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Abstract. Given the importance of constraining cloud droplet number concentrations (Nd) in low-level clouds, we explore two 10 
methods for retrieving Nd from surface-based remote sensing that emphasize the information content in lidar measurements. 

Because Nd is the zeroth moment of the droplet size distribution (DSD), and all remote sensing approaches respond to DSD 

moments are at least two orders greater than the zeroth moment, deriving Nd from remote sensing measurements has significant 

uncertainty. At minimum, such algorithms require extrapolation of information from two other measurements that respond to 

different moments of the DSD. Lidar, for instance, is sensitive to the second moment (cross-sectional area) of the DSD, while other 

measures from microwave sensors respond to higher-order moments. We develop methods using a simple lidar forward model that 

demonstrates that the depth to the maximum in lidar attenuated backscatter (rmax) is strongly sensitive to Nd when some measure 

of the liquid water content vertical profile is given or assumed. Knowledge of rmax to within 5 m can constrain Nd to within several 

10’s of percent. However, operational lidar networks provide vertical resolutions or >15 m, making a direct calculation of Nd from 

rmax prohibitively uncertain. Therefore, we develop a Bayesian optimal estimation algorithm that brings additional information to 20 
the inversion, such as lidar-derived extinction and radar reflectivity near cloud top. This statistical approach provides reasonable 

characterizations of Nd and effective radius (re) to within approximately a factor of 2 and 30%, respectively. By comparing surface-

derived cloud properties with MODIS satellite and aircraft data collected during the Marcus and Capricorn 2 campaigns, we 

demonstrate the utility of the methodology. 

 

Short Summary:  The number of cloud droplets, Nd, in a cloud is important for understanding aerosol-cloud interaction.   In this 

study we develop techniques to derive cloud droplet number concentration from lidar measurements combined with other remote 

sensing measurements such as cloud radar and microwave radiometer.  We show that the deriving Nd is very uncertain although a 

synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.     

1 Introduction 30 

The number of cloud droplets per unit volume (Nd) is essential for characterizing cloud properties. Particularly for lower 

tropospheric liquid-phase clouds, Nd forms a bridge between atmospheric aerosol and the earth’s albedo by determining how 

condensed water is partitioned into droplet surface area. Higher droplet concentrations for a given condensed mass result in more 

surface area and more reflective clouds (Twomey, 1974). Thus, many cloud parameterizations used in models include Nd as one of 

the moments in multi-moment cloud schemes where the other moment is typically related to the mass mixing ratio (Gettelman and 

Morrison, 2015; Thompson and Eidhammer, 2014; Seifert and Beheng, 2005). Conceptually, using Nd as a baseline parameter 

makes sense since droplets typically condense on hygroscopic aerosol particles (hereafter cloud condensation nuclei or CCN), 

thereby fixing Nd as the water droplets grow in an updraft. The initial Nd at the cloud base would be an upper limit on Nd in the 

ascending updraft because coalescence processes would reduce Nd, and precipitation would further scavenge cloud droplets. 
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However, aircraft observations often show that for shallow clouds of less than 1 km in depth with minimal precipitation, Nd is 40 
reasonably constant with height (Miles et al., 2000). 

 

In this paper, we revisit the methodology used in Mace et al., (2021; Hereafter M21) and attempt to extend that methodology with 

a focus on lidar measurements from below cloud. In M21, the method derived in M21 was applied to non-precipitating clouds 

since the layer-averaged radar reflectivity provides a primary source of information. Furthermore, while M21 used the lidar 

measurements at the cloud base to contribute to the first guess, M21 did not fully exploit the information content available in the 

lidar measurement near the cloud base. Here, we more thoroughly examine what the lidar can tell us about cloud properties near 

the cloud base in optically thick boundary layer clouds. Because the lidar backscatter is much larger at the cloud base than in sub-

cloud drizzle, we apply the methodology to lightly precipitating and non-precipitating clouds.   

