

Distinctive aerosol-cloud-precipitation interactions in marine boundary layer clouds from the ACE-ENA and SOCrates aircraft field campaigns

4 Xiaojian Zheng^{1,a}, Xiquan Dong¹, Baike Xi¹, Timothy Logan² and Yuan Wang³

⁷ ²Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA

⁸ ³Department of Earth System Sciences, Stanford University, Stanford, CA, USA

⁹ ^aNow at: Environmental Science Division, Argonne National Laboratory, Lemont, IL, USA

10

11 Correspondence: Xiquan Dong (xdong@arizona.edu)

12

Abstract. The aerosol-cloud-precipitation interactions within the cloud-topped Marine Boundary Layer (MBL) are being examined using aircraft in-situ measurements from Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) and Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES) field campaigns. SOCRATES clouds have a larger number and smaller cloud droplets (148.3 cm^{-3} and $8.0 \mu\text{m}$) compared to ACE-ENA summertime (89.4 cm^{-3} and $9.0 \mu\text{m}$) and wintertime clouds (70.6 cm^{-3} and $9.8 \mu\text{m}$). The ACE-ENA clouds, especially in wintertime, exhibit stronger drizzle formation and growth due to enhanced collision-coalescence, attributed to the relatively cleaner environment and deeper cloud layer. Furthermore, the Aerosol-Cloud Interaction (ACI) indices from the two aircraft field campaigns suggest distinct sensitivities, indicating the cloud microphysical responses to aerosols reside in different regimes. Aerosols during ACE-ENA winter are more likely to be activated into cloud droplets under sufficient water availability and strong turbulence, given the aerosol-limited regime. The enriched aerosol loading during ACE-ENA summer and SOCRATES generally leads to smaller cloud droplets competing for available water vapor and exhibiting

26 a stronger ACI in the water-vapor-limit regime. Notably, the precipitation susceptibilities are more
27 pronounced during the ACE-ENA than during the SOCRATES campaigns. The in-cloud drizzle
28 evolutions significantly alter sub-cloud cloud condensation nuclei (CCN) budgets through the
29 coalescence-scavenging effect, and in turn, impact the ACI assessments. The results of this study can
30 enhance the understanding and aid in future model simulation and assessment of the aerosol-cloud
31 interaction.

32

33

34 **1. Introduction**

35 Marine boundary layer (MBL) clouds substantially impact the Earth's climate system (Dong and
36 Minnis, 2022). Sustained by large-scale subsidence and cloud-top longwave radiative cooling, MBL
37 clouds, typically located beneath the temperature inversion at the MBL top, persistently reflect the
38 incoming solar radiation and modulate the radiative balance (Lilly, 1968; Albrecht et al., 1995; Wood et
39 al., 2015; Dong et al., 2023). The climatic significance of MBL cloud radiative effects, which remains
40 largely uncertain (IPCC, 2022), is closely linked to cloud microphysical properties that are substantially
41 influenced by surrounding aerosol conditions (Chen et al., 2014; Feingold and McComiskey, 2016).
42 Observational evidence demonstrates that cloud microphysical responses to aerosols, defined as the
43 aerosol-cloud interaction (ACI), can be typically viewed as decreased cloud droplet effective radii (r_c)
44 and increased number concentrations (N_c) with more aerosol intrusion under conditions of comparable
45 cloud water content (Feingold and McComiskey, 2016). The ACIs have been extensively investigated
46 by different observational platforms, such as aircraft (Hill et al., 2009; Diamond et al., 2018; Gupta et
47 al., 2022), ground-based and satellite observations (Painemal et al., 2020; Zhang et al., 2022; Zheng et
48 al., 2022a), and model simulations (Wang et al., 2020; Christensen et al., 2023) over different maritime
49 regions like the southeast Pacific (Painemal and Zuidema, 2011), northeast Pacific (Braun et al., 2018),
50 southeast Atlantic (Gupta et al., 2022), and eastern North Atlantic (Zheng et al., 2022a).

51 Furthermore, more and smaller cloud droplets not only extend cloud longevity and spatial
52 coverage but also modulate the precipitation processes, reflecting the cloud adjustments to aerosol
53 disturbances (Albrecht, 1989; Bellouin et al., 2020). Precipitation, particularly in the form of drizzle, is
54 common in MBL clouds (Wood et al., 2015; Wu et al., 2020), and the turbulence forced by stratocumulus
55 cloud-top radiative cooling can increase the cloud liquid water path and contribute to drizzle production
56 (Ghate et al., 2019, 2021). The drizzle formation and growth processes are deeply entwined with the
57 MBL aerosols and dynamics. Aerosols have been found to suppress the precipitation frequency and
58 strength by constantly buffering cloud droplet number concentrations via activation, hence increasing
59 cloud precipitation susceptibility (Feingold and Seibert, 2009; Lu et al., 2009; Sorooshian et al., 2009;
60 Duong et al., 2011). Furthermore, the assessments of precipitation susceptibility are examined to be under
61 the influences of methodology (Terai et al., 2012), cloud morphology (Sorooshian et al., 2009; Jung et
62 al., 2016), ambient aerosol concentrations (Duong et al., 2011; Jung et al., 2016; Gupta et al., 2022), and
63 cloud thickness (Terai et al., 2012; Jung et al., 2016; Gupta et al., 2022). The in-cloud turbulence and
64 wind shear can effectively enhance collision-coalescence efficiency, stimulating drizzle formation and
65 growth, and consequently leading to enhanced precipitation (Chen et al., 2011; Wu et al., 2017). Cloud-
66 top entrainment of dryer and warmer air can potentially deplete small cloud droplets and shrink large
67 droplets via evaporation, thereby impacting cloud top microphysical processes depending on the
68 homogeneous or inhomogeneous mixing regimes (Lehmann et al., 2009; Jia et al., 2019).

69 Conversely, precipitation has been shown to exert a substantial influence on the MBL aerosol and
70 cloud condensation nuclei (CCN) budget through the coalescence-scavenging effect. The coalescence-
71 scavenging refers to the process in which cloud or drizzle droplets, containing aerosol particles inside,
72 merge with each other. Upon the collision-coalescence of cloud droplets, the dissolved aerosol masses
73 within the cloud droplets also collide and merge into a larger aerosol core, leading to larger aerosol
74 particles upon droplet evaporation. The sub-cloud aerosols are then replenished into the cloud layer,
75 experiencing growth within the cloud through cloud and drizzle droplet collision-coalescence and

76 subsequently falling and evaporating outside the cloud again. Eventually, the residual aerosols
77 undergoing this cloud-processing cycle will gradually decrease in number concentration and increase in
78 size (Flossmann et al., 1985; Feingold et al., 1996; Hudson and Noble, 2020; Hoffmann and Feingold,
79 2023). In addition, the drizzle drops, once falling out of the cloud base, can result in net reductions in
80 sub-cloud aerosols and CCN budgets also via the precipitation scavenging processes (Wood, 2006;
81 Zheng et al., 2022b). Quantitative estimates of these effects remain ambiguous and inconclusive, which
82 are subject to multiple factors such as aerosol physicochemical characteristics, cloud morphology, and
83 MBL dynamics and thermodynamics conditions (Sorooshian et al., 2009; Duong et al., 2011; Diamond
84 et al., 2018; Brunke et al., 2022). Thus, more studies on the aforementioned processes regarding MBL
85 aerosols and clouds over different maritime regions are warranted to pursue an in-depth understanding
86 of aerosol-cloud-precipitation interactions (ACPIs).

87 The Eastern North Atlantic (ENA) stands as a desirable region for exploring MBL clouds in the
88 mid-latitude, with Graciosa Island in the Azores (39.09°N, 28.03°W) representing a focal point for such
89 studies. Located between the mid-latitude and subtropical climate zones, Graciosa is subject to the
90 meteorological influence of both the Icelandic Low and the Azores High, and the influence of aerosols
91 ranging from pristine marine air masses to those heavily influenced by continental emissions from North
92 America and Northern Europe (Logan et al., 2014; Wood et al., 2015; Wang et al., 2020). Addressing
93 the need for sustained research into the MBL clouds, the recent Aerosol and Cloud Experiments in the
94 Eastern North Atlantic (ACE-ENA) aircraft campaign (J. Wang et al., 2022) were conducted in the
95 summer (June and July) 2017 (ACE-ENA Sum) and winter (January and February) 2018 (ACE-ENA
96 Win). During these two intensive operation periods (IOPs) of ACE-ENA, the research aircraft accrued
97 abundant in-situ measurements of aerosols, clouds, and drizzle properties, providing invaluable resources
98 for studying the ACI and ACPI processes. During the summer, the Azores is located at the eastern part
99 of the high-pressure system, while during the winter, the center of the Azores high shifts to the eastern
100 Atlantic and is primarily located directly over the Azores (Mechem et al., 2018; J. Wang et al., 2022).

101 Furthermore, both summer and winter IOPs of ACE-ENA featured anomalously strong high-pressure
102 systems, compared to the 20-year climatology, as shown in Figure S1. This meteorological pattern is
103 favorable to the prevailing and persistent stratocumulus clouds observed during the ACE-ENA,
104 especially for the winter IOP, where the enhanced large-scale subsidence would lead to stronger and
105 sharper temperature inversion above the stratocumulus-topped MBL (Rémillard and Tselioudis, 2015;
106 Jensen et al., 2021; Marcovecchio et al., 2022). The ACE-ENA summer IOP is characterized by
107 anomalously low MBL heights and substantial MBL decoupling (Miller et al., 2021; J. Wang et al., 2022).
108 The winter IOP was under the frequent impacts of the mid-latitude systems and prevalently featured
109 precipitation-generated cold pools, where evaporative cooling alters the thermodynamical structure of
110 the MBL, sustains and enhances turbulence mixing, hence contributes to dynamical perturbations that
111 can influence the behavior of the MBL (Terai and Wood, 2013; Zuidema et al., 2017; Jenson et al., 2021;
112 J. Wang et al., 2022; Smalley et al., 2024). In recent years, many observational studies based on ACE-
113 ENA data have focused on the seasonal contrasts of the aerosol distributions and sources (Y. Wang et
114 al., 2021b; Zawadowicz et al., 2021), the cloud and drizzle microphysics vertical distributions (Wu et al.,
115 2020a; Zheng et al., 2022b), as well as the impacts of MBL conditions on the cloud structure and
116 morphology (Jenson et al., 2021). However, they seldom analyze the comprehensive interactions between
117 aerosol, clouds and precipitation.

118 Over the Southern Ocean (SO), the Southern Ocean Clouds Radiation Aerosol Transport
119 Experimental Study (SOCRATES) field campaign (McFarquhar et al., 2021) was conducted during the
120 austral summer (January and February 2018), which marks another valuable piece of the MBL cloud
121 research. The SO, being one of the cloudiest regions globally, is predominantly influenced by naturally
122 produced aerosols originating from oceanic sources due to its remoteness, where the anthropogenic and
123 biomass burning aerosols exert minimal influence over the region (McCoy et al., 2021; Sanchez et al.,
124 2021; Twohy et al., 2021; Zhang et al., 2023). The aerosol budget in this region is primarily shaped by
125 biological aerosols, which nucleate from the oxidation products of dimethyl sulfide (DMS) emissions, as

126 well as by sea spray aerosols. Hence, the SO provides an unparalleled natural laboratory for discerning
127 the influence of these natural aerosol emissions on the MBL clouds under a pre-industrial natural
128 environment. The summertime SO region, particularly near the SOCRATES focus area, is characterized
129 by more frequently closed-cell mesoscale cellular convection structures (Danker et al., 2022; Lang et al.,
130 2022). Furthermore, the MBL clouds over the SO predominantly consist of supercooled liquid water
131 droplets, which coexist with mixed- and ice-phase processes (Y. Wang et al., 2021a; Xi et al., 2022),
132 while the precipitation phases are examined to be primarily dominated by liquid hydrometeors (Tansey
133 et al., 2022; Kang et al., 2024). The in-situ measurements collected from SOCRATES have cultivated
134 numerous studies on aerosols, clouds, and precipitation over the SO using both in-situ measurements and
135 model simulations (McCoy et al., 2020; Altas et al., 2021; D'Alessandro et al., 2021), and provides an
136 opportunity to study the liquid cloud processes under a colder nature. As shown in Figure S1c,
137 compositely speaking, the SOCRATES cloud cases used in this study are located ahead of the
138 anomalously strong thermal ridge and behind the thermal trough, providing a set up favorable to the
139 closed cellular MBL cloud structures (McCoy et al., 2017; Lang et al., 2022). The region of selected
140 SOCRATES cloud cases crosses a larger latitudinal zone and is under more consistent influence of mid-
141 latitude cyclone systems than the ACE-ENA during the summer IOP, the cloud sampling periods used
142 in this study majority reside in the closed-cell MBL stratocumulus decks.

143 The cloud cases selected from the ACE-ENA and SOCRATES share similar cloud morphology
144 (stratocumulus) while experiencing different aerosol sources and meteorological conditions. Using a
145 synergistic approach to compare data from these different field campaigns can provide valuable insights
146 to the community regarding the dominant physical processes of the interactions between aerosols, clouds,
147 and precipitation under the influence of different MBL dynamic and thermodynamic conditions. This
148 study targets the similarities and differences in the MBL aerosol, cloud, and drizzle properties, their
149 distribution and evolution, and more appealingly, the ACIs and ACPIs between the two campaigns. The
150 data and methods used in this study are introduced in section 2. The aerosol and CCN properties in the

151 above- and sub-cloud regimes, as well as the vertical distributions of MBL cloud and drizzle properties,
152 are examined in section 3. The ACI, precipitation susceptibility and drizzle impacts on the sub-cloud
153 aerosols and CCN (ACPI) are discussed in section 4. Finally, the findings are summarized, and the
154 importance of this study is discussed in section 5.

155

156 **2. Data and methods**

157 **2.1 Cloud and drizzle properties**

158 The in-situ measurements of MBL cloud properties are temporally synchronized to 1 Hz
159 resolution, corresponding to approximately 100 m (5 m) of horizontal (vertical) sampling. The sampling
160 locations of the selected cases are indicated by the white dots in Figure S1. The Fast Cloud Droplet Probe
161 (FCDP) onboard the aircraft during ACE-ENA can detect droplets with diameter (D_p) ranging from 1.5
162 μm to 50 μm , with the size bins of the probe between 1 and 3 μm (Glienke and Mei, 2020). While the
163 SOCRATES used a similar CDP to measure droplets from 2 μm to 50 μm at a 2 μm probe size bin width.
164 Both ACE-ENA and SOCRATES leverage the Two-Dimensional Stereo Particle Imaging Probe (2DS)
165 to discern droplets with diameters from 5 μm to 1280 μm (Lawson et al., 2006; Glienke and Mei, 2019).
166 The 2DS in-situ measurements will be used as additional screening to eliminate the ice particles with
167 diameters larger than 200 μm . Moreover, the University of Washington Ice–Liquid Discriminator
168 product, which is a Machine-learning-based single-particle phase classification of the 2DS images (Atlas
169 et al., 2021), is used to identify small ice crystals when available. Through these three datasets, we can
170 tease out the ice-dominated period to the utmost extent and focus on the liquid cloud processes and ACI
171 during the SOCRATES (Wang et al., 2021).

172 Although these in-situ measurements can provide “ground-truth” datasets, their uncertainties
173 must be properly analyzed and data quality must be controlled before being applied to scientific studies.
174 The uncertainties of FCDP in sizing and concentration are approximately 30% and 20%, respectively
175 (Baumgardner et al., 2017). Considering the significant uncertainty in the concentration of smaller

176 particles from a photodiode probe such as 2DS (Baumgardner & Korolev, 1997; Wang et al., 2021), a
 177 diameter of 40 μm is used as the demarcation line between cloud droplets and drizzle drops (Wood et al.,
 178 2005). Then droplet number concentrations in the overlapping size bin between FCDP and 2DS are
 179 redistributed assuming a gamma distribution, thereby a complete size spectrum of cloud and drizzle can
 180 be merged from FCDP and 2DS measurements. Hence, the cloud and drizzle microphysical properties
 181 can be calculated.

182 The cloud droplet number concentration (N_c) is given by:

$$183 \quad N_c = \int_2^{40} n(D_p) dD_p, \quad (1)$$

184 The cloud droplet effective radius (r_c , Hansen and Travis, 1974) is given by:

$$185 \quad r_c = \frac{\int_2^{40} r_p^3 n(D_p) dD_p}{\int_2^{40} r_p^2 n(D_p) dD_p}, \quad (2)$$

186 The cloud liquid water content (LWC_c) can be calculated by:

$$187 \quad LWC_c = \frac{4}{3} \pi \rho_w \int_2^{40} D^3 n(D_p) dD_p, \quad (3)$$

188 where ρ_w is water density.

189 Similarly, the drizzle drop number concentration (N_d) and liquid water content (LWC_d) can be calculated
 190 using the size distribution from 40 μm to 1280 μm . Particularly, the drizzle mean mass diameter (D_{mmd})
 191 is given by:

$$192 \quad D_{mmd} = \left(\frac{\int_{40}^{1280} D_p^3 n(D_p) dD_p}{\int_{40}^{1280} n(D_p) dD_p} \right)^{1/3}, \quad (4)$$

193 This quantity is chosen because the D_{mmd} denotes the diameter of average mass (the third-moment
 194 average) of the drizzle size distribution, which provides the link between the number concentration and
 195 the mass concentration of drizzle droplets in a sample (Hinds, 1999).

196 Adapting the method in Zheng et al. (2022b), the cloud base precipitation rate (R_{CB}) is given by:

$$197 \quad R_{CB}(\text{mm/hr}) = 6\pi * 10^{-4} \int_{40\mu\text{m}}^{1280\mu\text{m}} D_{p,mm}^3 n(D_{p,mm}) U_\infty(D_{p,mm}) dD_{p,mm}, \quad (5)$$

198 in order to match the unit conversion, the $D_{p,mm}$ is diameter in unit of mm, $n(D_{p,mm})$ is drizzle number
199 concentration in every size bin with a unit of $\# \text{ m}^{-3} \text{ mm}^{-1}$, and $U_\infty(D_{p,mm})$ is terminal velocity in given
200 size bin, which is calculated from the full Reynolds number theory as in Pruppacher and Klett (2010).

201 The combined threshold of $N_c > 5 \text{ cm}^{-3}$ and $LWC_c > 0.01 \text{ g m}^{-3}$ is used for determining the valid
202 cloud samples and cloud boundaries (Wood, 2005; Zheng et al., 2022b). The complete cloud vertical
203 profiles from sub-cloud to the above-cloud are selected during the ACE-ENA and SOCRATES IOPs, in
204 which the flight strategy includes sawtooth and spiral cloud transects and ramping cloud sampling. The
205 precipitation conditions are determined by whether samples of $N_d > 0.001 \text{ cm}^{-3}$ exists below the cloud
206 base height. In total, the selected numbers of cloud (precipitating cloud) profiles are 18 (13), 26 (13), and
207 28 (24) for ACE-ENA summer and winter IOPs along with SOCRATES, respectively. The detailed
208 selected cloud profiles, with their cloud base heights (z_t), cloud top heights (z_b) and cloud thicknesses
209 ($H_c = z_t - z_b$) are listed in Table S1, along with the cloud profile macrophysics.

