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Abstract. Conventional and recently developed approaches for estimating turbulent scalar fluxes under stable conditions are

evaluated. The focus is on methods that do not require fast scalar sensors such as the relaxed eddy accumulation (REA)

approach, the disjunct eddy-covariance (DEC) approach, and a novel mixing length parametrization labelled as A22. Using

high-frequency measurements collected from two contrasting sites (Utqiagvik, Alaska and Wendell, Idaho "during winter"), it is

shown that the REA and A22 models outperform the conventional Monin-Obukhov Similarity Theory (MOST) utilized in Earth5

System Models. With slow trace gas sensors used in disjunct eddy-covariance (DEC) approaches and the more complex signal

filtering associated with REA devices (here simulated using filtered signals from fast-response sensors), A22 outperforms REA

and DEC in predicting the observed unfiltered (total) eddy-covariance (EC) fluxes. However, REA and DEC can still capture

the observed filtered EC fluxes computed with the filtered scalar signal. This finding motivates the development of a correction,

blending the REA and DEC methods, for the underestimated net averaged fluxes to incorporate the effect of sensor filtering.10

The only needed parameter for this correction is the mean velocity at the instrument height, a surrogate of the advective

timescale.

1 Introduction

The significance of surface-atmosphere exchanges of trace gases, volatile organic compounds (VOCs) and aerosol species

to atmospheric composition and dynamics, and energy transport is not in dispute. Increasing concentrations of gases and15

particles due to natural and anthropogenic sources are modulating the Earth’s climate and having deleterious consequences

for human health and the environment (Qian et al., 2010; Kolb et al., 2010; Voulgarakis et al., 2015). However, estimating

these surface-atmosphere exchanges is particularly challenging in the stable atmospheric boundary layer (ABL) flows that are

characterized by weak mixing and highly anisotropic turbulence (Stull, 1988; Mahrt, 1998). Stable ABLs occur at nighttime,

in the downdraft region of deep mesoscale convective systems (that transport dry air from the mid troposphere to the surface20

where it is compressed to higher temperatures), and in polar regions; they persist as one of the least understood regimes in
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boundary layer meteorology owing to the inherently complex dynamics and the departure from continuous turbulence towards

intermittency (Ansorge and Mellado, 2014, 2016; Mahrt and Bou-Zeid, 2020; Allouche et al., 2022). On the sensing side,

the so-called flux-gradient or flux-variance relations based on Monin-Obukhov Similarity Theory (MOST) are challenging

to apply. This challenge is due to core assumptions that are tenuous to satisfy in practice for stable ABLs. For example, a25

constant flux surface layer that requires stationarity, planar homogeneity, absence of subsidence, and a high Reynolds number

state may not be well established for surface flux measurements under stable conditions. The challenges are exacerbated by

surface heterogeneity, such as over surfaces with mixed water and sea ice in polar regions that can accelerate the exchanges

of gases, aerosols, and energy between the ocean surface and the atmosphere (Sharma et al., 2012; Fogarty and Bou-Zeid,

2023), and semi-infinite heterogeneity patches e.g., land-sea interfaces (Allouche et al., 2023). These observational challenges30

then propagate into theoretical and modeling considerations, prompting the need for improved estimates of scalar fluxes under

stable conditions.

To begin addressing these challenges and scientific gaps, turbulence and flux observations using the eddy covariance (EC)

technique for fluxes of heat (an active scalar), momentum, and trace gases (representing passive scalars) are employed here.

These EC observations are then used to evaluate a series of models that can be employed to parameterize turbulent fluxes, either35

using slower and inexpensive sensors in field measurements through (i) the disjunct eddy-covariance (DEC) method and (ii)

the relaxed eddy accumulation (REA) technique (Businger and Oncley, 1990), or (iii) using mean scalar concentrations that

are available in coarse weather or climate models (mixing length-gradients models). In this study, high-frequency measure-

ments from two contrasting land-cover types are analyzed (i) over an ice sheet in Utqiagvik (Barrow), Alaska, and (ii) over a

sparsely vegetated grassland downwind of heavy agriculture in Wendell, Idaho. Specifically, the current work seeks to answer40

the following research questions: (Q1) What flux/closure models can best reproduce the observed EC fluxes? Models that best

describe the observed fluxes are then tested under scenarios that mimic coarse geophysical variables with mean fields mea-

sured using slow-response sensors because fast-response instruments remain largely unavailable for reactive chemical species

(mainly those characterized by short atmospheric lifetimes). This motivates the second question: (Q2) Can the models correct

for the "unresolved" turbulence scales inherently missed when data are collected using slow-response sensors? In this context,45

necessary modifications to the REA model are proposed to account for the filtering of the fast eddies associated with the REA

device design. This then connects the analysis to the use of slow-response sensors in the DEC flux measurement approach.

