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This manuscript was submitted to ACP as part of the TOAR-II Community Special Issue 
https://doi.org/10.5194/egusphere-2023-2618 Preprint. Discussion started: November 4, 2023; 
discussion closes January 20, 2024 This review is by Owen Cooper (NOAA CSL), TOAR 
Scientific Coordinator of the TOAR-II Community Special Issue. I, or a member of the TOAR-II 
Steering Committee, will post comments on all papers submitted to the TOAR-II Community 
Special Issue, which is an inter-journal special issue accommodating submissions to six 
Copernicus journals: ACP (lead journal), AMT, GMD, ESSD, ASCMO and BG. The primary 
purpose of these reviews is to identify any discrepancies across the TOAR-II submissions, and 
to allow the author teams time to address the discrepancies. Additional comments may be 
included with the reviews. While O. Cooper and members of the TOAR Steering Committee may 
post open comments on papers submitted to the TOAR-II Community Special Issue, they are 
not involved with the decision to accept or reject a paper for publication, which is entirely 
handled by the journal’s editorial team.  

 

This paper is very well written, with a thorough meteorological analysis to demonstrate the 
impact of seasonal convection patterns on mid- and upper tropospheric ozone above equatorial 
Southeast Asia. I recommend some additional text to explain how the current study fits within 
the context of previous work on the same topic, and to provide some discussion on the relative 
contributions of changing meteorology and the continuing increase of anthropogenic emissions 
on the observed increase of ozone above this region.  

We thank O. Cooper for helpful contextual comments, additional references, and 
pointers on topics to address in the manuscript text. 

1) The following statements in the introduction suggest that previous studies have not 
investigated the impact of climate variability and seasonal cycles on ozone trends and 
variability: “the possible effects of dynamics and climate change have been given little 
consideration.” and “Seasonally or monthly resolved analyses are less common (e.g., Chang et 
al., 2023; Section 3.4)”. There is a very large body or work that addresses the impact of climate 
change on ozone, summarized by several review papers and IPCC AR6 (Jacob and Winner, 
2009; Fiore et al., 2012; Fiore et al., 2015; von Schneidemesser et al., 2015; Szopa et al., 
2021). Many studies have examined how trends vary by season or with climate variability (such 
as ENSO), and it is now standard procedure for modeling studies to quantify the impact of 
meteorological variability on ozone trends (Columbi et al., 2023; Cooper, M.J. et al., 2013; Li S. 
et al., 2023; Lin et al. 2014,2015,2017; Rowlinson et al., 2019; Wang et al. 2022a; Wang et al 
2022b; Xue et al. 2020). To provide a broader context for the submitted paper it would be helpful 
to point out the new aspects of this study and how they build on earlier work.  



We have removed this statement in Section 1: “However, the possible effects of 
dynamics and climate change have been given little consideration. This is somewhat 
surprising…”. 

We have also made this edit to Section 1: “There is a tendency to report tropospheric 
ozone trends using a single (annually averaged) value over some period of interest. 
Seasonally or monthly resolved analyses are less common (e.g., Chang et al., 2023; 
Section 3.4).” We strongly believe that these statements are still true. For example, as 
prominently displayed in the BAMS State of the Climate Report published each year. 

The novelty of this work is the unambiguous result linking free-tropospheric (5-15 km) 
ozone trends to trends in convective parameters from multiple observational datasets. 
This was achieved using the highest-quality, homogenized, 100 meter resolution vertical 
ozonesonde profiles. The ozone trend computation by itself is not so original, but to our 
knowledge no other study has shown such a conclusive link between ozone and 
convective trends in this region. Our hope is that this motivates modelers to re-examine 
their simulations of free-tropospheric ozone and model convective parameters. Indeed, 
this is something we are exploring in preparation for the July 2024 Quadrennial Ozone 
Symposium. These mechanisms should also be explored elsewhere in the tropics and 
globally. 