210 Furthermore, the assessments of ACI are significantly impacted by the MBL dynamic and
211 thermodynamic conditions. Jones et al. (2011) suggested that the MBL would be in a well-mixed and
212 coupled condition when the difference in liquid water potential temperature (θ_L) and total water mixing
213 ratio (q_t) between the bottom of MBL and the inversion layer are less than 0.5 K and 0.5 g/kg,
214 respectively. The cases selected for this study feature both coupled and decoupled MBL conditions,
215 particularly during ACE-ENA summer, which is characterized by anomalously low MBL heights and
216 substantial MBL decoupling. Previous studies found that, under the decoupled conditions, the aerosols,
217 CCN, and moisture sources near the surface are disconnected from the cloud layer aloft, hence exerting
218 much less effective impact on the cloud microphysics (Zheng et al., 2022a; Christensen et al., 2023; Su
219 et al., 2024). Therefore, we adapt and modify the metric in Jones et al. (2011) to calculate the sub-cloud
220 coupled layer, in order to quantify the degree to which aerosols and CCN measured sub-cloud are in a
221 well-mixed state and can represent the actual interaction (or contact) with the cloud layer. In this study,

222 the q_t and θ_L at the cloud base are calculated, and then their vertical variations are examined starting
223 from the altitude of cloud base (z_b) and looking downward. As such, the coupled point height (z_{cp}) is
224 defined as the altitude where the downward vertical changes in q_t and θ_L exceed 0.5 K and 0.5 g/kg,
225 respectively. Hence, the coupled layer thickness ($H_{cp} = z_t - z_{cp}$) is defined as the layer between the
226 cloud top height (z_t) and coupled point height (z_{cp}), hence the selection of the aerosols and CCN within
227 the below-cloud part of the coupled layer can be viewed as in contact with the cloud. An example of the
228 coupled layer identification is shown in Figure S2. Therefore, the degree of MBL decoupling (D_{cp}) can
229 be quantified as the ratio of the coupled point height (z_{cp}) to the cloud base height (z_b), where $D_{cp} =$
230 z_{cp}/z_b . As shown in Table S1, the ACE-ENA summer feature with highest degree of decoupling
231 (averaged $D_{cp} = 0.504$), compared to the ACE-ENA winter ($D_{cp} = 0.370$) and SOCRATES ($D_{cp} = 0.277$).
232

233 2.2 Aerosol properties

234 The total aerosol number concentrations (N_a) from ACE-ENA and SOCRATES are measured by
235 the airborne Condensation Particle Counter (CPC) models 3772 and 3760A, which counts the number of
236 aerosols with diameter (D_p) larger than 3 nm and 11 nm, respectively (Kuang and Mei, 2019;
237 SOCRATES Low Rate Data, 2022). Additionally, the Passive Cavity Aerosol Spectrometer (PCASP)
238 onboard the ACE-ENA aircraft is capable of sizing the aerosol with D_p ranging from 0.1 μm to 3.2 μm
239 (Goldberger, 2020). While the ultra-high sensitivity aerosol spectrometer (UHSAS) measures the size-
240 resolved aerosol distribution from 0.06 μm to 1.0 μm during SOCRATES (Uin, 2016). Therefore, the
241 number concentrations of accumulation mode aerosols (N_{ACC} , 0.1 μm -1 μm) can be discerned from the
242 PCASP and UHSAS aerosol size distributions. The Aitken mode aerosols (N_{Ait} , $< 0.1 \mu\text{m}$) from the
243 ACE-ENA is given by the fast integrated mobility spectrometer (FIMS), which can size the aerosol down
244 to 9 nm (Olfert et al., 2008), while the N_{Ait} from SOCRATES is limited to 0.06 μm – 0.1 μm due to the
245 limitation of UHSAS. As for the CCN measurements, the ACE-ENA utilized the Dual-Column CCN

246 Counter at two constant supersaturation levels of 0.15% and 0.35% (Uin and Mei, 2019), while the CCN
247 number concentration (N_{CCN}) during SOCRATES was measured under various supersaturation levels
248 from 0.06% to 0.87% using a scanning CCN counter (Roberts and Nenes, 2005). In this study, N_{CCN} at
249 0.35% supersaturation ($N_{CCN0.35\%}$) is used to ensure a direct comparison between ACE-ENA and
250 SOCRATES. The aerosol measurements are in the temporal resolution of 1Hz. Note that the aerosol and
251 CCN data are quality-controlled by removing the data point where the $N_c + N_d$ greater than 5 cm^{-3} or N_d
252 greater than 0.01 cm^{-3} , to filter out the contamination of the cloud droplets, and drizzle water splashing.

253 The sub-cloud aerosols and CCN are selected within the below cloud base part of the coupled
254 layer, which is described in the last section, in order to better assess the aerosol-cloud interactions. The
255 above-cloud aerosols and CCN are selected between the cloud top and 200 m above. Note that the
256 selection criteria of 200 m above the cloud top would inevitably induce uncertainty in the cloud top ACI
257 assessment, depending on the vertical trend of the individual aerosol profile. Over the Southeast Atlantic,
258 Gupta et al. (2021) conducted an analysis focusing particularly on the differing impacts when biomass
259 burning aerosols are in contact with marine stratocumulus cloud tops, using 100 m above as the
260 demarcation, versus when they are separated by various distances, and found that significant differences
261 were observed in cloud microphysics, owing to different droplet evaporation and nucleation, compared
262 to separated profiles. That result is in agreement with the modeling sensitivity study over the Eastern
263 North Atlantic by Wang et al. (2020), who found that aerosol plumes can exert impacts on the cloud-top
264 microphysics only when they are in close contact with the cloud layer. In most cases, the ACE-ENA
265 feature is a rather stable or slightly decreasing profile within a few hundred meters above the cloud top,
266 while the long-range transports, particularly during summertime, will induce an elevated aerosol layer in
267 higher altitudes that is not in contact with the cloud layer. The frequent new particle formation events
268 during SOCRATES will significantly alter the free-troposphere Aitken mode aerosol budget, they would
269 need to further subside to impact the cloud (McCoy et al., 2021; Zhang et al., 2023). Therefore, the 200

270 m criterion used in this study captures the close-to-cloud aerosol plumes and provides enough sample
271 size for statistical analysis.

272

273 **3. Aerosol, cloud, and drizzle properties of selected cases**

274 **3.1 Aerosols and CCN in above- and sub-cloud regimes**

275 The probability density functions (PDFs) of aerosols, CCN, and cloud microphysical properties
276 from selected cases during the ACE-ENA and SOCRATES field campaigns are presented in Figure 1.
277 Notably, the N_a , N_{Acc} and $N_{CCN0.35\%}$ values from the SOCRATES are the highest among the three IOPs,
278 followed by the ACE-ENA summer and winter as illustrated in both above-cloud (Figs. 1a-1c) and sub-
279 cloud regimes (Figs. 1d-1f). Such variations can be linked to the different aerosol sources in the ACE-
280 ENA and SOCRATES regions, especially during the summer and winter seasons over the Azores.

281 In the SOCRATES region, according to the previous studies involving back-trajectory analyses,
282 dominant air masses within the MBL primarily originate from the south or from the west, skirting the
283 Antarctic coast (Zhang et al., 2023), while the air masses above the MBL follow a similar transport
284 pathway, they can also originate from the tip of southern Africa and be transported southeast along the
285 warm conveyor belt (McCoy et al., 2021). The SOCRATES above-cloud aerosols (674.6 cm^{-3}) are
286 primarily constituted by the Aitken mode aerosols because the mean N_{Acc} is only 62.5 cm^{-3} . Previously,
287 McCoy et al. (2021) reported average values of 680.69 cm^{-3} , 546.28 cm^{-3} and 465.05 cm^{-3} for mid-
288 troposphere, above and below cloud for the multiple SOCRATES cases, respectively. For individual
289 cases, the above cloud aerosols vary from a couple hundred to over a thousand particles per cubic
290 centimeter (McCoy et al., 2021; Zhang et al., 2023). These aerosols are predominantly produced from
291 the oxidation of biogenic gases, notably the dimethyl sulfide (DMS) emitted by marine biological
292 productivity (Sanchez et al., 2018; McCoy et al., 2020). The rising air currents in MBL transport these
293 particles into the free troposphere (FT) with dominant aerosol population over the SO (McCoy et al.,
294 2021; Sanchez et al., 2021). Hence, it reinforces the notion that the SO represents a pre-industrial marine

295 environment where the influence of anthropogenic and biomass-burning aerosols is mostly negligible
296 (McCoy et al., 2020, 2021).

297 Conversely, the ENA region experiences aerosols of varied origins, spanning maritime air masses
298 to those heavily influenced by continental emissions from North America or Northern Europe, especially
299 during the summertime (Logan et al., 2014; Wang et al., 2020). The summertime air mass back-
300 trajectories within the MBL strongly feature recirculating flow around the Azores high. During the
301 wintertime, however, the air masses predominantly originate in the FT, are transported above the MBL,
302 and are then further entrained down to the MBL by large-scale subsidence, indicating less influence from
303 continental pollution (Y. Wang et al., 2021b). During the summer ACE-ENA campaign, the MBL is
304 enriched by sulfate and carbonaceous particles (Y. Wang et al., 2021b; Zawadowicz et al., 2021). This
305 enhancement is attributed both to local generation from DMS and to the long-range transport from the
306 continental air masses, resulting in the mean N_a of 312.6 cm^{-3} and 301.5 cm^{-3} for above- and sub-cloud
307 regimes, respectively. The ACE-ENA winter exhibits the lowest aerosol and CCN concentrations,
308 predominantly sourced from local maritime influences, and coupled with reduced continental air mass
309 intrusions (Zheng et al., 2018; Y. Wang et al., 2021b).

310 Figure 1a reveals that there are more above-cloud N_a during the three IOPs than sub-cloud values,
311 especially during the SOCRATES. The higher above-cloud N_a values from the three IOPs are primarily
312 contributed by Aitken mode aerosols because their corresponding N_{Acc} values are much lower (Figs.
313 1a&b). It is interesting to note that the above-cloud $N_{CCN0.35\%}$ values exceed the N_{Acc} for all three IOPs
314 (Figs. 1b&c), implying that a significant fraction of Aitken mode aerosols can be activated to become
315 CCN, corroborating findings from earlier studies (McCoy et al., 2021; Zheng et al., 2021). For the sub-
316 cloud regime, the N_a values during SOCRATES and ACE-ENA winter are ~70-80% of their
317 corresponding above-cloud values, and the N_a during ACE-ENA summer is almost identical to its above-
318 cloud value. Notice that the sub-cloud N_{Acc} values from three IOPs are more than double the above-cloud

319 N_{Acc} values, and most of the sub-cloud accumulation mode aerosol can be activated to become CCN at
320 SS of 0.35%. It is interesting to note that the higher $N_{CCN0.35\%}$ at sub-cloud layer during SOCRATES
321 may partially result from the cloud process on aerosols (Figs. 1e&f), which is suggested by previous
322 studies (McCoy et al., 2021; Zhang et al., 2023) and will be further discussed in Section 3.1.

323 To further investigate the above- and sub-cloud aerosol properties from three IOPs, the aerosol
324 droplet size distributions are analyzed in Figure 2. It is evident that SOCRATES aerosols have the highest
325 concentrations of Aitken mode particles ($D_p = 0.06 - 0.1 \mu\text{m}$, given that the $< 0.06 \mu\text{m}$ is not available
326 from UHSAS) for both the above- and sub-cloud regimes. McCoy et al. (2021) and Zheng et al. (2021)
327 identified analogous origins and formations of the above-cloud Aitken mode aerosols over both the SO
328 and ENA regions and concluded that these aerosols primarily originate from the nucleation of photo-
329 oxidation products of DMS, notably H_2SO_4 and MSA, in the free troposphere (FT). The differential
330 concentrations can be ascribed to the fact that sea-surface DMS concentrations in the SO are generally
331 higher than those in the ENA region (Aumont et al., 2002; Zhang et al., 2023). Moreover, DMS emissions
332 in the ENA during summer surpass those during winter (Zawadowicz et al., 2021). For the accumulation
333 mode aerosols ($0.1 - 1 \mu\text{m}$), the N_{Acc} values for both above- and sub-cloud regimes during SOCRATES
334 decrease monotonically with particle size. The results in Figure 2 further support the finding that Aitken
335 mode aerosols are dominant over the SO. The N_{Acc} values during ACE-ENA show slight uplifts for the
336 small accumulation mode aerosols ($< 0.3 \mu\text{m}$), particularly for summer, reflecting the signal of potential
337 long-range transport of fine-mode aerosols (Wang et al., 2020; Y. Wang et al., 2021b). Consequently,
338 such comparison reinforces the notion that the SO represents a largely pre-industrial marine environment,
339 wherein the influence of anthropogenic and biomass-burning aerosols is minimal (McCoy et al., 2020,
340 2021; Zhang et al., 2023).

341 When contrasting the aerosol size distributions in the sub-cloud regime (Fig. 2b) with those in the
342 above-cloud regime, the influence of cloud processing on aerosols is discernibly non-trivial, particularly

343 under the cloud-topped MBL conditions examined in this study. The FT aerosols can be entrained down
344 and contribute to the population of Aitken mode aerosols within the MBL, and the sub-cloud aerosols
345 can also be subject to the influence of new particle formation in the upper MBL, though arguably less
346 effective than those within the FT (Zheng et al., 2021). Additionally, in-cloud Brownian capture can lead
347 to a substantial reduction in Aitken mode aerosols (Hudson et al., 2015; Wyant et al., 2022), providing
348 the rationale for the observed decrease in Aitken mode aerosols from above- to the sub-cloud regime,
349 especially for particles smaller than $0.07 \mu\text{m}$. In addition, cloud chemical processing, such as the
350 aqueous-phase condensation of sulfuric gas onto the aerosol cores inside the cloud droplets, is
351 particularly pronounced during the transitioning of Aitken mode aerosols to accumulation mode aerosols
352 (Hudson et al., 2015; Zhang et al., 2023).

353 From both above- to sub-cloud regimes, the larger Aitken mode aerosols ($> 0.07 \mu\text{m}$) can be
354 effectively enlarged to accumulation mode aerosols through coagulation and water vapor diffusional
355 growth (Covert et al., 1996), contributing to the elevated accumulation mode aerosol distribution and
356 increased N_{Acc} in the sub-cloud regime. These processes are evidenced by the decrease of critical
357 supersaturations from above-cloud (between 0.35% - 0.4%) to sub-cloud (between 0.3% - 0.35%) during
358 SOCrates (Fig. S3) because the aerosol droplet sizes are enlarged and more readily become CCN.
359 Furthermore, the collision-coalescence combines mixtures of large and small cloud droplets, and results
360 in the sub-cloud aerosol residuals shifting towards the larger size upon the drizzle droplet evaporation
361 below the cloud. This partially elucidates the observed increase in the tail-end of the accumulation mode
362 aerosol distribution for all three IOPs. The elevation in sub-cloud coarse mode aerosols observed for both
363 ACE-ENA IOPs (as seen in Fig. 2) can be attributed to the evaporation of collision-coalescence-enlarged
364 drizzles and the intrusion of sea spray aerosols (e.g., sea salt), as illustrated and analyzed based on a
365 summertime case study that exhibits the signal of cloud-processing aerosols (Zheng et al., 2022b), and
366 the long-term aerosol physicochemical properties over the ARM-ENA ground-based observatory (Zheng
367 et al., 2018) particularly during the winter season where the production of sea spray aerosol is prevalent.

369 **3.2 Bulk cloud microphysical properties distribution**

370 The PDFs of MBL cloud microphysical properties (N_c , r_c , LWC_c) derived from aircraft in-situ
371 measurements from the three IOPs are shown in Figures 1g-1i. The mean microphysical properties for
372 the individual cloud profiles are listed in Table S2. The results in Figure 1 have demonstrated that
373 aerosol/CCN sources and concentrations, especially from the sub-cloud regime, play an important role
374 in cloud droplet formation and evolution. For example, the SOCRATES has the highest sub-cloud
375 aerosols and CCN, and subsequently feature a larger number of smaller cloud droplets, given the highest
376 N_c (148.3 cm^{-3}) and smallest r_c ($8 \mu\text{m}$) among the three IOPs. These results have further confirmed and
377 reassured our understanding of the aerosol first indirect effect: more aerosols induce more and smaller
378 cloud droplets (higher N_c and smaller r_c) under constrained liquid water content conditions, thus the
379 MBL clouds reflect more incoming solar radiation (Twomey, 1977). The ACE-ENA wintertime clouds
380 feature the fewest N_c (70.6 cm^{-3}) and largest r_c ($9.8 \mu\text{m}$), while the N_c and r_c (89.4 cm^{-3} and $9 \mu\text{m}$) during
381 ACE-ENA summer fall between the SOCRATES and ACE-ENA winter values. Considering the aerosol
382 competing effect against the available water vapor, the relatively abundant aerosols in SOCRATES might
383 account for the narrower r_c distribution, which peaks between $6 - 10 \mu\text{m}$. SOCRATES has a lower cloud-
384 layer water vapor mixing ratio (figure not shown) compared to ACE-ENA because the SO region has
385 been observed to contain less precipitable water vapor than the ENA region due to the colder sea surface
386 temperatures (Marcovecchio et al., 2023). Therefore, the aerosol and cloud properties in Figure 1 promise
387 further examination of different cloud microphysical responses to aerosols via the ACI process. Note that
388 the $N_{CCN0.35\%}$ and N_c values are lower than N_c values during the ACE-ENA winter IOP, which is also
389 confirmed in previous studies (J. Wang et al., 2022; Wang et al., 2023). This interesting phenomenon
390 can potentially be attributed to a combination of factors, including lower MBL aerosol sources, stronger
391 in-cloud coalescence-scavenging depletion of sub-cloud aerosols, and the aircraft snapshots capturing

392 the equilibrium states of aerosols and cloud due to enhanced aerosol activations induced by stronger
393 updrafts during the ACE-ENA winter (J. Wang et al., 2022). This thereby compels further investigation
394 into the potential impacts of precipitation on the MBL CCN budget. These aerosol-cloud-precipitation
395 interactions (ACPIs) will be discussed in Section 4.

396

397 **3.3 Vertical distributions of cloud and drizzle microphysics**

398 The vertical distributions of the cloud and drizzle microphysical properties within the cloud layer
399 from the three IOPs are shown in Figure 3. To ensure the representativeness of the vertical profiles, all
400 the in-cloud samples are vertically smoothed using a triangular moving average method, and are inverse
401 distance weighted in every 50 m moving altitude windows. Furthermore, the altitude is then normalized
402 by $z_i = \frac{z - z_{base}}{z_{top} - z_{base}}$, where $z_i = 0$ denotes cloud base and $z_i = 1$ denotes cloud top. Consistent with
403 previous discussions on the bulk microphysics distribution, the mean N_c values from SOCRATES are
404 consistently higher than ACE-ENA summer and winter for the entire cloud layer, with a slight increase
405 ranging from the cloud base to the upper-middle part ($z_i \approx 0.85$) and then decreasing toward the cloud
406 top due to cloud-top entrainment (Fig. 3a). All r_c values from the three IOPs show a near-linear increase
407 from cloud base to top, with the smallest values observed during SOCRATES and the largest values
408 observed during ACE-ENA winter (Fig. 3b).