Since the scalar data are all available and collected using fast sensors, the slow response sensors used in the DEC method and

the function of an REA device (the so-called dead-band) are both ’simulated’ directly from time series of fast-response sensors

as we will explain later.50

2 Theory

2.1 Background and definitions

Any instantaneous flow variable (e.g., s) is decomposed as s = s + s′, where s is an “ensemble mean” quantity, and s′ is a

turbulent quantity defined as a departure from s. Operationally, primed variables are determined as excursions from the time-
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averaged state (hereafter indicated by the overbar). The atmospheric stability is quantified using the dimensionless stability55

parameter ζ = z/L, where z is the wall-normal distance from the surface and L is the Obukhov length (Obukhov, 1971).

Under stable conditions, which are the focus here, ζ > 0.

The strength of the variability in any flow variable is quantified by σs = (s′s′)1/2, the root-mean squared value of s′, while

the covariance w′s′ is the average net vertical kinematic scalar flux with w′ being the vertical velocity fluctuation. From

definitions, σs is related to w′s′ using the correlation coefficient Rws defined as60

Rws =
w′s′

σwσs
. (1)

2.2 VCC: Variable correlation coefficient flux model

Using Eq. 1, a simplified flux model can be defined based on an empirical parametrization of Rws as a function of ζ

w′s′ = Rws(ζ)σwσs. (2)

The empirical relation (Rws(ζ)) here might still be non-generalizable as it may be site-specific and dependent on some other65

meteorological variables or surface conditions.

2.3 ACC: Averaged correlation coefficient flux model

Again using Eq. 1, one could also test another simplified model with an averaged correlation coefficient ⟨Rws⟩, taken as the

mean over all the available observational periods, yielding

w′s′ = ⟨Rws⟩σwσs. (3)70

In addition to assuming that the correlation coefficient is stability independent, the same potential drawbacks of the variable

correlation coefficient formulation also apply to this model, and the results could not be extrapolated to other sites where other

factors may be present, such as heterogeneity, seasonality, and the influence of synoptic variability, to name a few.

2.4 REA: Relaxed eddy accumulation flux model

Businger and Oncley (1990) proposed the REA method to compute turbulent scalar fluxes. The REA method is ideally ap-75

propriate to use when fast-response sensors are available for w′ (typically from sonic anemometers) but only slow response

measurements are available for the scalar concentration (slow trace gases sensors, or even trace gas samples that need to be

collected and analyzed subsequently in a lab). Thus, the REA approach offers an enhanced representation of these scalar fluxes

(Nie et al., 1995).

The basic idea here is inspired from the work of Desjardins (1977), who used conditional sampling techniques to collect80

scalar information (along with vertical wind speed) in two electronic counters, one for upflow and another for downflow. From

linear correlation analysis, the regression slope of w′/σw against s′/σs may be estimated from the correlation coefficient
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following (Baker et al., 1992; Katul et al., 1994, 2018)

Rws =
(s+− s−)/σs

(w+−w−)/σw

, (4)

where s+ is the conditional average of scalar s instantaneously attributed to updraft events (w′ > 0), and s− is the conditional85

average of scalar s instantaneously attributed to downdraft events (w′ < 0), ∆s = s+− s− reflects this difference in collecting

scalar information from the two samples, and likewise for the vertical velocity statistics. When this estimate for Rws is inserted

into Eq. 1, the REA expression emerges as

w′s′ =
[

σw

(w+−w−)

]
σw(s+− s−). (5)

For vertical velocity fluctuations that follow a Gaussian distribution, it can be shown that σw/(w+−w−) =
√

2π/4 (Katul90

et al., 2018), a constant whose numerical value is 0.63.

Since the linear regression analysis to estimate Rws as featured in Eq. 4 is imperfect, an operational REA model can

expressed as

w′s′ = βsσw(s+− s−), (6)

where βs is now treated as an empirical coefficient that corrects for the above mentioned shortcomings. Many studies investi-95

gated the choice of optimal βs over a wide range of stabilities, surfaces, and meteorological conditions (Businger and Oncley,

1990; Katul et al., 1996; Milne et al., 1999; Zahn et al., 2016; Vogl et al., 2021). The choice of βs is still debatable, yet various

studies reported a βs ≈ 0.59 (Bowling et al., 1998; Katul et al., 1996), which is not far from a Gaussian prediction derived from

w′ statistics (= 0.63). Hence, a βs = 0.59 is selected in the current study as a reference baseline in assessing the REA method.

What is less debatable is the theoretical invariance of βs with stability changes: It was recently shown that the required100

independence of the REA formulation in the limit of free convection from the friction velocity (u∗) is not compatible with a

stability dependent βs (Zahn et al., 2023), and this stability invariance was in fact reported in many field observational studies.

