properties and led to considerable variation in soil C storageaccrual rates and soil C stock estimates. The
 622 biogeochemical controls that were best correlated with soil C concentration were redox potential, soil S,
 623 sulfide, and depth, indicating that the redox potential and sulfur content of the soils are critical in

624 controlling how much soil C accumulates in coastal marsh ecosystems. We also found that soil C
625 concentration and thus soil C ~~storage accrual~~ rates and soil C stock estimates, varies significantly across
626 the phenophases of the marsh grasses. Plant dormancy contained the highest mean soil C concentration,
627 possibly a result of high redox potential during winter months that causes remaining porewater DOC to be
628 incorporated into the solid phase with oxidized minerals such as Fe oxides and lower microbial activity.
629 These results demonstrate the importance of considering marsh-scale spatial and temporal heterogeneity
630 when conducting a blue C assessment. Based on these results, we suggest taking soil cores from multiple
631 locations within a marsh and in replicate, particularly if multiple ~~vegetation~~ types ~~of marsh grass~~ are
632 present, and at different seasons to account for both spatial and temporal variability. These
633 recommendations may help lead to less uncertainty in blue C estimates.

634

635 **Statements and Declarations**

636 **Competing Interests:** The authors have no relevant financial or non-financial interests to disclose.
637 **Author Contributions:** All authors contributed to the study conception and design. Material preparation,
638 data collection, and analysis were performed by Sean Fettrow. The first draft of the manuscript was
639 written by Sean Fettrow and Angelia Seyfferth with edits by Holly Michael and Andrew Wozniak. All
640 authors commented on previous versions of the manuscript. All authors read and approved the final
641 manuscript

642 **Data Availability Statement**

643 Data is available on Figshare (DOI: 10.6084/m9.figshare.24274417)

644 **Acknowledgments**

645 We thank Chloe Kroll for laboratory assistance, the UD Soil Testing Laboratory and the Advanced
646 Materials Characterization Lab (AMCL) for analytical assistance, and the staff of the Delaware National
647 Estuarine Research Reserve (DNERR). A.L.S. and H.A.M. acknowledge support from the National
648 Science Foundation (Grant Nos. 1759879 and 2012484), S.F. acknowledges support from the Delaware
649 Environmental Institute. The authors acknowledge the land on which they conducted this study is the

650 traditional home of the Lenni-Lenape tribal nation (Delaware nation). The authors report no conflict of
651 interest.

652

653 **References**

654 Adhikari, D., Sowers, T., Stuckey, J. W., Wang, X., Sparks, D. L., and Yang, Y.: Formation and redox
655 reactivity of ferrihydrite-organic carbon-calcium co-precipitates, *Geochim Cosmochim Acta*, 244,
656 86–98, <https://doi.org/10.1016/j.gca.2018.09.026>, 2019.

657 Alperin, M. J., Albert, D. B., and Martens, C. S.: Seasonal variations in production and consumption
658 rates of dissolved organic carbon in an organic-rich coastal sediment, *Geochim Cosmochim Acta*,
659 58, 4909–4930, [https://doi.org/10.1016/0016-7037\(94\)90221-6](https://doi.org/10.1016/0016-7037(94)90221-6), 1994.

660 van Ardenne, L. B., Jolicouer, S., Bérubé, D., Burdick, D., and Chmura, G. L.: The importance of
661 geomorphic context for estimating the carbon stock of salt marshes, *Geoderma*, 330, 264–275,
662 <https://doi.org/10.1016/j.geoderma.2018.06.003>, 2018.

663 Arias-Ortiz, A., Masqué, P., Garcia-Orellana, J., Serrano, O., Mazarrasa, I., Marbà, N., Lovelock, C. E.,
664 Lavery, P. S., and Duarte, C. M.: Reviews and syntheses: 210Pb-derived sediment and carbon
665 accumulation rates in vegetated coastal ecosystems –setting the record straight, *Biogeosciences*,
666 15, 6791–6818, <https://doi.org/10.5194/bg-15-6791-2018>, 2018.

667 Bai, J., Zhang, G., Zhao, Q., Lu, Q., Jia, J., Cui, B., and Liu, X.: Depth-distribution patterns and control
668 of soil organic carbon in coastal salt marshes with different plant covers, *Sci Rep*, 6,
669 <https://doi.org/10.1038/srep34835>, 2016.

