

1 of 31

Impact of Meteorology and Aerosol Sources on PM_{2.5} and Oxidative Potential Variability and Levels in China

Jiemei Liu^{1,2}, Jesper H. Christensen², Zhuyun Ye², Shikui Dong¹, Camilla Geels², Jørgen Brandt², Athanasios Nenes^{3,4}, Yuan Yuan^{1, *}, and Ulas Im^{2, *}

 ¹ Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
 ² Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark
 ³ Laboratory of Atmospheric Processes and Their Impacts, Ecole Polytechnique F ád érale de Lausanne

 (EPFL), Lausanne, Switzerland
 ⁴ Center for the Study of Air Quality and Climate Change, Foundation for Research and Technology Hellas (FORTH), Thessaloniki, Greece,

Correspondence: Yuan Yuan (yuanyuan83@hit.edu.cn) and Ulas Im (ulas@envs.au.dk)

2 of 31

Abstract: China has long-term high PM_{2.5} levels, and its Oxidative Potential (OP) is worth studying as it may unravel the impacts of aerosol pollution on public health better than PM_{2.5} alone. OP and PM_{2.5} are influenced by meteorological factors, anthropogenic emissions sources and atmospheric aging. Although their impact on PM_{2.5} have been studied, OP measurements only recently became available and on a limited scale, as they require considerable technical expertise and resources. For this, the joint relationship between PM_{2.5} and OP for a wide range of meteorological conditions and emissions profiles remain elusive. Towards this, we estimated PM_{2.5} and OP over China using the Danish Eulerian Hemispheric Model (DEHM) system with meteorological input from WRF weather forecast model. It was found that higher values of PM_{2.5} and OP were primarily concentrated in urban agglomerations in

- 25 the central and eastern regions of China, while lower values were found in the western and northeastern regions. Furthermore, the probability density function revealed that about 40% of areas in China had an annual average PM_{2.5} concentrations exceeding the Chinese concentrations limit; 36% of the regions have OP below 1 *nmol min⁻¹ m⁻³*, 41% have OP between 1 and 2 *nmol min⁻¹ m⁻³*, and 23% have OP above 2 *nmol min⁻¹ m⁻³*. Analysis of the simulations indicate that meteorological conditions and
- 30 anthropogenic emission contributed 46% (65%) and 54% (35%) to the PM_{2.5} concentration (OP) variability. The emission sensitivity analysis also highlighted PM_{2.5} and OP levels are mostly determined by secondary aerosol formation and biomass burning.

Keywords: PM_{2.5}; Oxidative potential; Meteorology; Anthropogenic emission sources; Probability density function

35

3 of 31

1. Introduction

40

Fine particulate matter, with an aerodynamic diameter of less than 2.5 μ m (PM_{2.5}), is the primary atmospheric pollutant in China (Chen et al., 2021; Chen et al., 2021; Liu et al., 2023) with respect to human health. PM_{2.5} exposure in China for 2017 resulted in an estimated 1.8 (95% CI: 1.6, 2.0) million premature deaths (Liu et al., 2021). Many recent studies have suggested that the oxidative potential (OP) of PM_{2.5} (the ability of PM_{2.5} to produce reactive oxygen species (ROS) to *in-vitro* that consume intracellular antioxidants; (Campbell et al., 2021)) may better explain the negative impact of PM_{2.5} exposure on human health than the well-established metric of mass concentrations (Yu et al., 2019; Gao et al., 2020). This is because exposure to high levels of OP (from compounds such as quinones and

- 45 soluble transitional metals) induces an excess production of ROS in cells and lead to oxidative stress (OS) effects and ultimately trigger inflammation and disease. Therefore, reducing PM_{2.5} pollution and its associated OP (the volume-normalized dithiothreitol activity) are critical to addressing China's environmental and environmental health issues.
- Anthropogenic emissions, as the main source of PM_{2.5} pollution and environmental health risks, have been studied extensively (Chen et al., 2019; Liu et al., 2022). Zhu et al. (2018) and Pui et al. (2014) summarized the studies on the PM sources in China and reported that secondary inorganic aerosols (SIA), industry, residential combustion, biomass burning, industry, and transportation are the main source categories in China in the historical and future business-as-usual scenarios. Due to the significant influence of various sectors on PM_{2.5} emissions, and research (Liu et al., 2018; Liu et al., 2020)
- 55 indicating a close association between PM_{2.5} and OP, the connection between OP, serving as a toxicity indicator for PM_{2.5}, and its sources (Liu et al., 2020) is becoming increasingly crucial and the topic of numerous studies. For instance, Yu et al. (2019) used the dithiothreitol (DTT) assay to measure the PM_{2.5} samples in Beijing throughout the year and identified vehicle emissions as the main contributing source based on the source analysis of OP. However, studies conducted in three coastal cities of the Bohai Sea
- 60 region (Liu et al., 2018) and in Nanjing (Zhang et al., 2023) using the same DTT assay indicated that coal combustion was the most active source of OP. Together, these studies suggest that obtaining the spatial distribution characteristics of PM_{2.5} and OP and their links to emission sources, is of paramount importance for implementing region-specific control measures.

4 of 31

- Apart from anthropogenic emissions, meteorological conditions (i.e., temperature, humidity, wind speed, precipitation) also play a crucial role in the formation, accumulation, transformation, and dispersion of PM_{2.5} (Liu et al., 2022; Liu et al., 2022). Utilizing a multiple linear regression model, Gong et al. (2022) conducted an analysis of the trends of meteorological elements and PM_{2.5} levels across various regions in China from 2013 to 2020. Furthermore, they separated and quantified the impacts of meteorological factors and emissions on these trends. The findings indicate that meteorology alone can account for
- 70 approximately 20~33% of the variability in PM_{2.5} levels. Xing et al. (2023) conducted a study in the Shenzhen region using DTT, ascorbic acid (AA), and glutathione (GSH) OP assays. They analyzed meteorological conditions and PM_{2.5} chemical composition to understand how the prevalence of monsoons in winter (northern and northeastern winds) and summer (southern and southeastern winds) affected the sources and contributed to the seasonal variation in PM_{2.5} composition and OP (mass-
- 75 normalized). Similarly, Molina et al. (2023) and Wang et al. (2019) revealed that meteorological conditions indirectly influence OP (volume-normalized and mass-normalized) through their impact on the chemical properties of the components. Ainur et al. (2023) employing a DTT assay, investigated outdoor health risks associated with atmospheric particulate matter in Xi'an, find a positive correlation between winter OP (volume-normalized) and relative humidity. Although several studies have identified
- 80 linkages between meteorological conditions and PM_{2.5}/OP, quantitative assessment of meteorological conditions to both PM_{2.5} and OP variability is lacking.

As of the present, research on the influence of both meteorological conditions and anthropogenic emissions on OP primarily relies on measurement methods (Yu et al., 2019; Gao et al., 2020; Campbell et al., 2021), such as DTT, AA, and GSH, which are difficult and costly to test and hard to provide the

- 85 spatial distribution of OP comprehensively. Although mechanistic models of OP do exist (Shahpoury et al., 2024), their links to experimental metrics of OP are qualitative. For this, we propose a hybrid approach combing existing observations of OP with a chemistry transport model (CTM). So, using OP from assays and their observed links to sources and chemical constituents can then be parameterized and implemented in CTM for a comprehensive assessment of OP exposure over large areas and time periods.
- 90 This study quantifies the contribution of meteorological and anthropogenic emission factors (i.e., coal combustion, biomass burning, secondary aerosol formation that originate from a series of atmospheric reactions, industry, and transportation source) to OP and PM_{2.5} levels throughout China with the Danish Eulerian Hemispheric Model (DEHM) model. The study hence provides a method for calculating OP

5 of 31

across China and using OP as an indicator to assess the impacts of anthropogenic emission sources on

95 human health in China.

2. Materials and methods

2.1 Methodological flow

The research strategy of this study consists of three main parts: model setup, spatial distribution characteristic analysis, and quantification of meteorological conditions and anthropogenic emissions'

- 100 contributions (Figure 1). In the first part, DEHM was employed to obtain hourly pollutant concentrations, followed by model evaluation, where the numerical weather prediction model WRF v4.1 (Skamarock et al., 2008) driven by ERA5 was used as meteorological input to DEHM and with exactly same spatial setup for China as in DEHM. Sensitivity experiments were designed for meteorological conditions, emission inventories, and anthropogenic emission sources. From these simulations, the spatial-scale
- estimation of OP was conducted using model outputs and the relationship between OP (this study focuses on the volume-normalized dithiothreitol activity) and PM_{2.5} concentrations from various anthropogenic sources (Zheng et al., 2018; Tong et al., 2018; Yun et al., 2020; MEE, 2020; Wang et al., 2020; Tang et al., 2020; Lin et al., 2021; Chen et al., 2022).