409 The warmer and drier air near the cloud top entrains into the cloud layer and further mixes
410 downward, often resulting in the evaporation of small cloud droplets and the shrinking of droplet sizes,
411 which oppose condensational growth (Desai et al., 2021). Decreases in both N_c and LWC_c , and the
412 reduced growth of r_c near the cloud top ($z_i > 0.85$) support signals of cloud-top entrainment mixing
413 during all three IOPs. It is interesting to note that the r_c values from SOCRATES increase monotonically
414 from cloud base to top, while the r_c values from both ACE-ENA summer and winter increase until $z_i \approx$
415 0.8 and then remain nearly constant, although all of their N_c values (at $z_i \approx 0.8$) decrease towards the

416 cloud top. When dry air entrainment occurs at the cloud top, some of the upper-level smaller cloud
417 droplets will evaporate, which leads to decreases in N_c (Fig. 3a). As cloud-top entrainment mixing can
418 shrink large cloud droplets via evaporation, depending on the entrainment mixing rate, the nearly
419 constant r_c values (at $z_i > 0.8$) might represent the equilibrium balance between two competing
420 processes: cloud droplet condensational and collision-coalescence growths, and the entrainment mixing
421 evaporation effects.

422 While carrying the distinct discrepancies in the mean values for all layers, the N_c and r_c from
423 ACE-ENA summer and winter clouds experienced similar vertical evolutions as the SOCRATES. The
424 increases of r_c (Δr_c) from cloud base to cloud top are 4.03 μm , 4.78 μm and 5.85 μm , with percentage
425 increases of 66%, 68% and 79%, for SOCRATES, ACE-ENA summer and winter, respectively. Even
426 though, theoretically, the condensational growth effect would be more pronounced on smaller cloud
427 droplets due to their smaller surface area (Wallace and Hobbs, 2006), SOCRATES exhibits the thickest
428 mean cloud thickness but experienced the least r_c increase among the three IOPs. This suggests that high
429 aerosol loadings are limiting the overall growth of the cloud DSD in SOCRATES clouds, while the ACE-
430 ENA winter clouds show the strongest r_c increase, in contrast. This comparison indicates different cloud
431 microphysical responses to aerosol perturbations in the three IOPs, which will be further discussed in
432 Section 4.1. The LWC_c values from the three IOPs are comparable to each other. The vertical
433 distributions of MBL cloud microphysical properties examined in this study are in good agreement with
434 the previous studies conducted on these two field campaigns (Wu et al., 2020a; Y. Wang et al., 2021a; J.
435 Wang et al., 2021; Wang et al., 2023). In addition, the cloud adiabaticity is defined as $f_{ad} =$
436 LWC_c/LWC_{ad} , where the LWC_{ad} denotes adiabatic LWC (Wu et al., 2020b). As shown in Figure S4,
437 the clouds from all three IOPs feature certain levels of sub-adiabaticity above the cloud base. Considering
438 the inter-cloud layer-mean f_{ad} , the campaign-mean f_{ad} values are 0.689 ± 0.229 , 0.542 ± 0.143 , and
439 0.490 ± 0.207 for SOCRATES, ACE-ENA summer and winter, respectively. It is well known that cloud

440 sub-adiabaticity is primarily induced by the in-cloud collision-coalescence and the entrainment mixing
441 processes (Hill et al., 2009; Braun et al., 2018; Gao et al., 2020; Wu et al., 2020b).

442 To quantitatively evaluate the impact of cloud-top entrainment mixing rate on cloud droplets, we
443 adapt the method of Albrecht et al. (2016), where the cloud-top entrainment rate (w_e) can be expressed
444 as

445
$$w_e = A_\sigma * \sigma_w / R_{i\sigma} , \quad (6)$$

446 where the turbulence kinetic energy (TKE) dissipation coefficient A_σ is empirically taken as 26 as in
447 Albrecht et al. (2016), and the $R_{i\sigma}$ is the buoyancy Richardson number calculated by $(g/\theta_0) *$
448 $(\Delta\theta_v h / \sigma_w^2)$. σ_w denotes the standard deviation of vertical velocities taken near the cloud top ($z_i > 0.9$),
449 and h is the MBL height. θ_0 is the reference potential temperature and $\Delta\theta_v$ is the virtual potential
450 temperature difference across the temperature inversion layer above the cloud. Given the valid cloud top
451 virtual potential temperature and vertical velocity measurements for the selected cloud cases, the
452 averaged w_e values are $0.570 \pm 0.834 \text{ cm s}^{-1}$, $0.581 \pm 0.560 \text{ cm s}^{-1}$, and $0.960 \pm 1.127 \text{ cm s}^{-1}$ for SOCRATES,
453 ACE-ENA summer and winter, respectively. The stronger w_e during ACE-ENA winter might be induced
454 by the generally weaker cloud-top inversions and stronger near-cloud top turbulence, compared to the
455 summertime when the ENA is dominated by the large-scale high-pressure system (Ghate et al., 2021).

456 Considering the near cloud-top proportion of cloud where the LWC_c experienced decrease, the difference
457 in LWC_c (between the cloud top value and the upper-middle cloud maximum for the mean profiles) for
458 the ACE-ENA summer (-0.032 g m^{-3}) is higher than the reductions in winter (-0.018 g m^{-3}) and
459 SOCRATES (-0.009 g m^{-3}), albeit that the w_e for ACE-ENA summer is comparable to SOCRATES, and
460 much lower than ACE-ENA winter values. Within the above-cloud inversion layer, the temperature
461 (water vapor mixing ratio) differences ΔT (Δq) are 1.76 K (-1.75 g kg^{-1}), 1.54 K (-1.66 g kg^{-1}) and 1.48
462 K (-1.09 g kg^{-1}) for SOCRATES, ACE-ENA summer and winter, respectively. Therefore, the warmer
463 and dryer entrained air can partially contribute to the greater LWC_c reduction and the lower f_{ad} (0.39)

464 during the ACE-ENA summer than those during the ACE-ENA winter ($f_{ad} = 0.45$) and SOCRATES
465 ($f_{ad} = 0.66$) near the cloud top (Fig. S4). For the three IOPs, the N_c and LWC_c exhibited stable trends
466 from the cloud base, followed by noticeable decreases near the cloud top mixing zone, while the changes
467 in r_c trends near the cloud top were not as dramatic as the others. Such characteristics of the cloud
468 microphysics vertical profiles indicate the signal of inhomogeneous mixing, which occurs when dry and
469 warm air mixes unevenly and slowly with the cloud air, hence partially evaporating the cloud droplets
470 (Lehmann et al., 2009; Lu et al., 2011). The results are consistent with findings in stratocumulus clouds
471 over multiple field campaigns (Brenguier et al., 2011; Jia et al., 2019) and with the findings for selected
472 cases during the ACE-ENA (Yeom et al., 2021) and the SOCRATES (Sanchez et al., 2020). The near-
473 cloud top r_c profiles ($z_i > 0.8$) for the ACE-ENA cases exhibit fewer increases compared to the
474 SOCRATES, which could be possibly attributed to more effective mixing due to the stronger entrainment
475 rate, particularly during the ACE-ENA winter, eventually reaching a smaller equilibrium in terms of
476 mean sizes.

477 Figures 3d-3f illustrate the normalized profiles of MBL drizzle microphysical properties. The N_d
478 values from the three IOPs mimic each other, which all maximize at the cloud top and then monotonically
479 decrease toward the cloud base (Fig. 3d), while their LWC_d values follow a similar trend, albeit with
480 relatively large differences (Fig. 3f). In contrast to the N_d and LWC_d trends, the D_{mmd} gradually increase
481 from cloud top to cloud base (Fig. 3e), making physical sense since the drizzle droplets are typically
482 formed near cloud top and continuously grow via collision-coalescence process while falling. The ACE-
483 ENA wintertime drizzle D_{mmd} and LWC_d are distinctively larger than those in summertime and
484 SOCRATES. It is interesting to note that near the cloud top ($z_i > 0.9$), the ACE-ENA winter has
485 comparable N_d but much larger D_{mmd} than the other two IOPs, suggesting that there were more large
486 drizzle embryos formed from large cloud droplets (Fig. 3b) during ACE-ENA winter. It is noteworthy
487 that the D_{mmd} in the lower-half region of the ACE-ENA winter clouds experienced rapid growth from

488 ~80 μm to ~105 μm (Fig. 3e), and this increment of ~25 μm contributed to most of the D_{mmd} growth
489 from cloud top to cloud base (33.5 μm), indicating a stronger warm-rain process during the winter.

490 In order to further analyze the cloud-to-drizzle conversion processes, the cloud and drizzle droplet
491 size distributions (DSD) are categorized into four segments based on their relative position within the
492 cloud layer (Fig. 4): upper cloud ($z_i > 0.8$, Fig. 4a), upper-middle cloud ($0.5 \leq z_i < 0.8$, Fig. 4b), lower-
493 middle cloud ($0.2 \leq z_i < 0.5$, Fig. 4c) and lower cloud ($z_i < 0.2$, Fig. 4d). The cloud DSDs ($D_p < 40$
494 μm) from the three IOPs gradually shift towards larger sizes, moving from the lower to the upper cloud
495 regions. This is accompanied by the narrowing of the cloud DSD ranges, as evidenced by the decline in
496 the relative dispersion of cloud droplets (ε), which is defined as the ratio between the standard deviation
497 and the mean radius of the distribution. At the lower portion of the cloud (Fig. 4d), the relatively greater
498 value of ε represents the co-existence of the newly formed small cloud droplets from recently activated
499 CCNs and the sedimentation of larger droplets from the upper sections of the cloud. In addition, the
500 discrepancies in ε between the three IOPs may be attributed to the sub-cloud aerosol differences, which
501 essentially resided in different microphysical regimes. Y. Wang et al. (2021a) stated that higher aerosol
502 loading would lead to increased ε due to the water vapor competition effect, supporting the discrepancy
503 between SOCRATES and ACE-ENA summer IOPs, which can be categorized as a water-vapor-limited
504 regime. Meanwhile, the ACE-ENA wintertime IOP exhibits characteristics of an aerosol-limited regime,
505 in which the cloud DSDs tend to be narrower than in the water-limited regime, due to enhanced droplet
506 growth, and the ε values further decrease with height via the condensational narrowing effect (J. Chen et
507 al., 2018).

508 Notably, the cloud DSDs during ACE-ENA winter exhibit a more pronounced negative skew (to
509 the left) than those during ACE-ENA summer, which can be partially attributed to the activation of more
510 sub-cloud coarse mode aerosols becoming larger cloud embryos, as demonstrated in Fig. 2. These coarse
511 mode aerosols, whether from primary production of sea spray or the residuals of evaporated drizzle drops,

512 are more easily activated (or re-activated) into larger cloud droplets when they intrude (or recirculate)
513 into the cloud layer (Hudson and Noble, 2020; Hoffmann and Feingold, 2023). Nevertheless, it is
514 challenging to pinpoint the actual origins of coarse mode aerosols from the perspective of aircraft
515 observational snapshots, thus requiring further numerical modeling work. For the four cloud portions
516 from cloud base to cloud top, the skewness of summertime (wintertime) cloud DSDs are 0.627 (0.271),
517 0.358 (0.175), 0.098 (-0.063), and -0.362 (-0.554), respectively. Ascending within the cloud, the process
518 of water vapor condensation perpetually pushes the DSD towards larger sizes, culminating in a more
519 negatively skewed DSD. Concurrently, the cloud-top entrainment mixing plays a pivotal role in
520 minimizing ϵ in the upper cloud region, as elaborated by Lu et al. (2023). Note that in the upper region
521 of the cloud (Fig. 4a), the ACE-ENA winter clouds contain more cloud droplets close to 40 μm , albeit
522 the mean N_c is lower. This scenario is conducive to the formation of larger drizzle embryos compared to
523 summertime clouds, as depicted in Fig. 3e. In comparison, the SOCRATES clouds feature a pronounced
524 log-normal DSD than the ACE-ENA, as the DSDs peak at $D_p \sim 15 \mu\text{m}$ throughout the cloud, and
525 subsequently, the lack of larger cloud droplets resulted in the smaller drizzle embryos near the cloud top.
526 As the newly formed drizzle drops descend and continuously grow through the collision-coalescence
527 process, the drizzle DSDs ($D_p > 40 \mu\text{m}$) are noticeably broadened. From upper to lower cloud regions,
528 the longer tails of the drizzle DSDs expand at the cost of smaller drizzle drops and cloud droplets via the
529 collision-coalescence process. The clouds observed during ACE-ENA, especially in wintertime, contain
530 more large drizzle drops ($D_p > 200 \mu\text{m}$) than SOCRATES, which is reflected in the distinct differences
531 in the vertical D_{mmd} as shown in Fig. 3e.

532 It has been intensively studied that in-cloud turbulence can stimulate collision-coalescence and
533 consequently enhance the drizzle evolution processes (Pinsky et al., 2007; Grabowski and Wang, 2013;
534 Wu et al., 2017; S. Chen et al., 2018). The turbulence strength is characterized by the turbulence kinetic
535 energy (TKE), which is calculated as:

536 $TKE = \frac{1}{2}(\overline{u'^2} + \overline{v'^2} + \overline{w'^2}),$ (7)

537 where the turbulent perturbations of vertical ($\overline{w'^2}$) and horizontal ($\overline{u'^2}$ and $\overline{v'^2}$) components are
 538 calculated as the simple moving variance in a 10s window centered at the measurement time, without
 539 window weighting function, using 1Hz data for all three IOPs. The w data is confined to an absolute
 540 aircraft roll angle of less than 5° (Cooper et al., 2016). Given the average aircraft ground speed of ~ 140
 541 m/s and vertical speed of ~ 5 m/s (Atlas et al., 2020), the smallest resolved wavelength is 140 m. Hence,
 542 within the 10s moving window, the ~ 50 m in the integral vertical range is able to resolve the eddies up
 543 to ~ 1400 m in size, and preserve the potential of capturing the inertial subrange.

544 As shown in Figure 5, the vertical wind variances (Fig. 5b) in ACE-ENA winter (layer-mean of
 545 $0.244 \text{ m}^2 \text{ s}^{-2}$) are generally higher than those in summer ($0.153 \text{ m}^2 \text{ s}^{-2}$) and SOCRATES ($0.147 \text{ m}^2 \text{ s}^{-2}$),
 546 while the horizontal wind variances (Fig. 5c & d) are comparable between ACE-ENA winter and summer
 547 but much higher than the SOCRATES, resulting in higher TKE during ACE-ENA. Note that the higher
 548 w'^2 near cloud top corresponds to the stronger entrainment rate in wintertime ACE-ENA. Near the cloud
 549 top, turbulence effectively enhances coalescence between the larger cloud droplets, primarily by
 550 increasing the relative velocities between droplets (Magaritz-Ronen et al., 2016; Ghate and Cadeddu,
 551 2019), and this is especially true for the vertical component w'^2 of TKE. While the horizontal turbulence
 552 components, the u'^2 and v'^2 can also play a role in mixing the ambient air masses and contribute to the
 553 broadening of DSD (Wu et al., 2017). The use of TKE provides an illustration that in-cloud turbulence
 554 during ACE-ENA might be slightly stronger than that observed during SOCRATES. That being said, the
 555 quantitative evaluation of the turbulent enhancement of collision-coalescence requires access to the eddy
 556 dissipation rate, as typically used in model parameterizations (Grabowski and Wang, 2013; Witte et al.,
 557 2019). The smallest scales resolvable with the 1Hz measurement used in this study are on the order of
 558 140 meters, thus capturing only the larger-scale end of the inertial subrange and larger turbulent motions.
 559 Consequently, the ability to resolve smaller eddies and turbulent structures, crucial for understanding the

560 energy cascade within the inertial subrange, is limited by the too-coarse spatial and temporal resolutions
561 and aliasing issues (Siebert et al., 2010; Muñoz-Esparza et al., 2018; Kim et al., 2022). Therefore, to
562 fully resolve the spectrum of turbulence and quantitatively examine energy dissipation and mixing
563 processes, access to higher-frequency measurements is required to capture smaller eddies within the
564 inertial subrange (Siebert et al., 2010; Lu et al., 2011; Waclawczyk et al., 2017). Additionally, further
565 quantifying the entrainment-mixing mechanisms also requires high-frequency eddy dissipation and
566 accurate examination of the mixing time scale (Lehmann et al., 2009; Lu et al., 2011) for individual
567 profiles. Though currently beyond the scope of this study, utilizing the high-rate measurements of
568 velocities available from SOCRATES (at 25Hz) and ACE-ENA (at 20Hz) to explore those mechanisms
569 further will be of interest to future investigations.

570 Drizzle formation and evolution in the ACE-ENA winter clouds are noticeably stronger than in
571 the other two IOPs, which could be attributed to multiple factors. First, the ambient aerosols and CCN
572 during winter are substantially fewer, featuring clean environments that promote the formation of
573 generally larger cloud droplets due to the availability of more water content per droplet. Larger cloud
574 droplets are more likely to collide and coalesce into drizzle drops, leading to relatively heavier
575 precipitation (Chen et al., 2011; Duong et al., 2011; Mann et al., 2014). Furthermore, the wintertime
576 clouds feature deeper cloud layers with mean thickness of (392.4 m) compared to the summertime clouds
577 (336.3). In a thicker cloud layer with sufficient turbulence, the residence times of large cloud droplets
578 and drizzle drops are elongated, and the chance of collision-coalescence growth can be effectively
579 increased by recirculating the drizzle drops (Brost et al., 1982; Feingold et al., 1996; Magaritz et al.,
580 2009; Ghate et al., 2021). Additionally, the prevalence of precipitation-evaporation-induced MBL cold
581 pools, which disturb the MBL thermodynamics and contribute to turbulent mixing (Zuidema et al., 2017),
582 during the wintertime might provide strong dynamical forcing to the warm-rain process (Jenson et al.,
583 2021; J. Wang et al., 2022; Smalley et al., 2024). As a result, the ACE-ENA wintertime drizzle DSD is
584 sufficiently broadened, and the D_{mmd} is enlarged toward the cloud base. In comparison, although the

585 SOCrates exhibits even thicker clouds (487.4 m), the drizzle processes are seemingly suppressed by
586 the much higher ambient aerosol and CCN concentrations.

587

588 **4 Aerosol-cloud-precipitation interactions (ACPIs)**

589 **4.1 Cloud microphysical responses on aerosols**

590 The impacts of different aerosol loadings on the cloud microphysical properties can be assessed
591 by the aerosol-cloud interaction (ACI) indices, which can be quantified as:

592
$$ACI_N = \frac{\partial \ln (N_c)}{\partial \ln (N_{CCN,0.35\%})}, \quad (8)$$

593 and

594
$$ACI_r = -\frac{\partial \ln (r_c)}{\partial \ln (N_{CCN,0.35\%})}, \quad (9)$$

595 which emphasizes the cloud microphysical responses to CCN via the relative logarithmic change of N_c
596 and r_c to the change in $N_{CCN,0.35\%}$ (Feingold et al., 2003; McComiskey et al., 2009). Physically, the ACI
597 process involves aerosols intruding into the cloud layer, activating as cloud droplets, and subsequently
598 altering cloud DSD and dispersion (Zheng et al., 2022a&b) under various water vapor availabilities.
599 Therefore, the cloud microphysical responses within the lower region of the cloud are assessed, which is
600 the first stage in which the sub-cloud CCN can directly interact with the cloud droplets. Furthermore, the
601 similarity in the vertical integral of LWC_c (as shown in Fig. 3c) provides comparable liquid water
602 between three IOPs for the assessment of newly generated cloud embryos from activated CCN because
603 the ACI_r is normally assessed under a fixed liquid water (Zheng et al., 2020).