670 Baustian, M. M., Stagg, C. L., Perry, C. L., Moss, L. C., Carruthers, T. J. B., and Allison, M.:
671 Relationships Between Salinity and Short-Term Soil Carbon Accumulation Rates from Marsh Types
672 Across a Landscape in the Mississippi River Delta, *Wetlands*, 37, 313–324,
673 <https://doi.org/10.1007/s13157-016-0871-3>, 2017.

674 Blair, N. E. and Aller, R. C.: The fate of terrestrial organic carbon in the Marine environment, *Ann
675 Rev Mar Sci*, 4, 401–423, <https://doi.org/10.1146/annurev-marine-120709-142717>, 2012.

676 Breithaupt, J. L., Smoak, J. M., Bianchi, T. S., Vaughn, D. R., Sanders, C. J., Radabaugh, K. R., Osland,
677 M. J., Feher, L. C., Lynch, J. C., Cahoon, D. R., Anderson, G. H., Whelan, K. R. T., Rosenheim, B. E.,
678 Moyer, R. P., and Chambers, L. G.: Increasing Rates of Carbon Burial in Southwest Florida Coastal
679 Wetlands, *J Geophys Res Biogeosci*, 125, 1–25, <https://doi.org/10.1029/2019JG005349>, 2020.

680 van de Broek, M., Temmerman, S., Merckx, R., and Govers, G.: Controls on soil organic carbon
681 stocks in tidal marshes along an estuarine salinity gradient, *Biogeosciences*, 13, 6611–6624,
682 <https://doi.org/10.5194/bg-13-6611-2016>, 2016.

683 Van De Broek, M., Temmerman, S., Merckx, R., and Govers, G.: Controls on soil organic carbon
684 stocks in tidal marshes along an estuarine salinity gradient, *Biogeosciences*, 13, 6611–6624,
685 <https://doi.org/10.5194/bg-13-6611-2016>, 2016.

686 Caçador, I., Costa, A. L., and Vale, C.: Carbon storage in tagus salt marsh sediments, Water, Air, and
687 Soil Pollution: Focus, 4, 701–714, <https://doi.org/10.1023/B:WAFO.0000028388.84544.ce>, 2004.

688 Capooci, M., Barba, J., Seyfferth, A. L., and Vargas, R.: Experimental influence of storm-surge
689 salinity on soil greenhouse gas emissions from a tidal salt marsh, *Science of the Total Environment*,
690 686, 1164–1172, <https://doi.org/10.1016/j.scitotenv.2019.06.032>, 2019.

691 Chen, C. and Sparks, D. L.: Multi-elemental scanning transmission X-ray microscopy-near edge X-
692 ray absorption fine structure spectroscopy assessment of organo-mineral associations in soils from
693 reduced environments, *Environmental Chemistry*, 12, 64–73, <https://doi.org/10.1071/EN14042>,
694 2015.

695 Chen, C., Dynes, J. J., Wang, J., and Sparks, D. L.: Properties of Fe-organic matter associations via
696 coprecipitation versus adsorption, *Environ Sci Technol*, 48, 13751–13759,
697 <https://doi.org/10.1021/es503669u>, 2014.

698 Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., and Lynch, J. C.: Global carbon sequestration in tidal,
699 saline wetland soils, *Global Biogeochem Cycles*, 17, 1111, <https://doi.org/10.1029/2002GB001917>,
700 2003.

701 Clark, C. D., Aiona, P., Keller, J. K., and de Bruyn, W. J.: Optical characterization and distribution of
702 chromophoric dissolved organic matter (CDOM) in soil porewater from a salt marsh ecosystem,
703 *Mar Ecol Prog Ser*, 516, 71–83, <https://doi.org/10.3354/meps10833>, 2014.

704 Cline, J. [D.: SPECTROPHOTOMETRIC DETERMINATION OF HYDROGEN SULFIDE IN NATURAL
705 WATERS](#)[1D.: Spectrophotometric determination of hydrogen sulfide in natural waters](#), *Limnol
706 Oceanogr*, 14, 454–458, <https://doi.org/10.4319/lo.1969.14.3.0454>, 1969.

707 Crosby, S. C., Ivens-Duran, M., Bertness, M. D., Davey, E., Deegan, L. A., and Leslie, H. M.: Flowering
708 and biomass allocation in U.S. Atlantic coast *Spartina alterniflora*, *Am J Bot*, 102, 669–676,
709 <https://doi.org/10.3732/ajb.1400534>, 2015.