Figure 1. Schematic diagram of the study strategy; NME, NMB, r, and OP are normalized mean error, normalized mean bias, correlation coefficient, and oxidative potential, respectively.

In the second part, the spatial distribution characteristics of PM_{2.5} and OP were determined using probability density functions (PDF) and spatial distribution maps. In the third part, quantitative analysis 115 was conducted based on the simulation results from the sensitivity experiments to determine the extent of influence of meteorology and emissions on PM_{2.5} and OP, as well as the primary sources of PM_{2.5} and OP.

2.2 Model setup

110

The DEHM can well capture many features of PM and its precursors' changes in large-scale space

- 120 (Christensen, 1997; Brandt et al., 2012; Im et al., 2019). To date, the DEHM model has been widely used in air pollution and health risk assessment research in Europe and Asia (Brandt et al., 2013a; b; Zare et al., 2014; Geels et al., 2015; Im et al., 2018; Im et al., 2019; Lehtom äki et al., 2020; Cramer et al., 2020; Liu et al., 2021; Geels et al., 2021; Thomas et al., 2022; Im et al., 2023), but this will be the first time that DEHM is applied to estimate OP. Thus, The DEHM model system was used to simulate
- 125 the pollutant concentrations in 2014 by using a two-way nested domain in this study (Kumar et al., 2016). A mother domain with a resolution of $150 \text{ km} \times 150 \text{ km}$ was employed on a polar stereographic projection,

7 of 31

true at 60 % to cover the entire Northern Hemisphere. The nested domain covered the whole of China consisting of 150 × 150 grid cells with a resolution of 50 km × 50 km. Vertically, there were 29 unevenly distributed layers, with the highest level reaching 100 hPa, and the lowest layer was approximately 20 m

- 130 in height. The meteorological fields were simulated using the WRF model (Skamarock et al., 2008) with the same domain and resolution driven by global reanalysis as ERA5 or global climate data from CESM. The time resolution of the DEHM model output is one hour. The gas-phase chemistry module included 66 species, 9 primary particles (including natural particles such as sea salt), and 138 chemical reactions (Brandt et al., 2012). The secondary organic aerosols (SOA) were calculated using the
- 135 volatility basis set (see details in Im et al. (2019)). In addition to the anthropogenic emissions, DEHM also includes emissions from biogenic emissions, such as vegetation, sea salt, lightning, soil, etc. The current version of the DEHM model does not include wind-blown, resuspended dust emissions or road dust.

In the current study, the DEHM model used anthropogenic emissions from the Emissions Database for

140 Global Atmospheric Research – Hemispheric Transport of Air Pollution (EDGAR-HTAP) database and biogenic emissions are calculated online based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN) (see details in Im et al. (2019)).

2.3 Estimation of OP

Most of current data on OP of PM2.5 in China are obtained by means of measurement, and the research

145 objects are basically limited to specific cities, which to some extent hinders the conduct of research on OP in a large-scale region. Considering that Liu et al. (2018) collected samples across four seasons from multiple representative locations in China, their developed OP prediction model (Equation (1)) can support us in estimating OP in China, thereby exploring the spatial distribution characteristics of OP and the contributions of different anthropogenic sources to OP. In the present study, we have used this

150 relationship, in combination with the sensitivity simulations (section 2.4), to calculate the OP.

$$OP = 0.088 \times re + 0.076 \times bi + 0.041 \times se + 0.034 \times in + 0.017 \times tr$$
(1)

where, re, bi, in, and tr represent the primary PM_{2.5} concentrations for coal combustion, biomass burning, industry source, and transportation source, respectively. In this study, the coal combustion is primarily from heating during the local cold season. Biomass burning includes open burning of agricultural biomass, domestic biomass burning for cooking and heating, and biomass burning from

8 of 31

155 power plants. Industry source is primarily from specific industry processes. Transportation source primarily comes from pipe emissions. *se* (secondary aerosol formation) refers to the concentrations of secondary organic and inorganic (SOA and SIA, respectively) components. It's worth mentioning that secondary aerosol formation originates from a series of atmospheric reactions. Some identified sources (i.e., coal combustion, biomass burning, industrial processes, and transportation) may generate secondary inorganic and organic aerosols through the emission of their precursor components. Therefore, coefficient reflect the intrinsic OP of each source.

2.4 Sensitivity scenarios

2.4.1 Relative contributions from meteorological conditions and emissions

- 165 Table 1 summarizes the scenarios for assessing the relative contributions of meteorological conditions and emissions to PM_{2.5} and OP variability in 2014. Scenarios C₁ and C₂ used the same meteorological reanalyse dataset (ERA5) as input to WRF, while Scenario C₃ utilized CESM climate model based meteorological data as input. ERA5 (Hersbach et al., 2020; ERA, 2023) is a global reanalysis dataset that is based on the assimilation of historical observations and model data. CESM (2023), on the other
- 170 hand, is a global climate and Earth system model supported by the US National Science Foundation, and its meteorological outputs serve as inputs for the WRF model as well. CESM version 2.1.1 (Danabasoglu et al., 2020) was first ran from 1850-2015 with the standard input component set BHISTcmip6 on f09_g17 resolution (i.e., 0.9°x1.25° resolution). Scenarios C₂ and C₃ employed the Eclipse V6 emissions inventory, while Scenario C₁ used the EDGAR-HTAP inventory.
- 175 The ECLIPSE project by the International Institute for Applied Systems Analysis (IIASA) aims to generate a global gridded anthropogenic emission inventory for various emission scenarios. The Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) model has been employed to estimate emissions using source characteristics and emission factors at a resolution of 0.5 °x 0.5 °latitudelongitude (Upadhyay et al., 2020; Eclipse, 2020). The following sector-layers are available: energy,
- 180 industry, solvent use, transport, domestic combustion, agriculture, open burning of agricultural waste, waste treatment. a number of scenarios are provided for which the key economic assumptions and energy use originate from IEA World Energy Outlook (IEA, 2011), the POLES model, or Energy Technology Perspectives (IEA, 2012) for the period 2010-2050, while statistical data for the period 1990-2010 came

195

9 of 31

- from IEA. For agriculture the FAO databases and long-term global projections were used (Alexandratos
 et al., 2012). It is noteworthy that this inventory takes into account China 13th 5-year plan. The EDGAR-HTAP (Joint et al., 2011; Crippa et al., 2023) emission inventory endeavors to employ official or scientific inventories within a national or regional scale, with a spatial resolution of 0.1 ° × 0.1 °. The temporal coverage spans from the year 2000 to 2018. EDGAR-HTAP comprehensively accounts for all major emission sectors, including residential, transportation, industrial, energy, and agricultural sectors.
 Equations (2~5) were used to quantitatively evaluate the contributions of meteorological conditions and
 - emission inventories.

$$Con(Met) = \frac{C_2 - C_3}{C_3}$$
(2)

$$\operatorname{Con}(\operatorname{Emi}) = \frac{C_1 - C_2}{C_2} \tag{3}$$

$$NCon(Met) = \frac{abs(Con(Met))}{abs(Con(Met)) + abs(Con(Emi))}$$
(4)

$$NCon(Emi) = \frac{abs(Con(Emi))}{abs(Con(Met)) + abs(Con(Emi))}$$
(5)

where, C_1 , C_2 and C_3 represent the PM_{2.5} concentrations and OP from scenarios C₁, C₂ and C₃, respectively. Con(Met) represents the impact of changing meteorological datasets on changes in PM_{2.5} and OP. Con(Emi) represents the impact of changing emission inventory on changes in PM_{2.5} and OP. abs represents the absolute value. NCon(Met) and NCon(Emi) represent the normalized contributions of meteorology and emission.

Table 1. Emission inventory and meteorological datasets in three simulation scenarios.