 50 
We focus on data collected during the summer of 2018 from two ship-based campaigns on the Australian Research Vessel 

Investigator and the Australian Ice Breaker Aurora Australis during voyages between Hobart, Australia, and East Antarctica. These 

campaigns are known respectively as the second Clouds Aerosols Precipitation Radiation and Atmospheric Composition Over the 

Southern Ocean (Capricorn 2) and Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (Marcus) 

(McFarquhar et al. 2021).    The key observations we include are vertically pointing depolarization lidars, W-band radars, 

microwave radiometers, and ancillary measurements provided by radiosondes and surface meteorological instruments.   

2 Methods 

2.1 Theory and Assumptions 
 

The observed lidar attenuated backscatter 𝛽!"#	can be combined with other measurements to derive Nd in fully attenuating liquid 60 
phase clouds when measured from the surface.  Even though light precipitation may be present, we assume that 𝛽!"#	is dominated 

by a droplet distribution (N(D)) describable by a modified gamma function.  Following Appendix B in Posselt and Mace (2014): 
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 is the droplet number concentration per unit size D with units of cm-4 in the cgs unit system. 𝑁* with units of cm-4, 

𝐷* with units of cm, and 𝛼 (unitless) are respectively the characteristic number, diameter and the shape parameter of the N(D) 

distribution function.  This simple integrable function allows us to express the microphysical quantities, Nd, q (liquid water content), 

re (effective radius),	𝜎 (extinction), and Z (radar reflectivity in the Rayleigh limit), with the following expressions by integrating 

over all D, 70 
𝑁% = 𝑁*𝐷*Γ(𝛼 + 1) 

𝑞 = 𝜌 ,
-
𝑁*𝐷*.	Γ(𝛼 + 4)                                                                    (2) 
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𝑍 = 𝑁*𝐷*1	Γ(𝛼 + 7) 

Where 𝜌 is the density of liquid water and Γ is the gamma function.   re is derived as the ratio of the 3rd moment of N(D) to the 2nd 

moment of N(D) followed by application of the recursion relationship of the gamma function.  For 𝜎, we assume that the extinction 

efficiency can be approximated as 2 for integrations over typical water droplet distributions.  The radar reflectivity Z is written as 

the sixth moment of the DSD consistent with the Rayleigh approximation which is valid for cloud droplets and radar wavelengths 

up to W-Band (~94 GHz or ~3mm wavelength). Conversion from conventional units of mm6 m-3 to cgs requires multiplication of 80 
Z by 10-12.  Using Eqn. 2, we develop relationships among the variables:    
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     (3) 

Where 𝑘 = (+23)(+24)
(+20)"

, and 𝐶 = .56(+21)
,6(+2.)(+20)#	

.  The last expression in Eqn. 3 was first derived by Stephens (1978) and illustrates 

a pathway to deriving Nd from multi spectral satellite reflectance measurements.  For instance, the bi spectral method applied to 

MODIS (Nakajima and King, 1990; Platnick et al. 2003) returns measurements of optical depth (𝜏) and re.  Since 𝜏 is the vertical 

integral of 𝜎, Eqn. 3 can be adapted for use with satellite retrievals.  A full derivation and error analysis of deriving Nd and other 90 
quantities from bi spectral satellite retrievals is presented in Grosvenor et al. (2018; Hereafter G18).   

 

Following Platt (1977) and extending through the work of Hu et al., (2007) and Li et al. (2011) among others, we express the 

observed lidar attenuated backscatter as 

𝛽!"#(𝑧) = 𝛽(𝑧)𝑒73∫9:%;   .     (4) 

𝛽!"# is the result of 2-way attenuation through the cloud to a point z in the layer and 𝜎 is the extinction coefficient with units of 

inverse length where 𝜎 is expressed in terms of the lidar ratio, 𝑆 = :
<
.  A factor 𝜂 hereafter referred to as the multiple scattering 

factor accounts for the addition of photons to the observed signal due to multiple scattering in optically dense clouds.  Defining 

the layer-integrated total attenuated backscatter as 𝛾 = ∫𝛽∥2>and the layer integrated depolarization ratio as 𝛿 = ∫<$
∫<∥&$

 we express 

𝜂 = $47?
42?