710 Cuellar-Martinez, T., Ruiz-Fernández, A. C., Sanchez-Cabeza, J. A., Pérez-Bernal, L., López-Mendoza,
711 P. G., Carnero-Bravo, V., Agraz-Hernández, C. M., van Tussenbroek, B. I., Sandoval-Gil, J., Cardoso-
712 Mohedano, J. G., Vázquez-Molina, Y., and Aldana-Gutiérrez, G.: Temporal records of organic
713 carbon stocks and burial rates in Mexican blue carbon coastal ecosystems throughout the
714 Anthropocene, *Glob Planet Change*, 192, 103215,
715 <https://doi.org/10.1016/j.gloplacha.2020.103215>, 2020.

716 Cusack, M., Saderne, V., Arias-Ortiz, A., Masqué, P., Krishnakumar, P. K., Rabaoui, L., Qurban, M. A.,
717 Qasem, A. M., Prihartato, P., Loughland, R. A., Elyas, A. A., and Duarte, C. M.: Organic carbon
718 sequestration and storage in vegetated coastal habitats along the western coast of the Arabian
719 Gulf, *Environmental Research Letters*, 13, 074007, <https://doi.org/10.1088/1748-9326/aac899>,
720 2018.

721 Davy, A. J., Brown, M. J. H., Mossman, H. L., and Grant, A.: Colonization of a newly developing salt
722 marsh: disentangling independent effects of elevation and redox potential on halophytes, *Journal
723 of Ecology*, 99, 1350–1357, <https://doi.org/10.1111/j.1365-2745.2011.01870.x>, 2011.

724 Desai, A. R.: Climatic and phenological controls on coherent regional interannual variability of
725 carbon dioxide flux in a heterogeneous landscape, *J Geophys Res*, 115, G00J02,
726 <https://doi.org/10.1029/2010JG001423>, 2010.

727 Dorau, K., Pohl, L., Just, C., Höschen, C., Ufer, K., Mansfeldt, T., and Mueller, C. W.: Soil Organic
728 Matter and Phosphate Sorption on Natural and Synthetic Fe Oxides under in Situ Conditions,
729 *Environ Sci Technol*, 53, 13081–13087, <https://doi.org/10.1021/acs.est.9b03260>, 2019.

730 Duarte, C. M.: Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the
731 ocean carbon budget, *Biogeosciences*, 14, 301–310, <https://doi.org/10.5194/bg-14-301-2017>,
732 2017.

733 Ewers Lewis, C. J., Carnell, P. E., Sanderman, J., Baldock, J. A., and Macreadie, P. I.: Variability and
734 Vulnerability of Coastal ‘Blue Carbon’ Stocks: A Case Study from Southeast Australia, *Ecosystems*,
735 21, 263–279, <https://doi.org/10.1007/s10021-017-0150-z>, 2018.

736 Ewers Lewis, C. J., Baldock, J. A., Hawke, B., Gadd, P. S., Zawadzki, A., Heijnis, H., Jacobsen, G. E.,
737 Rogers, K., and Macreadie, P. I.: Impacts of land reclamation on tidal marsh ‘blue carbon’ stocks,
738 *Science of the Total Environment*, 672, 427–437, <https://doi.org/10.1016/j.scitotenv.2019.03.345>,
739 2019.

740 Fettrow, S., Vargas, R., and Seyfferth, A. L.: Experimentally simulated sea level rise destabilizes
741 carbon-mineral associations in temperate tidal marsh soil, *Biogeochemistry*, 163, 103–120,
742 <https://doi.org/10.1007/s10533-023-01024-z>, 2023a.

743 Fettrow, S., Jeppi, V., Wozniak, A., Vargas, R., Michael, H., and Seyfferth, A. L.: Physiochemical
744 Controls on the Horizontal Exchange of Blue Carbon Across the Salt Marsh-Tidal Channel Interface,
745 *J Geophys Res Biogeosci*, <https://doi.org/10.1029/2023JG007404>, 2023b.

746 Ford, H., Garbutt, A., Duggan-Edwards, M., Pagès, J. F., Harvey, R., Ladd, C., and Skov, M. W.: Large-
747 scale predictions of salt-marsh carbon stock based on simple observations of plant community and
748 soil type, *Biogeosciences*, 16, 425–436, <https://doi.org/10.5194/bg-16-425-2019>, 2019.