Scenarios	Emission inventory	Meteorological datasets
C1	EDGAR-HTAP	ERA5
C_2	Eclipse V6	ERA5
C ₃	Eclipse V6	CESM

2.4.2 Relative contributions from individual emissions

As mentioned above, OP's main source contributions include five parts, i.e., coal combustion, biomass

200 burning, secondary aerosol formation, industrial sources, and transportation sources (Equation (1)), we conducted perturbation experiments targeting these five sources to quantitatively assess their contributions to PM_{2.5} concentration and OP (Figure 2). These experiments were carried out within the three scenarios proposed in Section 2.4.1, and we performed a total of 15 runs. Under the non-

- perturbation condition (referred to as the NPC case), all aforementioned emission sources were considered. Under the perturbation condition (referred to as the PC case), reduction designs were implemented for emissions from coal combustion, biomass burning, industrial sources, and transportation sources. The emission from each individual source is reduced by 30%. Notably, to estimate the PM_{2.5} concentrations and OP from coal and biomass burning, it is necessary to obtain the percentage contributions of PM_{2.5} emissions from coal combustion for residential heating, domestic biomass burning
- 210 for cooking and heating to $PM_{2.5}$ emissions of the residential sector, respectively, as well as the percentage contributions of $PM_{2.5}$ emissions from biomass combustion in power plants to the total $PM_{2.5}$ emissions from the power sector. The percentage contributions of each anthropogenic source can be estimated using Equations (6~8).

$$PC_{re_{-j}} = \frac{E_{re_{-j}}}{E_{re}} \tag{6}$$

$$E_{pp_{-hi}} = EF \times FQ \tag{7}$$

$$PC_{pp_bi_cf} = \frac{E_{pp_bi} + E_{pp_cf}}{E_{pp}}$$

$$\tag{8}$$

- where, $PC_{re_{-j}}$ denotes the percentage contribution of PM_{2.5} emissions from the residential subsector j 215 (including coal cooking, coal heating, biomass cooking, biomass heating, clean energy, and nonresidential) to the total PM_{2.5} emissions from the residential sector. $E_{re_{-j}}$ represents the PM_{2.5} emissions from the residential subsector j, while E_{re} represents the total PM_{2.5} emissions from the residential sector. The values of $E_{re_{-j}}$ and E_{re} are obtained from the literature (Yun et al., 2020). $E_{pp_{-bi}}$ refers to the PM_{2.5} emissions from biomass power plants, *EF* refers to the PM_{2.5} emission factor of biomass power plants, and *FQ* refers to the fuel quantity. $PC_{pp_{-bi,cf}}$ refers to the percentage contribution
- of PM_{2.5} emissions from biomass power plants and coal-fired power plants to the PM_{2.5} emissions of the power plants. $E_{pp_{cf}}$ refers to the PM_{2.5} emissions from coal-fired power plants, and E_{pp} refers to the PM_{2.5} emissions from power plants. *EF*, *FQ*, $E_{pp_{cf}}$, and E_{pp} are obtained from the literature (Zheng et al., 2018; Tong et al., 2018; Yun et al., 2020; MEE, 2020; Wang et al., 2020; Tang et al., 2020; Lin
- et al., 2021; Chen et al., 2022). More and more studies (Hodan et al., 2004; Chen et al., 2018; Zhang et al., 2022) showed that in China, the proportion of secondary and primary PM_{2.5} mass to the total PM_{2.5} mass is close, so we assume that they account for 50% respectively. Figure 2 showed the emission reduction design for perturbed emissions.

11 of 31

Figure 2. Emission reduction design for perturbed emissions; ^a was obtained from the literature (Yun et al., 2020), ^b were obtained from the literature (Zheng et al., 2018; Tong et al., 2018; Yun et al., 2020; MEE, 2020; Wang et al., 2020; Tang et al., 2020; Lin et al., 2021; Chen et al., 2022).

Furthermore, the PM_{2.5} concentration for each sector is calculated using Equations (9~11).

$$C_{P,i} = \frac{C_{NPC,i} - C_{PC,i}}{30\%}$$
(9)

$$C_{P,primary PM2.5} = C_{P,total PM2.5} - C_{P,SIA} - C_{P,SOA}$$

$$\tag{10}$$

$$C_{secondary} = C_{NPC,SOA} + C_{NPC,SIA} \tag{11}$$

where, *i* refers to the type of pollutants, i.e., total PM_{2.5}, SOA, SIA, and primary PM_{2.5}. $C_{NPC,i}$ represents concentrations of the pollutant *i* in the NPC case. $C_{PC,i}$ represents concentrations of the pollutant *i* in the PC case. $C_{P,i}$ represents concentrations of the pollutant *i* by the specific emission sector P which is perturbed (perturbation sectors P include coal combustion, biomass burning, industry, traffic source). $C_{P,primary PM2.5}$ represents concentrations of primary PM_{2.5} by the perturbation sectors P. $C_{secondary}$ represents PM_{2.5} concentrations by the secondary aerosol formation.

240 2.5 Probability density function

Taking into account the substantial spatial heterogeneity of $PM_{2.5}$ concentration and OP, we employ probability distribution functions (PDF) to characterize the statistical distribution characteristics of $PM_{2.5}$

12 of 31

concentration and OP across China. This offers a more generalized and robust probability for criteria limits. In this study, all three functional types (Lognormal, exponential, and Gamma) were tested for 245 annual average of $PM_{2.5}$ concentrations and OP at the monitoring stations. To determine the representative distributions for the datasets, we further performed goodness-of-fit tests such as the Sum of Squared Error (SSE) and the Kolmogorov-Smirnov (K-S) test (de Melo et al., 2000), using the fitter package in Python.

3. Results and discussion

3.1 Model evaluation 250

The hourly observation data was obtained from the Ministry of Ecology and Environment of China (MEE, 2014). The MEE website first released PM_{2.5} measurement data in January 2013. In accordance with the Chinese environmental protection standards, the hourly PM2.5 concentrations are measured using the micro-oscillation balance method and beta absorption method, with an uncertainty of less than

- 255 $5 \,\mu g \, m^{-3}$ (Zeng et al., 2021). The PM_{2.5} monitoring stations are primarily distributed in urban areas, particularly in major metropolitan areas of China (Zeng et al., 2021). In 2014, the observation stations were mainly concentrated in eastern China, while stations in western China are limited. Therefore, in the present study, we also evaluated with the gridded annual-mean global reanalysis Dalhousie surface PM_{2.5} dataset (van Donkelaar et al., 2021), which combines satellite retrievals of aerosol optical depth,
- chemical transport modeling, and ground-based measurements for the period 1998-2019. The Dalhousie 260 dataset compensated for the non-uniform distribution spatially of observation stations to comprehensively evaluate the performance of the DEHM model. The density scatter plot of model performance and evaluation based on annual mean MEE observations and the Dalhousie dataset were shown in Figure 3. Overall, the model performance in terms of correlation coefficient (R) and normalized
- 265 mean error (NME) calculated based on annual mean observations met the performance criteria suggested by Emery et al. (2017) (NME<0.5, R>0.4), and the normalized mean bias (NMB) was also close to the performance criteria suggested by Emery et al. (2017) (NMB<±0.3). Compared to the observations, the model performance in terms of R, NME, and NMB calculated based on the Dalhousie dataset was slightly poorer but still close to the performance criteria suggested by Emery et al. (2017). Therefore, the 270
 - simulated annual mean PM_{2.5} concentrations is considered reliable.

Figure 3. Density scatterplots of model performance and validation for China based on (a) MEE observations and (b) the Dalhousie dataset.

- To verify the spatial accuracy, a comparison of the spatial distribution of simulated and observed PM_{2.5},
 both from MME and Dalhousie, was conducted. Figure 4 showed the spatial distribution of the difference between simulated and MME observed values (denoted as *dif f_{si-ob}*) (Figure 4a) and same for Dalhousie dataset (denoted as *dif f_{si-ob}*) (Figure 4b). Both Figure 4a and Figure 4b indicated that the majority of regions (northeastern, central, and eastern China) exhibited differences ranging from -18 µg m⁻³ to 0 µg m⁻³. However, the PM_{2.5} concentrations in western China are largely underestimated, and the region with the worst performance has a difference reaching up to -54 µg m⁻³. This is mainly due to the lack
- which the worst performance has a difference feaching up to $-54 \ \mu g \ m^{-1}$. This is mainly due to the fack of mineral dust emissions in the DEHM model, which is one of the main sources of pollutants in western China. This also explains the poorer performance shown in Figure 3b. Considering that we focus on the impact of anthropogenic emission sources on PM_{2.5} concentrations and OP due to their health effects, and that the vast majority of anthropogenic emission sources and populations are concentrated in central,
- 285 eastern, and northeastern China, the well performance of DEHM model in these areas demonstrate its ability to support us exploring the role of different anthropogenic emission sources on PM_{2.5} concentrations and OP in various regions, thereby identifying the main anthropogenic emission sources.