%
3
(Hu et al. 2009).  Platt et al. (1999) relates S with 𝜂 according to 𝑆𝜂 = 47@"

3A
 and where T is the layer transmittance.  100 

When the layer is fully attenuating (T=0) and 𝑆 = 4
39A

.          

 

Figure 1 illustrates two examples of 𝛽!"# profiles measured by the micropulse lidar on board the Aurora Australis during MARCUS.  

We see the typically small 𝛽!"# below the cloud that is due to aerosol and molecular scattering in Fig. 1a, while in Figure 1b, there 

is a contribution from drizzle (observed by a collocated w-band radar, not shown). There is an immediate increase in 𝛽!"# at a 

height where condensed liquid water droplets near the cloud base activate, grow rapidly with height, and begin to dominate the 

lidar signal scattering.   𝛽!"# then increases exponentially according to Eqn. 4 until the two-way attenuation causes 𝛽!"# to reach a 

maximum value, which decays exponentially.  We define the range from cloud base to the maximum in 𝛽!"# as rmax.    Beyond rmax, 

𝛽!"#gains more contribution by multiple-scattered light depending on the lidar field of view and, in liquid clouds, the signal 

becomes increasingly depolarized relative to the transmitted signal because the orientation of the electric field vector is modified 110 
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by the directionality of the scattering event even though each scattering event retains the polarization of the incident field. This 

effect is a function of the directionality of the scattering that is, in turn, a function of droplet size (Hu et al., 2009).  The overall 

result is quantified by η.  The logarithmic decay of 𝛽!"# was shown by Li et al. (2011) to be related to 𝜎:   

𝜂𝜎 = − BC<(D")'()7BC<(D*)'()
3(D"7D*)

          (5) 

Where (𝑟3 − 𝑟4) is the range over which the change in 𝛽!"# is calculated.  Because we have estimated η from measurements, we 

can estimate σ in the optically thick part of the layer beyond the peak in 𝛽!"#using linear regression.  Li et al. (2011) compare σ 

derived from this method to estimates of σ derived from passive reflectances and find an uncertainty of ~13% although we assume 

it to be higher (20%) below.  This method's accuracy depends on calculating the rate at which the signal decays with depth in the 

layer.  In practice, we fit a regression line to 𝛽!"# at ranges beyond rmax until the signal is a factor of 2 above the lidar noise floor. 

We determine the lidar noise level from the mean 𝛽!"#well beyond the point of full attenuation in the cloud layer.  The goodness 120 
of the linear regression fit depends on the number of measurements in this range where the signal is decaying. The accuracy 

depends on the vertical resolution of the lidar measurements for a given σ.  The accuracy of the fit is tracked and used to estimate 

uncertainty.  

 

 
2.2 Direct Calculation of Nd and re 
  

The growth of the lidar signal from cloud base to rmax can be used to extract information about the cloud layer.  Taking the natural 

logarithm of both sides of Eqn. 4, recognizing that 𝛽𝑆E = 	𝜎, and then differentiating with range r in the cloud layer, we can write, 

 F BC<'()
FD

= F BC:
FD

− 2𝜂𝑟.         (6) 130 

Using Eqn. 3, 

 
Figure 1.  Two Examples of 𝜷𝒐𝒃𝒔 from Lidar data collected during Marcus collected on January 26, 2018  . a) shows a 

profile with in a non drizzling cloud. b) shows a profile that had sub cloud drizzle as indicated by the cloud radar.  The 

green line indicates the height determined to be cloud base while the red line indicate the maximum in 𝜷𝒐𝒃𝒔.  The distance 

between the green and red lines is defined as rmax 
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We assume that 𝑞 = ΓL𝑓M%𝑟 where fad is the adiabaticity of the layer (Albrecht et al., 1990) and  ΓL is the adiabatic liquid water lapse 

rate that is a function of temperature and pressure both of which are assumed as the mean over the cloud layer (G18).   Substituting 

into Eqn. 7,  

𝑁% = G
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      (8)  

Recognizing that at rmax, % BC<'()%D
= 0, Eqn. 8 can be simplified: 