749 Frasco, B. A. and Good, R. E.: Decomposition Dynamics of *Spartina alterniflora* and *Spartina patens*
750 in a New Jersey Salt Marsh, *Am J Bot*, 69, 402, <https://doi.org/10.2307/2443145>, 1982.

751 Gao, L., Fan, D., Sun, C., Li, D., and Cai, J.: Optical characterization of CDOM in a marsh-influenced
752 environment in the Changjiang (Yangtze River) Estuary, *Environ Earth Sci*, 64, 643–658,
753 <https://doi.org/10.1007/s12665-010-0885-8>, 2011.

754 Gorham, C., Lavery, P., Kelleway, J. J., Salinas, C., and Serrano, O.: Soil Carbon Stocks Vary Across
755 Geomorphic Settings in Australian Temperate Tidal Marsh Ecosystems, *Ecosystems*, 24, 319–334,
756 <https://doi.org/10.1007/s10021-020-00520-9>, 2021.

757 Guimond, J. A., Seyfferth, A. L., Moffett, K. B., and Michael, H. A.: A physical-biogeochemical
758 mechanism for negative feedback between marsh crabs and carbon storage, *Environmental
759 Research Letters*, 15, 034024, <https://doi.org/10.1088/1748-9326/ab60e2>, 2020a.

760 Guimond, J. A., Yu, X., Seyfferth, A. L., and Michael, H. A.: Using Hydrological-Biogeochemical
761 Linkages to Elucidate Carbon Dynamics in Coastal Marshes Subject to Relative Sea Level Rise,
762 *Water Resour Res*, 56, 1–16, <https://doi.org/10.1029/2019WR026302>, 2020b.

763 [Howard, J., Hoyt, S., Isensee, K., Telszewski, M., Pidgeon, E. \(eds.\) \(2014\). Coastal Blue Carbon:](#)
764 [Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and](#)
765 [seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO,](#)
766 [International Union for Conservation of Nature. Arlington, Virginia, USA.](#)

767 Kang, X., Hao, Y., Cui, X., Chen, H., Huang, S., Du, Y., Li, W., Kardol, P., Xiao, X., and Cui, L.:
768 Variability and Changes in Climate, Phenology, and Gross Primary Production of an Alpine Wetland
769 Ecosystem, *Remote Sens (Basel)*, 8, 391, <https://doi.org/10.3390/rs8050391>, 2016.

770 Koretsky, C. M., Van Cappellen, P., Dichristina, T. J., Kostka, J. E., Lowe, K. L., Moore, C. M.,
771 Roychoudhury, A. N., and Viollier, E.: Salt marsh pore water geochemistry does not correlate with
772 microbial community structure, *Estuar Coast Shelf Sci*, 62, 233–251,
773 <https://doi.org/10.1016/j.ecss.2004.09.001>, 2005.

774 Lacroix, E. M., Mendillo, J., Gomes, A., Dekas, A., and Fendorf, S.: Contributions of anoxic microsites
775 to soil carbon protection across soil textures, *Geoderma*, 425,
776 <https://doi.org/10.1016/j.geoderma.2022.116050>, 2022.

777 Lalonde, K., Mucci, A., Ouellet, A., and Gélinas, Y.: Preservation of organic matter in sediments
778 promoted by iron, *Nature*, 483, 198–200, <https://doi.org/10.1038/nature10855>, 2012.

779 Lovelock, C. E., Adame, M. F., Bennion, V., Hayes, M., O'Mara, J., Reef, R., and Santini, N. S.:
780 Contemporary rates of carbon sequestration through vertical accretion of sediments in mangrove
781 forests and saltmarshes of South East Queensland, Australia, *Estuaries and Coasts*,
782 <https://doi.org/10.1007/s12237-013-9702-4>, 2014.

783 Luo, M., Liu, Y., Huang, J., Xiao, L., Zhu, W., Duan, X., and Tong, C.: Rhizosphere processes induce
784 changes in dissimilatory iron reduction in a tidal marsh soil: a rhizobox study, *Plant Soil*, 433, 83–
785 100, <https://doi.org/10.1007/s11104-018-3827-y>, 2018.