290

Figure 4. Spatial distribution of differences between (a) observations and (b) the Dalhousie dataset, and simulations.

Similarly, the model performance over time scales was also investigated. Scatter density plots and distribution characteristics of monthly average observations and simulations for all monitoring sites in 2014 were depicted in Figure S1 and Figure 5, respectively, with Figure S1a~ Figure S11 representing January to December. The results indicated that the simulated values were in good agreement with the observations from June to September. Although the model underestimated PM_{2.5} concentrations in other months, its performance in terms of R and NME met the performance standards recommended by Emery et al. (2017) in all months except for December. We conclude that the model performs well in simulating the seasonal variation of PM_{2.5} concentrations.

320

pollution.

15 of 31

300 Figure 5. Violin plots of monthly average observations and simulations averaged over various observation stations; The red and blue colors represent the statistical distribution of simulated and observations, respectively; The width of the violin represents the sample size; The solid black line inside the violin indicates the median. The upper and lower dashed black lines within the violin indicate the upper quartile (the 75th percentile) and lower quartile (the 25th percentile), respectively.

305 3.2 Spatial distribution characteristics of PM2.5 and OP

In order to determine the spatial distribution characteristics of PM_{2.5} concentrations and OP, we explored the spatial distribution of both in scenario C1, as shown in Figure 6a and 6b respectively. The findings demonstrated spatial clustering characteristics in PM2.5 concentrations and OP. High PM2.5 concentrations and High OP are mainly located in central and eastern urban clusters such as the Beijing-

- 310 Tianjin-Hebei region, the Shandong Peninsula, the middle reaches of the Yangtze River, the Yangtze River Delta, and the Central Plains, which have experienced rapid urbanization, industrialization, and coal burning in winter, which lead to a large amount of pollutant emissions. Low PM2.5 concentrations and Low OP are mainly distributed in most urban areas of Xinjiang, Tibet, Qinghai, Gansu, Yunnan, Inner Mongolia, Northeast China, Pearl River Delta, Beibu Gulf, etc.
- 315 Due to differences in city types, pollutant emission intensities, and pollutant chemical components in different regions, there are significant spatial heterogeneity in PM25 concentrations and therefore in OP. Due to high population density, socio-economic activities and winter heating needs of northern residents in China's right region, large amounts of anthropogenic emissions, especially from industry, transportation, coal burning and biomass burning, exacerbate PM2.5 and redox active component

Figure 6. Spatial clustering of PM_{2.5} concentrations (a) and OP (b) in China.

16 of 31

To quantitatively analyze the regional distribution characteristics of PM_{2.5} concentrations and OP in China, we determined the distribution function that is suitable for a specific dataset (Table 3), investigated the frequency histogram (FH) of PM_{2.5} concentrations and OP, fitted the PDF, and then obtained the cumulative distribution function (CDF) by integrating PDF, as shown in Figure 7. It was found that the gamma distribution performed the best in fitting PM_{2.5} concentrations and OP from Table 2. Considering the test results, the gamma distribution was used to explore the spatial distribution characteristics of PM_{2.5} concentrations and OP. Figure 7a depicted the probability distribution of PM_{2.5}

- 330 concentrations, while Figure 7b depicted the probability distribution of OP. The wide distribution interval indicated that both PM_{2.5} concentrations and OP have a similar and large spatial heterogeneity. According to the FH, the highest frequency density of PM_{2.5} concentrations ranges from 10.5 to 12.9 $\mu g m^{-3}$; The maximum frequency density of OP ranges from 0.26 to 0.34 *nmol min⁻¹ m⁻³*. This reflects the overall pollution levels of PM_{2.5} and OP in the Chinese region. Taking into account the annual average PM_{2.5}
- concentrations limits set out in China's ambient air quality standard (AAQS, 2012), we focused on primary (15 $\mu g m^{-3}$) and secondary concentrations (35 $\mu g m^{-3}$) limits. The PDF and CDF results showed that 84.8% of the total area was above the primary concentrations limit and 39.7% was above the secondary concentrations limit. In addition, 35.7% of regions in China have an OP below 1.00 *nmol min*⁻¹ *m*⁻³, 41.3% have an OP between 1.00 and 2.00 *nmol min*⁻¹ *m*⁻³, and 23.0% have an OP
- 340 above 2.00 $nmol min^{-1} m^{-3}$.

Table 2. Goodness-of-fit test results

Item	goodness-of-fit test	Gamma	Lognormal	Exponential
PM _{2.5}	SSE	0.002	0.023	0.003
concentrations	KS_pvalue	0.329	0.000	0.000
OP	Sumsquare_error	0.654	0.746	1.209
Or	KS_pvalue	0.231	0.271	0.000

Bold values indicate the best results.

*Note:

SSE is Sum of Squared Error

KS_pvalue is the P-value of the Kolmogorov-Smirnov test

17 of 31

Figure 7. Probability distribution of (a) PM_{2.5} concentrations and (b) OP in China

3.3 Contributions of meteorological conditions and emission inventories to the variations in PM_{2.5} 345 and OP

To determine the sensitivity of $PM_{2.5}$ pollution and oxidation potential (OP) to meteorological conditions (emission inventories), this study compared scenarios C_2 and C_3 (C_1) and investigated the impacts and contributions due to ERA5 and CESM (HTAP and Eclipse V6 emission inventories) on $PM_{2.5}$ and OP. Figure 8 illustrated the spatial distribution maps of $PM_{2.5}$ concentrations and OP under scenarios C_1 , C_2 ,

- 350 and C₃. Figure 8a~8c represented PM_{2.5} concentrations under scenarios C₁, C₂, and C₃, respectively, while figure 8 d~8f represented OP under the same scenarios. Figure 9a presented the annual average PM_{2.5} concentrations and OP under different scenarios, and Figure 9b showed the relative contributions of meteorological conditions and emission inventories. From Figures 8 and 9, it can be observed that, compared to scenario C₂, PM_{2.5} concentrations and OP are lower in the western region and slightly higher
- 355 in some eastern areas under scenario C₁, primarily due to changes in emission inventories attributed to the inclusion or exclusion of specific local sources during the compilation process. Compared to scenario C₃, PM_{2.5} concentrations and OP are lower in the western region and higher in some eastern areas under

18 of 31

scenario C₂, primarily attributed to meteorological contributions. For the entire China region, the transition in emission inventories from Eclipse V6 to HTAP resulted in an overall decrease in PM_{2.5} concentrations of 1.55 $\mu g m^{-3}$, approximately 7.61%, and a decrease in OP of 0.0339 *nmol min⁻¹ m⁻³*, approximately 4.05%. The shift in meteorological data from CESM to ERA5 led to an increase in PM_{2.5} concentrations of 1.22 $\mu g m^{-3}$, approximately 6.4%, and an increase in OP of 0.0585 *nmol min⁻¹ m⁻³*, approximately 7.5%. According to the normalization process using equations (4)~(5), meteorological conditions contributed approximately 45.6% to the variations in PM_{2.5} and approximately 56.0% to the variations in OP. Meanwhile, emission inventories contributed approximately 54.4% to the variations in PM_{2.5} and approximately 35.0% to the variations in OP. Our findings highlight the significance of the quality of model input data, including emission inventories and meteorological data, for model performance.

370 Figure 8. Spatial distribution of PM_{2.5} concentrations and OP in different scenarios; (a)~(c) are PM_{2.5} concentrations in scenarios C₁, C₂ and C₃, respectively; (d)~(f) is the OP in scenarios C₁, C₂, and C₃, respectively; The meteorological datasets (emission inventories) employed for scenarios C₁, C₂, and C₃ are ERA5 (EDGAR-HTAP), ERA5 (Eclipse V6), and CESM (Eclipse V6), respectively

Figure 9. (a) Average annual PM_{2.5} concentrations and OP under different scenarios; (b) The relative contribution of meteorological conditions and emission inventories to PM2.5 and OP, with the outer circle representing PM2.5 and the inner circle representing OP; The meteorological datasets (emission inventories) employed for scenarios C1, C2, and C3 are ERA5 (EDGAR-HTAP), ERA5 (Eclipse V6), and CESM (Eclipse V6), respectively

380

3.4 Contribution of anthropogenic emission sources to PM2.5 and OP

Considering that anthropogenic emission sources play an important role in PM2.5 concentrations and OP, we explored the spatial distribution characteristics of PM2.5 and OP from different anthropogenic sources to reveal the reasons behind the spatial heterogeneity in PM2.5 concentrations and OP, as shown in Figure 385 10. The spatial distribution of PM2.5 concentrations from coal combustion for residential heating, biomass combustion, secondary aerosol formation, industry, and transportation are shown in Figures 10a~10e, respectively, and same for OP are shown in Figures 10f~10j, respectively. It was evident that the spatial distribution features of PM2.5 concentrations and OP from each emission source closely resemble those in Figure 6, and they all adhere to the principle that the eastern region is higher than the western.