𝑁% =
4

31K9#61
"D324
5 N2+

"           (9) 

Nd is a function of observable quantities with an assumption that the liquid water profile has an adiabatic shape. The DSD shape 

parameter 𝛼 is also assumed and typically given a value that conforms to in situ data (see below).  𝑓M%, which scales the adiabatic 140 
liquid water content, can be calculated as the ratio of the vertically integrated liquid water mass or LWP that is readily retrieved 

from measurements collected by a microwave radiometer (Turner et al., 2016) to the adiabatic LWP that can be derived by 

integrating ΓL over the depth of the layer (G18).  The depth of the layer must be determined from some means such as a vertically 

pointing cloud radar or perhaps from recent radiosonde soundings.  Thus, Nd can be derived with a combination of a depolarization 

lidar, some means of determining cloud top, and a microwave radiometer.  Neither the lidar nor the radar, if present, must be 

calibrated to derive Nd with Eqn. 9.  With LWP and Nd, and a measure of layer depth, it is straightforward to estimate a characteristic 

cloud droplet size.  Typically, the cloud top re is most representative of the layer reflectance and is derived from bispectral 

measurements such as MODIS to which we will compare later.  Following G18,  

𝑟/ = K
#6
7891

61N2+

O&+
L
4/0

         (10) 

where h is the layer thickness and k is the cubed ratio of a volume weighted characteristic droplet size to the effective droplet size 150 
assumed constant at 0.8 following G18.    

 

 
Figure 2.  Response of Equation 10 (a) and Equation 9 (b) to typical values of zmax and fad.   
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Figure 2 shows the response of Equations 9 and 10 to typical ranges of rmax and fad.  In these calculations, we fix 𝜂 at 0.4 (a typical 

value for the lidar on CAPRICORN 2) and the cloud layer thickness at 500 m.  We find that rmax contributes most significantly to 

the Nd calculation, given the fifth power exponent in the denominator of Eqn. 9.  We find that Nd ranges from near 1000 cm-3 for 

low rmax values that would correspond to very opaque layers to values less than 10 cm-3 for layers with rmax exceeding 100 m.  

These correspond to the approximate typical extremes for rmax found in measurements.  re ranges from 5 𝜇m for small rmax to more 

than 50 𝜇m for very large rmax corresponding to the change in Nd from high to low, respectively.  For a given rmax, an increasingly 

adiabatic cloud layer causes Nd to decrease and re to increase.  This tendency makes physical sense since for our simple conceptual 

model of an adiabatically increasing q profile, increasing fad for a given LWP and layer thickness (h) causes more liquid water in 160 
the profile.  Therefore, for a given rmax, fewer and but larger droplets are required to achieve a given extinction profile that allows 

the lidar beam to penetrate the layer.  

 

While Eqns. 9 and 10 produce physically plausible results, the sensitivity of Nd to uncertainty in rmax is substantial.  The resulting 

uncertainty in Nd then translates into uncertainty in re.  Clearly, with the typical range in rmax between a few 10’s of meters to values 

not much greater than about 100 m, the vertical resolution of the lidar has a significant bearing on how well we can know rmax.  

Lidars in operational networks typically operate with range bin spacing of between 10 and 15 m. The micropulse lidars operated 

by the DOE Atmospheric Radiation Measurement (ARM) program (Mather, 2021) use 15 m spacing while Vaisala laser ceilometers 

use a range bin spacing of 10 m. We use a bootstrap approach to evaluate the effect of this uncertainty in rmax.  Fixing the uncertainty 

in fad and 𝜂 at 20% and allowing a variable rmax uncertainty of 1m, 5m, 10m, and 15m, we use a normally distributed set of random 170 
numbers to perturb the rmax, fad, and 𝜂 about their assumed values prior to implementation of Eqns. 9 and 10.  25000 iterations are 

used to compute the frequency distribution of the resulting Nd and re (Fig. 3) for each rmax uncertainty.  We find that range bin 

spacing that is typical of operational lidars and ceilometers is inadequate for calculating Nd.  A 15 m range bin spacing results in a 

normalized standard deviation in the Nd distribution for the example shown here of ~3 for a fixed value of 102 cm-3.  The re 

normalized standard deviation is approximately 29% in this case.  The uncertainty in Nd and re decrease as the uncertainty in rmax 

is reduced from 15 m to 1 m.  At 1 m and 5 m uncertainty in rmax, Nd (re) has uncertainties of 0.16(0.16) and 0.55 (0.18), respectively.  