786 Luo, M., Huang, J.-F., Zhu, W.-F., and Tong, C.: Impacts of increasing salinity and inundation on
787 rates and pathways of organic carbon mineralization in tidal wetlands: a review, *Hydrobiologia*,
788 827, 31–49, <https://doi.org/10.1007/s10750-017-3416-8>, 2019.

789 Lytle, R. W. and Hull, R. J.: Annual Carbohydrate Variation in Culms and Rhizomes of Smooth
790 Cordgrass (*Spartina alterniflora* Loisel.) 1, *Agron J*, 72, 942–946,
791 <https://doi.org/10.2134/agronj1980.00021962007200060019x>, 1980.

792 Macreadie, P. I., Ollivier, Q. R., Kelleway, J. J., Serrano, O., Carnell, P. E., Ewers Lewis, C. J., Atwood,
793 T. B., Sanderman, J., Baldock, J., Connolly, R. M., Duarte, C. M., Lavery, P. S., Steven, A., and
794 Lovelock, C. E.: Carbon sequestration by Australian tidal marshes, *Sci Rep*, 7, 44071,
795 <https://doi.org/10.1038/srep44071>, 2017.

796 Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., Kelleway, J. J.,
797 Kennedy, H., Kuwae, T., Lavery, P. S., Lovelock, C. E., Smale, D. A., Apostolaki, E. T., Atwood, T. B.,

798 Baldock, J., Bianchi, T. S., Chmura, G. L., Eyre, B. D., Fourqurean, J. W., Hall-Spencer, J. M., Huxham,
799 M., Hendriks, I. E., Krause-Jensen, D., Laffoley, D., Luisetti, T., Marbà, N., Masque, P., McGlathery,
800 K. J., Megonigal, J. P., Murdiyarsa, D., Russell, B. D., Santos, R., Serrano, O., Silliman, B. R.,
801 Watanabe, K., and Duarte, C. M.: The future of Blue Carbon science, *Nat Commun*, 10, 3998,
802 <https://doi.org/10.1038/s41467-019-11693-w>, 2019.

803 Macreadie, P. I., Nielsen, D. A., Kelleway, J. J., Atwood, T. B., Seymour, J. R., Petrou, K., Connolly, R.
804 M., Thomson, A. C. G., Stacey, M., and Ralph, P. J.: Can we manage coastal ecosystems to
805 sequester more blue carbon?, 15, 206–213, 2020.

806 Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E.,
807 Schlesinger, W. H., and Silliman, B. R.: A blueprint for blue carbon: toward an improved
808 understanding of the role of vegetated coastal habitats in sequestering CO₂, *Front Ecol Environ*, 9,
809 552–560, <https://doi.org/https://www.jstor.org/stable/41479959>, 2016.

810 Mcowen, C., Weatherdon, L., Bochové, J.-W., Sullivan, E., Blyth, S., Zockler, C., Stanwell-Smith, D.,
811 Kingston, N., Martin, C., Spalding, M., and Fletcher, S.: A global map of saltmarshes, *Biodivers Data*
812 J, 5, e11764, <https://doi.org/10.3897/BDJ.5.e11764>, 2017.

813 McTigue, N., Davis, J., Rodriguez, A. B., McKee, B., Atencio, A., and Currin, C.: Sea Level Rise
814 Explains Changing Carbon Accumulation Rates in a Salt Marsh Over the Past Two Millennia, *J*
815 *Geophys Res Biogeosci*, 124, 2945–2957, <https://doi.org/10.1029/2019JG005207>, 2019.

816 Miller, C. B., Rodriguez, A. B., Bost, M. C., McKee, B. A., and McTigue, N. D.: Carbon accumulation
817 rates are highest at young and expanding salt marsh edges, *Commun Earth Environ*, 3,
818 <https://doi.org/10.1038/s43247-022-00501-x>, 2022.

819 Moffett, K. and Gorlick, S.: Relating salt marsh pore water geochemistry patterns to vegetation
820 zones and hydrologic influences, *J Am Water Resour Assoc*, 52, 1729–1745,
821 <https://doi.org/10.1111/j.1752-1688.1969.tb04897.x>, 2016.

822 Mueller, P., Ladiges, N., Jack, A., Schmiedl, G., Kutzbach, L., Jensen, K., and Nolte, S.: Assessing the
823 long-term carbon-sequestration potential of the semi-natural salt marshes in the European
824 Wadden Sea, *Ecosphere*, 10, <https://doi.org/10.1002/ecs2.2556>, 2019.