The arguments of Zahn et al. (2023) for a stability-invariant βs can be deduced from the dimensionless form of the REA

expression

1
[βs]

=
σw

u∗

(s+− s−)
s∗

, (7)105

where s∗ = w′s′/u∗. With s+− s− ∼ σs, and noting that scalar flux-variance expressions of σs/s∗ exhibit opposite scaling

exponents with ζ compared to σw/u∗ across all stability regimes, the dependence of βs on ζ is likely to be small as the two

terms on the right hand side of Eq. 7 cancel each others stability dependence. In convective conditions, σw/u∗ ∼ |ζ|+1/3

whereas σs/s∗ ∼ |ζ|−1/3. For near-neutral conditions, MOST predictions suggest σw/u∗ ∼ |ζ|0 and σs/s∗ ∼ |ζ|0 as well,

making βs also independent of stability in that limit.110

Under stable conditions, similar plausibility arguments for a stability independent βs can be made based on the observations

of Weaver (1990) that σs/s∗ ∼ |ζ|0 also under very stable conditions. This result was explained by the author based on argu-

ments first presented by Wyngaard (1973) that under very stable conditions the active eddy size scales with L rather than z,
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and thus turbulence statistics should become independent of ζ. This would then also apply to σw/u∗, and by extension to β.

However, as later shown in the present paper, (i) the practical application of REA using devices with finite mechanical response115

time to physically separate the accumulation of the trace gas in updrafts and downdrafts, (ii) the introduction of a ‘dead-band’

at small w′ where the concentrations are not counted neither towards s+ nor towards s−, and (iii) the slow response of the

scalar sensors may all induce an indirect stability dependence.

2.5 DEC: Disjunct eddy covariance model

The DEC technique is a close analogue of the classic eddy covariance technique, but here the scalar sensor has a slow physical120

response time. The sensor may still be sampled at a high rate, equal to that of w′, to compute the DEC flux as w′s′, but the user

should be cognizant of the inherent filtering of the fluxes carried by eddies that the slow scalar sensor cannot resolve. In this

paper, we simulate the filtered signal based on the actual high-frequency scalar concentration measurements; the details will

be provided in Section 4.2.

2.6 A22: Mixing length flux model125

Recently proposed models for momentum and heat fluxes based on mixing length analogies (Allouche et al., 2022) that out-

performed MOST under stable periods marked with intermittent turbulence dynamics are also tested here. These models were

initially formulated using an eddy diffusion representation of fluxes

w′s′ =−Ks
∂s

∂z
=−(σwLmix)

∂s

∂z
. (8)

The eddy diffusivity (Ks) was then defined as the product of a characteristic velocity scale (Uchar) and a mixing length130

scale (Lmix): Ks = UcharLmix. Here, Lmix will be defined differently for momentum (Ku) and heat (KTv
, Tv is the virtual

temperature), but both use the standard deviation of the vertical velocity (σw) as the characteristic velocity scale (similar to

REA), i.e., Ks = σwLmix.

For momentum, Lmix = Lu, and Lu is defined as a harmonic average between two competing shear length scales (Lu1, a

local turbulent shear scale, and Lu2, the classic bulk shear scale) as follows135

Lu1 = (1−αu)σw

(
∂u

∂z

)−1

, (9a)

Lu2 = αuu

(
∂u

∂z

)−1

, (9b)

Lu =
(

1
Lu1

+
1

Lu2

)−1

. (9c)

In this model, αu is an empirical constant; its value is determined as αu = αTv
= 0.35 (same value found to be also adequate

for the heat flux model described next). The mean wind speed at the measurement height is given by u.140

Similarly for heat, Lmix = LTv , and LTv is defined as a harmonic average between two competing length scales. The first

is LTv1 , the Ellison length scale (Ellison, 1957) and the second is LTv2 , the buoyancy length scale (Stull, 1973; Zeman and
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Tennekes, 1977). These scales are formulated as

LTv1 = αTvσTv

(
∂Tv

∂z

)−1

= αTv

√
2TPE

NBV
, (10a)

LTv2 = (1−αTv
)

σw

NBV
, (10b)145

LTv =
(

1
LTv1

+
1

LTv2

)−1

. (10c)

Here

NBV =

√(
g

Tv

∂Tv

∂z

)
(11)

is the Brunt-Väisälä frequency; g is the gravitational acceleration; and TPE is the turbulent potential energy, which is related

to NBV as shown in LTv1 (Zilitinkevich et al., 2013; Katul et al., 2014).150

2.7 MOST: Monin-Obukhov similarity theory flux model

Based on dimensional analysis, Monin and Obukhov (1954) formulated flux-gradient relations that are still used widely in

weather prediction and climate models. MOST has inherent limitations as it applies to planar homogeneous conditions and

stationary flows at very high Reynolds number in the absence of subsidence, and requires turbulent kinetic energy (TKE)

production to be balanced by the TKE dissipation rate. Nevertheless, MOST still serves as reference for idealized conditions155

