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Short summary16

By directly analyzing the proximity of precipitation forecasts and observations, a precipitation17

forecast accuracy score (PAS) method was constructed. This method does not utilize traditional18

contingency table-based classification verification, can replace the threat score (TS), equitable threat19

score (ETS) and other skill score methods, and can be used to calculate the accuracy of numerical20

models or quantitative precipitation forecasts.21

22



2

Abstract23

With the development of refined numerical forecasts, problems such as score distortion due to24

the division of precipitation thresholds in both traditional and improved scoring methods for25

precipitation forecasts and the increasing subjective risk arising from the scale setting of the26

neighbourhood spatial verification method have become increasingly prominent. To address these27

issues, a general comprehensive evaluation method (GCEM) is developed for cross-scale28

precipitation forecasts by directly analyzing the proximity of precipitation forecasts and observations29

in this study. In addition to the core indicator of the precipitation accuracy score (PAS), the GCEM30

system also includes score indices for insufficient precipitation forecasts, excessive precipitation31

forecasts, precipitation forecast biases and clear/rainy forecasts. The PAS does not distinguish the32

magnitude of precipitation and does not delimit the area of influence; it constitutes a fair scoring33

formula with objective performance and can be suitable for evaluating rainfall events such as general34

and extreme precipitation. The PAS can be used to calculate the accuracy of numerical models or35

quantitative precipitation forecasts, enabling the quantitative evaluation of the comprehensive36

capability of various refined precipitation forecasting products. Based on the GCEM, comparative37

experiments between the PAS and threat score (TS) are conducted for two typical precipitation38

weather processes. The results show that relative to the TS, the PAS better aligns with subjective39

expectations, indicating that the PAS is more reasonable than the TS. In the case of an extreme40

precipitation event in Henan, China, two high-resolution models were evaluated using the PAS, TS,41

and fraction skill score (FSS), verifying the evaluation ability of PAS scoring for predicting extreme42

precipitation events. In addition, other indices of the GCEM are utilized to analyze the range and43

extent of both insufficient and excessive forecasts of precipitation, as well as the precipitation44
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forecasting ability for different weather processes. These indices not only provide overall scores45

similar to those of the TS for individual cases but also support two-dimensional score distribution46

plots, which can comprehensively reflect the performance and characteristics of precipitation47

forecasts. Both theoretical and practical applications demonstrate that the GCEM exhibits distinct48

advantages and potential promotion and application value compared to the various mainstream49

precipitation forecast verification methods.50

51

1. Introduction52

Precipitation is one of the most important forecasting elements in weather forecasting (Bi et al.,53

2016; Han et al., 2023). Short duration heavy rainfall often leads to flooding and geological disasters,54

causing widespread and severe impacts (Zhong et al., 2022; Yang et al., 2023). Precipitation forecasts,55

as focuses and challenges in meteorological department operations, have drawn widespread attention56

from governments, societies and the public (Bi et al., 2016; Hao et al., 2023). Scientifically57

evaluating precipitation forecasts helps people gain a clear understanding of the current precipitation58

forecast levels and maintain appropriate psychological expectations for such forecasts. Moreover,59

such evaluations assist forecasters in rationally analyzing the quality and characteristics of60

quantitative precipitation forecast systems and aid researchers in understanding the level, strengths61

and weaknesses of various types of forecasting systems, which in turn, offers valuable insights to62

improve these systems (Zhong et al., 2022; Zhang et al., 2022; Liu et al., 2022b; Gofa et al., 2018).63

However, there are several shortcomings in current precipitation verification approaches. For64

instance, with traditional scoring methods, small errors in the location or timing of convective65

features can lead to false alarms and missed events, and their utility is limited regarding diagnosing66



4

model errors such as a displaced forecast feature or an incorrect mode of convective organization;67

thus, traditional scoring methods often fail to reflect model performance improvements (Ahijevych et68

al., 2009). For high-resolution precipitation forecasts, even if the spatial distribution and intensity of69

precipitation are consistent with the observations, slight spatial and temporal deviations between70

forecasts and observations may still result in a large false alarm ratio and missed alarm ratio, leading71

to lower forecast scores (Zhao and Zhang, 2018). With the rapid development of seamless fine72

quantitative precipitation forecasts, the need for objective and rational evaluations of the accuracy73

and characteristics of precipitation forecasts has become increasingly important and urgent (Chen et74

al., 2021).75

Precipitation forecast verification involves various methods, including traditional contingency76

table-based classification verification and spatial verification methods. The traditional verification77

method can be traced back to 1884, when Finley introduced a dichotomous contingency table for78

tornado forecasts and evaluated these forecasts using the proportion correct scoring method (Finley,79

1884). Subsequently, systematic attention was given to the evaluation of forecast classification80

methods, and Finley's forecast verification method became a classic example of the discussion of81

forecast scoring methods (Murphy, 1996). Gilbert (1984) proposed two scoring methods, namely, the82

ratio of verification and the ratio of success in forecasting. The ratio of verification later became83

known as the threat score (TS) (Palmer and Allen, 1949) or the critical success index (Donaldson et84

al., 1975; Mason, 1989). The ratio of success is referred to as the Gilbert skill score (GSS) (Schaefer,85

1990) or the equitable threat score (ETS) (Doswell et al., 1990; Gandin and Murphy, 1992). The TS86

encourages correct event forecasts (hits) and accounts for the impacts on the false alarm and missed87

alarm ratios, which can better guide forecasters or research and development personnel in making88
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reasonable subjective and objective predictions compared to relying solely on simple “accuracy”.89

Meanwhile, the ETS eliminates the influence of random forecasts on the score, resulting in a fairer90

skill score (Liu et al., 2022a).91

In addition to the TS and ETS, the methods of traditional contingency table-based classification92

verification include Peirce skill score (PSS) (Peirce, 1884; Hanssen and Kuipers, 1965; Murphy and93

Daan, 1985; Flueck, 1987), Heidke skill score (HSS) (Doolittle, 1885; Doolittle, 1888; Heidke,94

1926), probability of detection (POD), frequency bias (BIAS), accuracy (ACC), false alarm ratio95

(FAR), missing ratio (MR), probability of false detection (POFD), etc. The PSS is a fair score index96

that is equal to the hit rate minus the false detection probability; the HSS eliminates the influence of97

random forecasts, and the results can reflect the forecast skill (Liu et al., 2022a). Many studies have98

reviewed and compared these two scoring methods (Doswell et al., 1990; Schaefer, 1990; Marzban,99

1998; Mason, 2003). In extreme weather event verification (including severe convective weather100

such as short duration heavy rainfall), the traditional scoring methods (such as the TS and ETS) for101

dichotomous events often yield scores of zero when the occurrence probability of the object being102

verified is very low. Therefore, Stephenson proposed the extreme dependency score (EDS) for103

evaluating extreme events. The EDS has the advantage that different forecast systems converge to104

different values and has no explicit dependence on the bias of the prediction system (Stephenson et105

al., 2008; Casati et al., 2008).106

It has been more than a century since Gilbert proposed two scoring concepts, i.e., the ratio of107

verification and the ratio of success in forecasting (later known as the TS and ETS). The TS and ETS108

have been widely used for the performance evaluation of threshold-based event forecasts despite109

their evident shortcomings (Stephenson et al., 2008). Today, in various forecast verification110
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applications, including high-resolution quantitative precipitation and extreme weather forecast111

verification, the TS and ETS remain mainstream approaches (Tang et al., 2017; Wei et al., 2019;112

Chen et al., 2021; Liu et al., 2023). With the continuous introduction of new scoring methods, several113

problems in traditional verification have been solved. However, the advantageous position of the TS114

remains unchallenged. Although the reasons for this are varied, its objectivity and practicality merit115

attention.116

The traditional TS categorizes precipitation according to thresholds and performs verification117

using a dichotomous contingency table. The TS can be viewed as a measure of forecast accuracy that118

excludes hit forecasts for “non-occurrence” precipitation events (referred to as no precipitation), and119

its calculation formula is simple, objective and standardized. However, there are two main120

limitations of the TS. First, precipitation is categorized by thresholds based on the contingency table,121

which has limitations in terms of classification. The drawback of artificially dividing precipitation122

into different threshold ranges is that it cannot guarantee that two adjacent precipitation values will123

always fall within the same threshold range. Slightly different precipitation values are not within the124

same threshold, which can lead to precipitation score distortion. The second limitation is related to125

the so-called “double penalty” issue. With the development of high-resolution numerical weather126

forecasting and the shortening of the spacing between model grid points, some meso- and small-scale127

phenomena have been portrayed by models. However, it is difficult for high-resolution numerical128

forecasts to match the characteristics of the observed meso- and small-scale forecasts, resulting in129

traditional scoring methods often cannot reflect these improvements in terms of model performance.130