390 Nonetheless, the PM_{2.5} and OP concentrations from various anthropogenic sources varied significantly across the two regions.

As seen in Figure 10, secondary aerosol formation are the primary contributors to PM_{2.5} concentrations and OP. The main components of the secondary aerosol formation, such as sulfate, nitrate, ammonium salt, and water-soluble organic carbon (WSOC), are formed primarily from their precursor components,

such as SO₂, NO_x, and volatile organic compounds (VOC), through a sequence of atmospheric reactions. 395 This revealed that the role of secondary aerosol formation in OP is significant from their high contribution to mass and intrinsic OP.

20 of 31

Biomass combustion is mainly derived from open-air agricultural waste burning, residential biomass fuels used for heating and cooking, coal- and biomass-power plants burning (Zhang et al., 2017). It is

- 400 worth noting that Chinese crops, especially corn straw, and power plants are mainly concentrated in central and eastern regions, northeast and part of the western region, which provides greater potential for biomass combustion in the eastern part of China. In addition, (Chen et al., 2023) demonstrated that aerosols emitted from biomass combustion significantly influenced the development of PBL by changing meteorological conditions, and subsequently led to the accumulation of PM_{2.5} concentrations. The
- increase of OP is also associated with carbonaceous aerosols (Liu et al., 2020). This means that biomass burning plays a significant role in regional pollution and environmental health risks.
 Coal burning increases secondary inorganic and organic aerosols in the air (Liu et al., 2018), which leads to stronger oxidative toxicity. Particularly, due to greater heating demand in locations with high

population density and chilly winters, PM_{2.5} concentrations and OP linked to coal burning are higher.

410 Industrial emissions mainly include glass manufacturing, fertilizer production, organometallic metallurgy plants and iron and steel industrial bases. This is one main source for metals. Considering the correlation between these transition metals and OP (Fang et al., 2017; Liu et al., 2018), China's four industrial zones (Liaozhong-South Heavy Industry Base, Beijing-Tianjin-Tangshan Industrial Base, Shanghai-Nanjing-Hangzhou Industrial Base, and Pearl River Delta Light Industry Base) are undoubtedly important contributors to PM_{2.5} and OP emissions from industrial sources.

Transportation-related emissions encourage the accumulation of Fe, Cu, Mn, Zn, and other elements (Fang et al., 2017). Compared with other anthropogenic sources, Figure 10 demonstrated that the contribution of traffic sources to PM_{2.5} and OP is the lowest, mainly concentrated in Henan, Hebei, and Shandong. This is valid for the top three provinces in terms of vehicle particulate matter and nitrogen

420 oxide emissions in 2014 according to China Annual Vehicle Pollution Prevention and Control Report (MEE, 2015).

425

Figure 10. Spatial distribution of PM_{2.5} concentrations and OP from different anthropogenic sources; (a)~(e) are PM_{2.5} concentrations derived from coal combustion for residential heating (PM_{re}), biomass burning (PM_{bi}), secondary aerosol formation (PM_{se}), industry (PM_{in}), and traffic (PM_{tr}) respectively; (f)~(j) are the OP derived from coal combustion for residential heating (OP_{re}), biomass burning (OP_{bi}), secondary aerosol formation (OP_{se}), industry (OP_{in}), and traffic (OP_{tr}) respectively.

To determine the impact of anthropogenic emissions on PM_{2.5} and OP, we quantified their percent contribution (Figure 11). Secondary aerosol formation, biomass combustion, industrial, coal combustion 430 for residential heating, and transportation sources contributed 47.6%, 21.3%, 21.3%, 5.7% and 4.2% to PM_{2.5}, respectively. Secondary aerosol formation, biomass combustion, coal combustion for residential heating, industrial sources, and transportation sources contributed 58.0%, 21.0%, 11.1%, 8.6% and 1.2%

22 of 31

to OP, respectively. This means that secondary aerosol formation and biomass burning are the main

435

Figure 11. Percentage contribution of different anthropogenic sources.

4. Conclusions

This study established a spatial modelling for PM_{2.5} concentrations and OP, provided a method for calculating OP across China, and quantitatively assessed the impacts of meteorological conditions and anthropogenic emissions on PM_{2.5} and OP variability and levels in China. The following conclusions can be obtained:

- PM_{2.5} and OP exhibited spatial clustering characteristics, with higher values mainly located in the central and eastern urban areas. About 85% and 40% of the areas had PM_{2.5} annual average concentrations exceeding the first-grade concentrations limit (15 μg m⁻³) and second-grade concentrations limit (35 μg m⁻³), respectively. Additionally, about 36% of the areas had OP concentrations lower than 1 nmol min⁻¹ m⁻³, while 23% of the areas had OP concentrations higher than 2 nmol min⁻¹ m⁻³.
 - Variability in both PM_{2.5} and OP are influenced by a combination of meteorological conditions and emission inventories. Meteorological conditions contributed about 46% of PM_{2.5} variation and 65%
- 450
- of OP variation. The emission inventory contributed about 54% of the change in $PM_{2.5}$ and about 35% of the change in OP.
- The percentage contributions of secondary aerosol formation, biomass burning, industry, coal combustion for residential heating, and traffic to PM_{2.5} were about 48%, 21%, 21%, 6%, and 4%,

23 of 31

respectively. The percentage contributions of secondary aerosol formation, biomass burning, coal
 combustion for residential heating, industry, and traffic to OP were approximately 58%, 21%, 11%, 8%, and 1%, respectively.
 A main finding of this study is that meteorological variability is the prime driver of OP variability, and not emissions. Furthermore, secondary aerosol formation and biomass burning are the main sources of OP. Thus, air pollution strategies should focus more on biomass combustion and the emissions of the
 precursors taking part in the secondary aerosol formation, and it would be efficient to introduce special

emissions controls during stagnation or other periods where OP accumulates.

24 of 31

Author contributions

- 465 Jiemei Liu performed the simulation and its validation, data analysis, investigation, and writing original draft. Jesper H. Christensen conducted investigation, worked on methodology, and performed validation. Zhuyun Ye conducted investigation, data analysis, worked on methodology. Shikui Dong provided the suggestion of data analysis, and manuscript feedback. Camilla Geels conducted investigation and provided the suggestion of simulation. Jørgen Brandt conducted investigation. Athanasios Nenes
- 470 conducted investigation and provided manuscript feedback. Yuan Yuan provided manuscript feedback, supervision, provided acquired funding. Ulas Im provided the resources, supervised this work, provided manuscript feedback, and managed the project administration. All authors discussed the results and commented on the manuscript.

Competing interests

475 The contact author has declared that none of the authors has any competing interests.

Acknowledgements:

This study was supported by the National Natural Science Foundation of China (Grant No. 52041601). The work of Liu Jiemei was also supported by China Scholarship Council (CSC) under the State Scholarship Fund. AN acknowledges support from the project PyroTRACH (ERC-2016-COG) funded

480 from H2020-EU.1.1. - Excellent Science - European Research Council (ERC), project ID 726165 and from the European Union project EASVOLEE funded from HORIZON-CL5-2022-D5-01 (project ID 101095457).

Declaration of conflicting interests:

The authors declare no conflicts of interests.

485 Supplement:

Density scatterplots of model performance and validation based on monthly mean observations (Figure S1) is provided in the Supplementary Materials file.