604 Considering all the cases from three IOPs with available CCN measurements (some cases without
605 CCN measurements during SOCrates), the N_c and r_c at the lower cloud ($z_i < 0.2$) are plotted against
606 the sub-cloud $N_{CCN,0.35\%}$ in Figure 6, and the ACI indices are calculated as $ACI_{N,CB}$ and $ACI_{r,CB}$ (CB
607 denoting the assessment near the cloud base). Note that the availability of valid sub-cloud measurements
608 inevitably limits the sample size, especially for SOCrates, as shown in Table S2. As shown in Figure

609 6a, the $ACI_{N,CB}$ for the ACE-ENA wintertime (0.748) is higher than the summertime (0.617), indicating
610 that N_c is more sensitive to the sub-cloud $N_{CCN,0.35\%}$ during the winter. In other words, aerosols intruding
611 into the cloud layer are easily activated to become cloud droplets. The N_c sensitivity for the SOCRATES
612 cloud (0.692) lies between the two ACE-ENA IOPs. The $ACI_{N,CB}$ values from three IOPs are generally
613 higher than the ACI_N values from the layer-mean N_c against the sub-cloud $N_{CCN,0.35\%}$ (not shown).
614 Previous studies have shown that the enhanced vertical turbulence (updraft velocity) can effectively
615 facilitate CCN replenishment into the cloud layer (Hu et al., 2021; Zheng et al., 2022a&b) and increase
616 the actual in-cloud supersaturation (Brunke et al., 2022), thus leading to a more efficient cloud droplet
617 formation, enhancing the $ACI_{N,CB}$. By correlating the mean TKE values with the CCN activation ratio
618 ($N_c/N_{CCN,0.35\%}$) for all individual cloud cases, the three IOPs show moderate but statistically significant
619 correlation coefficients of 0.36, 0.55, and 0.51 for ACE-ENA summer, winter, and SOCRATES,
620 respectively. This result reinforces the notion that the CCN activation fractions, particularly during the
621 wintertime ACE-ENA, are significantly correlated with in-cloud turbulence intensities. Furthermore,
622 more coarse mode aerosols during ACE-ENA winter are also favorable to the activation efficiency
623 (Dusek et al., 2006).

624 As for the r_c responses to CCN (Fig. 6b), the typical Twomey effect, where more CCN compete
625 against available water vapor and result in smaller cloud droplets, is evidenced by different cloud
626 susceptibility between the three IOPs. The SOCRATES features a higher $ACI_{r,CB}$ (0.311), suggesting
627 that an increase in $N_{CCN,0.35\%}$ can result in a significant decrease in r_c , compared to ACE-ENA summer
628 (0.206) and winter (0.263). Although the absolute range of variation for r_c during SOCRATES is smaller,
629 the slope is much deeper (Fig. 6b). Recall that the sub-cloud $N_{CCN,0.35\%}$ during SOCRATES is generally
630 higher and is constituted by more small-sized aerosols (as indicated in Fig. 2b). Consequently, after
631 activation, the lower part of the cloud exhibits a higher number of smaller cloud droplets, as shown in
632 Fig. 4d, even under the relatively less $N_{CCN,0.35\%}$ condition for SOCRATES. Therefore, as more CCN

intrudes into the cloud, the competition for water vapor among newly-activated cloud droplets becomes more pronounced, given similar water availability. In contrast, the presence of larger cloud droplets near the cloud base, whether activated from coarse-mode aerosols or remaining as residuals from collision-coalescence, would elevate the r_c especially under the relatively more CCN condition, hence inevitably dampening the $ACI_{r,CB}$ during ACE-ENA. However, a more comprehensive investigation into the cloud microphysical responses to CCN intrusions under a larger range of various water supply conditions, and further untangling the ACI from the meteorological influences, will require additional aircraft cases from more field campaigns, for instance the VAMOS Ocean-Cloud-Atmosphere-Land Study (VOCALS), the Cloud System Evolution over the Trades (CSET), the ObseRvations of CLouds above Aerosols and their intEractiOnS (ORACLES), and the Aerosol Cloud meTeorology Interactions oVer the western ATLantic Experiment (ACTIVATE). Note that the $ACI_{r,CB}$ values in Figure 6b are also larger than the results from the layer-mean r_c against sub-cloud $N_{CCN,0.35\%}$, since the layer-mean microphysics is more subject to the cloud droplet evolution processes such as condensational growth and collision-coalescence. The ACI indices from three IOPs are in the ACI range of the previous studies in MBL clouds (Twohy et al., 2005; Lu et al., 2009; Diamond et al., 2018) using aircraft in-situ measurements.

To investigate the ACI indices at the upper level of the cloud, the N_c and r_c at the upper cloud ($z_i > 0.8$) are plotted against the above-cloud $N_{CCN,0.35\%}$ in Figure S5, and the ACI indices are calculated as $ACI_{N,CT}$ and $ACI_{r,CT}$ (denoting the assessments near the cloud top). Compared to the $ACI_{N,CB}$ and $ACI_{r,CB}$, the $ACI_{N,CT}$ and $ACI_{r,CT}$ are much weaker, especially for $ACI_{r,CT}$, as the near cloud top droplets are too large for above-cloud aerosols to exert a significant influence on r_c (Diamond et al., 2018; Gupta et al., 2022). While the weaker cloud top N_c dependence on the $N_{CCN,0.35\%}$ could be due to the legacy of the sub-cloud CCN impacts on N_c being conveyed to the cloud top. This occurs because FT aerosols and CCN can be entrained down to the MBL before and during the cloud process, as observed in the assessment of inter-cloud cases. These weaker relationships support the notion that although the aerosols

657 entrained into the upper-cloud region can affect the cloud microphysics to a certain degree, the effects
658 are less pronounced than those from the sub-cloud aerosols (Diamond et al., 2018, Wang et al., 2020)
659 because the MBL cloud N_c and r_c variations are dominated by the condensational growth, collision-
660 coalescence, and entrainment mixing processes near the cloud top.

661

662 **4.2 Precipitation susceptibility**

663 The precipitation susceptibility relies on the assessment of relative responses in the precipitation
664 rate to the change in N_c (Feingold and Seibert, 2009; Sorooshian et al., 2009), which is defined as:

$$665 S_o = -\frac{\partial \ln(R_{CB})}{\partial \ln(N_c)}, \quad (10)$$

666 where the R_{CB} is the cloud base precipitation rate calculated in section 2 (equation 5). By incorporating
667 all the cloud cases, including both precipitating and non-precipitating clouds (the R_{CB} can also be
668 calculated based on the drizzle DSD near the cloud base), the S_o accounts for the impact of cloud droplets
669 on the potential precipitation ability of the cloud (Terai et al., 2012).

670 As shown in Figure 7a, the R_{CB} values generally have a negative correlation with increased layer-
671 mean N_c for all three IOPs. The S_o values are 0.979, 1.229, and 1.638, with the absolute values of
672 correlation coefficients being 0.33, 0.29, and 0.45 for SOCRATES, ACE-ENA summer and winter,
673 respectively. These correlation coefficient values fall within the reasonable range found in previous
674 studies on precipitation susceptibility in MBL stratus and stratocumulus clouds (Jung et al., 2016; Gupta
675 et al., 2022), and indicate statistically significant dependences of R_{CB} on N_c . Previous study by Terai et
676 al. (2012) found that the S_o values decrease with the increasing cloud thickness over the southeast Pacific,
677 and Jung et al. (2016) found that the S_o is more pronounced within the medium-deep clouds with
678 thickness ~300-400 m in the MBL stratocumulus over the eastern Pacific. While Gupta et al. (2022)
679 found that the S_o values are generally higher under low ambient N_a condition in the southeastern Atlantic
680 MBL. In this study, R_{CB} for the ACE-ENA winter is more susceptible to the layer-mean N_c than the

681 ACE-ENA summer and SOCRATES, which can be partially attributed to the existence of more large
682 drizzle drops (as shown in Fig. 4d) near the cloud base. As previously discussed, the ACE-ENA winter
683 featured enhanced collision-coalescence and drizzle-recirculating processes, especially under low N_c
684 conditions with more large drizzle drops, leading to the increase of S_o values. In comparison, the higher
685 ambient aerosol and CCN concentrations during SOCRATES lead to relatively narrower drizzle DSDs
686 and may induce effective aerosol buffering effects, where the warm-rain processes in cloud are already
687 fairly suppressed, hence diminishing the sensitivity of R_{CB} to N_c (Stevens and Feingold, 2009; Fan et al.,
688 2020; Gupta et al., 2022).

689 It is well known that the R_{CB} can be parameterized or predicted via an approximate relation with
690 N_c and cloud thickness (H_c), which is usually parameterized in the form of $R_{CB} \propto c H_c^3 N_c^{-1}$ (Lu et al.,
691 2009; Kang et al., 2024). Following the same method, we derive the relationships from three IOPs in
692 Figure 7b, where the R_{CB} are positively (negatively) proportional to the H_c (N_c), with the exponential
693 parameters in the range of the typical values in the MBL clouds (Comstock et al., 2004; vanZanten et al.,
694 2005; Lu et al., 2009). The statistical coefficient of determination (R^2) values of R_{CB} against H_c (N_c) are
695 0.696 (0.177), 0.419 (0.212) and 0.165 (0.295), for the ACE-ENA summer, winter and SOCRATES,
696 respectively, suggesting that the R_{CB} in ACE-ENA clouds may be more determined by H_c , while the
697 R_{CB} in SOCRATES cloud are more related to N_c . Note that the relationship for SOCRATES in this study
698 reveals a similar R_{CB} dependence on N_c but a smaller dependence on the cloud thickness than the study
699 by Kang et al. (2024), who concluded a relationship of $R_{CB} = 1.41 \times 10^{-9} H_c^{3.1} N_a^{-0.8}$, based on the rain
700 rate retrieved from radar and lidar measurements and the aerosol concentration also from the
701 SOCRATES. The discrepancies are possibly due to the different sample selections and different methods
702 in the R_{CB} calculation. Note that the mean cloud thicknesses of the ACE-ENA summer (336.3 m), winter
703 (392.4 m) and SOCRATES (487.4 m), are within the thickness range found to exhibit stronger S_o (Terai
704 et al., 2012; Jung et al., 2016; Gupta et al., 2022).

705

706 **4.3 Drizzle impacts on sub-cloud CCN and implication to ACI**

707 Multiple studies on the MBL clouds have concluded that the in-cloud drizzle formation and
 708 evolution processes can effectively impact the sub-cloud CCN budgets via the coalescence-scavenging
 709 effect (Wood, 2006; Wood et al., 2012; Diamond et al., 2018; Zheng et al., 2022b; Zhang et al., 2023).
 710 Drizzle drops are formed and grow via the collision-coalescence process by collecting cloud droplets and
 711 small drizzle drops, resulting in the consumption of CCN (the precursor of cloud droplet), but in the
 712 meantime, the in-cloud N_c can be continuously buffered by the sub-cloud CCN replenishment. Although
 713 the sub-cloud aerosols (especially in large size) would be added if the drizzle fell and evaporated outside
 714 the cloud, the increment cannot compensate for the loss. Therefore, the net result of the whole process is
 715 usually presented as the depletion of sub-cloud CCN residuals, and such drizzle modulation on the CCN
 716 budget could be substantial in moderate-to-light drizzles or even non-precipitating clouds, depending on
 717 the collision-coalescence efficiency (Feingold et al., 1996; Wood, 2006; Kang et al., 2022).

718 The CCN loss rate due to the coalescence-scavenging effect can be calculated as:

$$719 \quad L_{CCN} = -\frac{K H_c}{H_{cp}} * N_c * R_{CB}, \quad (11)$$

720 where the constant K ($2.25 \text{ m}^2 \text{ kg}^{-1}$) denotes the drizzle collection efficiency (Wood et al., 2006; Diamond
 721 et al., 2018). H_c is cloud thickness, and H_{cp} is the coupled layer thickness to ensure the change in the
 722 cloud layer can be sufficiently conveyed throughout the layer. The calculated CCN loss rate for individual
 723 cases is listed in Table S2. Considering all cloud (precipitating cloud) scenarios, the mean CCN loss rates
 724 are $-7.69 \pm 13.96 \text{ cm}^{-3}\text{h}^{-1}$ ($-10.45 \pm 15.56 \text{ cm}^{-3}\text{h}^{-1}$), $-6.29 \pm 11.65 \text{ cm}^{-3}\text{h}^{-1}$ ($-12.11 \pm 14.64 \text{ cm}^{-3}\text{h}^{-1}$), and $-4.94 \pm 7.96 \text{ cm}^{-3}\text{h}^{-1}$ ($-5.58 \pm 8.43 \text{ cm}^{-3}\text{h}^{-1}$) for ACE-ENA summer, winter and SOCRATES, respectively.
 726 As the results indicate, the ACE-ENA clouds experience more substantial sub-cloud CCN loss than
 727 SOCRATES, especially in wintertime precipitating clouds. Recall that the assessment of $ACI_{r,CB}$ relies
 728 on the relative changes of r_c and N_{CCN} , while the different L_{CCN} for individual cases can result in the

729 shrinking of the N_{CCN} variation ranges (imagine the abundant CCN are depleted by the coalescence-
730 scavenging). In other words, the given change in r_c corresponds to a narrowed change in N_{CCN} .
731 Mathematically speaking, the assessment of $ACI_{r,CB}$ depends on the ratio of the numerator (change in r_c)
732 and the denominator (change in N_{CCN}). Under the circumstances of substantial cloud-processing to the
733 aerosols, the altered sub-cloud CCN budgets are reflected as a smaller denominator, versus the less
734 altered numerator, hence mathematically presented as an enlarged $ACI_{r,CB}$. Therefore, the coalescence-
735 scavenging effect can not only deplete the sub-cloud CCN, but also quantitatively amplify the assessment
736 of cloud microphysics susceptibilities (Feingold et al., 1999; Duong et al., 2011; Jung et al., 2016; Zheng
737 et al., 2022b). In order to examine the potential impact of the aforementioned processes on the ACI
738 assessment, a sensitivity analysis is conducted by simply retrospecting the sub-cloud $N_{CCN0.35\%}$
739 according to their L_{CCN} . For each retrospective time step ΔT , the r_c values are held unchanged, and the
740 retrospective $N_{CCN0.35\%}$ values for individual cloud cases are given by $N_{CCN0.35\%} - L_{CCN} * \Delta T$, and then
741 the $ACI_{r,CB}$ can be recalculated. Note that assuming a constant r_c value over time inevitably induces
742 uncertainty and biases, as it does not consider the microphysical processes affecting the cloud droplet
743 mean size. However, previous numerical experiments show that the noticeable impact on the cloud mean
744 radius through collision-coalescence necessitates a high degree of CCN depletion, and the quantified
745 percentage changes in droplet mean sizes are several times less than the changes in CCN depletion
746 (Feingold et al., 1996). Hence, the retrospective method, from an observational snapshot point of view,
747 provides a direction that enables the assessment of $ACI_{r,CB}$ as if before the sub-cloud aerosols and CCN
748 are scavenged by in-cloud coalescence-scavenging and precipitation scavenging processes.

749 As shown in Figure 8, the $ACI_{r,CB}$ values tend to decrease with the retrospective time, which
750 indicates the retrospective CCN variation range is enlarged and counteracting the coalescence-
751 scavenging amplification. The detailed illustration of the different $ACI_{r,CB}$ calculated from the scattered
752 r_c and sub-cloud $N_{CCN0.35\%}$ is shown in Figure S6. Note that the $ACI_{r,CB}$ decreasing rates for the

753 precipitating clouds (Fig. 8b) are not as strong as for all clouds because the non-precipitating clouds have
754 smaller L_{CCN} largely due to weaker collision-coalescence. Hence, the retrospective time scale might
755 quickly exceed the actual time of the cloud-processing effects on the aerosol and CCN. In other words,
756 the time needed, to restore the sub-cloud CCN to the budget before the cloud-processing, is shorter. Thus,
757 results in the faster decrease of $ACI_{r,CB}$ in the non-precipitating cloud. The retrospective of the sub-cloud
758 CCN budget will yield an alternative assessment of ACI, assuming that the drizzle processes have not
759 yet significantly impacted the sub-cloud CCN budget, especially for the assessment under the
760 precipitating clouds. However, examining the exact precipitating timing is challenging since the aircraft
761 provides a snapshot of the cloud and aerosol information. Thus, this retrospective study only provides a
762 possible direction, and the result should be interpreted with caution.

763

764 **5. Summary and Conclusions**

765 Based on the aircraft in-situ measurements during ACE-ENA and SOCRATES, the vertical
766 distributions and the evolutions of the aerosol, cloud, and drizzle properties are investigated under the
767 cloud-topped MBL environments. The aerosols and CCN from SOCRATES are the highest among the
768 three IOPs, followed by ACE-ENA summer and winter in descending order in both above- and sub-cloud
769 regimes. The differences can be attributed to the differences in aerosol size distributions between ACE-
770 ENA and SOCRATES, which are largely due to the aerosol sources in those regions. The SOCRATES
771 features the pre-industrial natural environment enriched by aerosols from marine biological productivity
772 and without the contamination of anthropogenic aerosols, while the ACE-ENA features the aerosols from
773 varied sources, including maritime and continental emissions, with distinct seasonal variations.
774 Examining the aerosol size distributions in sub-cloud versus above-cloud regimes manifests the
775 significant influence of cloud processing on aerosols. Physical processing like in-cloud Brownian capture
776 can reduce Aitken mode aerosols, while the chemical processes transform Aitken mode aerosols to larger
777 sizes, moving them toward the accumulation mode. In addition, the in-cloud coalescence processes shift

778 sub-cloud aerosol residuals to larger sizes, as multiple aerosols combine into a single aerosol core inside
779 the cloud droplet during collision-coalescence, explaining the observed increase in the tail-end of the
780 aerosol distribution for all IOPs.

781 As for the cloud and drizzle properties, the SOCRATES clouds feature more and smaller cloud
782 droplets than the ACE-ENA summertime and wintertime clouds, with the r_c growths (and percentage
783 increases), from cloud base to top, being $4.03 \mu\text{m}$ (0.66%), $4.78 \mu\text{m}$ (0.68%), and $5.85 \mu\text{m}$ (0.79%) for
784 SOCRATES, ACE-ENA summer, and winter, respectively. The cloud-top entrainment mixing is
785 evidenced in the observed decline of both N_c and LWC_c near the cloud top. The mean cloud-top
786 entrainment rates (w_e) are $0.570 \pm 0.834 \text{ cm s}^{-1}$, $0.581 \pm 0.560 \text{ cm s}^{-1}$, and $0.960 \pm 1.127 \text{ cm s}^{-1}$ for
787 SOCRATES, ACE-ENA summer and winter, respectively. The strongest w_e during ACE-ENA winter is
788 owing to weaker cloud-top inversions and stronger near-cloud-top turbulence. The values of the TKE for
789 three IOPs are generally within the ranges of previous studies (Atlas et al., 2020; Ghate et al., 2021). For
790 drizzle vertical distribution, N_d from the three IOPs all exhibit decreases from cloud top to cloud base,
791 while D_{mmd} are in opposite directions with a maximum at the cloud base. The ACE-ENA wintertime
792 clouds feature more prominent drizzle formation and evolution owing to the combined effects of
793 relatively cleaner environment, deeper cloud layer, and slightly stronger in-cloud vertical turbulence,
794 which substantially enhances the collision-coalescence and the drizzle re-circulating processes,
795 compared to the other two IOPs. While satellite retrievals of droplet number concentration heavily rely
796 on the adiabatic cloud assumption and are usually given as a constant of $f_{ad} = 0.8$, the in-situ
797 observational evidence found in this study further confirms the unrealistic nature of this assumption. It
798 will be of interest to utilize multiple aircraft measurements (campaigns) to explore the variability of MBL
799 cloud and drizzle microphysical properties over different marine regions. This can help examine potential
800 predictors for f_{ad} , which will aid in satellite-based retrievals and aerosol-cloud interaction assessments
801 (Painemal and Zuidema, 2011; Grosvenor et al., 2018; Painemal et al., 2021).