(Foken, 2006). MOST fluxes could still capture the observed fluxes under weakly stable conditions where turbulence is con-

tinuously sustained and not intermittently suppressed. MOST fluxes here are computed using the Businger–Dyer relations

(Businger et al., 1971) as those relations remain pervasively in use today. Such relations are expressed by non-dimensional

gradient (diabatic) functions, Ψs(ζ), relating the scalar concentration surface scale s∗ = w′s′/u∗ to the gradient following

Ψs(ζ) =
∂s

∂z

κz

s∗
. (12)160

where κ is the von Kármán constant (= 0.4).

3 Field Data and Methods

In this study, data from two field experiments are analyzed. One data set is collected over the frozen tundra near Utqiaġvik,

Alaska (U09) as part of the OASIS-2009 (Ocean-Atmosphere-Sea Ice-Snowpack) field campaign (Staebler et al., 2009; Perrie

et al., 2012; Bottenheim et al., 2013). The second data set is collected from November 2022 to January 2023 at a sparsely165

vegetated grassland in Wendell, Idaho (W22). At Utqiagvik, four sonic anemometers were mounted on a 10-m tall tower at

0.58, 1.8, 3.2, and 6.2 m above the snowpack, and the herein analyzed data correspond to zm = 1.8 m. Three-dimensional

velocity (u, v, w: longitudinal, lateral, and vertical components) and sonic virtual temperature (Ts ≈ Tv , where Tv is the true

virtual temperature) measurements were recorded. At the Wendell site, data were acquired only at one height (zm = 2.4 m)
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above the ground surface. Chemical scalar concentration (carbon dioxide (CO2), ammonia (NH3), and water vapor (H2O)),170

in addition to the three-dimensional velocity and temperature measurements, were recorded using a commercial open-path

analyzer (CO2/H2O 7500A, LiCor Inc., Lincoln, NE), a custom made open path sensor with a quantum cascade laser (NH3), and

an R.M. Young 81000 sonic anemometer (Miller et al., 2014; Sun et al., 2015; Pan et al., 2021). Both gas sensors were subject to

the necessary spectroscopic corrections arising from temperature and density fluctuations. Precision-time-protocol (PTP) was

used to ensure all the gas, environmental, and meteorological sensors were synchronized by GPS (Global Positioning System).175

For both sites, instantaneous molar density measurements of the chemical species were converted to mass concentrations using

the pressure sensor on the LiCor 7500A, which has an accuracy of ±0.4 kPa from 50 to 110 kPa and a resolution of 0.006 kPa

(Edson et al., 2011). The gas fluxes were then calculated based on their mass concentrations, in lieu of applying the so-called

WPL density corrections to the fluxes after processing (Webb et al., 1980; Detto and Katul, 2007).

The sampling frequency at both sites was set at fs = 10 Hz, and the post-processing involved (i) de-spiking, (ii) linear180

detrending, and (iii) double rotation of wind components (Wilczak et al., 2001). Fluxes and other required statistics were then

computed for various scalar quantities (i.e., Tv , CO2, NH3, and H2O; u and its associated momentum flux were also tested here

for comparison). Analysis periods were set to 15-min in U09 (the 15-min Reynolds average choice here is selected because

U09 periods reveal strong intermittent behaviour) and 30-min W22; these were then the periods used for double rotation and

time-averaging throughout. Details of the data quality control for these data sets can be found elsewhere (Allouche et al., 2022).185

4 Results and discussion

An earlier study (Zahn et al., 2023) investigated REA under non-ideal unstable conditions and concluded that the REA method

outperforms MOST flux models. One of the main aims of the present study is to examine whether REA outperforms MOST

under stably stratified conditions. MOST is used as a reference for comparison as it reflects the ’state-of-the science’ in climate

models. Since A22 established the limitations of MOST under stable conditions for the Utqiagvik data set and further proposed190

the closure models detailed previously that also outperform MOST, REA will then be compared to A22. Other model details in

Section 2 will serve as additional benchmarks to understand model performance, but the analyses focus on the REA and A22,

and an REA-DEC hybrid approach.

4.1 Model inter-comparison using high frequency measurements

All introduced models are now tested at the Utqiagvik site because it has the multiple levels that are required for testing195

the A22 and MOST models. The middle panel subplots of Fig. 1, corresponding to the REA and A22 models, depict the

strongest correlation between modeled and observed EC fluxes for both momentum and heat. In addition, the ACC model,

which incorporates stability information (Eq. 2), performs slightly better than the constant ACC model (Eq. 3). Although these

models at first may appear to be better approximations of the eddy-covariance fluxes than REA, the REA model performance is

in practice superior, benefiting from the cancellation of the effect of stability in the model coefficient βs as detailed previously.200

This agrees with prior findings (Zahn et al., 2023) for unstable conditions. All proposed models outperform MOST (Fig. 1c-
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1f). With their superior performance established, the REA and A22 models will be the only ones retained in the subsequent

analyses.