825 Muench, A. and Elsey-Quirk, T.: Competitive reversal between plant species is driven by species-
826 specific tolerance to flooding stress and nutrient acquisition during early marsh succession, *Journal*
827 *of Applied Ecology*, 56, 2236–2247, <https://doi.org/10.1111/1365-2664.13458>, 2019.

828 Negandhi, K., Edwards, G., Kelleway, J. J., Howard, D., Safari, D., and Saintilan, N.: Blue carbon
829 potential of coastal wetland restoration varies with inundation and rainfall, *Sci Rep*, 9, 4368,
830 <https://doi.org/10.1038/s41598-019-40763-8>, 2019.

831 Negrin, V. L., Spetter, C. V., Asteasuain, R. O., Perillo, G. M. E., and Marcovecchio, J. E.: Influence of
832 flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the pore water of a
833 *Spartina alterniflora* salt marsh, *Journal of Environmental Sciences*, 23, 212–221,
834 [https://doi.org/10.1016/S1001-0742\(10\)60395-6](https://doi.org/10.1016/S1001-0742(10)60395-6), 2011.

835 Ouyang, X. and Lee, S. Y.: Improved estimates on global carbon stock and carbon pools in tidal
836 wetlands, <https://doi.org/10.1038/s41467-019-14120-2>, 2020.

837 Riedel, T., Zak, D., Biester, H., and Dittmar, T.: Iron traps terrestrially derived dissolved organic
838 matter at redox interfaces, *Proceedings of the National Academy of Sciences*, 110, 10101–10105,
839 <https://doi.org/10.1073/pnas.1221487110>, 2013.

840 Roman, C. T. and Daiber, F. C.: Aboveground and Belowground Primary Production Dynamics of
841 Two Delaware Bay Tidal Marshes, *Torrey Botanical Society*, 111, 34–41,
842 <https://doi.org/https://www.jstor.org/stable/2996208>, 1984.

843 Saintilan, N., Rogers, K., Mazumder, D., and Woodroffe, C.: Allochthonous and autochthonous
844 contributions to carbon accumulation and carbon store in southeastern Australian coastal
845 wetlands, *Estuar Coast Shelf Sci*, 128, 84–92, <https://doi.org/10.1016/j.ecss.2013.05.010>, 2013.

846 Sanders, C. J., Maher, D. T., Tait, D. R., Williams, D., Holloway, C., Sippo, J. Z., and Santos, I. R.: Are
847 global mangrove carbon stocks driven by rainfall?, *J Geophys Res Biogeosci*, 121, 2600–2609,
848 <https://doi.org/10.1002/2016JG003510>, 2016.

849 Serrano, O., Lovelock, C. E., Atwood, T., Macreadie, P. I., Canto, R., Phinn, S., Arias-Ortiz, A., Bai,
850 L., Baldock, J., Bedulli, C., Carnell, P., Connolly, R. M., Donaldson, P., Esteban, A., Ewers Lewis, C. J.,
851 Eyre, B. D., Hayes, M. A., Horwitz, P., Hutley, L. B., Kavazos, C. R. J., Kelleway, J. J., Kendrick, G. A.,
852 Kilmminster, K., Lafratta, A., Lee, S., Lavery, P. S., Maher, D. T., Marbà, N., Masque, P., Mateo, M. A.,
853 Mount, R., Ralph, P. J., Roelfsema, C., Rozaimi, M., Ruhon, R., Salinas, C., Samper-Villarreal, J.,
854 Sanderman, J., Sanders, C., Santos, I., Sharples, C., Steven, A. D. L., Cannard, T., Trevathan-
855 Tackett, S. M., and Duarte, C. M.: Australian vegetated coastal ecosystems as global hotspots for
856 climate change mitigation, *Nat Commun*, 10, 4313, <https://doi.org/10.1038/s41467-019-12176-8>,
857 2019.

858 Seyfferth, A. L., Bothfeld, F., Vargas, R., Stuckey, J. W., Wang, J., Kearns, K., Michael, H. A.,
859 Guimond, J., Yu, X., and Sparks, D. L.: Spatial and temporal heterogeneity of geochemical controls
860 on carbon cycling in a tidal salt marsh, *Geochim Cosmochim Acta*, 282, 1–18,
861 <https://doi.org/10.1016/j.gca.2020.05.013>, 2020.

