Impact of Meteorology and Aerosol Sources on PM_{2.5} and Oxidative Potential Variability and Levels in China

5 Jiemei Liu^{1,2}, Jesper H. Christensen², Zhuyun Ye², Shikui Dong¹, Camilla Geels², Jørgen Brandt², Athanasios Nenes^{3,4}, Yuan Yuan^{1, *}, and Ulas Im^{2, *}

 Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
² Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change,

Frederiksborgvej 399, Roskilde, Denmark
³ Laboratory of Atmospheric Processes and Their Impacts, Ecole Polytechnique F éd érale de Lausanne (EPFL), Lausanne, Switzerland
⁴ Center for the Study of Air Quality and Climate Change, Foundation for Research and Technology

Hellas (FORTH), Thessaloniki, Greece,

15 Correspondence: Yuan Yuan (<u>yuanyuan83@hit.edu.cn</u>) and Ulas Im (ulas@envs.au.dk)

Captions of Supplementary Figures

20 Figure S1. Density scatterplots of model performance and validation based on monthly mean observations.

Figure S1. Density scatterplots of model performance and validation based on monthly mean observations; (a) to (l) are the results from January to December