490	References:
	AAQS. (2012). National standard of the People's Republic of China GB3095-2012. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqhjzlbz/201203/W0201204103302323 98521.pdf. Accessed 11 January, 2023.
495	Ainur, D., Chen, Q., Sha, T., Zarak, M., Dong, Z., Guo, W., Zhang, Z., Dina, K., An, T. (2023). Outdoor Health Risk of Atmospheric Particulate Matter at Night in Xi' an, Northwestern China. <i>Environ Sci Technol</i> , 57, 9252-9265. https://doi.org/10.1021/acs.est.3c02670.
	Alexandratos, N., Bruinsma, J., 2012. World agriculture towards 2030/2050, the 2012 revision (No. No. 12-03), ESA Working Paper. World Food and Agricultural Organization, Rome, Italy.
500	 Brandt, J., Silver, J.D., Christensen, J.H., Andersen, M.S., B O NI O Kke, J.H., Sigsgaard, T., Geels, C., Gross, A., Hansen, A.B., Hansen, K.M., Hedegaard, G.B., Kaas, E., Frohn, L.M. (2013a). Contribution from the ten major emission sectors in Europe and Denmark to the health-cost externalities of air pollution using the EVA model system - an integrated modelling approach. <i>Atmos Chem Phys</i>, 13, 7725-7746. https://doi.org/10.5194/acp-13-7725-
505	2013.
	 Brandt, J., Silver, J.D., Christensen, J.H., Andersen, M.S., B O NI O Kke, J.H., Sigsgaard, T., Geels, C., Gross, A., Hansen, A.B., Hansen, K.M., Hedegaard, G.B., Kaas, E., Frohn, L.M. (2013b). Assessment of past, present and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system.
510	Atmos Chem Phys, 13, 7747-7764. https://doi.org/10.5194/acp-13-7747-2013.
515	 Brandt, J., Silver, J.D., Frohn, L.M., Geels, C., Gross, A., Hansen, A.B., Hansen, K.M., Hedegaard, G.B., Skj øth, C.A., Villadsen, H., Zare, A., Christensen, J.H. (2012). An integrated model study for Europe and North America using the Danish Eulerian Hemispheric Model with focus on intercontinental transport of air pollution. <i>Atmos Environ</i>, 53, 156-176. https://doi.org/10.1016/j.atmosenv.2012.01.011.
520	 Campbell, S.J., Wolfer, K., Utinger, B., Westwood, J., Zhang, Z.H., Bukowiecki, N., Steimer, S.S., Vu, T.V., Xu, J.S., Straw, N., Thomson, S., Elzein, A., Sun, Y.L., Liu, D., Li, L.J., Fu, P.Q., Lewis, A.C., Harrison, R.M., Bloss, W.J., Loh, M., Miller, M.R., Shi, Z.B., Kalberer, M. (2021). Atmospheric conditions and composition that influence PM2.5 oxidative potential in Beijing, China. <i>Atmos Chem Phys</i>, 21, 5549-5573. https://doi.org/10.5194/acp-21-5549-
	2021. CESM. (2023). Community Earth System Model. https://www.cesm.ucar.edu/. Accessed 7 May, 2023.
525	Chen, L., Gao, Y., Ma, M., Wang, L., Wang, Q., Guan, S., Yao, X., Gao, H. (2023). Striking impacts of biomass burning on PM2.5 concentrations in Northeast China through the emission inventory improvement. <i>Environ Pollut</i> , 318, 120835. https://doi.org/10.1016/j.envpol.2022.120835.
530	Chen, L., Wang, T., Bo, X., Zhuang, Z., Qu, J., Xue, X., Tian, J., Huang, M., Wang, P., Sang, M. (2022). Thermal Power Industry Emissions and Their Contribution to Air Quality on the Fen- Wei Plain. <i>Atmosphere-Basel</i> , 13. https://doi.org/10.3390/atmos13050652.
	Chen, P., Wang, T., Kasoar, M., Xie, M., Li, S., Zhuang, B., Li, M. (2018). Source Apportionment of PM2.5 during Haze and Non-Haze Episodes in Wuxi, China. <i>Atmosphere-Basel</i> , 9, 267.

26 of 31

https://doi.org/10.3390/atmos9070267.

	Chen, T., Cao, S. (2021). Numerical study on the integrated effects of supplied air velocity and
535	exhaust velocity on particles removal for industrial buildings. Energy and Built Environment,
	2, 380-391. https://doi.org/10.1016/j.enbenv.2020.09.006.
	Chen, T., Cao, S., Wang, J., Nizamani, A.G., Feng, Z., Kumar, P. (2021). Influences of the
	optimized air curtain at subway entrance to reduce the ingress of outdoor airborne particles.
	Energ Buildings, 244, 111028. https://doi.org/10.1016/j.enbuild.2021.111028.
540	Chen, Z.Y., Chen, D.L., Kwan, M.P., Chen, B., Gao, B.B., Zhuang, Y., Li, R.Y., Xu, B. (2019).
	The control of anthropogenic emissions contributed to 80% of the decrease in PM2.5
	concentrations in Beijing from 2013 to 2017. Atmos Chem Phys, 19, 13519-13533.
	https://doi.org/10.5194/acp-19-13519-2019.
	Christensen, J.H. (1997). The Danish eulerian hemispheric model — a three-dimensional air
545	pollution model used for the arctic. Atmos Environ, 31, 4169-4191.
	https://doi.org/10.1016/S1352-2310(97)00264-1.
	Cramer, J., Jorgensen, J.T., Hoffmann, B., Loft, S., Brauner, E.V., Prescott, E., Ketzel, M., Hertel,
	O., Brandt, J., Jensen, S.S., Backalarz, C., Simonsen, M.K., Andersen, Z.J. (2020). Long-
	Term Exposure to Air Pollution and Incidence of Myocardial Infarction: A Danish Nurse
550	Cohort Study. Environ Health Persp, 128. https://doi.org/10.1289/EHP5818.
	Crippa, M., Guizzardi, D., Butler, T., Keating, T., Wu, R., Kaminski, J., Kuenen, J., Kurokawa, J.,
	Chatani, S., Morikawa, T., Pouliot, G., Racine, J., Moran, M.D., Klimont, Z., Manseau, P.M.,
	Mashayekhi, R., Henderson, B.H., Smith, S.J., Suchyta, H., Muntean, M., Solazzo, E., Banja,
	M., Schaaf, E., Pagani, F., Woo, J.H., Kim, J., Monforti-Ferrario, F., Pisoni, E., Zhang, J.,
555	Niemi, D., Sassi, M., Ansari, T., Foley, K. (2023). The HTAP\v3 emission mosaic: merging
	regional and global monthly emissions (20002018) to support air quality modelling and
	policies. Earth Syst Sci Data, 15, 2667-2694. https://doi.org/10.5194/essd-15-2667-2023.
	Danabasoglu, G., Lamarque, J.F., Bacmeister, J., Bailey, D.A., DuVivier, A.K., Edwards, J.,
	Emmons, L.K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M.M., Large,
560	W.G., Lauritzen, P.H., Lawrence, D.M., Lenaerts, J.T.M., Lindsay, K., Lipscomb, W.H.,
	Mills, M.J., Neale, R., Oleson, K.W., Otto-Bliesner, B., Phillips, A.S., Sacks, W., Tilmes, S.,
	van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer, C., Fox-
	Kemper, B., Kay, J.E., Kinnison, D., Kushner, P.J., Larson, V.E., Long, M.C., Mickelson, S.,
	Moore, J.K., Nienhouse, E., Polvani, L., Rasch, P.J., Strand, W.G. (2020). The Community
565	Earth System Model Version 2 (CESM2). J Adv Model Earth Sy, 12, e1916M-e2019M.
	https://doi.org/10.1029/2019MS001916.
	de Melo, J.E., Pellicane, P.J., de Souza, M.R. (2000). Goodness-of-fit analysis on wood properties
	data from six Brazilian tropical hardwoods. <i>Wood Sci Technol</i> , 34, 83-97.
	https://doi.org/10.1007/s002260000033.
570	Eclipse. (2020). Global emission fields of air pollutants and GHGs. https://iiasa.ac.at/models-
	tools-data/global-emission-fields-of-air-pollutants-and-ghgs. Accessed 7 May, 2023.
	Emery, C., Liu, Z., Russell, A.G., Odman, M.T., Yarwood, G., Kumar, N. (2017).
	Recommendations on statistics and benchmarks to assess photochemical model performance.
	J Air Waste Manage, 67, 582-598. https://doi-
575	org.ez.statsbiblioteket.dk/10.1080/1096224/.2016.1265027.
	ERA. (2023). ECMWF Reanalysis v5. https://www.ecmwf.int/en/forecasts/dataset/ecmwf-

27 of 31

reanalysis-v5. Accessed 22 May, 2023.