Figure 1. (a,b,c) Inter-comparison of kinematic momentum fluxes and (d,e,f) kinematic heat fluxes derived from the various models for the

Utqiagvik site U09. One-to-one line is shown as a reference (solid black line). Since both fluxes are negative, they are multiplied by −1 to

plot on log-log scale.

4.2 Simulating a slow scalar sensor for model testing

To address the limited bandwidth of many trace gases sensors, we simulate the output of a real slow sensor s̃ measuring a205

variable s as the numerical solution to the first-order ODE in Eq. 13. Here, s would be the "fast" turbulent sensor, and ∆ is the

time scale of the filter-width (the response time scale of the slow sensor), which we selected to vary in the range [0-5 s] with

increments of 1 s. Thus, solving the following equation numerically (using explicit forward Euler time advancement scheme)

converts the s time series from 10-Hz to a lower frequency, down to 0.2-Hz when ∆ = 5 s:

ds̃

dt
+

1
∆

s̃ =
1
∆

s. (13)210

The observed filtered EC fluxes computed with the filtered scalar signal s̃ mimic the fluxes estimates of the disjunct eddy-

covariance method, (DEC) fluxes (Ruppert et al., 2002). We also tested another filter-type, a low-pass Gaussian filter, and

results were not sensitive to the filter type, but the ODE solution is a more accurate model for a first-order slow sensing
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system. The filtering is not applied to the vertical velocity (w) as high-frequency anemometers are readily available. Hence, a

tilde denotes the filtered virtual temperature (T̃v), scalar concentration (s̃), and streamwise velocity (ũ). All three-dimensional215

velocity components (u, v, and w) are available in high-frequency output of the sonic anemometer, but only u is filtered (ũ) to

compare its kinematic momentum fluxes to those of scalars.

In theory, an REA system should not suffer from the slow response of the trace gas sensor since it only requires the mean

measurements of s+ and s−. However, this would require a mechanism to separate the gas streams that has a 10-Hz response

time as well. Given the limited responsive feedback time of the opening and closing mechanisms of the valves in real REA220

systems and to avoid an excessive number of movements, a certain threshold value of a dead-band velocity w0 is selected

to guarantee larger individual air samples. A dynamic dead-band that is linked to the turbulence conditions in each period is

adopted such that similar amounts of air are sampled in updrafts and downdrafts. We used the empirical finding of Grelle and

Keck (2021), as depicted in Eq. 14, which yielded roughly similar amounts of air in the updraft and downdraft reservoirs.

Sampling is activated only if the vertical wind speed exceeds this threshold value in w0 i.e., |w|> w0.225

w0 =
σw

3.5
. (14)

We should underline that the computations of s+ and s− for the REA are first done with the unfiltered s signal, and the

dead-band of vertical velocity defined above is then the only effective filter that applies to the REA computations. However,

to examine possible mechanical filtering and explore an REA-DEC hybrid approach that we will later detail, we also compute

the REA fluxes with s+ and s− from the filtered signal produced by Eq. 13.230

4.3 DEC, REA and A22 model evaluation using simulated slow sensor data

Again focusing on Utqiagvik data set with its multilevel measurements, the models are now tested using inputs from a slow

sensor. The top and middle panel subplots of Fig. 2 show that DEC and the REA methods significantly, and in similar fashion,

underestimate the observed (unfiltered) heat and momentum EC fluxes based on filtered quantities T̃v and ũ, respectively, as

∆ increases. This underestimation, however, is not surprising because under stable conditions small eddies carry a significant235

proportion of the fluxes, especially when the background flow is laminarizing and intermittent as shown elsewhere (Ansorge

and Mellado, 2014, 2016; Allouche et al., 2022; Issaev et al., 2023). These small eddies are filtered appreciably by the sensor’s

slow response. We should underline here that an REA system with fast-response mechanical valves will give results equivalent

to the unfiltered REA (∆ = 0), and will be in good agreement with the actual EC fluxes. However, it is more likely that various

REA devices will introduce some type of filtering to the signal that depends on the device design. Interestingly, the bottom240

panel subplots of Fig. 2c and f show that the A22 model’s performance is not sensitive to the signal filtering and provides good

estimates of the observed (unfiltered) heat and momentum EC fluxes, even when filtered quantities T̃v and ũ are used, and up to

the highest filter-width ∆ = 5 s. The A22 model relies on multilevel means and variances in computing the fluxes, which tend

to be carried by larger scale than the actual fluxes; this may explain the independence of the model performance from sensor

response.245
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Figure 2. Heat flux using T̃v predicted by DEC (a), REA (b) and A22 (c) models, and momentum flux using ũ predicted by DEC (d), REA

(e) and A22 (f) models at the Utqiagvik site U09, compared to real observed EC fluxes. One-to-one line is shown as a reference (solid black

line). Heat fluxes are multiplied by −1 to plot on log-log scale. ∆ (s) is the filter time scale.