802 Comparing the seasonality of cloud base precipitation rate (R_{CB}) during ACE-ENA, more cases
803 with large observed R_{CB} during the winter season, which is consistent with J. Wang et al. (2022). Notably,
804 the sensitivity of R_{CB} to N_c is more pronounced for the ACE-ENA during both winter (with precipitation
805 susceptibility $S_o = 1.638$) and summer ($S_o = 1.229$) compared to the SOCRATES ($S_o = 0.979$). This is
806 partly due to the much higher R_{CB} induced by larger drizzle drops near the cloud base for ACE-ENA, a
807 result of turbulence-driven in-cloud droplet interactions, especially under low N_c condition. Furthermore,
808 R_{CB} can be approximated by a relationship involving N_c and H_c , as suggested in prior research. The
809 relationships established in this study indicate that ACE-ENA clouds, are largely determined by H_c ,
810 while SOCRATES clouds are more influenced by the N_c . The combination of a deeper cloud layer and
811 relatively lower ambient aerosol concentration, eventually leading to stronger drizzle production and
812 evolution during ACE-ENA, especially during the winter season, results in more robust precipitation
813 susceptibility. Note that considering the combined factors of aerosol loadings, cloud morphology and
814 thicknesses, and the assessment methodology, the derived S_o values in this study are generally higher (or
815 close to the upper end) compared to previous studies (Lu et al., 2009; Duong et al., 2011; Terai et al.,
816 2012; Jung et al., 2016; Gupta et al., 2022).

817 The investigations of the ACI via the $ACI_{N,CB}$ and $ACI_{r,CB}$ indices reveal that during the ACE-
818 ENA wintertime, N_c is more sensitive to changes in $N_{CCN0.35\%}$, indicating aerosols more readily activate
819 to become cloud droplets compared to those in the summer, which is consistent with the previous
820 assessment by J. Wang et al. (2022) on the seasonal dependency of the relationship between N_c and
821 aerosols. One influencing factor is the strong dynamic mechanism that speeds up the infusion of CCN
822 into the cloud layer, thus aiding droplet formation. The moderate but statistically significant correlation
823 coefficients between the CCN activation fractions and the TKE agree with a previous study that found
824 the local activation fraction of CCN to be strongly associated with increased updrafts (Hu et al., 2021).
825 Furthermore, the presence of larger aerosols during ACE-ENA winter enhances the droplet activation

826 process. The SOCRATES IOP highlights a higher $ACI_{r,CB}$, indicating a pronounced decrease in r_c with
827 increasing $N_{CCN0.35\%}$. The $ACI_{r,CB}$ in ACE-ENA is damped by the presence of more large cloud
828 droplets near the cloud base, particularly under relatively higher $N_{CCN0.35\%}$. However, the combined
829 effect of the relatively cleaner environment and sufficient water vapor results in stronger cloud
830 microphysical responses during the ACE-ENA wintertime than in the summertime. Note that the ACI
831 indices from this study lie in the higher end of the ACI ranges estimated via remote sensing (McComiskey
832 et al., 2009; Dong et al., 2015; Zheng et al., 2022a) possibly because the aircraft assessment of ACI is
833 based on measurements where the aerosols are in direct contact with the cloud layer. Arguably, the
834 assessment of N_c responses to $N_{CCN0.35\%}$ would inevitably be affected by the collision-coalescence
835 process near the cloud base, where simultaneously, the CCN replenishment buffers the N_c and the
836 collision-coalescence process depletes N_c . Hence, finding a layer where these two effects maintain a
837 dynamic balance in N_c might aid in a more accurate assessment and more fundamental understanding of
838 the ACI, which might be revealed by the LES or parcel model simulations.

839 Additionally, the in-cloud drizzle formation and evolution processes significantly influence the
840 sub-cloud CCN budgets via the coalescence-scavenging effect, which can potentially exaggerate the
841 assessment of cloud microphysics susceptibilities. Based on the CCN loss rate (L_{CCN}) from ACE-ENA
842 and SOCRATES, a sensitivity analysis is performed focusing on retrospectively adjusting the sub-cloud
843 CCN according to their L_{CCN} . Results showed that this adjustment led to a decreased $ACI_{r,CB}$,
844 highlighting the significance of the coalescence-scavenging process on the ACI assessment. However,
845 due to the fact that aircraft only provide a snapshot of the clouds and aerosol information, determining
846 the precise drizzle timing for the individual cloud is challenging. Hence, findings from this retrospective
847 approach provide only a direction or theory, and should be taken cautiously. Nevertheless, pursuing
848 further modeling experiments on this matter may be worthwhile. For example, the exact drizzling time
849 could be pinpointed within a model using an Eulerian framework or traced using a Lagrangian framework.

850 Nevertheless, the CCN adjustment could more accurately reflect the true characteristics of the cloud and
851 the MBL CCN budget, potentially aiding in a more precise assessment of ACI. Therefore, future works
852 would focus on the model simulation on the MBL clouds from ACE-ENA and SOCRATES and further
853 assess the modeled ACI under the observational constraints, as well as the continuous development of
854 the warm rain microphysical parameterizations, in order to aid in the better represent the MBL clouds in
855 multiple regions.

856

857

858 *Data availability.* The ACE-ENA field campaign data can be accessed from the Department of Energy
859 Atmospheric Radiation Measurement data archive ([https://iop.archive.arm.gov/arm-iop-
860 file/2017/ena/aceena/](https://iop.archive.arm.gov/arm-iop-file/2017/ena/aceena/)). The SOCRATES field campaign data are publicly archived on the National
861 Center for Atmospheric Research (NCAR) Earth Observing Laboratory
862 (https://data.eol.ucar.edu/master_lists/generated/socrates/).

863

864 *Author contributions.* The original idea of this study is discussed by XZ, XD, and BX. XZ performed the
865 analyses and wrote the manuscript. XZ, XD, BX, TL, and YW participated in further scientific
866 discussions and provided substantial comments and edits on the paper.

867

868 *Competing interests.* At least one of the (co-)authors is a member of the editorial board of Atmospheric
869 Chemistry and Physics.

870

871 *Acknowledgments.* This work was supported by the NSF grants AGS-2031750/2031751/20211752 at the
872 University of Arizona, Texas A&M University and Stanford University, respectively. The authors
873 sincerely thank the investigators and mentors from the ACE-ENA and SOCRATES field campaigns for
874 making the data publicly available.

875 **References.**

876 Albrecht B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, *Science*, 245, 1227-1230,
877 10.1126/science.245.4923.1227, 1989

878 Albrecht, B. A., Bretherton, C. S., Johnson, D., Scubert, W. H., and Frisch, A. S.: The Atlantic
879 Stratocumulus Transition Experiment—ASTEX, *B. Am. Meteorol. Soc.*, 76, 889-904,
880 10.1175/1520-0477(1995)076<0889:Taste>2.0.Co;2, 1995.

881 Albrecht, B., Fang, M., and Ghate, V.: Exploring Stratocumulus Cloud-Top Entrainment Processes and
882 Parameterizations by Using Doppler Cloud Radar Observations, *J. Atmos. Sci.*, 73, 729-742,
883 10.1175/JAS-D-15-0147.1, 2016.

884 Atlas, R. L., Bretherton, C. S., Blossey, P. N., Gettelman, A., Bardeen, C., Lin, P., and Ming, Y.: How
885 Well Do Large-Eddy Simulations and Global Climate Models Represent Observed Boundary Layer
886 Structures and Low Clouds Over the Summertime Southern Ocean?, *Journal of Advances in*
887 *Modeling Earth Systems*, 12, e2020MS002205, <https://doi.org/10.1029/2020MS002205>, 2020.

888 Atlas, R., Mohrmann, J., Finlon, J., Lu, J., Hsiao, I., Wood, R., and Diao, M.: The University of
889 Washington Ice–Liquid Discriminator (UWILD) improves single-particle phase classifications of
890 hydrometeors within Southern Ocean clouds using machine learning, *Atmos. Meas. Tech.*, 14,
891 7079-7101, 10.5194/amt-14-7079-2021, 2021.

892 Baumgardner, D. and Korolev, A.: Airspeed Corrections for Optical Array Probe Sample Volumes, *J.*
893 *Atmos. Ocean. Tech.*, 14, 1224-1229, [https://doi.org/10.1175/1520-0426\(1997\)014<1224:ACFOAP>2.0.CO;2](https://doi.org/10.1175/1520-0426(1997)014<1224:ACFOAP>2.0.CO;2), 1997.

895 Baumgardner, D., Abel, S. J., Axisa, D., Cotton, R., Crosier, J., Field, P., Gurganus, C., Heymsfield, A.,
896 Korolev, A., Krämer, M., Lawson, P., McFarquhar, G., Ulanowski, Z., and Um, J.: Cloud Ice
897 Properties: In Situ Measurement Challenges, *Meteor. Monogr.*, 58, 9.1-9.23,
898 <https://doi.org/10.1175/AMSMONOGRAPHSD-16-0011.1>, 2017.

899 Braun, R. A., Dadashazar, H., MacDonald, A. B., Crosbie, E., Jonsson, H. H., Woods, R. K., Flagan, R.
900 C., Seinfeld, J. H., and Sorooshian, A.: Cloud Adiabaticity and Its Relationship to Marine
901 Stratocumulus Characteristics Over the Northeast Pacific Ocean, *J. Geophys. Res.-Atmos.*, 123,
902 13790 - 13806, 10.1029/2018jd029287, 2018.

903 Brenguier, J. L., Burnet, F., and Geoffroy, O.: Cloud optical thickness and liquid water path – does the k
904 coefficient vary with droplet concentration?, *Atmos. Chem. Phys.*, 11, 9771-9786, 10.5194/acp-11-
905 9771-2011, 2011.

906 Brost, R. A., Wyngaard, J. C., and Lenschow, D. H.: Marine Stratocumulus Layers. Part II: Turbulence
907 Budgets, *J. Atmos. Sci.*, 39, 818-836, 10.1175/1520-0469(1982)039<0818:MSLPIT>2.0.CO;2,
908 1982.

909 Brunke, M. A., Cutler, L., Urzua, R. D., Corral, A. F., Crosbie, E., Hair, J., Hostetler, C., Kirschler, S.,
910 Larson, V., Li, X.-Y., Ma, P.-L., Minke, A., Moore, R., Robinson, C. E., Scarino, A. J., Schlosser,
911 J., Shook, M., Sorooshian, A., Lee Thornhill, K., Voigt, C., Wan, H., Wang, H., Winstead, E., Zeng,
912 X., Zhang, S., and Ziemba, L. D.: Aircraft Observations of Turbulence in Cloudy and Cloud-Free
913 Boundary Layers Over the Western North Atlantic Ocean From ACTIVATE and Implications for
914 the Earth System Model Evaluation and Development, *J. Geophys. Res.-Atmos.*, 127,
915 e2022JD036480, <https://doi.org/10.1029/2022JD036480>, 2022.

916 Chen, J., Liu, Y., Zhang, M., and Peng, Y.: Height Dependency of Aerosol-Cloud Interaction Regimes,
917 *J. Geophys. Res.-Atmos.*, 123, 491-506, <https://doi.org/10.1002/2017JD027431>, 2018.

918 Chen, S., Yau, M. K., and Bartello, P.: Turbulence Effects of Collision Efficiency and Broadening of
919 Droplet Size Distribution in Cumulus Clouds, *J. Atmos. Sci.*, 75, 203-217,
920 <https://doi.org/10.1175/JAS-D-17-0123.1>, 2018.

921 Chen, Y. C., Xue, L., Lebo, Z. J., Wang, H., Rasmussen, R. M., and Seinfeld, J. H.: A comprehensive
922 numerical study of aerosol-cloud-precipitation interactions in marine stratocumulus, *Atmos. Chem.*
923 *Phys.*, 11, 9749-9769, 10.5194/acp-11-9749-2011, 2011.

924 Christensen, M. W., Ma, P. L., Wu, P., Varble, A. C., Mülmenstädt, J., and Fast, J. D.: Evaluation of
925 aerosol–cloud interactions in E3SM using a Lagrangian framework, *Atmos. Chem. Phys.*, 23, 2789–
926 2812, 10.5194/acp-23-2789-2023, 2023.

927 Comstock, K. K., Wood, R., Yuter, S. E., and Bretherton, C. S.: Reflectivity and rain rate in and below
928 drizzling stratocumulus, *Q. J. R. Meteor. Soc.*, 130, 2891–2918, <https://doi.org/10.1256/qj.03.187>,
929 2004.

930 Cooper, W. A., Friesen, R. B., Hayman, M., Jensen, J., Lenschow, D. H., Romashkin, P., Schanot, A., Spuler, S.,
931 Stith, J., and Wolff, C.: Characterization of Uncertainty in Measurements of Wind from the NSF/NCAR
932 Gulfstream V Research Aircraft (No. NCAR/TN-528+STR), NCAR Technical Notes,
933 doi:10.5065/D60G3HJ8, 2016.

934 Covert, D. S., Kapustin, V. N., Bates, T. S., and Quinn, P. K.: Physical properties of marine boundary
935 layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport, *J.*
936 *Geophys. Res.-Atmos.*, 101, 6919–6930, <https://doi.org/10.1029/95JD03068>, 1996.

937 D'Alessandro, J. J., McFarquhar, G. M., Wu, W., Stith, J. L., Jensen, J. B., and Rauber, R. M.:
938 Characterizing the Occurrence and Spatial Heterogeneity of Liquid, Ice, and Mixed Phase Low-
939 Level Clouds Over the Southern Ocean Using in Situ Observations Acquired During SOCRATES,
940 *J. Geophys. Res.-Atmos.*, 126, e2020JD034482, <https://doi.org/10.1029/2020JD034482>, 2021.

941 Danker, J., Sourdeval, O., McCoy, I. L., Wood, R., and Possner, A.: Exploring relations between cloud
942 morphology, cloud phase, and cloud radiative properties in Southern Ocean's stratocumulus clouds,
943 *Atmos. Chem. Phys.*, 22, 10247–10265, 10.5194/acp-22-10247-2022, 2022.

944 Desai, N., Liu, Y., Glienke, S., Shaw, R. A., Lu, C., Wang, J., and Gao, S.: Vertical Variation of Turbulent
945 Entrainment Mixing Processes in Marine Stratocumulus Clouds Using High-Resolution Digital
946 Holography, *J. Geophys. Res.-Atmos.*, 126, e2020JD033527,
947 <https://doi.org/10.1029/2020JD033527>, 2021.

948 Dong, X., Schwantes, A. C., Xi, B., and Wu, P.: Investigation of the marine boundary layer cloud and
949 CCN properties under coupled and decoupled conditions over the Azores, *J. Geophys. Res.-Atmos.*,
950 120, 6179-6191, <https://doi.org/10.1002/2014JD022939>, 2015.

951 Dong, X., X. Zheng, B. Xi, and S. Xie (2023), A Climatology of Midlatitude Maritime Cloud Fraction
952 and Radiative Effect Derived from the ARM ENA Ground-Based Observations, *J. Climate*, 36(2),
953 531-546, doi:10.1175/JCLI-D-22-0290.1.

954 Duong, H. T., Sorooshian, A., and Feingold, G.: Investigating potential biases in observed and modeled
955 metrics of aerosol-cloud-precipitation interactions, *Atmos. Chem. Phys.*, 11, 4027-4037,
956 10.5194/acp-11-4027-2011, 2011.

957 Fan, C., Wang, M., Rosenfeld, D., Zhu, Y., Liu, J., and Chen, B.: Strong Precipitation Suppression by
958 Aerosols in Marine Low Clouds, *Geophys. Res. Lett.*, 47, e2019GL086207,
959 <https://doi.org/10.1029/2019GL086207>, 2020.

960 Feingold, G., Frisch, A. S., Stevens, B., and Cotton, W. R.: On the relationship among cloud turbulence,
961 droplet formation and drizzle as viewed by Doppler radar, microwave radiometer and lidar, *J.*
962 *Geophys. Res.-Atmos.*, 104, 22195-22203, <https://doi.org/10.1029/1999JD900482>, 1999.

963 Feingold, G., Kreidenweis, S. M., Stevens, B., and Cotton, W. R.: Numerical simulations of
964 stratocumulus processing of cloud condensation nuclei through collision-coalescence, *J. Geophys.*
965 *Res.-Atmos.*, 101, 21391-21402, <https://doi.org/10.1029/96JD01552>, 1996.

966 Feingold, G. and McComiskey, A.: ARM's Aerosol–Cloud–Precipitation Research (Aerosol Indirect Effects),
967 *Meteor. Monogr.*, 57, 22.21-22.15, 10.1175/AMSMONOGRAPHSD-15-0022.1, 2016.

968 Feingold, G. and Siebert, H.: Cloud – Aerosol Interactions from the Micro to the Cloud Scale, from the
969 Strungmann Forum Report, *Clouds in the Perturbed Climate System: Their Relationship to Energy*
970 *Balance, Atmospheric Dynamics, and Precipitation*, 2, edited by: Heintzenberg, J. and Charlson, R.
971 J., MIT Press, ISBN 978-0-262-01287-4, 2009.

972 Flossmann, A. I., Hall, W. D., and Pruppacher, H. R.: A Theoretical Study of the Wet Removal of
973 Atmospheric Pollutants. Part I: The Redistribution of Aerosol Particles Captured through
974 Nucleation and Impaction Scavenging by Growing Cloud Drops, *J. Atmos. Sci.*, 42, 583-606,
975 [https://doi.org/10.1175/1520-0469\(1985\)042<0583:ATSOTW>2.0.CO;2](https://doi.org/10.1175/1520-0469(1985)042<0583:ATSOTW>2.0.CO;2), 1985.

976 Gao, S., Lu, C., Liu, Y., Mei, F., Wang, J., Zhu, L., and Yan, S.: Contrasting Scale Dependence of
977 Entrainment-Mixing Mechanisms in Stratocumulus Clouds, *Geophys. Res. Lett.*, 47,
978 e2020GL086970, <https://doi.org/10.1029/2020GL086970>, 2020.

979 Ghate, V. P. and Cadeddu, M. P.: Drizzle and Turbulence Below Closed Cellular Marine Stratocumulus
980 Clouds, *J. Geophys. Res.-Atmos.*, 124, 5724-5737, <https://doi.org/10.1029/2018JD030141>, 2019.