	Fang, T., Guo, H., Zeng, L., Verma, V., Nenes, A., Weber, R.J. (2017). Highly Acidic Ambient
	Particles, Soluble Metals, and Oxidative Potential: A Link between Sulfate and Aerosol
580	Toxicity. Environ Sci Technol, 51, 2611-2620. https://doi.org/10.1021/acs.est.6b06151.
	Gao, D., Pollitt, K., Mulholland, J.A., Russell, A.G., Weber, R.J. (2020). Characterization and
	comparison of PM2.5 oxidative potential assessed by two acellular assays. Atmos Chem Phys,
	20, 5197-5210. https://doi.org/10.5194/acp-20-5197-2020.
	Geels, C., Andersson, C., Hänninen, O., Lansø, A.S., Schwarze, P.E., Skjøth, C.A., Brandt, J.
585	(2015). Future Premature Mortality Due to O3, Secondary Inorganic Aerosols and Primary
	PM in Europe — Sensitivity to Changes in Climate, Anthropogenic Emissions, Population
	and Building Stock. Int J Env Res Pub He, 12, 2837-2869.
	https://doi.org/10.3390/ijerph120302837.
	Geels, C., Winther, M., Andersson, C., Jalkanen, J.P., Brandt, J., Frohn, L.M., Im, U., Leung, W.,
590	Christensen, J.H. (2021). Projections of shipping emissions and the related impact on air
	pollution and human health in the Nordic region, Atmos Chem Phys. 21, 12495-12519.
	https://doi.org/10.5194/acp-21-12495-2021.
	Gong, S., Zhang, L., Liu, C., Lu, S., Pan, W., Zhang, Y. (2022). Multi-scale analysis of the
	impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China
595	from 2013 to 2020 2. Key weather elements and emissions. <i>Sci Total Environ</i> , 824, 153847.
	https://doi.org/10.1016/i.scitoteny.2022.153847.
	Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
	Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X.,
	Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P.,
600	Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A.,
	Haimberger, L., Healy, S., Hogan, R.J., Holm, E., Janisková M., Keelev, S., Lalovaux, P.,
	Lopez, P., Lupu, C., Radnoti, G., de Rosnav, P., Rozum, I., Vamborg, F., Villaume, S.,
	Th épaut, J. (2020). The ERA5 global reanalysis. O J Roy Meteor Soc. 146, 1999-2049.
	https://doi.org/10.1002/gi.3803.
605	Hodan, W.M., Barnard, W.R. (2004). Evaluating the contribution of PM2. 5 precursor gases and
	re-entrained road emissions to mobile source PM2. 5 particulate matter emissions. MACTEC
	Federal Programs, Research Triangle Park, NC,
	https://www3.epa.gov/ttnchie1/conference/ei13/mobile/hodan.pdf.
	IEA, 2011. World Energy Outlook 2011. International Energy Agency, Paris, France.
610	IEA, 2012. Energy Technology Perspectives. 2012 - Pathways to a Clean Energy System.
	OECD/IEA, International Energy Agency, Paris.
	Im, U., Bauer, S.E., Frohn, L.M., Geels, C., Tsigaridis, K., Brandt, J. (2023). Present-day and
	future PM2.5 and O3-related global and regional premature mortality in the EVAv6.0 health
	impact assessment model. Environ Res, 216, 114702.
615	https://doi.org/10.1016/j.envres.2022.114702.
	Im, U., Brandt, J., Geels, C., Hansen, K.M., Christensen, J.H., Andersen, M.S., Solazzo, E.,
	Kioutsioukis, I., Alyuz, U., Balzarini, A., Baro, R., Bellasio, R., Bianconi, R., Bieser, J.,
	Colette, A., Curci, G., Farrow, A., Flemming, J., Fraser, A., Jimenez-Guerrero, P., Kitwiroon,
	N., Liang, C.K., Nopmongcol, U., Pirovano, G., Pozzoli, L., Prank, M., Rose, R., Sokhi, R.,

625	 (2018). Assessment and economic valuation of air pollution impacts on human health over Europe and the United States as calculated by a multi-model ensemble in the framework of AQMEII3. <i>Atmos Chem Phys</i>, 18, 5967-5989. https://doi.org/10.5194/acp-18-5967-2018. Im, U., Christensen, J.H., Nielsen, O.K., Sand, M., Makkonen, R., Geels, C., Anderson, C., Kukkonen, J., Lopez-Aparicio, S., Brandt, J. (2019). Contributions of Nordic anthropogenic emissions on air pollution and premature mortality over the Nordic region and the Arctic. <i>Atmos Chem Phys</i>, 19, 12975-12992. https://doi.org/10.5194/acp-19-12975-2019.
630	Joint, R.C., Institute, F.E.A.S., Orlandini, L., Kurokawa, J., Monni, S., Akimoto, H., Grano, D., Battye, B., Zuber, A., Pagliari, V., Janssens-Maenhout, G., Van Aardenne, J., Dentener, F., Keating, T., Klimont, Z., Wankmüller, R., Ohara, T., 2011. EDGAR-HTAP – A harmonized gridded air pollution emission dataset based on national inventories. Publications Office.
	Kumar, A., Patil, R.S., Dikshit, A.K., Kumar, R., Brandt, J., Hertel, O. (2016). Assessment of impact of unaccounted emission on ambient concentration using DEHM and AERMOD in combination with WRF. <i>Atmos Environ</i> , 142, 406-413.
635	 https://doi.org/10.1016/j.atmosenv.2016.08.024. Lehtom äki, H., Geels, C., Brandt, J., Rao, S., Yaramenka, K., Åström, S., Andersen, M.S., Frohn, L.M., Im, U., Hänninen, O. (2020). Deaths Attributable to Air Pollution in Nordic Countries: Disparities in the Estimates. <i>Atmosphere-Basel</i>, 11, https://doi.org/10.3390/atmos11050467.
640	Lin, S., Tian, H., Hao, Y., Wu, B., Liu, S., Luo, L., Bai, X., Liu, W., Zhao, S., Hao, J., Guo, Z., Lv, Y. (2021). Atmospheric emission inventory of hazardous air pollutants from biomass direct-fired power plants in China: Historical trends, spatial variation characteristics, and future perspectives. <i>Sci Total Environ</i> , 767, 144636.
645	https://doi.org/10.1016/j.scitotenv.2020.144636. Liu, J., Gao, X., Ruan, Z., Yuan, Y., Dong, S. (2022). Analysis of spatial and temporal distribution and influencing factors of fine particles in Heilongjiang Province. <i>Urban Climate</i> , 41, 101070. https://doi.org/10.1016/j.uclim.2021.101070.
	Liu, J., Ruan, Z., Gao, X., Yuan, Y., Dong, S. (2022). Quantifying contribution of weather patterns to PM2.5 concentrations based on spatial effects and health risk assessment. <i>Sustain</i> <i>Cities Soc</i> , 83, 103980. https://doi.org/10.1016/j.scs.2022.103980.
650	 Liu, J., Ruan, Z., Gao, X., Yuan, Y., Dong, S., Li, X., Liu, X. (2023). Investigating the cumulative lag effects of environmental exposure under urban differences on COVID-19. <i>J Infect Public Heal</i>. https://doi.org/10.1016/j.jiph.2023.06.002. Liu M. Saari R.K. Zhou G. Li I. Han L. Liu X. (2021). Recent trends in premature
655	mortality and health disparities attributable to ambient PM2.5 exposure in China: 2005 – 2017. <i>Environ Pollut</i> , 279, 116882. https://doi.org/10.1016/j.envpol.2021.116882.
	Liu, Q., Lu, Z., Xiong, Y., Huang, F., Zhou, J., Schauer, J.J. (2020). Oxidative potential of ambient PM2.5 in Wuhan and its comparisons with eight areas of China. <i>Sci Total Environ</i> , 701, 134844. https://doi.org/10.1016/j.scitotenv.2019.134844.
660	 Liu, S., Lim, Y., Pedersen, M., Jørgensen, J.T., Amini, H., Cole-Hunter, T., Mehta, A.J., So, R., Mortensen, L.H., Westendorp, R.G.J., Loft, S., Bräuner, E.V., Ketzel, M., Hertel, O., Brandt, J., Jensen, S.S., Christensen, J.H., Sigsgaard, T., Geels, C., Frohn, L.M., Brborić, M., Radonić, J., Sekulic, M.T., Bønnelykke, K., Backalarz, C., Simonsen, M.K., Andersen, Z.J. (2021). Long-term exposure to ambient air pollution and road traffic noise and asthma incidence in adults: The Danish Nurse cohort. <i>Environ Int</i>, 152, 106464.