2) Detailed budget studies on the drivers of ozone trends across the tropics began in the mid-
1990s with the development of global scale three-dimensional atmospheric chemistry models. 
The earliest studies indicate that increasing anthropogenic emissions are the primary cause of 
increasing tropical ozone (Levy et al., 1997; Roelofs et al., 1997). Since that time models and 
emissions inventories have continued to improve and successive generations of models (Szopa 
et al., 2021; Skeie et al, 2020; Griffiths et al., 2021; Liu et al., 2022) have attributed the 
observed ozone increases in the tropics to anthropogenic and biomass burning emissions, with 
anthropogenic emissions continuing to increase in the region of SE Asia (Li, M. et al., 2023). 
Two recent model studies explored the relative contributions of changing emissions and 
meteorological variability across SE Asia and concluded that rising emissions are driving the 
ozone increase (Wang et al., 2022b; Li. S. et al., 2023). The submitted paper does not address 
the impact of rising emissions on the observed ozone variability in the ozonesonde record, and 
some discussion is needed to quantify the relative contributions of dynamical changes and 
rising ozone precursors.  

There is little doubt that the near-surface ozone trends of 4+ nmol mol-1 per decade are 
the result of local and regional emissions increases. We have now noted that in Section 
3.2. Again, that segment of the profile is not the primary focus of our paper, especially 
because the free and upper troposphere are where ozone climate radiative forcing 
impacts are the greatest. However, Reviewer 1 brought up a good point about the lack of 
“communication” between the near-surface and free-tropospheric trends. A more 
detailed examination of the relationship between ENSO, VP200, and the near-surface and 
FT segments of the profile suggests that the trends in the two different layers are likely 
somewhat independent of each other. That is, the FT trends are driven by changes to 
ENSO, MJO (VP200), and convection, while the near-surface is likely more sensitive to 
emissions changes, and less sensitive to ENSO and MJO. 



From our response to Reviewer 1: “We show here (Figure R4) the relationships between 
MEIv2 and ozone, and VP200 anomalies (computed for the black dash boxed region on 
previous Figures) and ozone, further indicating that any trend or change in VP200 
anomalies in particular will result in tropospheric ozone changes. The relationship 
between these quantities and ozone is stronger for the 5-15 km layer (top of Figure R4) 
than the surface-5 km layer (bottom of Figure R4). The fact that there is still a weak 
relationship between surface-5 km ozone and VP200 anomalies may result in the 
correspondence between near-surface and FT ozone trends in Feb-Apr (Figure 6, and as 
you note below).” The data unequivocally show how strong the relationship is between 
FT ozone and VP200, and that the SHADOZ monthly means are more than sufficient to 
describe the convection/FT ozone interactions. 

3) Several papers in the literature have discussed the impact of ozone sampling frequency and 
the challenges of detecting trends (Prinn 1988; Chang et al., 2020), or calculating accurate 
monthly or seasonal mean ozone values (Logan, 1999, Saunois et al., 2012). These earlier 
studies focused on northern mid-latitudes and a new study submitted to the TOAR-II Community 
Special Issue addresses this challenge at a tropical location (Chang et el., 2024). Some 
discussion is needed regarding the ozonesonde sample size and the confidence in the reported 
trends.  

The Chang et al., (2024) paper is a nice resource for understanding sampling and ozone 
trends calculated for sub-tropical and higher latitude locations. Our analyses (as with 
Thompson et al., 2021) are restricted to stations in the deep tropics within ~10 degrees of 
the Equator. Variability induced by STE, for example, below 15 km will be minimal. 
Achieving higher confidence in our calculated trends in addition to providing attribution 
is precisely why we analyzed so many ancillary datasets, all of them with daily (OLR, 
AIRS CO) or sub-daily (GridSat-B1, MERRA-2) resolution. In response to Reviewer 1, we 
also examined precipitation data – further confirmation of the other independent 
parameters. They each arrive at the same conclusion, that ESEA convection has waned 
in ~Feb-Apr over the last 25 years, which matches the patterns in free-tropospheric 
ozone trends at the two SHADOZ stations. Our ozone trend results for the ESEA stations 
are essentially confirmed by examining the larger picture of MJO, ENSO, etc. variability. 
Again, we do not dismiss the impact of emissions increases on the strongly positive 
near-surface ozone trends. 

Figure R4 (provided in the Response to Reviewer 1) shows the relationship between 
monthly averages of tropospheric ozone and MEIv2 (ENSO), and VP200 anomalies (MJO), 
and that the SHADOZ sampling is sufficient to capture the expected covariance in these 
metrics. 



 

Figure R4. Scatterplots of 5 to 15 km (top row) and surface to 5 km (bottom row) 
partial column ozone anomalies corresponding to MEIv2 (left column) and VP200 
anomaly values (right column). VP200 anomalies are computed for the black dash 
boxed region shown on Figures in the manuscript and above. 

Thank you for providing the references listed below. 
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