981 Ghate, V. P., Cadeddu, M. P., Zheng, X., and O'Connor, E.: Turbulence in the Marine Boundary Layer
982 and Air Motions below Stratocumulus Clouds at the ARM Eastern North Atlantic Site, *J. Appl.*
983 *Meteorol. Clim.*, 60, 1495-1510, 10.1175/JAMC-D-21-0087.1, 2021.

984 Grabowski, W. W. and Wang, L.-P.: Growth of Cloud Droplets in a Turbulent Environment, *Annual*
985 *Review of Fluid Mechanics*, 45, 293-324, 10.1146/annurev-fluid-011212-140750, 2013.

986 Grosvenor, D. P., Sourdeval, O., Zuidema, P., Ackerman, A., Alexandrov, M. D., Bennartz, R., Boers,
987 R., Cairns, B., Chiu, J. C., Christensen, M., Deneke, H., Diamond, M., Feingold, G., Fridlind, A.,
988 Hünerbein, A., Knist, C., Kollias, P., Marshak, A., McCoy, D., Merk, D., Painemal, D., Rausch, J.,
989 Rosenfeld, D., Russchenberg, H., Seifert, P., Sinclair, K., Stier, P., van Diedenhoven, B., Wendisch,
990 M., Werner, F., Wood, R., Zhang, Z., and Quaas, J.: Remote Sensing of Droplet Number
991 Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives,
992 *Reviews of Geophysics*, 56, 409-453, <https://doi.org/10.1029/2017RG000593>, 2018.

993 Gupta, S., McFarquhar, G. M., O'Brien, J. R., Delene, D. J., Poellot, M. R., Dobracki, A., Podolske, J.
994 R., Redemann, J., LeBlanc, S. E., Segal-Rozenhaimer, M., and Pistone, K.: Impact of the variability
995 in vertical separation between biomass burning aerosols and marine stratocumulus on cloud

996 microphysical properties over the Southeast Atlantic, *Atmos. Chem. Phys.*, 21, 4615– 4635,
997 <https://doi.org/10.5194/acp-21-4615-2021>, 2021.

998 Gupta, S., McFarquhar, G. M., O'Brien, J. R., Poellot, M. R., Delene, D. J., Miller, R. M., and Small
999 Griswold, J. D.: Factors affecting precipitation formation and precipitation susceptibility of marine
1000 stratocumulus with variable above- and below-cloud aerosol concentrations over the Southeast
1001 Atlantic, *Atmos. Chem. Phys.*, 22, 2769–2793, <https://doi.org/10.5194/acp-22-2769-2022>, 2022.

1002 Hansen, J. E. and Travis, L. D.: Light scattering in planetary atmospheres, *Space Sci. Rev.*, 16, 527-610,
1003 doi:10.1007/BF00168069, 1974.

1004 Hill, A. A., Feingold, G., and Jiang, H.: The Influence of Entrainment and Mixing Assumption on
1005 Aerosol–Cloud Interactions in Marine Stratocumulus, *J. Atmos. Sci.*, 66, 1450-1464,
1006 10.1175/2008JAS2909.1, 2009.

1007 Hinds, W.C.: *Aerosol Technology, Properties, Behaviour, and Measurement of Airborne Particles*. John
1008 Wiley & Sons Inc., New York., 1999.

1009 Hoffmann, F. and Feingold, G.: A Note on Aerosol Processing by Droplet Collision-Coalescence,
1010 *Geophys. Res. Lett.*, 50, e2023GL103716, <https://doi.org/10.1029/2023GL103716>, 2023.

1011 Hu, A. Z., Igel, A. L., Chuang, P. Y., and Witte, M. K.: Recognition of Inter-Cloud Versus Intra-Cloud
1012 Controls on Droplet Dispersion With Applications to Microphysics Parameterization, *J. Geophys.*
1013 *Res.-Atmos.*, 126, e2021JD035180, <https://doi.org/10.1029/2021JD035180>, 2021.

1014 Hudson, J. G. and Noble, S.: CCN Spectral Shape and Cumulus Cloud and Drizzle Microphysics, *J.*
1015 *Geophys. Res.-Atmos.*, 125, e2019JD031141, <https://doi.org/10.1029/2019JD031141>, 2020.

1016 Jensen, M. P., Ghate, V. P., Wang, D., Apoznanski, D. K., Bartholomew, M. J., Giangrande, S. E.,
1017 Johnson, K. L., and Thieman, M. M.: Contrasting characteristics of open- and closed-cellular
1018 stratocumulus cloud in the eastern North Atlantic, *Atmos. Chem. Phys.*, 21, 14557-14571,
1019 10.5194/acp-21-14557-2021, 2021.

1020 Jones, C. R., Bretherton, C. S., and Leon, D.: Coupled vs. decoupled boundary layers in VOCALS-REx,
1021 Atmos. Chem. Phys., 11, 7143-7153, 10.5194/acp-11-7143-2011, 2011.

1022 Jung, E., Albrecht, B. A., Sorooshian, A., Zuidema, P., and Jonsson, H. H.: Precipitation susceptibility
1023 in marine stratocumulus and shallow cumulus from airborne measurements, Atmos. Chem. Phys.,
1024 16, 11395-11413, 10.5194/acp-16-11395-2016, 2016.

1025 Kang, L., Marchand, R. T., Wood, R., and McCoy, I. L.: Coalescence Scavenging Drives Droplet
1026 Number Concentration in Southern Ocean Low Clouds, Geophys. Res. Lett., 49, e2022GL097819,
1027 <https://doi.org/10.1029/2022GL097819>, 2022.

1028 Kang, L., Marchand, R. T., and Wood, R.: Stratocumulus Precipitation Properties Over the Southern
1029 Ocean Observed From Aircraft During the SOCRATES Campaign, J. Geophys. Res.-Atmos., 129,
1030 e2023JD039831, <https://doi.org/10.1029/2023JD039831>, 2024.

1031 Kim, S. H., Kim, J., Kim, J. H., and Chun, H. Y.: Characteristics of the derived energy dissipation rate
1032 using the 1 Hz commercial aircraft quick access recorder (QAR) data, Atmos. Meas. Tech.,
1033 15, 2277-2298, 10.5194/amt-15-2277-2022, 2022.

1034 Lang, F., Ackermann, L., Huang, Y., Truong, S. C. H., Siems, S. T., and Manton, M. J.: A climatology
1035 of open and closed mesoscale cellular convection over the Southern Ocean derived from Himawari-
1036 8 observations, Atmos. Chem. Phys., 22, 2135-2152, 10.5194/acp-22-2135-2022, 2022.

1037 Lu, C., Zhu, L., Liu, Y., Mei, F., Fast, J. D., Pekour, M. S., Luo, S., Xu, X., He, X., Li, J., and Gao, S.:
1038 Observational study of relationships between entrainment rate, homogeneity of mixing, and cloud
1039 droplet relative dispersion, Atmos. Res., 293, 106900,
1040 <https://doi.org/10.1016/j.atmosres.2023.106900>, 2023.

1041 Lu, M.-L., Sorooshian, A., Jonsson, H. H., Feingold, G., Flagan, R. C., and Seinfeld, J. H.: Marine
1042 stratocumulus aerosol-cloud relationships in the MASE-II experiment: Precipitation susceptibility
1043 in eastern Pacific marine stratocumulus, J. Geophys. Res.-Atmos., 114,
1044 <https://doi.org/10.1029/2009JD012774>, 2009.

1045 Mann, J. A. L., Christine Chiu, J., Hogan, R. J., O'Connor, E. J., L'Ecuyer, T. S., Stein, T. H. M., and
1046 Jefferson, A.: Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility
1047 maritime and continental deployments, *J. Geophys. Res.-Atmos.*, 119, 4136-4148,
1048 <https://doi.org/10.1002/2013JD021339>, 2014.

1049 Marcovecchio, A. R., Xi, B., Zheng, X., Wu, P., Dong, X., and Behrangi, A.: What Are the Similarities
1050 and Differences in Marine Boundary Layer Cloud and Drizzle Microphysical Properties During the
1051 ACE-ENA and MARCUS Field Campaigns?, *J. Geophys. Res.-Atmos.*, 128, e2022JD037109,
1052 <https://doi.org/10.1029/2022JD037109>, 2023.

1053 Mechem, D. B., Wittman, C. S., Miller, M. A., Yuter, S. E., and de Szoke, S. P.: Joint Synoptic and
1054 Cloud Variability over the Northeast Atlantic near the Azores, *J. Appl. Meteorol. Clim.*, 57, 1273-
1055 1290, <https://doi.org/10.1175/JAMC-D-17-0211.1>, 2018.

1056 McComiskey, A., Feingold, G., Frisch, A. S., Turner, D. D., Miller, M. A., Chiu, J. C., Min, Q., and
1057 Ogren, J. A.: An assessment of aerosol-cloud interactions in marine stratus clouds based on surface
1058 remote sensing, *J. Geophys. Res.-Atmos.*, 114, <https://doi.org/10.1029/2008JD011006>, 2009.

1059 McCoy, I. L., Wood, R., and Fletcher, J. K.: Identifying Meteorological Controls on Open and Closed
1060 Mesoscale Cellular Convection Associated with Marine Cold Air Outbreaks, *J. Geophys. Res.-*
1061 *Atmos.*, 122, 11,678-611,702, <https://doi.org/10.1002/2017JD027031>, 2017.

1062 McCoy, I. L., McCoy, D. T., Wood, R., Regayre, L., Watson-Parris, D., Grosvenor, D. P., Mulcahy, J.
1063 P., Hu, Y., Bender, F. A. M., Field, P. R., Carslaw, K. S., and Gordon, H.: The hemispheric contrast
1064 in cloud microphysical properties constrains aerosol forcing, *P. Natl. Acad. Sci. USA*, 117, 18998-
1065 19006, 10.1073/pnas.1922502117, 2020.

1066 McCoy, I. L., Bretherton, C. S., Wood, R., Twohy, C. H., Gettelman, A., Bardeen, C. G., and Toohey,
1067 D. W.: Influences of Recent Particle Formation on Southern Ocean Aerosol Variability and Low
1068 Cloud Properties, *J. Geophys. Res.-Atmos.*, 126, e2020JD033529,
1069 <https://doi.org/10.1029/2020JD033529>, 2021.

1070 McFarquhar, G. M., Bretherton, C. S., Marchand, R., Protat, A., DeMott, P. J., Alexander, S. P., Roberts,
1071 G. C., Twohy, C. H., Toohey, D., Siems, S., Huang, Y., Wood, R., Rauber, R. M., Lasher-Trapp,
1072 S., Jensen, J., Stith, J. L., Mace, J., Um, J., Järvinen, E., Schnaiter, M., Gettelman, A., Sanchez, K.
1073 J., McCluskey, C. S., Russell, L. M., McCoy, I. L., Atlas, R. L., Bardeen, C. G., Moore, K. A., Hill,
1074 T. C. J., Humphries, R. S., Keywood, M. D., Ristovski, Z., Cravigan, L., Schofield, R., Fairall, C.,
1075 Mallet, M. D., Kreidenweis, S. M., Rainwater, B., D'Alessandro, J., Wang, Y., Wu, W., Saliba, G.,
1076 Levin, E. J. T., Ding, S., Lang, F., Truong, S. C. H., Wolff, C., Haggerty, J., Harvey, M. J.,
1077 Klekociuk, A. R., and McDonald, A.: Observations of Clouds, Aerosols, Precipitation, and Surface
1078 Radiation over the Southern Ocean: An Overview of CAPRICORN, MARCUS, MCRE, and
1079 SOCRATES, B. Am. Meteorol. Soc., 102, E894-E928, <https://doi.org/10.1175/BAMS-D-20-0132.1>, 2021.

1081 Muñoz-Esparza, D., Sharman, R. D., and Lundquist, J. K.: Turbulence Dissipation Rate in the
1082 Atmospheric Boundary Layer: Observations and WRF Mesoscale Modeling during the XPIA Field
1083 Campaign, Mon. Weather Rev., 146, 351-371, <https://doi.org/10.1175/MWR-D-17-0186.1>, 2018.

1084 Olfert, J. S., Kulkarni, P., and Wang, J.: Measuring aerosol size distributions with the fast integrated
1085 mobility spectrometer, Journal of Aerosol Science, 39, 940-956,
1086 <https://doi.org/10.1016/j.jaerosci.2008.06.005>, 2008.

1087 Painemal, D. and Zuidema, P.: Assessment of MODIS cloud effective radius and optical thickness
1088 retrievals over the Southeast Pacific with VOCALS-REx in situ measurements, J. Geophys. Res.-
1089 Atmos., 116, <https://doi.org/10.1029/2011JD016155>, 2011.

1090 Painemal, D., Chang, F. L., Ferrare, R., Burton, S., Li, Z., Smith Jr, W. L., Minnis, P., Feng, Y., and
1091 Clayton, M.: Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the
1092 subtropical ocean by integrating vertically resolved aerosol observations, Atmos. Chem. Phys., 20,
1093 7167-7177, 10.5194/acp-20-7167-2020, 2020.

1094 Painemal, D., Spangenberg, D., Smith Jr, W. L., Minnis, P., Cairns, B., Moore, R. H., Crosbie, E.,
1095 Robinson, C., Thornhill, K. L., Winstead, E. L., and Ziembba, L.: Evaluation of satellite retrievals of
1096 liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the
1097 NAAMES campaign, *Atmos. Meas. Tech.*, 14, 6633-6646, 10.5194/amt-14-6633-2021, 2021.

1098 Pinsky, M. B. and Khain, A. P.: Turbulence effects on droplet growth and size distribution in clouds—
1099 A review, *Journal of Aerosol Science*, 28, 1177-1214, [https://doi.org/10.1016/S0021-8502\(97\)00005-0](https://doi.org/10.1016/S0021-8502(97)00005-0), 1997.

1100 Pruppacher, H. R. and Klett, J. D.: *Microphysics of clouds and precipitation*, Kluwer Academic
1101 Publishers, Dordrecht, the Netherlands, 1997.

1102 Rémillard, J. and Tselioudis, G.: Cloud Regime Variability over the Azores and Its Application to
1103 Climate Model Evaluation, *J. Climate*, 28, 9707-9720, <https://doi.org/10.1175/JCLI-D-15-0066.1>,
1104 2015.

1105 Sanchez, K. J., Roberts, G. C., Diao, M., and Russell, L. M.: Measured Constraints on Cloud Top
1106 Entrainment to Reduce Uncertainty of Nonprecipitating Stratocumulus Shortwave Radiative
1107 Forcing in the Southern Ocean, *Geophys. Res. Lett.*, 47, e2020GL090513,
1108 <https://doi.org/10.1029/2020GL090513>, 2020.

1109 Sanchez, K. J., Roberts, G. C., Saliba, G., Russell, L. M., Twohy, C., Reeves, J. M., Humphries, R. S.,
1110 Keywood, M. D., Ward, J. P., and McRobert, I. M.: Measurement report: Cloud processes and the
1111 transport of biological emissions affect southern ocean particle and cloud condensation nuclei
1112 concentrations, *Atmos. Chem. Phys.*, 21, 3427-3446, 10.5194/acp-21-3427-2021, 2021.

1113 Siebert, H., Shaw, R. A., and Warhaft, Z.: Statistics of Small-Scale Velocity Fluctuations and Internal
1114 Intermittency in Marine Stratocumulus Clouds, *J. Atmos. Sci.*, 67, 262-273,
1115 <https://doi.org/10.1175/2009JAS3200.1>, 2010.

1117 Smalley, M. A., Witte, M. K., Jeong, J.-H., and Chinita, M. J.: A climatology of cold pools distinct from
1118 background turbulence at the Eastern North Atlantic observations site, EGUsphere [preprint],
1119 <https://doi.org/10.5194/egusphere-2024-1098>, 2024.

1120 Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and precipitation in a buffered system,
1121 *Nature*, 461, 607-613, 10.1038/nature08281, 2009.

1122 Sorooshian, A., Feingold, G., Lebsack, M. D., Jiang, H., and Stephens, G. L.: On the precipitation
1123 susceptibility of clouds to aerosol perturbations, *Geophys. Res. Lett.*, 36,
1124 <https://doi.org/10.1029/2009GL038993>, 2009.

1125 Su, T., Li, Z., Henao, N. R., Luan, Q., and Yu, F.: Constraining effects of aerosol-cloud interaction by
1126 accounting for coupling between cloud and land surface, *Science Advances*, 10, eadl5044,
1127 10.1126/sciadv.adl5044,

1128 Terai, C. R. and Wood, R.: Aircraft observations of cold pools under marine stratocumulus, *Atmos.*
1129 *Chem. Phys.*, 13, 9899-9914, 10.5194/acp-13-9899-2013, 2013.

1130 Terai, C. R., Wood, R., Leon, D. C., and Zuidema, P.: Does precipitation susceptibility vary with
1131 increasing cloud thickness in marine stratocumulus?, *Atmos. Chem. Phys.*, 12, 4567-4583,
1132 10.5194/acp-12-4567-2012, 2012.

1133 Twohy, C. H., Petters, M. D., Snider, J. R., Stevens, B., Tahnk, W., Wetzel, M., Russell, L., and Burnet,
1134 F.: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size,
1135 liquid water path, and radiative impact, *J. Geophys. Res.-Atmos.*, 110,
1136 <https://doi.org/10.1029/2004JD005116>, 2005.

1137 vanZanten, M. C., Stevens, B., Vali, G., and Lenschow, D. H.: Observations of Drizzle in Nocturnal
1138 Marine Stratocumulus, *J. Atmos. Sci.*, 62, 88-106, <https://doi.org/10.1175/JAS-3355.1>, 2005.

1139 Wacławczyk, M., Ma, Y. F., Kopeć, J. M., and Malinowski, S. P.: Novel approaches to estimating the
1140 turbulent kinetic energy dissipation rate from low- and moderate-resolution velocity fluctuation
1141 time series, *Atmos. Meas. Tech.*, 10, 4573-4585, 10.5194/amt-10-4573-2017, 2017.

1142 Wang, J., Wood, R., Jensen, M. P., Chiu, J. C., Liu, Y., Lamer, K., Desai, N., Giangrande, S. E., Knopf,
1143 D. A., Kollias, P., Laskin, A., Liu, X., Lu, C., Mechem, D., Mei, F., Starzec, M., Tomlinson, J.,
1144 Wang, Y., Yum, S. S., Zheng, G., Aiken, A. C., Azevedo, E. B., Blanchard, Y., China, S., Dong,
1145 X., Gallo, F., Gao, S., Ghate, V. P., Glienke, S., Goldberger, L., Hardin, J. C., Kuang, C., Luke, E.
1146 P., Matthews, A. A., Miller, M. A., Moffet, R., Pekour, M., Schmid, B., Sedlacek, A. J., Shaw, R.
1147 A., Shilling, J. E., Sullivan, A., Suski, K., Veghte, D. P., Weber, R., Wyant, M., Yeom, J.,
1148 Zawadowicz, M., and Zhang, Z.: Aerosol and Cloud Experiments in the Eastern North Atlantic
1149 (ACE-ENA), *B. Am. Meteorol. Soc.*, 103, E619-E641, 10.1175/BAMS-D-19-0220.1, 2022.