Assuming a constant forecast area, when there is a small deviation in the timing and location of131

events between a forecast and an observation, both “false alarms” and “missed alarms” will occur,132
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which is referred to as the “double penalty” phenomenon. This phenomenon leads to a score lower133

than the subjectively expected result, making it difficult to obtain appropriate verification scores134

when a forecast that “looks good” is not as good as one that “looks bad” (Ahijevych et al., 2009;135

Wilks, 2006; Ebert, 2008; Chen et al., 2021). For low-probability events with limited sample size for136

verification, such as torrential rain and short-term heavy rainfall, the “double penalty” issue becomes137

more prominent. The TS and ETS for torrential rain are often at the unskilled end of the scoring138

values (Chen et al., 2019). In recent years, new mainstream scoring methods have addressed most of139

the abovementioned limitations but still have shortcomings. Such methods include the improved140

gradient decreasing method, which still results in poor scores for good forecasts, and the141

neighbourhood spatial verification method, which has too many subjective components and may142

miss meso- and small-scale information.143

To address the limitations of threshold-based precipitation classification, and improve the144

verification effect, e.g., the gradient decreasing method (hereinafter referred to as the magnitude-145

improved TS) is used to verify the accuracy of rainstorm forecasts (Yang et al., 2017), and146

appropriate weights are assigned to close forecast values to avoid scores of zero (Table 1). However,147

the magnitude-improved TS still has limitations. For example, if the observed 24-hour accumulated148

precipitation is 50 mm, when forecast A is 48 mm and forecast B is 98 mm, forecast A is evidently149

better than forecast B. According to the original TS, forecast B scores 1 point, while forecast A does150

not score any points. For the magnitude-improved TS, forecast B scores 1 point, as it still falls within151

the same magnitude category as the observed precipitation, while forecast A scores only 0.4 points,152

which still fails to reflect the fact that forecast A is superior to forecast B (Table 2). By employing the153

new scoring method, i.e., the precipitation accuracy score (PAS), which will be discussed later,154
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forecast A scores 0.998 points, while forecast B scores 0.398 points, confirming the rationality and155

validity of this new method.156

To address the “double penalty” issue, a common approach is to employ the neighbourhood157

spatial verification method (also known as the fuzzy method), which has two specific processing158

forms. The first approach is simple upscaling, which uses a certain method (such as value averaging,159

maximum, value weighting) to select values within the scale range(Chen et al., 2019), adjusting the160

high-resolution forecast and observation information to a larger scale to reduce the accidental161

information of high-resolution data, and then using the traditional skill score (Yates et al., 2006;162

Weygandt et al., 2004). The other form is the improved neighbourhood spatial verification method163

proposed by Roberts and Lean (2008). By referring to the Murphy skill score, this method obtains164

comprehensive evaluation information by comparing the occurrence frequency (probability) of165

precipitation within different scale windows. If the forecasted occurrence frequency closely166

approximates the observed occurrence frequency, the forecast is considered valuable (Zhao and167

Zhang, 2018). From the perspective of the precipitation occurrence probability within the analysis168

region, the precipitation occurrence probability for observations and forecasts is the ratio of the169

precipitation area to the analyzed area of the region, which is referred to as the fraction skill score170

(FSS). These two processing methods effectively solve the “double penalty” problem, but neither can171

address the issue of excessive smoothness of the precipitation fields during the upscaling process172

(Zhao and Zhang, 2018), which may result in the omission of some small- to meso-scale information173

(Zepeda-Arce et al., 2000).174

The neighbourhood spatial verification method considers values that are spatially and175

temporally adjacent between forecasts and observations during the matching process, thus relaxing176
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the strict requirements for spatiotemporal matching (Ebert, 2008; Casati et al., 2008). However, since177

the determination of the neighbourhood range is a rather subjective process, it hinders the178

standardization of verification scores and lacks comparability, which may negatively affect objective179

quantitative verification. Numerous experiments have shown that there is an obvious improvement in180

the scoring values after adopting the neighbourhood spatial verification method (Chen et al., 2019),181

particularly for forecasts of large-magnitude precipitation. Nevertheless, the purpose of scoring is not182

to achieve a monotonous increase in scoring values but rather to follow the principle of objectivity as183

much as possible. Errors are errors and cannot be solved by simply lowering the standard. Instead,184

reasonable and fair criteria should be utilized to reflect the true extent of errors.185

Currently, numerical weather forecasts and intelligent gridded forecasts have been developed to186

output high-resolution precipitation products, while precipitation observations, whether in the form187

of gridded or station data, are already high-resolution. Staying at the dichotomous classification level188

for precipitation verification not only wastes existing data resources but also fails to meet the189

evaluation requirements of refined forecasts. Therefore, to adapt to the development of refined190

forecasts, a new scoring method is needed. In light of this, a comprehensive verification index for191

precipitation forecasts is designed, and the following five aspects are considered. (1) The impact of192

categorical events on rainstorm forecasts should be reduced. In particular, high-resolution forecasts193

can refer to continuous variables for scoring methods. Especially for the evaluation of194

high-resolution precipitation forecasts, the scoring method of continuous variables can be borrowed195

for reference. (2) The design of the scoring method should aim to minimize subjective factors such as196

the artificial range division and condition settings, ensuring scoring objectivity and comparability. (3)197

The designed scoring performance indices should possess ideal attributes such as fairness,198
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independent of climatological probability, suitability for extreme events, and boundedness as much199

as possible. (4) The devised scoring method should be easy to promote, concise and efficient, with200

clear concepts and scientific rationality. (5) Different comprehensive verification indices for201

precipitation forecasts should reflect the forecasting performance and characteristics of202

high-resolution quantitative precipitation products from various perspectives.203

In this study, on the basis of analyzing the limitations of traditional verification methods as well204

as improved methods, a new general comprehensive evaluation method (GCEM) for cross-scale205

precipitation prediction is proposed. This method is applied and verified through practical examples.206

The remainder of this paper is organized as follows. Section 2 provides an overview of various207

scoring indices and their attributes in the GCEM and introduces the optimization processing method208

for the PAS index in the application. Through ideal experiments, the characteristics of the scoring209

methods are analyzed based on the score curves described in Section 3. Section 4 presents210

comparative experiments, including the new scoring method, the traditional scoring method and the211

neighbourhood spatial verification method based on typical cases. Finally, a summary and discussion212

are presented in Section 5.213

2 Cross-scale general comprehensive evaluation method214

2.1 Overview of the general comprehensive evaluation method215

To address the issues of “distorted scores due to the division of precipitation thresholds and216

increased subjective risks brought about by the setting of the neighbourhood spatial verification217

method” in traditional and improved precipitation scoring methods, this study refers to the218

verification method for heavy rainfall forecasts based on predictability (Chen et al., 2019) and219

combines the advantages of relative and absolute errors. A GCEM is constructed by directly220
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analyzing the proximity of forecasted precipitation to observed precipitation. It primarily includes221

the PAS, and the expression of its core scoring function is as follows:222

PAS =
sin π

2
∙ x

u
, 0 ≤ x < u

e− x−u
u

2

, 0 < u ≤ x
(1)223

where PAS represents the scoring value, x is the forecasted precipitation (mm), and u is the observed224

precipitation (mm). The PAS falls between 0 and 1, where a higher score indicates a better225

precipitation forecast effect. When PAS = 1, it signifies a perfect forecast, indicating that the226

forecasted and observed precipitation match entirely. For Eq. (1), given the observation value u>0227

mm, when the forecasted precipitation is 0 mm, then PAS=0, indicating that the model has no228

forecast skill. When the forecasted precipitation amount is sufficiently large, PAS → 0, indicating no229

forecast skill as well (Fig. 1). Additionally, considering the large fluctuation characteristics of the230

function curve when the observed precipitation is less than 10 mm, Eq. (1) was smoothed and231

optimized (see Section 2.2 for details).232

The GCEM system also includes the following indices:233

(1) Insufficient precipitation index (IPI), whose core scoring function expression is as follows:234