862 Smeaton, C., Barlow, N. L. M., and Austin, W. E. N.: Coring and compaction: Best practice in blue
863 carbon stock and burial estimations, *Geoderma*, 364, 114180,
864 <https://doi.org/10.1016/j.geoderma.2020.114180>, 2020.

865 Sodano, M., Lerda, C., Nisticò, R., Martin, M., Magnacca, G., Celi, L., and Said-Pullicino, D.:
866 Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron,
867 *Geoderma*, 307, 19–29, <https://doi.org/10.1016/j.geoderma.2017.07.022>, 2017.

868 Sowers, T. D., Adhikari, D., Wang, J., Yang, Y., and Sparks, D. L.: Spatial Associations and Chemical
869 Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems,
870 *Environ Sci Technol*, 52, 6936–6944, <https://doi.org/10.1021/acs.est.8b01158>, 2018a.

871 Sowers, T. D., Stuckey, J. W., and Sparks, D. L.: The synergistic effect of calcium on organic carbon
872 sequestration to ferrihydrite, *Geochem Trans*, 19, 22–26, <https://doi.org/10.1186/s12932-018-0049-4>, 2018b.

874 Sowers, T. D., Holden, K. L., Coward, E. K., and Sparks, D. L.: Dissolved Organic Matter Sorption and
875 Molecular Fractionation by Naturally Occurring Bacteriogenic Iron (Oxyhydr)oxides, *Environ Sci
876 Technol*, 53, 4295–4304, <https://doi.org/10.1021/acs.est.9b00540>, 2019.

877 Stookey, L. L.: Ferrozine-A New Spectrophotometric Reagent for Iron, *Anal Chem*, 42, 779–781,
878 <https://doi.org/10.1021/ac60289a016>, 1970.

879 Tegelaar, E. W., de Leeuw, J. W., Derenne, S., and Largeau, C.: A reappraisal of kerogen formation,
880 *Geochim Cosmochim Acta*, 53, 3103–3106, [https://doi.org/10.1016/0016-7037\(89\)90191-9](https://doi.org/10.1016/0016-7037(89)90191-9), 1989.

881 Textor, S. R., Wickland, K. P., Podgorski, D. C., Johnston, S. E., and Spencer, R. G. M.: Dissolved
882 Organic Carbon Turnover in Permafrost-Influenced Watersheds of Interior Alaska: Molecular
883 Insights and the Priming Effect, *Front Earth Sci (Lausanne)*, 7,
884 <https://doi.org/10.3389/feart.2019.00275>, 2019.

885 ThomasArrigo, L. K., Kaegi, R., and Kretzschmar, R.: Ferrihydrite Growth and Transformation in the
886 Presence of Ferrous Iron and Model Organic Ligands, *Environ Sci Technol*, 53, 13636–13647,
887 <https://doi.org/10.1021/acs.est.9b03952>, 2019.

888 Trifunovic, B., Vázquez-Lule, A., Capooci, M., Seyfferth, A. L., Moffat, C., and Vargas, R.: Carbon
889 Dioxide and Methane Emissions From A Temperate Salt Marsh Tidal Creek, *J Geophys Res
890 Biogeosci*, 125, <https://doi.org/10.1029/2019JG005558>, 2020.

891 Tucker, K. [J.: VARIABILITY OF ORGANIC CARBON ACCUMULATION ON A TIDAL WETLAND COAST: Variability of organic carbon accumulation on a tidal wetland coast. Dissertation](#), University of
892 Delaware, 2016.

893

894 Valle, J., Gonsior, M., Harir, M., Enrich-Prast, A., Schmitt-Kopplin, P., Bastviken, D., Conrad, R., and
895 Hertkorn, N.: Extensive processing of sediment pore water dissolved organic matter during anoxic
896 incubation as observed by high-field mass spectrometry (FTICR-MS), *Water Res*, 129,
897 <https://doi.org/10.1016/j.watres.2017.11.015>, 2018.

898 Vázquez-Lule, A. and Vargas, R.: Biophysical drivers of net ecosystem and methane exchange
899 across phenological phases in a tidal salt marsh, *Agric For Meteorol*, 300, 108309,
900 <https://doi.org/10.1016/j.agrformet.2020.108309>, 2021.