Given the results above, a followup question is whether the REA model estimates with a filtered signal actually correspond

to the fluxes that would be computed using eddy covariances of the filtered scalar signal, i.e., the DEC fluxes. Fig. 3a and b

indeed show that the REA model is still a reliable method to capture these filtered observed heat and momentum DEC fluxes

at Utqiagvik as ∆ increases. All quantities here, including the fluxes, are computed based on filtered series T̃v and ũ. This

implies that a filtering of the REA signal by slow mechanical devices is broadly comparable to the filtering of the DEC fluxes250

by slow-response scalar sensors.

This match between REA and filtered DEC fluxes is also observed at the the Wendell site for heat and momentum, as well as

for the other scalars available at that site (CO2, NH3, and H2O). As in Utqiagvik’s site, the bottom panels of Figs. 4 and 5 show

that REA performs better when evaluated against the filtered DEC fluxes, compared to the respective top panels of Figs. 4 and

5 that compare it to total EC fluxes. Note that since one level of measurements at Wendell is available, gradients of first-order255

moments could not be computed, which precludes testing of MOST or A22 models.

These common REA findings among the two different sites indicate that, under stable conditions, the REA captures the fluxes

of the ‘resolved’ eddies. Any mechanical response filtering will cause the method to significantly underestimate the needed

high-frequency, full observed fluxes. An important question (addressed in the next subsection) that follows is whether the REA
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Figure 3. (a) Heat flux using T̃v predicted by REA model versus the filtered observed heat DEC flux and (b) momentum flux using ũ predicted

by REA model versus the filtered observed momentum DEC flux, at the Utqiagvik site U09. One-to-one line is shown as a reference (solid

black line). Heat fluxes are multiplied by −1 to plot on log-log scale. ∆ is the time scale filter-width (s).

fluxes can be ‘corrected’ under stable conditions to recover the missed fluxes. The proposed modifications, outlined below260

for the REA methodological framework, will also offer a correction for DEC fluxes to recover their corresponding total EC

fluxes. It is to be noted that under unstable conditions at the Wendell site, where flux carrying eddies are of much larger scales

than under stable conditions, the REA method is found to be almost insensitive to the considered filter-widths (∆’s) (refer

to Appendix A). Therefore, REA performs well and captures the observed (high and low frequency) fluxes under unstable

convective regimes, and hence biases in predicting scalar fluxes are expected to be minimal (Figs. A1 and A2). An effective265

correction for the under-resolved fluxes under stable conditions will thus provide a method to obtain continuous accurate fluxes

using REA over the whole diurnal cycle.

4.4 A sensor-response correction for the optimal REA coefficient βs

Fig. 3 reveals that the scatter between REA and EC or DEC results is larger when the fluxes are small, which would translate

into larger errors and scatter in the values of βs. Analyses not shown here also reveal that βs values calculated for each period270

converge well towards the 0.59 value when the correlation Rws increases i.e., Rws > 0.2, indicating larger fluxes, with more

scatter for lower correlation values. However this scatter is randomly distributed around the 1:1 line, indicating some error

cancellation when the fluxes are integrated over longer periods of time. Discussions on these random variations in βs have

linked them to the effect of height above canopies (Gao, 1995), and to the energy content influence of the associated eddy

motions (Katul et al., 1996), among others, and are not a focus of the present paper.275

Figs. 2 and 4 top panel, on the other hand, reveal that the chosen value of βs = 0.59 in the modeled fluxes, is a good estimate

in recovering the observed EC fluxes when the signal is not filtered (∆ = 0s). Missing smaller eddies (when the signal is

filtered) that contribute significantly to fluxes under stable, but not unstable, conditions thus requires a larger βs to predict the
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Figure 4. Heat flux using T̃v predicted by REA versus: the observed unfiltered EC flux (a) and the filtered DEC flux (b), and momentum flux

using ũ predicted by REA versus: the observed unfiltered EC flux (c) and filtered DEC flux (d), at the Wendell site W22. One-to-one line is

shown as a reference (solid black line). Heat fluxes are multiplied by −1 to plot on log-log scale. ∆ is the time scale filter-width (s).

correct fluxes using REA. Such underestimation was attributed to the filtering operation, dictated here by the choice of ∆,

although we must underline that in actual REA the filtering is dictated by the mechanical system and its response time. This280

motivates a model development for βs that incorporates the effect of filtering.