IPI = sin π
2

∙ x
u

− 1, 0 ≤ x < u (2)235

where IPI represents the scoring value, reflecting the degree of underestimation in precipitation236

forecasts when the forecasted value is less than the observed value. The IPI falls within [−1, 0),237

where a value closer to 0 indicates a lower degree of underestimation.238

(2) Excessive precipitation index (EPI), whose core scoring function expression is as follows:239

EPI = 1 − e− x−u
u

2

, 0 < u < x (3)240
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where EPI represents the scoring value, reflecting the degree of overestimation in precipitation241

forecasts when the forecasted value exceeds the observed value. The EPI falls within (0, 1), where a242

value closer to 0 indicates a lower degree of overestimation.243

(3) Insufficient and excessive precipitation index (IEPI), whose core scoring function244

expression is as follows:245

IEPI =
sin π

2
∙ x

u
− 1, 0 ≤ x < u

1 − e− x−u
u

2

, 0 < u ≤ x
(4)246

where IEPI represents the scoring value, reflecting the degree of deviation of the forecasted247

precipitation from the observed precipitation. The IEPI falls within [−1, 1) , where a value closer to 0248

indicates a lower degree of forecast deviation. An IEPI less (more) than 0 indicates an insufficient249

(excessive) forecast, and an IEPI equal to 0 represents an unbiased forecast.250

Additional explanation: Eqs. (2-4) are a series of theoretical indicator formulas derived from Eq.251

(1), therefore Eqs. (2-4) are referred as the core calculation formulas for the IPI, EPI, and IEPI,252

respectively. In practical applications, the optimized solution will be used (see Section 2.2) to253

calculate the IPI, EPI, and IEPI for the situations of u ≥ 0.1 mm or x ≥ 0.1 mm.254

(4) The PAS clear/rainy forecast accuracy score (PASC), whose scoring function expression is255

as follows.256

PASC =
1 0 ≤ u < 0.1 and 0 ≤ x < 0.1
PAS|ux0.1 u ≥ 0.1 or x ≥ 0.1 (5)257

where PASC represents the PAS scoring value for clear/rainy forecasts. “0 ≤ u < 0.1 and 0 ≤ x <258

0.1” denotes the correctly forecasted non-precipitation event with PASC=1. PAS|ux0.1 denotes the259

overall PAS for precipitation forecasts under specific conditions where the observed precipitation u ≥260

0.1 mm or the forecasted precipitation x ≥ 0.1 mm.261
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The discussion below pertains to the characteristics of the PAS scoring method. As an ideal262

performance indicator, the PAS has the attributes of boundedness, fairness, sensitivity disparity,263

suitability for extreme events and moderate symmetry.264

(1) Boundedness. The PAS scoring values range between 0 and 1. A PAS score of 1 represents265

an ideal forecast, while a score of 0 indicates that there is observed precipitation but no forecasted266

precipitation or that the forecasted precipitation is sufficiently large. The scoring range is consistent267

with that of traditional TS, making it easy to compare and evaluate the scoring methods and suitable268

for practical forecast verification applications.269

(2) Fairness. The PAS scoring method constitutes a scoring formula in an objective form270

without a subjective boundary definition. Precipitation forecasts are verified without magnitude or271

delimitation of the area of influence, and the closer to the observed situation the forecast is, the272

higher the score, which is fair.273

(3) Sensitivity disparity. According to the Chinese national standard GB/T 28592—2012274

“Grade of precipitation” on the classification of precipitation grades, the public is more sensitive to275

low-grade precipitation forecasts. As rainfall intensity increases, the public's sensitivity gradually276

decreases; that is, the public has a higher tolerance for errors in response to heavier rainfall forecasts.277

In other words, large errors in the forecasts of heavy rainfall events may be considered equivalent to278

smaller errors in weaker rainfall events in terms of forecast scoring. As shown in Fig. 1, the279

intersection point on the PAS scoring curves for the observed precipitation amounts of 25 mm and280

100 mm corresponds to a forecasted amount of 42.4 mm. That is, the forecast errors are 17.4 mm and281

57.6 mm for the observed 24-hour accumulated precipitation amounts of 25 mm and 100 mm,282

respectively, while the scores are both 0.62. From the perspective of forecast service effectiveness,283
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this aligns with general public perception.284

(4) Suitability for extreme events. From the PAS scoring curves for forecasts corresponding to285

different observed precipitation amounts (u = 10, 25, 50 and 100 mm) (Fig. 1), it is evident that the286

PAS scoring method performs well in evaluating precipitation event forecasts at the level of287

torrential rain and above. For example, when the observed precipitation is 100 mm, with forecasted288

amounts of 59 mm and 147.2 mm, the PASs are both 0.8, whereas the TSs are 0 and 1, and the289

improved TSs are 0.8 and 1, respectively. This result indicates that the PAS is suitable for scoring290

heavy rainfall events, meeting the general applicability requirements as a scoring method that does291

not degrade due to extreme events.292

(5) Moderate symmetry. In Eq. (1), let the observed precipitation is the independent variable u,293

and the forecasted precipitation is the parameter x. Similarly, for different magnitudes of forecasted294

precipitation (parameter x = 10, 25, 50 and 100 mm) and observed precipitation (variable u) ranging295

from 0 to 300 mm, the corresponding scores are shown in Fig. 2. The scores also vary with the296

degree of proximity between forecasts and observations. Figures 1 and 2 exhibit similar trends but297

are not identical, illustrating that the PAS possesses moderate symmetry.298

2.2 PAS verification for precipitation forecasts299

From the properties of the core verification function of the PAS, it is noted that when the300

observed precipitation � < 10 mm, there is a large gradient in the PAS curve. A slight change in the301

forecasted value (�) can result in a large fluctuation in the PAS. To account for this characteristic,302

based on a comprehensive analysis in combination with the sensitivity of forecasters and the public303

to small-scale precipitation, a smoothing optimization scheme is applied to the PAS curve for304

accumulated precipitation below 10 mm. Similarly, the IPI, EPI, IEPI and PASC curves are305
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appropriately smoothed and optimized according to their respective definitions.306

Assumptions:307

(1) PAS = 0.6PAS|�→0 when � = 0 mm, and � ≠ 0 mm;308

PAS|�→0 denotes the PAS for the case of observed precipitation 0 < � ≤ 0.1 mm;309

(2) PAS = 0.6PAS|�→0 when � = 0 mm, and 0 < u < 10 mm;310

PAS|�→0 denotes the PAS for the case of forecasted precipitation 0 < � ≤ 0.1 mm.311

1. When the observed precipitation � = 0 mm and the forecasted precipitation � > 0 mm (Fig.312

3a), let PAS = 0.6PAS|�→0, then,313

PAS = 0.6�− �
10

2

� > 0 (6)314

2. When the forecasted precipitation � = 0 mm and the observed precipitation 0 < � < 10 mm315

(Fig. 3b), let PAS = 0.6PAS|�→0, then,316

PAS = 0.6 sin �
2

∙ 10−�
10

, 0 < � < 10 (7)317

The coefficient was set to 0.6. According to Eqs. (6-7), when the situation is the observation318

u=0 mm and forecast x=0.1 mm or the observation u=0.1 mm and forecast x=0 mm, PAS=0.6,319

suggesting that the forecast effect has just reached the standard, like when the ACC reaches 0.6,320

which indicates that the model forecast effect is available (Zhao and Zhang, 2018).321

3. When the observed precipitation 0 < � < 10 mm and the forecasted precipitation � ≠ 0 (Fig.322

3c), then,323

PAS =
sin π

2
∙ x−u+10

10
, 0 < x < u, 0 < u < 10

e− x−u
10

2

, u ≤ x, 0 < u < 10
(8)324

4. When the observed precipitation � ≥ 10 mm (Fig. 3d), then325
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PAS =
sin π