665	https://doi.org/10.1016/j.envint.2021.106464.
	Liu, W., Xu, Y., Liu, W., Liu, Q., Yu, S., Liu, Y., Wang, X., Tao, S. (2018). Oxidative potential of
	ambient PM2.5 in the coastal cities of the Bohai Sea, northern China: Seasonal variation and
	source apportionment. Environ Pollut, 236, 514-528.
	https://doi.org/10.1016/j.envpol.2018.01.116.
670	MEE. (2014). Ministry of Ecology and Environment. https://www.mee.gov.cn/. Accessed 11
070	January, 2023.
	MEE. (2015). China Vehicle Emission Control Annual Report.
	https://www.mee.gov.cn/hizl/sthizk/vdyhigl/201605/P020160513584304398771.pdf
	Accessed 11 January 2023
675	MEE. (2020). Bulletin of the second National Survey of pollution sources.
075	http://www.gov.cn/xinwen/2020-06/10/content_5518391.htm_Accessed 11 January 2023
	Molina C. Manzano C.A. Toro A. R. Leiva G. M.A. (2023). The oxidative notential of
	airhorne particulate matter in two urban areas of Chile: More than meets the ave. Environ Int
	172 107866 https://doi.org/10.1016/j.opvint.2022.107866
680	Pui D V H Chan S Zuo Z (2014) PM2.5 in China: Massuraments sources visibility and
080	health affects, and mitigation. Particulary, 12, 1, 26
	https://doi.org/10.1016/i portio 2012.11.001
	https://doi.org/10.1010/j.patitc.2015.11.001.
	James T. Lemeveld, S., Johannessell, C., Berkenleter, T., Celo, V., Dabek-Ziotorzyńska, E.,
C05	Harner, I., Lammer, G., Nenes, A. (2024). Influence of aerosol activity and organic figures on transition matter is when
085	ansinon metal solutionity and oxidative potential of the particulate matter in droan
	environments. <i>Sci Total Environ</i> , 906, 167405.
	1000000000000000000000000000000000000
	Skamarock, W.C., Klemp, J.B., Dudnia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.,
	Wang, W., Powers, J.G. (2008). A description of the advanced research WRF version 3.
690	NCAR technical note, 4/5, 113. http://dx.doi.org/10.5065/D68S4MVH.
	Tang, L., Xue, X., Qu, J., Mi, Z., Bo, X., Chang, X., Wang, S., Li, S., Cui, W., Dong, G. (2020).
	Air pollution emissions from Chinese power plants based on the continuous emission
	monitoring systems network. <i>Sci Data</i> , 7, 325. https://doi.org/10.1038/s41597-020-00665-1.
	Thomas, D.C., Christensen, J.H., Massling, A., Pernov, J.B., Skov, H. (2022). The effect of the
695	2020 COVID-19 lockdown on atmospheric black carbon levels in northeastern Greenland.
	Atmos Environ, 269, 118853. https://doi.org/10.1016/j.atmosenv.2021.118853.
	Tong, D., Zhang, Q., Liu, F., Geng, G., Zheng, Y., Xue, T., Hong, C., Wu, R., Qin, Y., Zhao, H.,
	Yan, L., He, K. (2018). Current Emissions and Future Mitigation Pathways of Coal-Fired
	Power Plants in China from 2010 to 2030. Environ Sci Technol, 52, 12905-12914.
700	https://doi.org/10.1021/acs.est.8b02919.
	Upadhyay, A., Dey, S., Goyal, P. (2020). A comparative assessment of regional representativeness
	of EDGAR and ECLIPSE emission inventories for air quality studies in India. Atmos
	Environ, 223, 117182. https://doi.org/10.1016/j.atmosenv.2019.117182.
	van Donkelaar, A., Hammer, M.S., Bindle, L., Brauer, M., Brook, J.R., Garay, M.J., Hsu, N.C.,
705	Kalashnikova, O.V., Kahn, R.A., Lee, C., Levy, R.C., Lyapustin, A., Sayer, A.M., Martin,
	R.V. (2021). Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty.
	Environ Sci Technol, 55, 15287-15300. https://doi.org/10.1021/acs.est.1c05309.
	Wang, G., Deng, J., Zhang, Y., Zhang, Q., Duan, L., Hao, J., Jiang, J. (2020). Air pollutant

	emissions from coal-fired power plants in China over the past two decades. Sci Total Environ,
710	741, 140326. https://doi.org/10.1016/j.scitotenv.2020.140326.
	Wang, J., Lin, X., Lu, L., Wu, Y., Zhang, H., Lv, Q., Liu, W., Zhang, Y., Zhuang, S. (2019).
	Temporal variation of oxidative potential of water soluble components of ambient PM2.5
	measured by dithiothreitol (DTT) assay. Sci Total Environ, 649, 969-978.
	https://doi.org/10.1016/j.scitotenv.2018.08.375.
715	Xing, C., Wang, Y., Yang, X., Zeng, Y., Zhai, J., Cai, B., Zhang, A., Fu, T., Zhu, L., Li, Y.,
	Wang, X., Zhang, Y. (2023). Seasonal variation of driving factors of ambient PM2.5
	oxidative potential in Shenzhen, China. Sci Total Environ, 862, 160771.
	https://doi.org/10.1016/j.scitotenv.2022.160771.
	Yu, S., Liu, W., Xu, Y., Yi, K., Zhou, M., Tao, S., Liu, W. (2019). Characteristics and oxidative
720	potential of atmospheric PM2.5 in Beijing: Source apportionment and seasonal variation. Sci
	Total Environ, 650, 277-287. https://doi.org/10.1016/j.scitotenv.2018.09.021.
	Yun, X., Shen, G.F., Shen, H.Z., Meng, W.J., Chen, Y.L., Xu, H.R., Ren, Y., Zhong, Q.R., Du,
	W., Ma, J.M., Cheng, H.F., Wang, X.L., Liu, J.F., Wang, X.J., Li, B.G., Hu, J.Y., Wan, Y.,
	Tao, S. (2020). Residential solid fuel emissions contribute significantly to air pollution and
725	associated health impacts in China. Sci Adv, 6. https://www-science-
	org.ez.statsbiblioteket.dk/doi/10.1126/sciadv.aba7621.
	Zare, A., Christensen, J.H., Gross, A., Irannejad, P., Glasius, M., Brandt, J. (2014). Quantifying
	the contributions of natural emissions to ozone and total fine PM concentrations in the
	Northern Hemisphere. Atmos Chem Phys, 14, 2735-2756. https://doi.org/10.5194/acp-14-
730	2735-2014.
	Zeng, Z., Gui, K., Wang, Z., Luo, M., Geng, H., Ge, E., An, J., Song, X., Ning, G., Zhai, S., Liu,
	H. (2021). Estimating hourly surface PM2.5 concentrations across China from high-density
	meteorological observations by machine learning. Atmos Res, 254, 105516.
	https://doi.org/10.1016/j.atmosres.2021.105516.
735	Zhang, H., Li, N., Tang, K., Liao, H., Shi, C., Huang, C., Wang, H., Guo, S., Hu, M., Ge, X.
	(2022). Estimation of secondary PM 2.5 in China and the United States using a multi-tracer
	approach. Atmos Chem Phys, 22, 5495-5514. https://doi.org/10.5194/acp-2021-683.
	Zhang, L., Hu, X., Chen, S., Chen, Y., Lian, H. (2023). Characterization and source apportionment
	of oxidative potential of ambient PM2.5 in Nanjing, a megacity of Eastern China.
740	Environmental Pollutants and Bioavailability, 35, 2175728.
	https://doi.org/10.1080/26395940.2023.2175728.
	Zhang, Z., Gao, J., Zhang, L., Wang, H., Tao, J., Qiu, X., Chai, F., Li, Y., Wang, S. (2017).
	Observations of biomass burning tracers in PM2.5 at two megacities in North China during
	2014 APEC summit. Atmos Environ, 169, 54-64.
745	https://doi.org/10.1016/j.atmosenv.2017.09.011.
	Zheng, B., Tong, D., Li, M., Liu, F., Hong, C.P., Geng, G.N., Li, H.Y., Li, X., Peng, L.Q., Qi, J.,
	Yan, L., Zhang, Y.X., Zhao, H.Y., Zheng, Y.X., He, K.B., Zhang, Q. (2018). Trends in
	China's anthropogenic emissions since 2010 as the consequence of clean air actions. <i>Atmos</i>
	<i>Chem Phys</i> , 18, 14095-14111. https://doi.org/10.5194/acp-18-14095-2018.
/50	Zhu, Y., Huang, L., Li, J., Ying, Q., Zhang, H., Liu, X., Liao, H., Li, N., Liu, Z., Mao, Y., Fang,
	H., Hu, J. (2018). Sources of particulate matter in China: Insights from source apportionment
	studies published in 1987 - 2017. Environ Int, 115, 343-357.

31 of 31

https://doi.org/10.1016/j.envint.2018.03.037.