 
Figure 3.  Sensitivity of Eqns. 9 and 10 to uncertainty in input parameters.  Inset lists the resulting uncertainties 
corresponding to the color-coded frequency distributions.  Insets list normalized standard deviations for an assumed 
uncertainties in rmax of 1, 5, 10, and 15 m.     
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These levels of uncertainty would convey useful information about a cloud layer, whereas the typical ranges of uncertainty that we 

encounter with operational lidars and ceilometers are only marginally to insignificantly informative.   

 
2.3 An Optimal Estimation Algorithm 180 
 
To lessen the effects of uncertainty in rmax, we attempt to bring additional information to bear by developing a Bayesian optimal 

estimation (OE) inversion algorithm (Maahn et al., 2019) to retrieve Nd and re.  This methodology allows us to use additional data 

sources that contribute to our understanding of droplet Nd and re while balancing the observational and forward modeling errors 

that contribute to retrieval uncertainty.  In addition to the independent variables in equations 9 and 10, we also use the layer 𝜎 

derived from the lidar data (Eqn. 5) and the radar reflectivity near cloud top (Ztop) from a collocated millimeter radar.  We choose 

to use the radar reflectivity near the cloud top to avoid, to the extent possible, multimodal droplet distributions that often occur as 

drizzle or snow sediments through a cloud layer.  Near layer top, at least for reasonably shallow and not strongly convective clouds, 

we assume the precipitation droplet mode to be nascent and the cloud droplet distribution to be approximately unimodal. Inspection 

of aircraft in situ drop size distributions collected over multiple campaigns reasonably support this assumption (Lawson et al., 190 
2017).   Ztop provides a useful constraint on the liquid water profile's shape and conveys information on fad and re. We define an 

observational vector, 

 

𝑦 = [𝑟QMR 𝜎 𝐿𝑊𝑃 𝑍S!T]      (11) 

 

An observational error covariance matrix, Sy, is a 4x4 element matrix that records the uncertainty of the measurements in y due to 

random noise and uncertainties in forward modeling of that quantity along the diagonal. We allow for covariance among the 

observations as listed in Table 1.  These correlations are derived from the Capricorn 2 and Marcus combined data set.  We find 

significant correlations among the measurements in y.  These correlations show that the measurements in y are not independent 

and are not, therefore, unique in terms of information.  We address the information content below.      200 
 

Table 1.  Sources of uncertainty estimates (diagonal) and correlations (off diagonal) among measurements in y (Eqn. 11) 

used in the OE algorithm.  Correlations are derived from the combined Marcus and Capricorn 2 data sets. 

 𝑟QMR 𝜎 𝐿𝑊𝑃 𝑍S!T 
𝑟QMR Lidar Range 

Bin Space 
   

𝜎 -0.58 20% (Lin et 
al. 2011) 

  

𝐿𝑊𝑃 +0.24 -0.22 20 g m-2 
(LWP<100) 
30% 
(LWP>100) 
(Turner et al., 
2016) 

 

𝑍S!T +0.23 +0.48 +0.47 1 dB 
Capricorn, 4 
dB Marcus 
(Kollias et 
al., 2019) 

 
The quantities to be estimated and their covariance are denoted in the state vector x respectively:  

      𝑥 = [𝑁% 𝑟/]      (12) 
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And Sx is a 2x2 element matrix that records the uncertainties of x along the diagonal.  𝑟/ is assumed to be near the layer top as 

defined in Eqn. 10.    