However, the agreement between the DEC and REA predictions when the scalar signal is filtered also opens the possibility

to apply the REA method without a device that separates air streams from downdrafts and updrafts. If a slow response sensor

(open or closed path) akin to those used in DEC is available, the REA equation can be applied with s+ and s− computed using

conditional averaging of the scalar time series based on the sign of w, like we are doing in this study with the simulated REA285

measurements, but without the dead-band given in Eq. 14. This approach would also then require a correction to βs; we will

hereafter refer to this method as the REA-DEC hybrid.

For this purpose, we first compute each period’s optimal βs (i.e., by inverting expression (6)) that causes the REA predicted

fluxes to match the exact observed fluxes when ∆ = 0s (no filtering) across the two contrasting sites. The top panel subplots,

Fig. 6a for heat, Fig. 6c for momentum, and Fig. 6e for all three passive trace gases (CO2, NH3, and H2O), show a scatter290

plot of these exact βs’s relative the integral time scale τint(s) for each period’s co-spectrum, where the data points are colored

with the MOST stability parameter. The integral time scale (τint) is determined by integrating the autocorrelation function
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Figure 5. Similar to Fig. 4, but here for scalars, (a,b): CO2, (c,d): NH3, and (e,f): H2O.

(ρw′s′(τ)) up to the first zero-crossing from the measured w′s′ instantaneous time series. We observe βs values that depart

from βs = 0.59 under all stabilities, but in general there is no clear βs dependence on τint as depicted here.

For ∆ ̸= 0s , the corresponding bottom panel subplots, Fig. 6 (b,d,f), show these same βs’s relative ∆/τa for different295

∆’s, where τa is an advective time scale. After experimenting with various choices of time scales for normalizing the filter

scale ∆, an advective time scale formed by z and u, hereafter labeled as τa = (κz/u), appears to provide the best scaling

for the variations of βs with the filter size (κ is the von Kármán constant). This converges with the work of Horst (1997) who

formulated corrections to estimate the attenuation of scalar flux measurements by slow response of sensors (akin to DEC). They

used the sensor response frequency and a normalized frequency formulated based on τa, which is the frequency of the peak of300

the logarithmic cospectrum fm = nmκ/τa to correct for the missed fluxes. In that work, nm is the dimensionless frequency at

the cospectral maximum where it is estimated from observations of its behavior as a function of atmospheric stability ζ. The

advective time scale was similarly found to be a plausible choice in describing the drift and non-linear diffusion terms of a

proposed non-linear Langevin equation to model the turbulent kinetic energy in stably stratified ABL (Allouche et al., 2021).

This characteristic time scale, τa, measures the advection time of the attached eddies, of size κz, past a fixed sensor.305

As depicted in Fig. 6, an empirical fit that relates βs to ∆/τa i.e., βs = f
(
∆/τa

)
is proposed here to recover the real

observed (unfiltered) EC fluxes using the REA method with (s̃) measurements, either due to physical filtering by the device
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Table 1. Proposed models incorporating both sites Utqiagvik (U09) and Wendell (W22) with accounting for the dead-band criterion, βs =

a
(

∆
τa

)b

+ c, c = βs(∆ = 0)

Fitting Parameters

βs = a
(

∆
τa

)b

+ c

Heat (active scalar) Momentum CO2, NH3, and H2O

(passive scalars)

a 0.3309 0.1391 0.0007

b 0.7316 0.825 1.448

c 0.59 0.59 0.48

or due to the use of the REA-DEC hybrid approach proposed above. This relation is best described using a power-law model,

βs = a
(
∆/τa

)b
+c, and Table 1 summarizes these empirical coefficients (a,b) for momentum, heat (active scalar), and passive

scalar (CO2, NH3, and H2O) fluxes at both sites where c = βs(∆ = 0). The reported b exponent for all fluxes, which describes310

how βs scales with ∆/τa, varies between active and passive scalars. Note that if the dead-band criterion is removed, b≈ 0.7

and does not vary much among all scalars as shown in Table 2, hinting at the possible universality of such dependence for

an REA-DEC hybrid model that removes the need for a complex mechanical REA system. Nevertheless, further exploration

at disparate sites, and analyses of observational data for different scalars across wider stability ranges, are needed to have

increased statistical confidence in the reported values of (a,b) and their generalizability, especially for the Utqiagvik site that315

does not have measurements of the passive scalars.