2
∙ x

u
, 0 ≤ x < u, u ≥ 10

e− x−u
u

2

, u ≤ x, u ≥ 10
(9)326

To compare with the traditional scoring method, the new scoring method for precipitation327

forecasting adopts the “classification before verification, no classification during verification”328

approach. Scoring for precipitation processes over different accumulation periods is referenced but329

not limited to the commonly used precipitation classification approaches in practical operations, as330

shown in Tables 3-5.331

3 Ideal experimental validation of the new verification method332

3.1 Validation of forecast scoring results for general precipitation333

General precipitation refers to precipitation ranging from light rain to heavy rain, i.e., 24-hour334

accumulated precipitation within [0.1 mm, 50 mm). Figure 4 shows the schematic diagram of PAS335

scores for general precipitation. The forecasted amounts are compared under conditions when the336

24-hour accumulated precipitation is 10 mm, 25 mm and 45 mm and the PAS scores are 0.8, 0.7, 0.5337

and 0.3 (Table 6). When the observed precipitation is 10 mm, the forecasted amounts of 5.9 mm and338

14.7 mm both have a PAS score of 0.8, with differences from the perfect forecast value (10 mm) of339

4.1 mm and 4.7 mm, respectively; the forecasted amounts with a PAS score of 0.3 are 1.9 and 21.0340

mm, differing by 8.1 mm and 11.0 mm from the perfect forecast value (10 mm), respectively. When341

the observed precipitation is 25 mm, the forecasted amounts with a PAS score of 0.8 are 14.7 mm342

and 36.8 mm, with differences from the perfect forecast value (25 mm) of 10.3 mm and 11.8 mm,343

respectively; the forecasts with a PAS score of 0.5 are 8.3 mm and 45.8 mm, differing by 16.7 mm344

and 20.8 mm from the perfect forecast value (25 mm), respectively.345

For forecasts with the same observed precipitation and the same scores, the absolute errors of an346
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insufficient forecast and observation are smaller than those of an excessive forecast and observation,347

and the higher the scores are, the closer the absolute errors of the forecasts. When the observed348

precipitation is 50 mm, only the insufficient precipitation forecast is scored since a precipitation349

forecast exceeding 50 mm is not considered within the scope of general precipitation evaluation. The350

scoring experimental results align with expectations.351

3.2 Validation of forecast scoring results for precipitation at the level of torrential352

rain and above353

Figure 5 shows a schematic diagram of the PASs when the amount of precipitation exceeds the354

storm magnitude. The predicted precipitation is compared when the 24-hour cumulative observed355

precipitation is 25 mm, 50 mm, and 100 mm with PAS scores of 0.877, 0.7, 0.5, 0.3, and 0.1 (Table356

7). When the observed precipitation is 25 mm, only forecasts ≥ 50 mm are involved in the rating,357

with PASs of 0.3 and 0.1 for forecasts of 52.4 and 62.9 mm, respectively.358

When the PAS is 0.877 and the observed precipitation is 50 mm, the predicted values are 34.1359

and 68.1 mm, respectively; when the observed precipitation is 100 mm, the predicted values are 68.1360

and 136.2 mm, respectively. When the observed precipitation is 50 or 100 mm, the prediction is 68.1361

mm, with a score of 0.877. The absolute error is 18.1 mm for the excessive precipitation forecast and362

31.9 mm for the insufficient precipitation forecast. This result indicates that the scoring tolerance363

increases as the grade of observed precipitation increases and gradually expands through continuous364

changes, avoiding discontinuous increases caused by changes in magnitude.365

When the observed precipitation is 50 mm and the PAS is 0.3, the insufficient forecast is 9.7366

mm and the excessive forecast is 104.9 mm. When the observed precipitation is 100 mm, the367

predictions for a PAS of 0.3 are 19.4 and 209.7 mm, respectively. When the observed precipitation is368
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50 mm, the insufficient forecast with a PAS of 0.1 is 3.2 mm, and the excessive forecast is 125.9 mm.369

When the observed precipitation is 100 mm, the predictions with a PAS of 0.1 are 6.1 and 251.7 mm,370

respectively.371

Under constant observed precipitation conditions, for forecasts with the same score, the absolute372

error between the insufficient forecast and the observed precipitation is smaller than that between the373

excessive forecast and the observed precipitation. The higher the score is, the smaller the absolute374

error between the forecast and the observation. Moreover, the scoring tolerance increases with375

increasing observed precipitation. The scoring experimental results conform to expectations.376

4 Example-based comparative experiments for the new verification method377

Different examples are selected for the new precipitation verification method, and its378

multifaceted characteristics are demonstrated through comparative experiments. In Section 4.1, two379

typical cases are selected, the performance characteristics of the PAS and TS are compared, and the380

indicators of insufficient and excessive forecasts and spatial verification in the GCEM are analyzed.381

In Section 4.2, typical case of extreme precipitation event is selected, and the forecast results of382

different high-resolution models using the PAS, TS, and FSS methods are evaluated to verify the383

advantages and characteristics of the new precipitation verification method for extreme precipitation384

events.385

4.1 Comparative experiments of two typical processes386

4.1.1 Introduction of typical cases387

Comparative experiments of PAS and traditional TS are conducted for 12-hour accumulated388

precipitation for two typical cases. One case pertains to the precipitation weather process occurring389

during 00:00 to 12:00 UTC on 16 July 2019 (referred to as “Case 1”), which is dominated by a weak390
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weather system. The other case relates to the precipitation weather process occurring during 00:00 to391

12:00 UTC on 13 June 2020 (referred to as “Case 2”), which is predominantly associated with a392

strong weather system.393

Both precipitation cases are associated with precipitation during the Meiyu period. Case 1,394

which occurred during the Meiyu period of 2019 and was characterized by scattered precipitation395

under weak synoptic-scale forcing. The low-intensity shear line system is located south of the396

Yangtze River. There are two precipitation concentration areas, one at the intersection of Hunan397

Province and Jiangxi Province and the other covering the majority of Zhejiang Province. The398

precipitation process in Case 2 (12–13 June) was the first round of widespread rainstorms during the399

Meiyu period of 2020, including heavy precipitation affected by a low-level vortex shear system.400

The western section of the low-level vortex shear is relatively stable, while the eastern section401

slightly presses southwards. Southwesterly airflow developed and pushed northwards, and a strong402

wind speed belt persisted for a long time in the Jianghuai region. Moreover, the Jianghan–Jianghuai403

region maintained a high-energy and high-moisture state, resulting in persistent heavy rainfall.404

A subjective analysis of these two weather processes reveals that for the event on 16 July 2019405

(Fig. 6), the forecasted precipitation intensity and rainfall areas are relatively consistent with the406

observations. There are two distinct heavy rainfall areas in the eastern and southern parts of the407

Yangtze River, with particularly high accuracy in forecasting scattered rainstorms in Zhejiang408

Province located in the eastern section. In contrast, for the precipitation weather process on 13 June409

2020 (Fig. 7), it is evident that there is an overestimation of the precipitation forecast.410

4.1.2 Data and methods411

The observed precipitation data are provided by the China Meteorological Administration412
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multisource merged precipitation analysis system (CMPAS), developed by the National413

Meteorological Information Centre of China. The CMPAS integrates hourly precipitation data from414

nearly 40,000 automatic meteorological stations in China and provides radar-based quantitative415

precipitation estimation and satellite-retrieved precipitation products with a spatial resolution of416

0.05° × 0.05°. The predicted precipitation data with 3 km resolution are from the Precision Weather417

Analysis and Forecasting System (PWAFS) model, a regional refined forecast model, developed by418

the Jiangsu Provincial Meteorological Bureau. These data are output once per hour.419

The specific methods are as follows.420

(1) Determine the verification domain and verification points. The verification domain covers421

the Huang–Huai region of China (28°N-38°N, 111°E-123°E). The verification points are defined422

based on the grid points of the observed precipitation data, their spatial resolution is 0.05° × 0.05°,423

and the total number of verification grid points is 48,000 (200 × 240).424

(2) Prepare the observed and forecasted precipitation data and interpolate the forecasted425

precipitation data onto the observed grid points. The observed 12-hour accumulated precipitation426

data are derived by accumulating the hourly precipitation data from the CMPAS. The forecasted427

12-hour accumulated precipitation data are obtained by subtracting the zero-field data from the428