 

We use x and additional observations and assumptions to derive a forward calculation of y or F(x) based on initial and incremental 210 
x guesses (see below) with a simple forward model.  Our forward model begins with the observed thermodynamics, cloud base 

height, and layer thickness.  With an observed or simulated LWP and a temperature-dependent ΓL, we create a vertical profile of 

liquid water that varies with an adiabatic shape scaled by fad.  Using an assumed shape parameter (𝛼=2, justified below), we then 

calculate profiles of re and Nd allowing us to estimate the terms in y using the simple lidar equation (Eqn. 4) and the expressions 

for Z and 𝜎 in Eqn. 3.     

 

To derive x from y using OE, we express the first order derivatives of y with respect to x in a Jacobian matrix, 𝐾R, that has 

dimensions of the number of elements in y (4) by the number of elements in x (2):   

𝐾R =

𝜕𝑟QMR
𝜕𝑁%

= −0.29
𝜕𝜎
𝜕𝑁%

= 0.24
𝜕𝐿𝑊𝑃
𝜕𝑁%

= 0
𝜕𝑍S!T
𝜕𝑁%

= 0.01

𝜕𝑟QMR
𝜕𝑟/

= 0.92
𝜕𝜎
𝜕𝑟/

= −2.9
𝜕𝐿𝑊𝑃
𝜕𝑟/

= 0.44
𝜕𝑍S!T
𝜕𝑟/

= 1.2
 

These terms are calculated analytically using the expressions in Eqns. 2, 3, 9, and 10.  Also, we set FUVW
F&+

= 0 because we assume 220 

that the amount of water made available for condensation is the result of thermodynamics while how that water is distributed into 

droplets depends more on the CCN that is available for the water to condense onto.  The quantities listed in the Kx matrix show 

typical values of the terms for Case 5 listed in Table 3 below in terms of FBC	(X)
FBC	(R)

.  We find that re influences 𝜎, LWP, and Ztop in 

predictable ways.  For instance, the derivative is negative in the re - 𝜎 relationship.  The sensitivities of the observations in y are 

much more sensitive to re than to Nd illustrating the challenge of retrieving Nd with remote sensing observations as discussed earlier.    

 

The OE formalism derives x by balancing the uncertainties and information in the measurements with what is known about the 

statistical properties of x given the atmospheric state. The information from prior knowledge is contained in an a priori vector of 

statistical estimates of the quantities in x (Eqn. 12) or xa and their covariance, Sa.   For the prior estimate of Nd, we reason that 

coincident cloud condensation nuclei (CCN) measurements provide an upper limit on the droplet number in each situation.  These 230 
measurements were collected during Marcus and CAPRICORN 2 and are available hourly when the wind direction was favorable 

by not contaminating aerosol inlets with ship exhaust (Humphries et al. 2021). These hourly CCN measurements at 0.2% 

supersaturation are simply multiplied by 0.8 to account for coalescence processes and used in xa.  The hourly standard deviation 

of the CCN is then used along the diagonal of Sa.  When CCN are not available, within the previous 6 hours, we use averages of 

the surface-based CCN measurements for the latitudinal bands from 40°S-50°S, 50°S-60°S, and >60°S (Humphries et al., 2023).   

For the prior value of re, we use the 0.8*CCN, the LWP, and layer thickness in Eqn. 10.   For re when CCN data are not available, 

we use in situ aircraft data collected during the Southern Ocean Cloud Radiation and Aerosol Transport Experiment (SOCRATES; 

McFarquhuar et al., 2021) that was conducted in the Southern Ocean region south of Hobart Australia during the Austral Summer 

of 2018 by the NSF/NCAR HIAPER Gulfstream V (GV) aircraft.  In this campaign, the GV completed 15 research flights.  We 

combine the CDP and 2DS measurements into a single droplet size distribution (DSD) and use a moments minimization method 240 
(Zhao et al., 2011) to estimate of Eqn. 1 for each low-level cloud 1-second DSD.  W-Band radar reflectivity is then calculated using 

Eqn. 3. For a particular retrieval where we have a measured Ztop, the Socrates data set is searched for all instances where Z is within 

1.5 db of the measurement and the prior re is then estimated from the mean of the in-situ measurements. For the covariance among 
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the quantities in Sa, we know that re and Nd are strongly correlated (G18) so we use a correlation of 0.7 among those terms based 

on in situ data.   