A common feature for all fluxes, as depicted in the bottom panel of Fig. 6, is that the proposed model becomes less certain

as ∆ increases (as expected). Therefore, such a model becomes less reliable with slow sensors that cannot resolve the integral

statistics of turbulent flow variables. Otherwise, to compute βs, the only needed inputs are (i) ∆ (provided by the slow sensor

manufacturer, or it must be computed for a given REA device) and (ii) τa (computed from mean wind measurements). The320

reported fitting parameters in Table 1 are obtained using the least absolute residuals (LAR) method, so that extreme values,

which occur less frequently and may be related to unusual conditions or measurement errors, have a lesser influence on the fit.

Given the variability in the optimal values of βs, the proposed models would be mostly suited for quantification of long-term

aggregates (net averaged fluxes) of the scalars cycle.

5 Conclusions325

Conventional and novel closure models are assessed in this study, with an emphasis on the REA method, to predict scalar fluxes

under stable conditions. The models were tested using measurements collected at two different sites (Utqiagvik and Wendell).

It was found that the REA and A22 models outperform the conventional models (e.g., MOST), and are thus less sensitive to

departures from ideal flow conditions of homogeneity, steadiness, negligible vertical transport, and TKE production-dissipation

balance. The A22 model was found to be insensitive to a filtering of the turbulent scales because it only requires the means at330

different heights. The REA model, on the other hand, is sensitive to any filtering that would be induced by a slow response of
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Table 2. Proposed models incorporating both sites Utqiagvik (U09) and Wendell (W22) without accounting for the dead-band criterion,

βs = a
(

∆
τa

)b

+ c, c = βs(∆ = 0)

Fitting Parameters

βs = a
(

∆
τa

)b

+ c

Heat (active scalar) Momentum CO2, NH3, and H2O

(passive scalars)

a 0.1456 0.0835 0.0096

b 0.7309 0.7169 0.7098

c 0.59 0.59 0.59

10
0

0

0.5

1

1.5
a)

10
0

10
2

10
-1

10
0

10
1

10
2

b)

10
0

0

0.5

1

1.5
c)

10
0

10
2

10
-1

10
0

10
1

10
2

d)

10
0

0

0.5

1

1.5
e)

0

0.2

0.4

0.6

0.8

1

10
0

10
2

10
-1

10
0

10
1

10
2

f)

Figure 6. (a,c,e): Scatter of the computed βs for the observed (unfiltered) heat, momentum and passive scalar (CO2, NH3, and H2O) fluxes

at both sites relative to the integral time scale τint(s), respectively. (b,d,f): similarly the computed βs for the respectively observed (filtered)

fluxes relative to ∆/τa. τa is an advective time scale, and the magenta solid lines refer to the empirical fit models βs = a
(
∆/τa

)b
+ c, refer

to Table 1.

its mechanical components needed to separate the air streams from the updrafts and downdrafts. It is much less affected by the

w0 dead-band imposed to avoid too many operations of the air sampling valves if the latter are rapid.

In numerically simulating slow sensors, it was noted that the A22 model outperforms REA in predicting the observed

(unfiltered) EC fluxes; however, REA can still capture the filtered observed DEC fluxes. This suggests that an REA approach335
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can be implemented without a physical device to separate the updraft and downdraft air streams. Using a DEC-like slow sensor,

one can conditionally average the concentrations using the sign of w′. To correct the underestimated REA fluxes in such an

REA-DEC hybrid approach or due to physical device filtering, relative to the observed (unfiltered) EC fluxes, a model for the

βs factors in the conditional sampling that incorporates the effect of filtering is proposed. The relation found to best describe

this effect is a power-law model given by βs = a
(
∆/τa

)b
+c. The reported empirical coefficients (a,b,c) for heat, momentum,340

and the passive scalars (CO2, NH3, and H2O) fluxes in Table 1 still need to be tested over a wider range of non-ideal surfaces

and atmospheric conditions. The corrected REA model is less certain with extremely slow mechanical systems or sensors (i.e.,

as ∆ increases), yet it remains robust in terms of reproducing long-term averages of the scalar fluxes across their ecosystem

lifetime cycle. Use of this model, along with the observations reported in Appendix A that reveal an insensitivity of βs to sensor

response under unstable regimes, suggest that REA can be a robust framework for estimating turbulent fluxes when only single345

level measurements are available, but with sensors that can still resolve the integral scales of turbulence. The A22 can be

alternatively used, under stable conditions, when multilevel measurements are available to compute needed mean gradients,

even with slow-response sensors.

Data availability. The dataset of all the observational data for the two field experiments (Barrow and Wendell) are publicly available at

(https://doi.org/10.5281/zenodo.10073726).350

Appendix A: REA performance under unstable conditions at Wendell

Figs. A1 and A2 show the same plots as Figs. 4 and 5 respectively, but here under unstable conditions. As seen here, REA is

insensitive to filtering operations.
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Figure A1. Similar to Fig. 4 but under unstable conditions.
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Figure A2. Similar to Fig. 5 but under unstable conditions.
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