12-hour forecast field data. Since the grid points of the observed and forecasted precipitation data do429

not coincide and the grid spacing is small, the nearest neighbour method is used in this study to430

match the forecasted data to the grid points of the observed precipitation. Specifically, the forecasted431

data on the model grid nearest to the observed grid are used as the forecasted value at this observed432

grid.433

(3) Analyze the relationship between the forecasted precipitation and observed precipitation.434
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The scores for each verification grid point and the overall scores for each verification area are435

calculated based on the scoring formula for each index in the GCEM system. Then, the verification436

result file is generated in NetCDF format. On this basis, distribution maps for the scores of various437

indices in the GCEM system are produced. Additionally, the total TS and clear/rainy TS for different438

precipitation magnitudes within the verification area are calculated based on the TS and clear/rainy439

TS formulas.440

4.1.3 Analysis of the comparative experiment results441

For the precipitation process on 16 July 2019, the traditional TSs for different rainfall442

categories, such as clear/rainy and 12-hour accumulated precipitation ≥ 0.1 mm, ≥ 10 mm, ≥ 25 mm443

and ≥ 50 mm, are all lower than the traditional TSs for the weather process on 13 June 2020. For444

example, the TS is 0.381 for 12-hour accumulated precipitation ≥ 0.1 mm during 00:00 to 12:00445

UTC on 16 July 2019 (Table 8), while this score is 0.625 for that during 00:00 to 12:00 UTC on 13446

June 2020 (Table 9), which differs from the subjective judgement.447

For the precipitation process during 00:00 to 12:00 UTC on 16 July 2019, the PASs for448

clear/rainy and 12-hour accumulated precipitation ≥ 0.1 mm, ≥ 10 mm and ≥ 25 mm are all higher449

than those for the precipitation process during 00:00 to 12:00 UTC on 13 June 2020. For instance,450

the overall PAS is 0.617 for 12-hour accumulated precipitation ≥ 0.1 mm during 00:00 to 12:00 UTC451

on 16 July 2019. This PAS is higher than the PAS of 0.457 for the precipitation process during 00:00452

to 12:00 UTC on 13 June 2020, which aligns with subjective judgement.453

For the precipitation process during 00:00 to 12:00 UTC on 16 July 2019, the PAS for each454

magnitude is higher than the corresponding TS, addressing the issue of TSs being lower. For the455

precipitation process during 00:00 to 12:00 UTC on 13 June 2020, the PASs for clear/rainy and the456
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magnitudes of ≥ 0.1 mm and ≥ 10 mm are lower than the corresponding TSs, whereas the PASs for457

the magnitudes of ≥ 25 mm and ≥ 50 mm are higher than the corresponding TSs. This result indicates458

that the PAS is different from the magnitude-improved TS and the neighbourhood spatial verification459

method. Both the magnitude-improved TS and the neighbourhood spatial verification method460

increase the tolerance, leading to a monotonous increase in scores. This result also demonstrates that461

the PAS has good discrimination ability for extreme events. The PAS assigns scores based on the462

proximity of the forecast to the observation, making it more reliable for precipitation evaluation than463

the TS.464

4.1.4 Analysis of the indices in the new verification method465

Modern forecast verification is based mainly on spatial verification methods to compensate for466

the shortcomings of traditional methods. The literature review of Gilleland et al. (2009) defines four467

main categories of methods: neighbourhood, scale separation, features based, and field deformation468

(Ahijevych et al., 2009). These methods can analyze more comprehensively in specific individual469

cases, but seem to be less able to provide direct overall scoring results than traditional scoring470

methods in the statistics of long time series. GCEM is based on point-to-point scoring statistics,471

without a radius of influence, no isolation of features at each scale, and no definition of objects in the472

forecast and observation to analyze the similarity of the objects or to fit the forecast objects through473

deformation operations. However, the GCEM still has spatial attributes that can discriminate spatial474

forecast characteristics (e.g., insufficient or excessive forecasting scenarios) for different categories475

of precipitation, and the GCEM can carry out statistical verification of long time series and produce476

overall scoring results.477

Regarding the issue of analyzing the sources of errors from the verification results, objectively478
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tracing these errors back from a single score can only determine whether an error was “insufficient479

(missed alarm)” or “excessive (false alarm)”. However, the advantage of the GCEM lies in its ability480

to decompose the score for each verification point and examine the forecasting performance at each481

point, which is different from the dichotomous evaluation approach with only 0 and 1 outputs. These482

indices not only provide overall scores for individual cases similar to the TS but also offer483

two-dimensional score distribution plots, which can comprehensively reflect the performance and484

characteristics of precipitation forecasts.485

Figure 8 shows the distributions of the 12-hour accumulated precipitation PASC scores. In these486

two cases, due to the high accuracy of non-precipitation forecasts, the overall PASC scores are487

relatively high. However, for Case 1, the scores in Zhejiang are lower and scattered within a small488

area. In contrast, for Case 2, there is a large area occupying most of the Jianghuai region with low489

scores. Therefore, the PASC score of Case 1 (0.808) is higher than that of Case 2 (0.734).490

Figure 9 shows the PAS distributions of 12-hour accumulated precipitation with magnitudes of491

≥ 0.1 mm, ≥ 10 mm and ≥ 25 mm. The blank points in the figure are the points that are excluded in492

the scoring, following the scoring principle of “classification before verification, no classification493

during verification” described in Section 2. From the PAS distributions of different magnitudes, for494

Case 1, the high and low scores in the Zhejiang region are scattered among them. In contrast, for495

Case 2, the scoring areas in the Jianghuai region have a larger area of low scores than high scores.496

Therefore, Case 1 has higher PASs for the three categories (≥ 0.1 mm, ≥ 10 mm and ≥ 25 mm) than497

Case 2, and the distributions also allow for distinguishing the areas with better and worse forecasting498

performance.499

Figure 10 shows the IPI, EPI and IEPI distributions of 12-hour accumulated precipitation. In500
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terms of the IPI, for Case 1, the large-value IPI areas are located at the intersection of Anhui,501

Zhejiang and Jiangxi, in the Hunan-Jiangxi region, as well as in the southern part of Hebei. For Case502

2, the large-value IPI areas are situated along the Yangtze River in Anhui and Jiangxi, as well as at503

the intersection of Henan and Shanxi. The IPIs for Case 1 and Case 2 are -0.376 and -0.400,504

respectively, indicating that Case 2 shows a slightly higher level of insufficient forecasts (Table 10).505

In terms of the EPI, for Case 1, the large-value EPI areas are in Zhejiang and Jiangxi. In contrast, for506

Case 2, the large-value EPI areas are located in most of Hunan, Hubei, Anhui and Jiangsu, exhibiting507

a wide southwest‒northeast orientation with a large area and degree. The EPI for Case 2 is larger508

than that for Case 1. The IEPI is a comprehensive reflection of under- and over- precipitation, and its509

value reflects the degree of insufficient and excessive precipitation forecasts. From the distributions510

of insufficient and excessive precipitation forecasts in Case 1, it is evident that the insufficient and511

excessive forecasts are roughly equivalent, with an IEPI of 0.057. However, for Case 2, the512

distribution of the excessive forecasts is obviously larger than that of the insufficient forecasts, with513

an IEPI of 0.325. This result indicates that Case 2 has poorer forecasting performance, with larger514

excessive forecasts being an important factor.515

Consequently, analyzing the locations of insufficient and excessive precipitation forecasts from516

the figures in conjunction with the characteristics of the forecasting process can provide useful517

insights for improving forecasts.518

4.2 Comparison experiment of extreme rainfall events519

4.2.1 Introduction of the “21.7” extreme rainstorm event in Henan, China520

From 17 to 23 July 2021, a rare extreme rainstorm event occurred in Henan Province, China.521

The extremely heavy rainstorm started in the southeastern of Henan Province in the morning of 17522
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July, then extended to the northern region, and ended in the morning of 23 July, lasting more than 6523

days. The rainstorm occurred against the background of typhoon, Huang-Huai vortex, shear line and524

convergence line, and was caused by the coupling of the low-level jet and boundary layer jet,525

combined with the uplift of terrain (Wang et al., 2022; Su et al., 2021; Shi et al., 2021).526