 

The OE formalism also allows us to quantify the added uncertainty in our forward model calculations due to model parameters 

and assumptions (Maahn et al. 2019; Austin and Stephens, 2001) which we take to include 𝛼 (droplet distribution function shape 

parameter), fad (the adiabaticity of the column) and 𝜂.  We find that a value of α=2 with a standard deviation of 1.5 reasonably 

characterizes the in-situ cloud collected during Socrates.  fad is estimated by taking the LWP and cloud thickness observations 250 
collected over the Marcus and CAPRICORN 2 voyages and deriving a linear regression of fad in terms of LWP following Miller et 

al., (1998) to wit, 𝑓M% = 1.−(0.002 ∗ 𝐿𝑊𝑃). With LWP in g m-2, this equation returns fad=0.6 for LWP=200 gm-2 and 0.5 for 

LWP=250 g m-2.   The scatter in the LWP-fad observations suggest an uncertainty in this estimate of 0.15.  𝜂  is derived from the 

depolarization lidar data following the method described in Hu et al. (2007).  While the uncertainty of this quantity is difficult to 

assess, examining the consistency of the estimates over periods of persistent cloud cover we determined that an uncertainty of 30% 

is reasonable.   A term of the form 𝐾"𝑆"𝐾"@ is added to the instrumental uncertainties where Kb is a Jacobian matrix that contains 

the first derivatives of the measurements in y with respect to 𝛼, fad, and  𝜂 determined through finite differences in the forward 

model: 

𝐾" =

𝜕𝑟QMR
𝜕𝛼 = −0.08

𝜕𝑟QMR
𝜕𝑓M%

= −0.60
𝜕𝑟QMR
𝜕𝜂 = −0.63

𝜕𝜎
𝜕𝛼 = 0.11

𝜕𝜎
𝜕𝑓M%

= 0.55
𝜕𝑧QMR
𝜕𝜂 = 0.03

𝜕𝐿𝑊𝑃
𝜕𝛼 = 0.20

𝜕𝐿𝑊𝑃
𝜕𝑓M%

= 1.0
𝜕𝐿𝑊𝑃
𝜕𝜂 = 0.0

𝜕𝑍S!T
𝜕𝛼 = −0.35

𝜕𝑍S!T
𝜕𝑓M%

= 2.0
𝜕𝑍S!T
𝜕𝜂 = 0.0

 

The numbers in the Kb expression are in terms of FBC	(X)
FBC	(R)

 and are derived from the forward model over the physically reasonable 260 

ranges of the parameters.    We find that these numbers vary by less than 20% in the Capricorn and Marcus data sets and are used 

as written in the inversion algorithm.  Sb contains the variance of 𝛼, fad, and 𝜂 and we assume that the covariance among these 

quantities can be neglected.   

 

2.4 Evaluation 

 

Inversion of y for x then follows a standard iterative approach by applying a Gauss-Newton minimization technique derived in 

Rodgers (2000).  See also Maahn et al., (2019).  In this approach, successive guesses of x are derived using the well-known 

expression, 

 𝛿𝑥 = \𝑆M +𝐾R𝑆X𝐾R@]
74^𝑆M74(𝑥_ − 𝑥M) + 𝐾R@𝑆X74\𝑦 − 𝐹(𝑥_)]a    13 270 

Where 𝑥_ is a present guess, 𝐹(𝑥_) is the forward estimate of the measurements in y using the present guess.   𝛿𝑥 then becomes the 

next increment on 𝑥_.  Eqn. 13 is iterated until either a convergence criterium is met or divergence of the result occurs.  Typically, 

less than 10 iterations are necessary if the algorithm converges which it does > 90% of the time in non-precipitating conditions 

while convergence occurs less frequently as drizzle and light snow increase due to the inability to accurately estimate rmax.   