1150 Wang, Y., Zhao, C., McFarquhar, G. M., Wu, W., Reeves, M., and Li, J.: Dispersion of Droplet Size
1151 Distributions in Supercooled Non-precipitating Stratocumulus from Aircraft Observations Obtained
1152 during the Southern Ocean Cloud Radiation Aerosol Transport Experimental Study, *J. Geophys.
1153 Res.-Atmos.*, 126, e2020JD033720, <https://doi.org/10.1029/2020JD033720>, 2021a.

1154 Wang, Y., Zheng, G., Jensen, M. P., Knopf, D. A., Laskin, A., Matthews, A. A., Mechem, D., Mei, F.,
1155 Moffet, R., Sedlacek, A. J., Shilling, J. E., Springston, S., Sullivan, A., Tomlinson, J., Veghte, D.,
1156 Weber, R., Wood, R., Zawadowicz, M. A., and Wang, J.: Vertical profiles of trace gas and aerosol
1157 properties over the eastern North Atlantic: variations with season and synoptic condition, *Atmos.
1158 Chem. Phys.*, 21, 11079-11098, 10.5194/acp-21-11079-2021, 2021b.

1159 Wang, Y., Zheng, X., Dong, X., Xi, B., Wu, P., Logan, T., and Yung, Y. L.: Impacts of long-range
1160 transport of aerosols on marine-boundary-layer clouds in the eastern North Atlantic, *Atmos. Chem.
1161 Phys.*, 20, 14741-14755, 10.5194/acp-20-14741-2020, 2020.

1162 Wang, Y., Zheng, X., Dong, X., Xi, B., and Yung, Y. L.: Insights of warm-cloud biases in Community
1163 Atmospheric Model 5 and 6 from the single-column modeling framework and Aerosol and Cloud
1164 Experiments in the Eastern North Atlantic (ACE-ENA) observations, *Atmos. Chem. Phys.*, 23,
1165 8591-8605, 10.5194/acp-23-8591-2023, 2023.

1166 Wallace, J. M. and Hobbs, P. V.: Atmospheric Science: An Introductory Survey, 2nd edn., Academic
1167 Press/Elsevier, 483 pp, 2006.

1168 Witte, M. K., Chuang, P. Y., Ayala, O., Wang, L.-P., and Feingold, G.: Comparison of Observed and
1169 Simulated Drop Size Distributions from Large-Eddy Simulations with Bin Microphysics, Mon.
1170 Weather Rev., 147, 477-493, <https://doi.org/10.1175/MWR-D-18-0242.1>, 2019.

1171 Wood, R.: Drizzle in Stratiform Boundary Layer Clouds. Part I: Vertical and Horizontal Structure, J.
1172 Atmos. Sci., 62, 3011-3033, 10.1175/JAS3529.1, 2005.

1173 Wood, R.: Rate of loss of cloud droplets by coalescence in warm clouds, J. Geophys. Res.-Atmos., 111,
1174 <https://doi.org/10.1029/2006JD007553>, 2006.

1175 Wood, R., Wyant, M., Bretherton, C. S., Rémillard, J., Kollias, P., Fletcher, J., Stemmler, J., de Szoek,
1176 S., Yuter, S., Miller, M., Mechem, D., Tselioudis, G., Chiu, J. C., Mann, J. A. L., O'Connor, E. J.,
1177 Hogan, R. J., Dong, X., Miller, M., Ghate, V., Jefferson, A., Min, Q., Minnis, P., Palikonda, R.,
1178 Albrecht, B., Luke, E., Hannay, C., and Lin, Y.: Clouds, Aerosols, and Precipitation in the Marine
1179 Boundary Layer: An Arm Mobile Facility Deployment, B. Am. Meteorol. Soc., 96, 419-440,
1180 10.1175/BAMS-D-13-00180.1, 2015.

1181 Wu, P., Dong, X., and Xi, B.: A Climatology of Marine Boundary Layer Cloud and Drizzle Properties
1182 Derived from Ground-Based Observations over the Azores, J. Climate, 33, 10133-10148,
1183 10.1175/JCLI-D-20-0272.1, 2020.

1184 Wu, P., Dong, X., Xi, B., Liu, Y., Thieman, M., and Minnis, P.: Effects of environment forcing on marine
1185 boundary layer cloud-drizzle processes, J. Geophys. Res.-Atmos., 122, 4463-4478,
1186 <https://doi.org/10.1002/2016JD026326>, 2017.

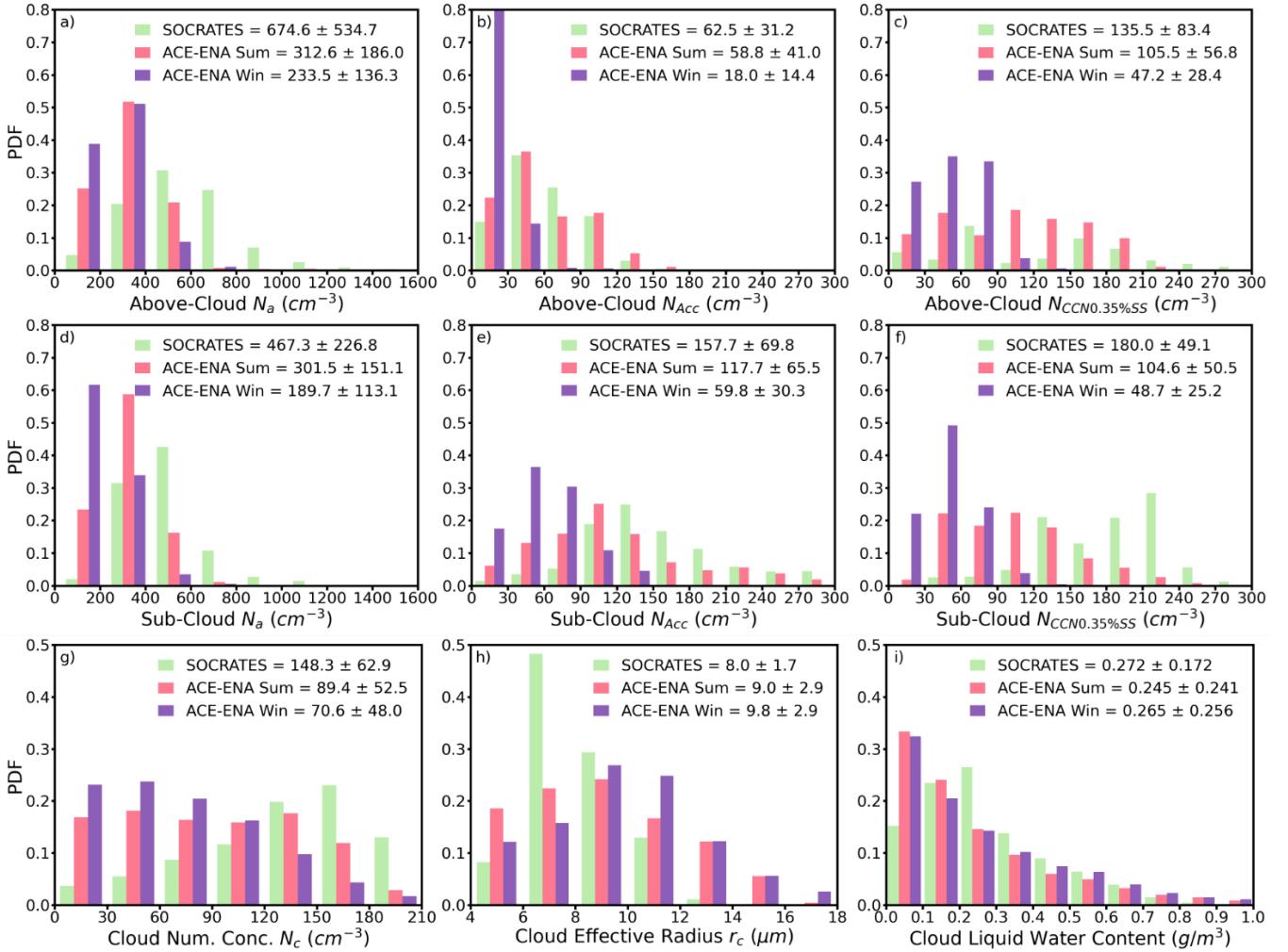
1187 Wyant, M. C., Bretherton, C. S., Wood, R., Blossey, P. N., and McCoy, I. L.: High Free-Tropospheric
1188 Aitken-Mode Aerosol Concentrations Buffer Cloud Droplet Concentrations in Large-Eddy
1189 Simulations of Precipitating Stratocumulus, Journal of Advances in Modeling Earth Systems, 14,
1190 e2021MS002930, <https://doi.org/10.1029/2021MS002930>, 2022.

1191 Yeom, J. M., Yum, S. S., Shaw, R. A., La, I., Wang, J., Lu, C., Liu, Y., Mei, F., Schmid, B., and
1192 Matthews, A.: Vertical Variations of Cloud Microphysical Relationships in Marine Stratocumulus
1193 Clouds Observed During the ACE-ENA Campaign, *J. Geophys. Res.-Atmos.*, 126,
1194 e2021JD034700, <https://doi.org/10.1029/2021JD034700>, 2021.

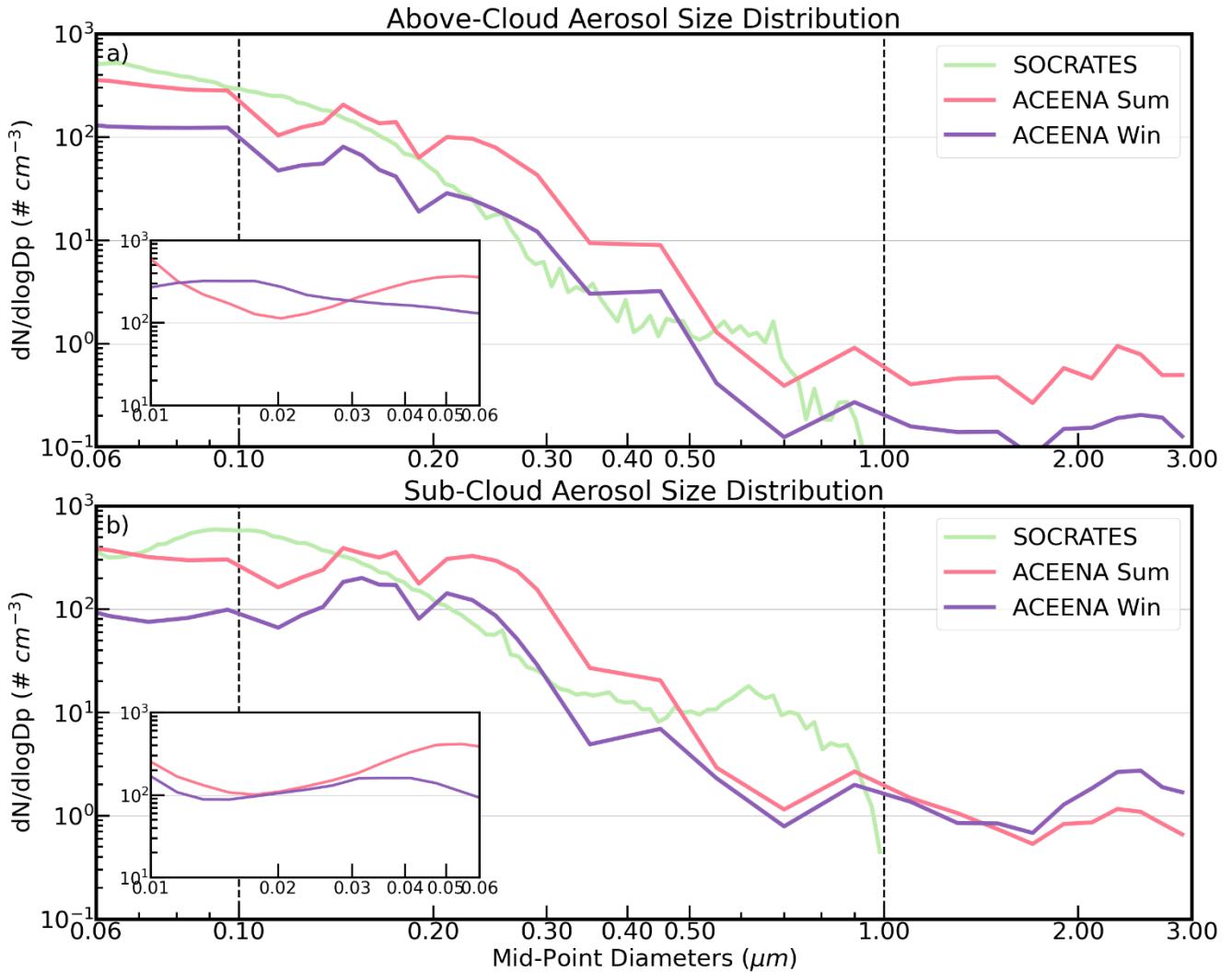
1195 Zawadowicz, M. A., Suski, K., Liu, J., Pekour, M., Fast, J., Mei, F., Sedlacek, A. J., Springston, S.,
1196 Wang, Y., Zaveri, R. A., Wood, R., Wang, J., and Shilling, J. E.: Aircraft measurements of aerosol
1197 and trace gas chemistry in the eastern North Atlantic, *Atmos. Chem. Phys.*, 21, 7983-8002,
1198 10.5194/acp-21-7983-2021, 2021.

1199 Zhang, J., Zhou, X., Goren, T., and Feingold, G.: Albedo susceptibility of northeastern Pacific
1200 stratocumulus: the role of covarying meteorological conditions, *Atmos. Chem. Phys.*, 22, 861-880,
1201 10.5194/acp-22-861-2022, 2022.

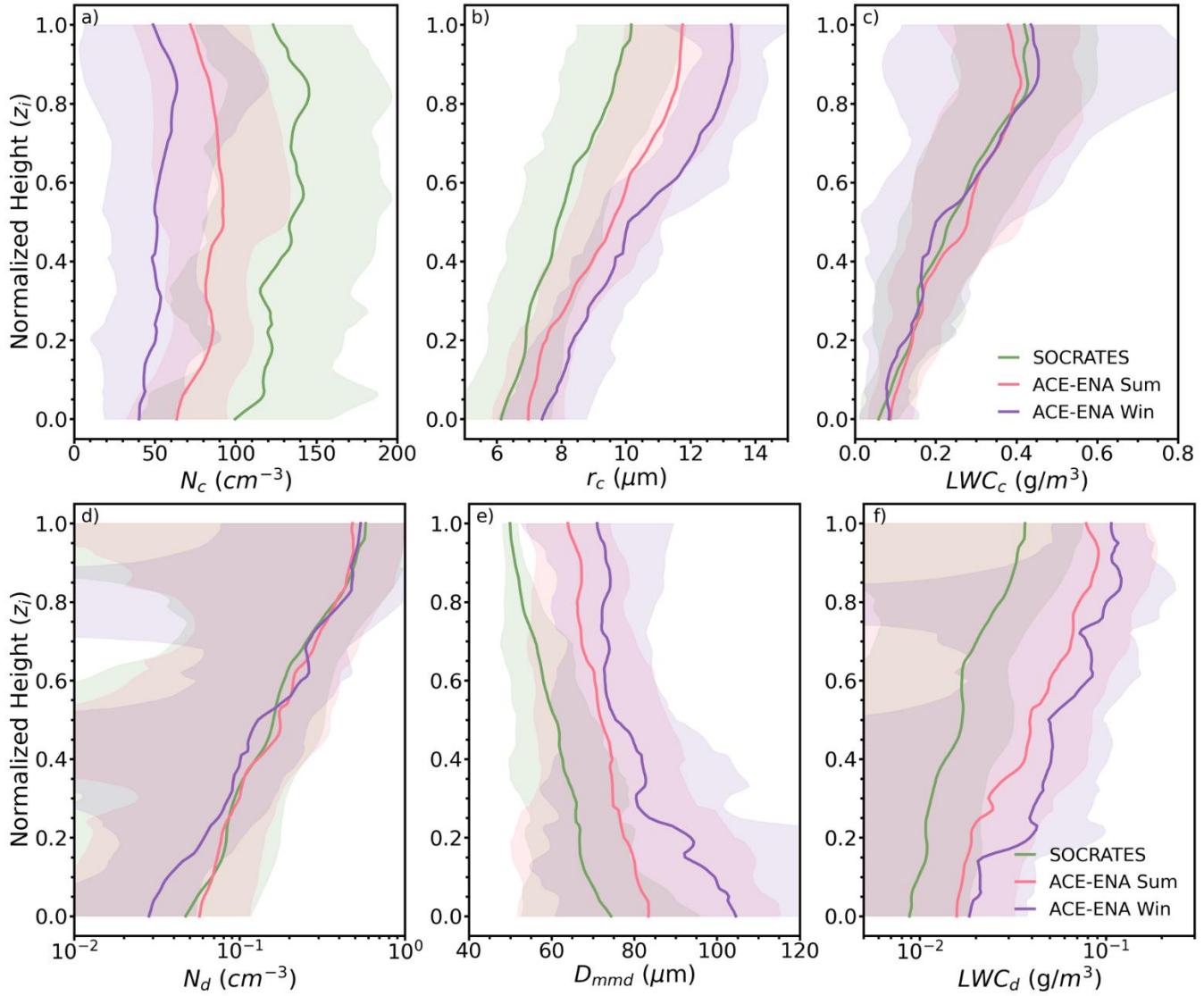
1202 Zhang, X., Dong, X., Xi, B., and Zheng, X.: Aerosol Properties and Their Influences on Marine Boundary
1203 Layer Cloud Condensation Nuclei over the Southern Ocean, *Atmosphere-Basel*, 14,
1204 10.3390/atmos14081246, 2023.