The period from 00:00 UTC on 18 July to 00:00 UTC on 22 July 2021 is the concentrated527

period of heavy precipitation. To facilitate the study, the heavy rainstorm process is divided into three528

periods: (1) 00:00 UTC on 19 July - 00:00 UTC on 20 July 2021. (2) 00:00 UTC on 20 July - 00:00529

UTC on 21 July 2021. (3) 00:00 UTC on 21 July - 00:00 UTC on 22 July 2021. (Figs. 11a-c).530

4.2.2 Data and methods531

The observed precipitation data are provided by the CMPAS, with a spatial resolution of 0.05° ×532

0.05°, similar to the case in Section 4.1. The forecast data come from two models. One is the PWAFS533

model, which has a horizontal resolution of 3 km, similar to the case in Section 4.1. The other is the534

global-regional assessment and prediction system (GRAPES) model independently developed by the535

China Meteorological Administration, which has a horizontal resolution of 3 km.536

(1) Determine the verification domain and verification points. The verification domain covers537

the region of (30°N-40°N, 107.5°E-117.5°E). The verification points are defined based on the grid538

points of the observed precipitation data, their spatial resolution is 0.05° × 0.05°, and the total539

number of verification grid points is 40,401 (201 × 201).540

(2) Prepare the observed and forecasted precipitation data and interpolate the forecasted541

precipitation data onto the observed grid points. The 24-hour cumulative precipitation observation542

data of the three periods were obtained from the 24-hour precipitation data of the CMPAS. The543

forecast precipitation data in the three periods are the cumulative precipitation with a forecast time of544



26

12 to 36 hours. For the case described in Section 4.1, the nearest neighbour method is used to match545

the forecast data to the grid points of the observed precipitation.546

(3) Analyze the relationship between the forecasted precipitation and observed precipitation.547

PAS, TS and FSS were compared for the extreme rainstorm event in Henan, China.548

As mentioned earlier, the FSS belongs to the neighbourhood category of spatial verification549

methods and is an advanced evaluation method widely used in recent years. It can still yield valuable550

scores when the model prediction intensity is spatially biased and can also represent the scale551

information of forecasting skills. Therefore, in this case, the FSS scoring method was added for552

comparative experiments. For FSS verification, 15 km, 25 km, 45 km, 75 km and 120 km are used as553

the neighbourhood distances.554

The brief steps of FSS calculation are as follows: 1. Determine the domain scope. Set the555

neighbourhood point n, such as when n=3 (n is odd), the neighbourhood range is 15 km × 15 km, 2.556

Calculate the spatial density in the observed binary observation fields (Eq.10), 3. Calculate the557

spatial density in the binary forecast fields(Eq.11), 4. Calculate FSS(n) (Eq.12). (Please refer to the558

article of Roberts and Lean (2008) for details.)559
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where i ranges from 1 to Nx, Nx is the number of columns in the domain and j ranges from 1 to Ny,563

Ny is the number of rows. Io and IM are binary fields. O(n)(i, j) is the resultant field of observed564

fractions for a square of length n. M(n)(i, j) is the resultant field of model forecast fractions obtained.565

4.2.3 Analysis of the comparative experiment results566
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(1) Questionnaire survey of the effectiveness of model forecasting567

Fifty-two questionnaires were completed by 32 researchers and 20 forecasters. The names of the568

PWAFS and GRAPES models used for comparison were omitted and replaced with Model 1 and569

Model 2, respectively.570

The survey results show that 52 people believe that the forecasting effect of periods A and C of571

Model 2 (GRAPES) is good, 19 people believe that the forecasting effect of period B of Model 1572

(PWAFS) is good, and 33 people believe that the forecasting effect of period B of Model 2573

(GRAPES) is good. Fifty-two people think that Model 2 (GRAPES) is good in general.574

(2) Indices analysis and comparison between the two models575

The high-resolution regional models used for evaluation are (1) PWAFS 3km and (2) GRAPES576

3km, and the modelled precipitation is the accumulated precipitation of 24 hours in the forecast577

12-36 hours. The evaluation results are as follows (Tables 11-16):578

The results show that in this process, the evaluation results of different methods on the forecast579

skill of the PWAFS and GRAPES models are basically consistent and in line with the subjective580

evaluation statistical results. However, PAS scores have obvious advantages in the evaluation of581

rainstorms and above, especially extreme rainstorms. It can be seen from the six rating scales that the582

TS and FSS have almost no ability to evaluate precipitation above 250 mm, and the scores are583

generally at the unskilled end of 0 and no more than 0.2 (Chen et al., 2019). The PAS scores can also584

distinguish differences and provide different scores for situations where the forecasting effect is585

good.586

For example, when evaluating precipitation above 250 mm, the scores of TS for PWAFS in all587

three periods are 0.000, and the scores of GRAPES in the three periods are 0.000, 0.045 and 0.044.588
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The scores of FSS (45 km) for the PWAFS in all three periods are 0.000, and the scores of GRAPES589

in the three periods are 0.000, 0.218 and 0.137, respectively. This indicates that the TS and FSS (45590

km) have little ability to assess the heavy rainfall of this process.591

The PAS scores for PWAFS in the three periods are 0.229, 0.302 and 0.153, and those for592

GRAPES in the three periods are 0.338, 0.637 and 0.528, indicating that PAS has the ability to593

evaluate heavy rainstorms (above 250 mm) in this process. The evaluation results show that594

GRAPES is superior to PWAFS in predicting heavy rainfall.595

The evaluation capabilities of PAS, TS, and FSS for precipitation above 100 mm are further596

analyzed. The scores of TS for the PWAFS (GRAPES) are 0.035, 0.257, and 0.042 (0.178, 0.451,597

and 0.284) in the three periods, respectively. The scores of FSS (45 km) are 0.129, 0.550, and 0.103598

(0.432, 0.767, and 0.613) for the PWAFS (GRAPES) in the three periods, respectively. The599

evaluation effect of FSS (45 km) is better than that of TS. The evaluation feature of FSS is to600

examine the predictability scale of the model to reflect its predictive ability; however, due to the601

subjectivity of selecting neighbourhood scales, its score lacks comparability. While the PAS scores602

are 0.246, 0.492 and 0.253 (0.573, 0.581 and 0.492) for the PWAFS (GRAPES) in the three periods,603

it can be seen that the PAS also has a good ability to assess heavy rainstorms in this process.604

In small-magnitude precipitation (above light and moderate rain) verification, the FSS scores605

tend to approach 1 as the neighbourhood distance expands, making it difficult to compare forecast606

differences between models. The PAS scores can also distinguish the differences in forecast607

effectiveness for small-magnitude precipitation.608

In conclusion, different scoring methods were used to evaluate the skill of different models to609

predict extreme precipitation events in July 2021 in Henan, China, and the evaluation characteristics610
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of different scoring methods were indicated. The results show that the PAS scoring method has611

obvious advantages in the evaluation of extreme precipitation events and can also reflect the612

differences in the small magnitude precipitation forecasting effects of the models well compared to613

those of the TS and FSS methods.614

5 Discussion and conclusion615

By analyzing the advantages and disadvantages of the traditional TS, magnitude-improved TS616

and neighbourhood spatial verification methods, a new precipitation verification method, GCEM,617

was designed and constructed from the perspective of the proximity of the forecast to the observation.618

This method consists of the core indicator of the PAS, as well as multiple indicators such as IPI, EPI,619

IEPI and PASC.620

The PAS index consists of sine and e-exponential functions. Additionally, considering the621

characteristics of large fluctuations in the function curves when observed precipitation is less than 10622

mm, the formula has been smoothed for optimization. The PAS method adopts the principle of623

“classification before verification, no classification during verification”, which can serve as an624

alternative to skill scores such as the TS and ETS for verifying quantitative precipitation forecasts.625