901 Wang, F., Sanders, C. J., Santos, I. R., Tang, J., Schuerch, M., Kirwan, M. L., Kopp, R. E., Zhu, K., Li, X.,
902 Yuan, J., Liu, W., and Li, Z.: Global blue carbon accumulation in tidal wetlands increases with
903 climate change, *Natl Sci Rev*, 8, <https://doi.org/10.1093/nsr/nwaa296>, 2021.

904 Whitby, H., Planquette, H., Cassar, N., Bucciarelli, E., Osburn, C. L., Janssen, D. J., Cullen, J. T.,
905 González, A. G., Völker, C., and Sarthou, G.: A call for refining the role of humic-like substances in
906 the oceanic iron cycle, *Sci Rep*, 10, 6144, <https://doi.org/10.1038/s41598-020-62266-7>, 2020.

907 Wilson, K. and Smith, E.: Marsh Carbon Storage in the National Estuarine Research Reserves, USA,
908 67, 2015.

909 Windham, L.: Comparison of biomass production and decomposition between *Phragmites australis*
910 (common reed) and *spartina patens* (salt hay grass) in brackish tidal marshes of New Jersey, USA,

911 Wetlands, 21, 179–188, [https://doi.org/10.1672/0277-5212\(2001\)021\[0179:COBPAD\]2.0.CO;2](https://doi.org/10.1672/0277-5212(2001)021[0179:COBPAD]2.0.CO;2),
912 2001.

913 Wordofa, D. N., Adhikari, D., Dunham-Cheatham, S. M., Zhao, Q., Poulson, S. R., Tang, Y., and Yang,
914 Y.: Biogeochemical fate of ferrihydrite-model organic compound complexes during anaerobic
915 microbial reduction, *Science of the Total Environment*, 668, 216–223,
916 <https://doi.org/10.1016/j.scitotenv.2019.02.441>, 2019.

917 Ye, S., Laws, E. A., Yuknis, N., Ding, X., Yuan, H., Zhao, G., Wang, J., Yu, X., Pei, S., and DeLaune, R.
918 D.: Carbon Sequestration and Soil Accretion in Coastal Wetland Communities of the Yellow River
919 Delta and Liaohe Delta, *China, Estuaries and Coasts*, <https://doi.org/10.1007/s12237-014-9927-x>,
920 2015.

921 Yousefi Lalimi, F., Silvestri, S., D'Alpaos, A., Roner, M., and Marani, M.: The Spatial Variability of
922 Organic Matter and Decomposition Processes at the Marsh Scale, *J Geophys Res Biogeosci*, 123,
923 3713–3727, <https://doi.org/10.1029/2017JG004211>, 2018.

924 Yu, J., Dong, H., Li, Y., Wu, H., Guan, B., Gao, Y., Zhou, D., and Wang, Y.: Spatiotemporal Distribution
925 Characteristics of Soil Organic Carbon in Newborn Coastal Wetlands of the Yellow River Delta
926 Estuary, *Clean (Weinh)*, 42, 311–318, <https://doi.org/10.1002/clen.201100511>, 2014.

927 Zhang, D., Gong, C., Zhang, W., Zhang, H., Zhang, J., and Song, C.: Labile carbon addition alters soil
928 organic carbon mineralization but not its temperature sensitivity in a freshwater marsh of
929 Northeast China, *Applied Soil Ecology*, 160, <https://doi.org/10.1016/j.apsoil.2020.103844>, 2021.

930 Zhao, Q., Bai, J., Liu, Q., Lu, Q., Gao, Z., and Wang, J.: Spatial and Seasonal Variations of Soil Carbon
931 and Nitrogen Content and Stock in a Tidal Salt Marsh with *Tamarix chinensis*, *China, Wetlands*, 36,
932 145–152, <https://doi.org/10.1007/s13157-015-0647-1>, 2016.

933 Zhu, Q., Cochran, J. K., Heilbrun, C., Yin, H., Feng, H., Tamborski, J. J., Fitzgerald, P., and Cong, W.:
934 Small-Scale Geochemical Heterogeneities and Seasonal Variation of Iron and Sulfide in Salt
935 Marshes Revealed by Two-Dimensional Sensors, *Front Earth Sci (Lausanne)*, 9,
936 <https://doi.org/10.3389/feart.2021.653698>, 2021.

937