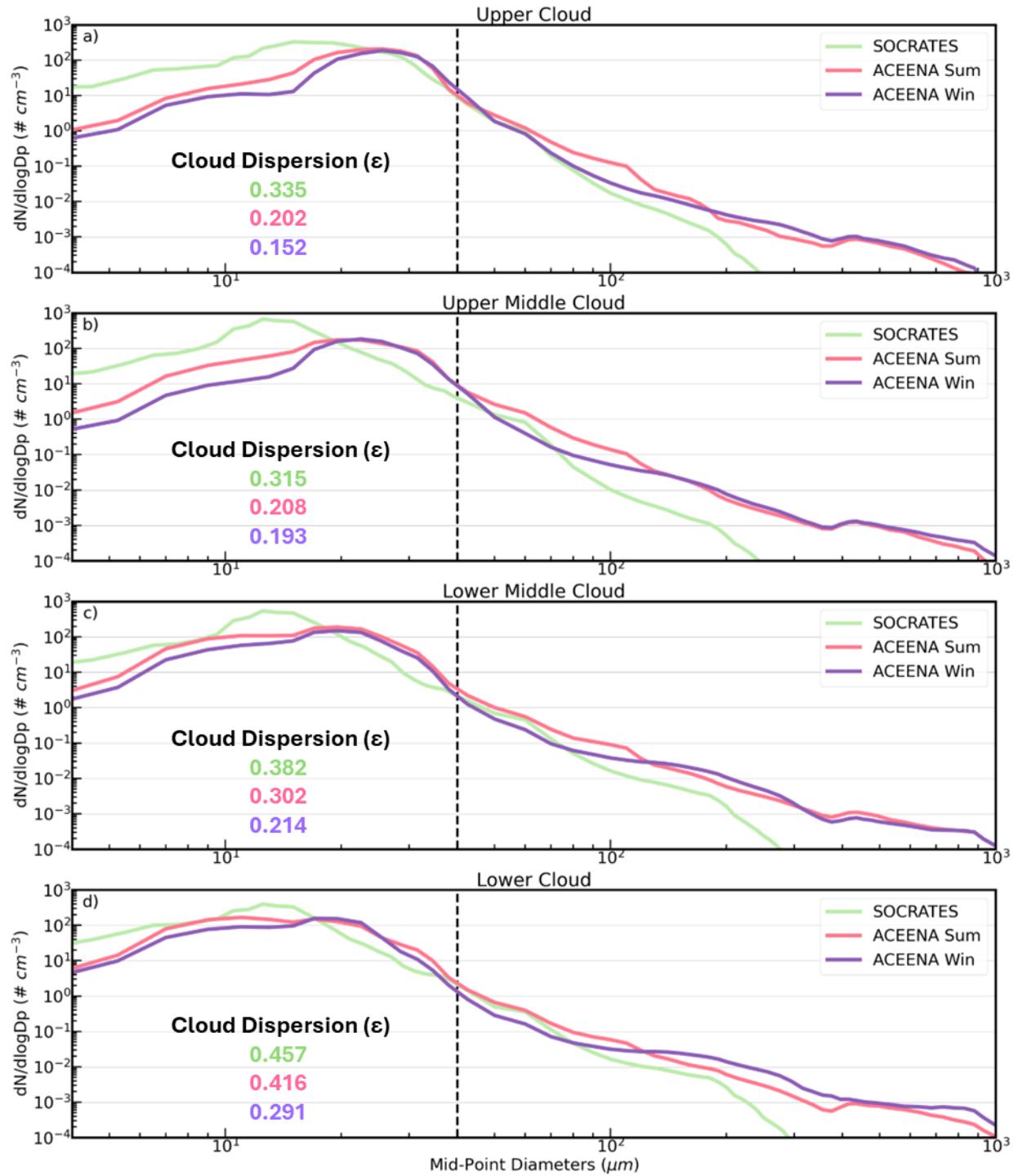

1205 Zheng, G., Wang, Y., Aiken, A. C., Gallo, F., Jensen, M. P., Kollias, P., Kuang, C., Luke, E., Springston,
1206 S., Uin, J., Wood, R., and Wang, J.: Marine boundary layer aerosol in the eastern North Atlantic:
1207 seasonal variations and key controlling processes, *Atmos. Chem. Phys.*, 18, 17615-17635,
1208 10.5194/acp-18-17615-2018, 2018.

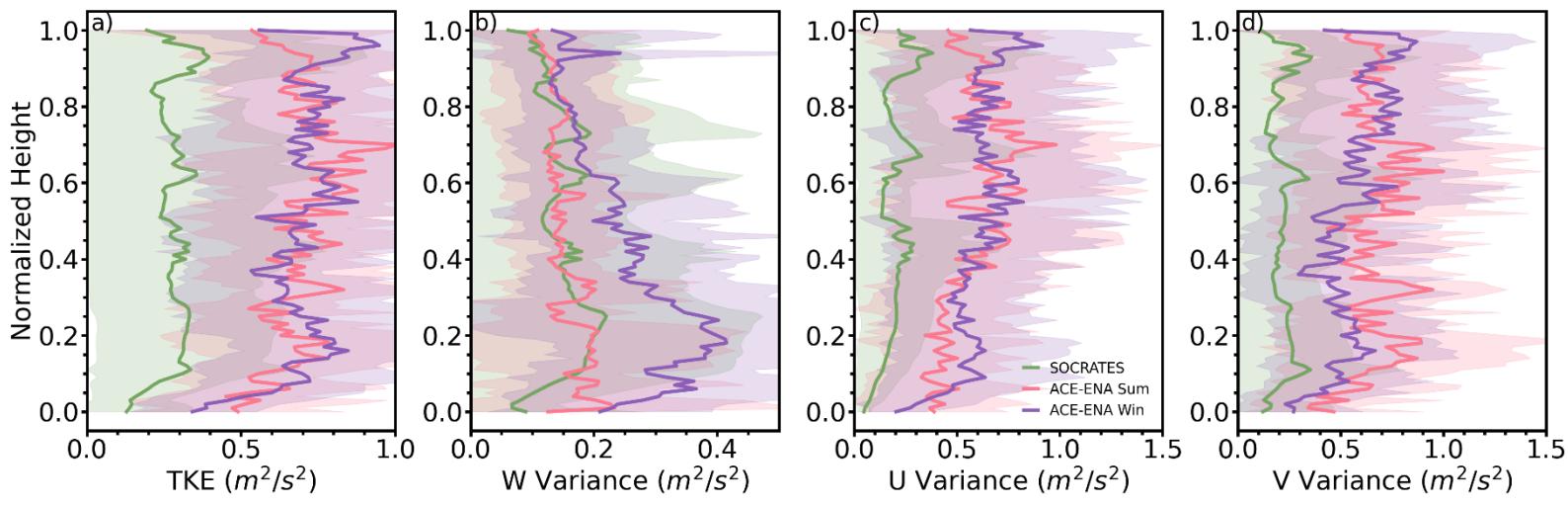
1209 Zheng, G., Wang, Y., Wood, R., Jensen, M. P., Kuang, C., McCoy, I. L., Matthews, A., Mei, F.,
1210 Tomlinson, J. M., Shilling, J. E., Zawadowicz, M. A., Crosbie, E., Moore, R., Ziembka, L., Andreae,
1211 M. O., and Wang, J.: New particle formation in the remote marine boundary layer, *Nature
1212 Communications*, 12, 527, 10.1038/s41467-020-20773-1, 2021.

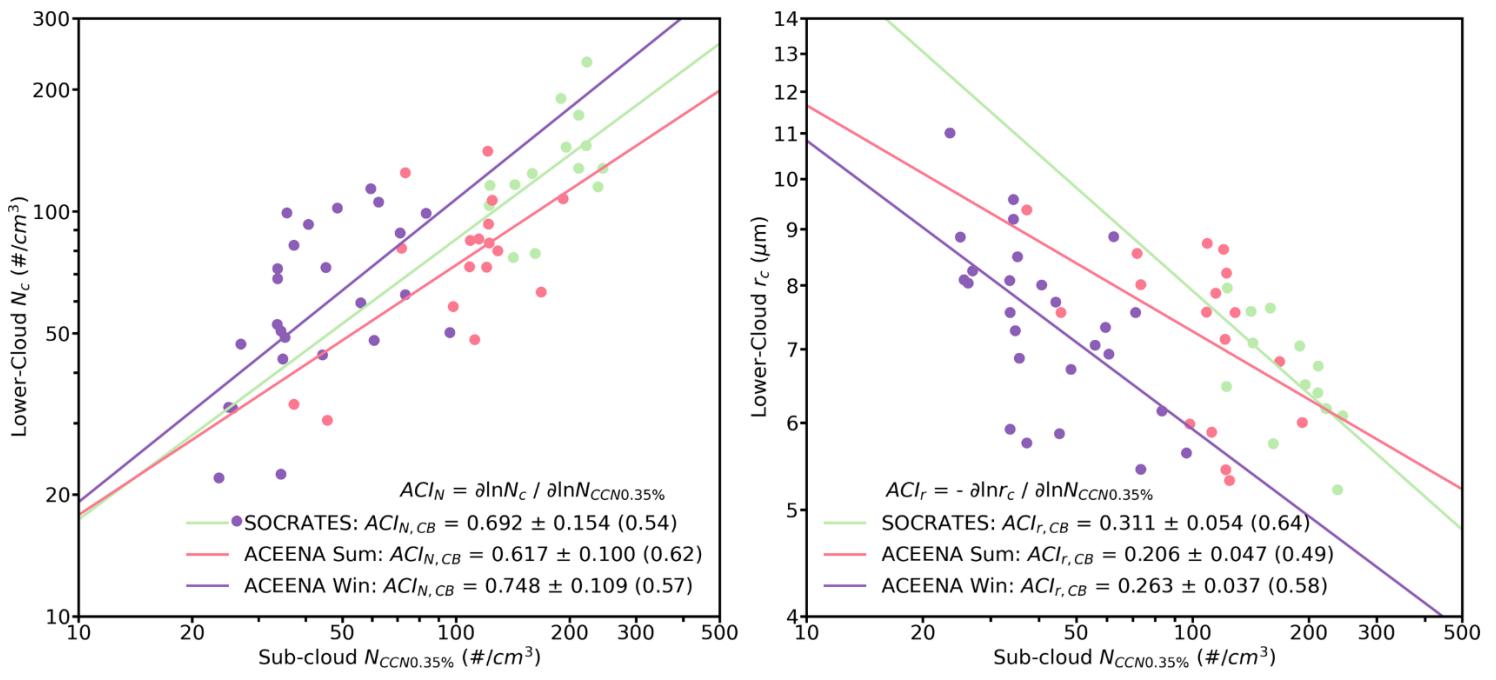

1213 Zheng, X., Dong, X., Ward, D. M., Xi, B., Wu, P., and Wang, Y.: Aerosol-Cloud-Precipitation
1214 Interactions in a Closed-cell and Non-homogenous MBL Stratocumulus Cloud, *Adv. Atmos. Sci.*,
1215 39, 2107-2123, 10.1007/s00376-022-2013-6, 2022a.

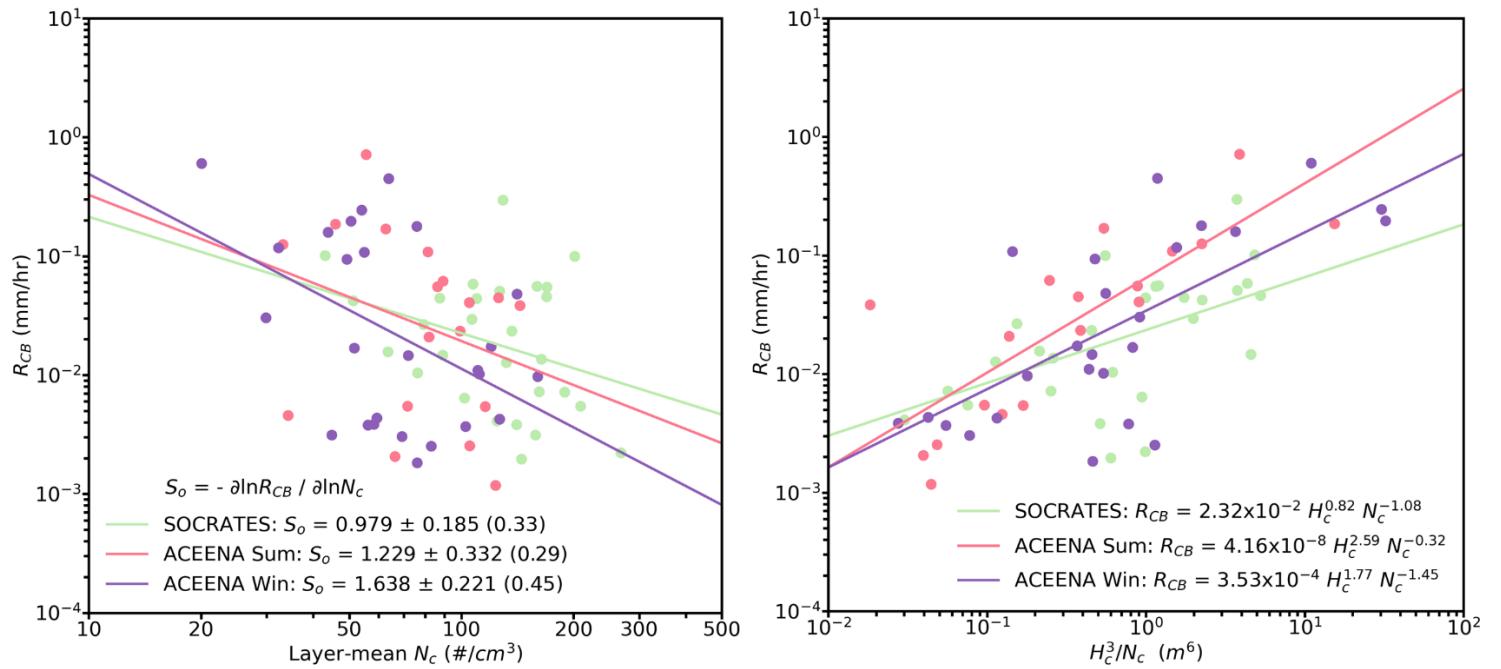
1216 Zheng, X., Xi, B., Dong, X., Wu, P., Logan, T., and Wang, Y.: Environmental effects on aerosol–cloud
1217 interaction in non-precipitating marine boundary layer (MBL) clouds over the eastern North
1218 Atlantic, *Atmos. Chem. Phys.*, 22, 335–354, 10.5194/acp-22-335-2022, 2022b.


1219 Zuidema, P., Torri, G., Muller, C., and Chandra, A.: A Survey of Precipitation-Induced Atmospheric
1220 Cold Pools over Oceans and Their Interactions with the Larger-Scale Environment, *Surveys in*
1221 *Geophysics*, 38, 1283–1305, 10.1007/s10712-017-9447-x, 2017.


Figure 1. Probability Density Functions (PDFs) of N_a , N_{Acc} and $N_{CCN0.35\%}$ in the above-cloud (a, b, c) and sub-cloud (d, e, f) regimes; and the cloud microphysical properties of N_c (g), r_c (h), and LWC_c (i) within cloud layer. The statistical metrics in the legends denote the mean and standard deviation values for all samples in three IOPs. The ACE-ENA summer, winter and SOCRAVES are color-coded with pink, purple and green, respectively.


Figure 2. Aerosol size distributions ($D_p = 0.06 - 3 \mu\text{m}$) for above-cloud (a) and sub-cloud (b) regimes. The vertical dashed line at $D_p = 0.1 \mu\text{m}$ and at $D_p = 1 \mu\text{m}$ denotes the demarcations between Accumulation mode, Aitken mode and Coarse mode aerosols. The inner plots denote a smaller range of Aitken mode size distribution ($D_p = 0.01 - 0.06 \mu\text{m}$) available from ACE-ENA. The ACE-ENA summer, winter and SOCRATES are color-coded with pink, purple and green, respectively.


1222 **Figure 3.** Vertical distributions of N_c (a), r_c (b), LWC_c (c), N_d (d), D_{mmd} (e), and LWC_d (f). Here the
 1223 $z_i = 0$ denotes cloud base and $z_i = 1$ denotes cloud top. Shaded areas denote the inter-cloud-case
 1224 standard deviations. The ACE-ENA summer, winter and SOCrates are color-coded with pink, purple
 1225 and green, respectively.


1226 **Figure 4.** Cloud and drizzle size distributions for a) upper cloud ($z_i > 0.8$), b) upper-middle cloud ($0.5 \leq$
 1227 $z_i < 0.8$), c) lower-middle cloud ($0.2 \leq z_i < 0.5$) and d) lower cloud ($z_i < 0.2$). The vertical dashed
 1228 line at $D_p = 40 \mu\text{m}$ denotes the demarcation between cloud droplets and drizzle drops. The ACE-ENA
 1229 summer, winter and SOCrates are color-coded with pink, purple and green, respectively.

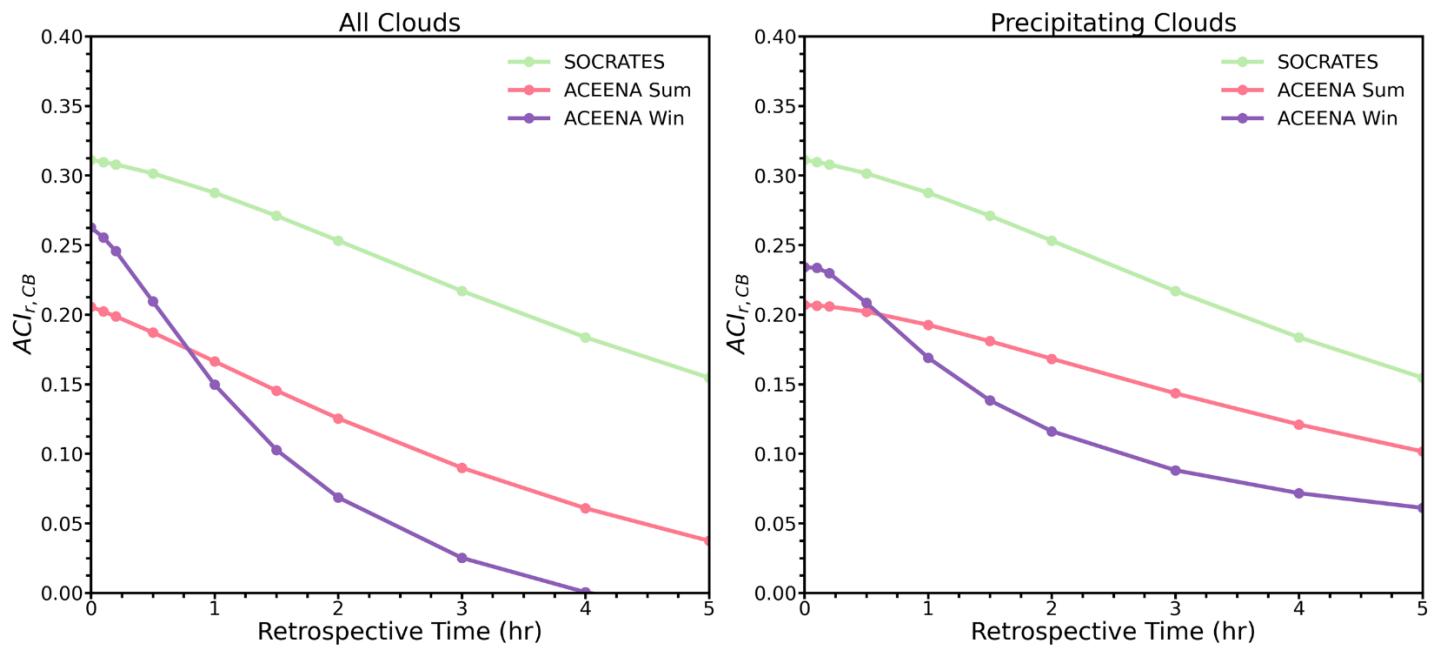

Figure 5. Vertical distributions of in-cloud TKE (a), w'^2 (b), u'^2 (c) and v'^2 (d). Shaded areas denote the inter-cloud-case standard deviations. The ACE-ENA summer, winter and SOCrates are color-coded with pink, purple and green, respectively.

Figure 6. Scatterplots of the a) N_c and b) r_c at the lower-cloud ($z_i < 0.2$) against the sub-cloud $N_{CCN0.35\%}$. The statistical metrics in the legends denote the ACI values and standard errors, and the absolute values of correlation coefficients (in parentheses). The ACE-ENA summer, winter and SOCRATES are color-coded with pink, purple and green, respectively.

Figure 7. Scatterplots of the cloud base precipitation rate R_{CB} against the a) layer-mean N_c and b) H_c^3/N_c . ACE-ENA summer, winter and SOCRATES are color-coded with pink, purple and green, respectively.

Figure 8. $ACI_{r,CB}$ as a function of the sub-cloud $N_{CCN0.35\%}$ retrospective time for a) all clouds and b) precipitating clouds.