This method is characterized by objective and transparent rules and easy generalization. Moreover,626

this approach possesses attributes of an ideal precipitation scoring method, such as fairness,627

boundedness and moderate symmetry. Therefore, it can be used to calculate the accuracy of628

numerical models or quantitative precipitation forecasts, as well as evaluate the comprehensive629

forecasting capabilities of various refined quantitative precipitation forecast products. The GCEM630

can also evaluate the performance of numerical forecasts on clear/rain forecasts, as well as631

insufficient precipitation forecasts, excessive precipitation forecasts and precipitation forecast biases.632
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In addition to the overall score, two-dimensional score distribution maps can be generated for each633

index in the GCEM system. These maps offer a comprehensive reflection of the precipitation634

forecasting performance of the numerical models and serve as a reference for improving model635

forecasts.636

This new verification method is validated based on the forecast scoring results for general637

precipitation and precipitation at the level of torrential rain and above, and the verification results638

align with expectations. Comparative experiments are also conducted on two typical processes using639

the new verification method. For Case 1, the subjective judgement is relatively good, but the TS is640

lower. Conversely, for Case 2, the subjective judgement is poorer, yet the TS is higher. Verification641

using the PAS reveals that forecasts with better subjective judgement receive higher scores, and642

forecasts with poorer subjective judgement receive lower scores. Therefore, PAS aligns with public643

expectations.644

The PAS, TS and FSS methods were used to compare and verify the “21.7” extreme645

precipitation event in Henan, China, to reflect the evaluation characteristics of different scoring646

methods. The results show that the PAS scoring method can not only reflect the difference in the647

small-magnitude precipitation forecast effect of models, but also has obvious advantages in the648

evaluation of extreme precipitation events.649

In addition, the National Meteorological Centre of China conducted long-term series large-scale650

sample testing on this method in 2023. Based on the ECMWF model’s 24-hour and 48-hour651

precipitation forecasts from March 2022 to February 2023, the assessment results show that652

compared to the TS, the PAS is less affected by the randomness of the sample, and the relative size653

relationship of different time forecast scores is more stable.654
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From the construction of the GCEM to ideal experiments and case analysis, it is evident that655

this evaluation system, especially the PAS method, is a suitable method for quantitative precipitation656

evaluation. However, the PAS still has subjective flaws, such as the determination of coefficients in657

the PAS expression [0.6 in Eqs. (6) and (7)] when the observed or forecasted precipitation is 0 mm.658

Once these coefficients are determined, they apply to all precipitation scoring, thus becoming an659

objective component in practice.660
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802

803

804

805

Table 1. Gradient decrease scoring table for station-by-station (time) rainstorm forecasts. The values are806

normalized, i.e., score = original data/100.807

Observation

(mm)

Forecast (mm)

25-49.9 50.0-99.9 100.0-249.9 ≥250

<25.0 -- 0 0 0

25.0-39.9 -- 0.4 0 0

40.0-49.9 -- 0.7 0.4 0

50.0-99.9 0.4 1 0.8 0.4

100.0-249.9 0 0.8 1 0.9

≥250.0 0 0.4 0.8 1

808
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Table 2. Examples of station-specific rainstorm precipitation scoring.809

Observation Forecast

A

Forecast

B

Correct, Reasonable

or False

Precipitation 50 mm 48 mm 98 mm --

Forecast effect -- Good Bad Correct

Classic TS -- 0 1 False

Improved TS -- 0.4 1 False

PAS -- 0.998 0.398 Reasonable

810

Table 3. Classification of PAS for short-term heavy rainfall.811

Scoring name Notes on the scoring application

PAS|ux10

PAS score for 1-hour observed precipitation u ≥ 10 mm or

forecasted precipitation x ≥ 10 mm

PAS|ux20

PAS score for 1-hour observed precipitation u ≥ 20 mm or

forecasted precipitation x ≥ 20 mm

812

813

814

815

816

817

818

819

820

821

822
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Table 4. Classification of PAS for 12-hour accumulated precipitation.823

Scoring name Notes on the scoring application

PASC 12-hour PAS clear and precipitation forecast accuracy score

PAS|ux0.1

12-hour PAS overall precipitation prediction verification score

PAS score for observed precipitation u ≥ 0.1 mm or forecasted

precipitation x ≥ 0.1 mm

PAS|ux10

PAS score for 12-hour observed precipitation u ≥ 10 mm or

forecasted precipitation x ≥ 10 mm

PAS|ux25

PAS score for 12-hour observed precipitation u ≥ 25 mm or

forecasted precipitation x ≥ 25 mm

PAS|ux50

PAS score for 12-hour observed precipitation u ≥ 50 mm or

forecasted precipitation x ≥ 50 mm

PAS|ux100

PAS score for 12-hour observed precipitation u ≥ 100 mm or

forecasted precipitation x ≥ 100 mm

824

Table 5. Classification of PAS for 24-hour accumulated precipitation.825

Scoring name Notes on the scoring application

PASC 24-hour PAS clear and precipitation forecast accuracy score

PAS|ux0.1

24-hour PAS overall precipitation prediction verification score

PAS score for observed precipitation u ≥ 0.1 mm or forecasted

precipitation x ≥ 0.1 mm

PAS|ux10

PAS score for 24-hour observed precipitation u ≥ 10 mm or

forecasted precipitation x ≥ 10 mm

PAS|ux25

PAS score for 24-hour observed precipitation u ≥ 25 mm or

forecasted precipitation x ≥ 25 mm

PAS|ux50

PAS score for 24-hour observed precipitation u ≥ 50 mm or

forecasted precipitation x ≥ 50 mm

PAS|ux100

PAS score for 24-hour observed precipitation u ≥ 100 mm or

forecasted precipitation x ≥ 100 mm
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Table 6. Examples of forecast verification scores for general precipitation (u = 25, 50 and 100 mm).826

PAS value

Observation u=10 mm Observation u=25 mm
Observation

u=45 mm

Observation

u=50 mm

(No comparison)

Insufficient

forecast x

Excessive

forecast x

Insufficient

forecast x

Excessive

forecast x

Insufficient

forecast x

Insufficient

forecast x

PAS=0.8 5.9 14.7 14.7 36.8 26.6 29.5

PAS=0.7 4.9 16.0 12.3 39.9 22.2 24.7

PAS=0.5 3.3 18.3 8.3 45.8 15.0 16.7

PAS=0.3 1.9 21.0 4.8 -- 8.7 9.7

827

Table 7. Same as Table 6, but for precipitation at the level of torrential rain and above (u = 25, 50 and 100 mm).828

PAS value

Observation u=25

mm
Observation u=50 mm Observation u=100 mm

Excessive

forecast x

Insufficient

forecast x

Excessive

forecast x

Insufficient

forecast x

Excessive

forecast x

PAS=0.877 -- 34.1 68.1 68.1 136.2

PAS=0.7 -- 24.7 79.9 49.4 159.7

PAS=0.5 -- 16.7 91.6 33.3 183.3

PAS=0.3 52.4 9.7 104.9 19.4 209.7

PAS=0.1 62.9 3.2 125.9 6.4 251.7

829

Table 8. PAS and TS of 12-hour accumulated precipitation from 00:00 to 12:00 UTC on 16 July 2019.830

Clear/rainy ≥0.1 mm ≥10 mm ≥25 mm ≥50 mm
PAS 0.808 0.617 0.256 0.200 0.104
TS 0.690 0.381 0.194 0.076 0.006

831

832

833
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Table 9. Same as Table 8, but from 00:00 to 12:00 UTC on 13 June 2020.834

Clear/rainy ≥0.1 mm ≥10 mm ≥25 mm ≥50 mm

PAS 0.734 0.457 0.228 0.185 0.116
TS 0.816 0.625 0.338 0.149 0.036

835

Table 10.Accuracy indices of insufficient precipitation forecast (IPI), excessive precipitation forecast (EPI) and836

insufficient and excessive precipitation forecast (IEPI) of 12-hour accumulated precipitation for two precipitation837

processes.838

IPI EPI IEPI

Case 1 -0.376 0.389 0.057
Case 2 -0.400 0.597 0.325

839

Table 11. PAS, TS and FSS scores of PWAFS 24-hour accumulated precipitation from 00:00 UTC on 19 July to840

00:00 UTC on 20 July 2021.841

clear/rainy ≥0.1 mm ≥10 mm ≥25 mm ≥50 mm ≥100 mm ≥250 mm
PAS 0.598 0.487 0.301 0.256 0.254 0.246 0.229
TS 0.823 0.774 0.377 0.229 0.115 0.035 0.000

FSS(15 km) --- 0.909 0.637 0.452 0.259 0.090 0.000
FSS(25 km) --- 0.923 0.680 0.486 0.281 0.102 0.000
FSS(45 km) --- 0.939 0.732 0.526 0.307 0.129 0.000
FSS(75 km) --- 0.953 0.778 0.559 0.335 0.180 0.003
FSS(120 km) --- 0.964 0.820 0.592 0.365 0.226 0.007

842

Table 12. PAS, TS and FSS scores of PWAFS 24-hour accumulated precipitation from 00:00 UTC on 20 July to843

00:00 UTC on 21 July 2021.844

clear/rainy ≥0.1 mm ≥10 mm ≥25 mm ≥50 mm ≥100 mm ≥250 mm
PAS 0.653 0.578 0.408 0.398 0.427 0.492 0.302
TS 0.789 0.743 0.500 0.429 0.434 0.257 0.000

FSS(15 km) --- 0.891 0.750 0.690 0.687 0.475 0.000
FSS(25 km) --- 0.908 0.789 0.731 0.725 0.507 0.000
FSS(45 km) --- 0.928 0.837 0.782 0.771 0.550 0.000
FSS(75 km) --- 0.945 0.878 0.831 0.815 0.598 0.003
FSS(120 km) --- 0.958 0.912 0.877 0.858 0.654 0.042

845

846
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Table 13. PAS, TS and FSS scores of PWAFS 24-hour accumulated precipitation from 00:00 UTC on 21 July to847

00:00 UTC on 22 July 2021.848

clear/rainy ≥0.1 mm ≥10 mm ≥25 mm ≥50 mm ≥100 mm ≥250 mm

PAS 0.656 0.533 0.346 0.322 0.296 0.253 0.153
TS 0.802 0.731 0.469 0.318 0.169 0.042 0.000

FSS(15 km) --- 0.887 0.714 0.563 0.352 0.093 0.000
FSS(25 km) --- 0.905 0.747 0.599 0.381 0.096 0.000
FSS(45 km) --- 0.924 0.784 0.644 0.414 0.103 0.000
FSS(75 km) --- 0.940 0.813 0.685 0.443 0.111 0.000
FSS(120 km) --- 0.952 0.840 0.723 0.474 0.120 0.000

849

Table 14. PAS, TS and FSS scores of GRAPES 24-hour accumulated precipitation from 00:00 UTC on 19 July to850

00:00 UTC on 20 July 2021.851

clear/rainy ≥0.1 mm ≥10 mm ≥25 mm ≥50 mm ≥100 mm ≥250 mm

PAS 0.665 0.549 0.396 0.414 0.494 0.573 0.338
TS 0.804 0.735 0.422 0.358 0.312 0.178 0.000

FSS(15 km) --- 0.884 0.689 0.629 0.576 0.365 0.000
FSS(25 km) --- 0.901 0.742 0.688 0.633 0.400 0.000
FSS(45 km) --- 0.922 0.809 0.759 0.704 0.432 0.000
FSS(75 km) --- 0.939 0.865 0.817 0.758 0.457 0.000
FSS(120 km) --- 0.950 0.907 0.862 0.786 0.494 0.000

852

Table 15. PAS, TS and FSS scores of GRAPES 24-hour accumulated precipitation from 00:00 UTC on 20 July to853

00:00 UTC on 21 July 2021.854

clear/rainy ≥0.1 mm ≥10 mm ≥25 mm ≥50 mm ≥100 mm ≥250 mm

PAS 0.669 0.580 0.438 0.451 0.504 0.581 0.637
TS 0.801 0.746 0.544 0.438 0.431 0.451 0.045

FSS(15 km) --- 0.891 0.774 0.693 0.683 0.687 0.127
FSS(25 km) --- 0.909 0.808 0.737 0.727 0.721 0.167
FSS(45 km) --- 0.930 0.850 0.793 0.787 0.767 0.218
FSS(75 km) --- 0.947 0.884 0.843 0.847 0.818 0.233
FSS(120 km) --- 0.960 0.913 0.885 0.897 0.864 0.238

855

856

857
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Table 16. PAS, TS and FSS scores of GRAPES 24-hour accumulated precipitation from 00:00 UTC on 21 July to858

00:00 UTC on 22 July 2021.859

clear/rainy ≥0.1 mm ≥10 mm ≥25 mm ≥50 mm ≥100 mm ≥250 mm

PAS 0.694 0.566 0.407 0.425 0.462 0.492 0.528
TS 0.796 0.710 0.559 0.501 0.410 0.284 0.044

FSS(15 km) --- 0.875 0.799 0.752 0.667 0.508 0.092
FSS(25 km) --- 0.897 0.842 0.793 0.713 0.548 0.102
FSS(45 km) --- 0.924 0.889 0.842 0.772 0.613 0.137
FSS(75 km) --- 0.945 0.925 0.883 0.823 0.690 0.192
FSS(120 km) --- 0.960 0.949 0.911 0.858 0.757 0.257

860

861

862

863
Figure 1. Schematic diagram of the precipitation forecast accuracy score (PAS) curves when the observed864

precipitation amounts are 10, 25, 50 and 100 mm.865

866

867

868
Figure 2. PAS curves corresponding to different forecasted precipitation amounts (� = 10, 25, 50 and 100 mm).869

870
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871

Figure 3. PAS curves of precipitation forecasts when (a) the observed precipitation u = 0 mm and the forecasted872

precipitation x > 0 mm, (b) the observed precipitation 0 < u < 10 mm and the forecasted precipitation x = 0 mm873

(the horizontal coordinate denotes the observed precipitation u), (c) the observed precipitation 0 < u < 10 mm and874

the forecasted precipitation x > 0 mm, and (d) the observed precipitation u ≥ 10 mm.875

876

877

878

Figure 4. PAS curves of the forecasts under general precipitation conditions (u = 10, 25 and 45 mm). The solid line879

part of the curve in the figure is involved in the comparison, the dashed line part is not involved in the comparison,880

10 mm observed precipitation is represented by the orange line, 25 mm observed precipitation is represented by the881
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blue line, 45 mm observed precipitation is represented by the red line, and 50 mm observed precipitation is882

represented by the green line.883

884

885

Figure 5. Same as Fig. 4, but for precipitation at the level of torrential rain and above (� = 25, 50 and 100 mm).886

The solid line part of the curve in the figure is involved in the comparison, the dashed line part is not involved in887

the comparison, 10 mm observed precipitation is represented by the orange line, 25 mm observed precipitation is888

represented by the blue line, 50 mm observed precipitation is represented by the green line, and 100 mm observed889

precipitation is represented by the red line.890

891

892

Figure 6. Accumulated precipitation (a) observed and (b) forecasted from 00:00 to 12:00 UTC on 16 July 2019.893
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894

895

Figure 7. Accumulated precipitation (a) observed and (b) forecasted from 00:00 to 12:00 UTC on 13 June 2020.896

897

898

Figure 8. Distributions of the PAS clear/rainy forecast accuracy score (PASC) of 12-hour accumulated precipitation899

for (a) Case 1 from 00:00 to 12:00 UTC on 16 July 2019 and (b) Case 2 from 00:00 to 12:00 UTC on 13 June 2020.900

901
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902

Figure 9. Distributions of PAS of 12-hour accumulated precipitation, ≥ 0.1 mm for (a) Case 1 from 00:00 to 12:00903

UTC on 16 July 2019 and (b) Case 2 from 00:00 to 12:00 UTC on 13 June 2020, ≥10 mm for (c) Case 1 and (d)904

Case 2, and ≥ 25 mm for (e) Case 1 and (f) Case 2.905

906



47

907
Figure 10. Distributions of IPI of 12-hour accumulated precipitation for (a) Case 1 from 00:00 to 12:00UTC on908

16 July 2019, and (b) Case 2 from 00:00 to 12:00 UTC on 13 June 2020, EPI for (c) Case 1 and (d) Case 2, and909

IEPI for (e) Case 1 and (f) Case 2.910
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911

912

Figure 11. Distribution of observed and forecasted 24-hour accumulated precipitation. (a) Observation, (d) PWAFS,913

(g) GRAPES from 00:00 UTC on 19 July to 00:00 UTC on 20 July 2021; (b) Observation, (e) PWAFS, (h)914

GRAPES from 00:00 UTC on 20 July to 00:00 UTC on 21 July 2021; (c) Observation, (f) PWAFS, (i) GRAPES915

from 00:00 UTC on 21 July to 00:00 UTC on 22 July 2021.916

917
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