 

The response of the OE algorithm is equivalent to the results presented in Fig. 3, except that additional information is used to lessen 

the effects of uncertainty in rmax.  In Table 2, we list 6 cases that we use to examine the response of the OE algorithm in terms of 
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the retrieved quantities and their uncertainties.  The cases 1 and 2 are designed to illustrate a situation that might be found in a 

heavy aerosol environment with a low 𝑟QMR, high 𝜎, and low 𝑍S!T that produces high Nd, small cloud drops and moderately high 

LWP.  Cases 3 and 4 show the opposite with a rather large 𝑟QMR and lower 𝜎.  𝑍S!T is set higher with a larger LWP.  The algorithm 280 
returns a low cloud Nd and large re in cases 3 and 4.  Cases 5 and 6 are in between the two extremes.  Fad in these cases range from 

0.8 to 0.9, and this is by design as the cloud depth is specified.  The uncertainties listed in Table 3 are used in Cases 1, 3, and 5; 

except for Ztop which is listed in dB, the uncertainties are a fraction of the measurement. Cases 2, 4, and 6 use twice the listed 

uncertainties in Cases 1, 3, and 5.  As a fraction of the returned values, the 1 standard deviation uncertainties do not change 

significantly from case to case, and they respond predictably to a doubling of the observational errors increasing approximately by 

a factor of 2.  We also test the OE uncertainty by randomly perturbing the observations about their stated uncertainties until the 

error statistics converge.  These are reported in Table 3 in the “Bootstrapping” column.  The bootstrap experiment generally returns 

uncertainty in re that is equivalent to or slightly smaller than the OE results.  For Nd, the bootstrap experiment returns marginally 

larger uncertainties than the OE results.    

 290 
The Shannon information content measures the extent to which the observations reduce the uncertainty in the prior.  The studies 

of L’Ecuyer et al. (2006) and Cooper et al. (2006) provide detailed discussions of this concept.  Doubling the observational 

uncertainty reduces the information content by approximately 1/3.  The number of independent parameters is less than the number 

of elements in y (the observations) because the observations are correlated.  For instance, as shown in Table 2, 𝑟QMR and 𝜎 both 

constrain Nd while LWP and 𝑍S!T constrain re.  Even in the lower error cases, the observations do not provide sufficient information 

to retrieve three independent quantities, suggesting that the results are correlated and not independent.   

 

The uncertainty in re remains roughly equivalent to the results shown in Fig. 3, although we consider the results of the OE to be 

more accurate because a better accounting of information is used.   Notable is the magnitude of the uncertainties for the retrieved 

Nd.  We find that it remains large, although the additional information provided by the other observations reduces the uncertainty 300 
compared to the results in Fig. 3.  We also tested how well the OE algorithm without rmax would do where just extinction is the 

primary constraint on Nd.  This was accomplished by setting the Kx term FD324
F&+

= 0.   We found that for the uncertainties in the 

other quantities listed in Table 3, the uncertainty in Nd was approximately 150%, showing that rmax is a useful quantity in this 

regard.  However, retrieval of Nd remains highly uncertain when lidar range bin spacing exceeds 5 m.   

  

 

Table 2:  Cases used to demonstrate the response of the OE algorithm.  1 standard deviation uncertainties are listed in 

parentheses.  Cases 2, 4, and 6 use uncertainties a factor of 2 larger than those listed for cases 1, 2, and 3.   

 𝑟QMR(m) 𝜎 (km-1) 𝑍S!T (dBZ) LWP (g m-2) 

Case 1 38 (4) 28 (4.5) -19 (2) 126 (30) 

Case 3 62 (6) 16 (2.5) -12 (2) 101 (25) 

Case 5 56 (5.5) 23 (3.5) -15 (2) 150 (37) 

   

Table 3:  The retrieved parameters and their 1 standard deviation uncertainties as fractional values in parentheses for cases 310 
1-6 listed in Table 3.  We also list the Shannon information content in bits, and the number of independent observations in 
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the retrieval as derived from the OE formalism – see Rodgers, (2000).  Cases 2, 4, and 6 have observational uncertainties a 

factor of 3 greater than listed in Table 3. 

 Nd (cm-3) Nd OE 

Fractional 

Uncert. 

(Fraction) 

Nd 

Bootstrap 

Uncert. 

(Fraction) 

Re (um) Re OE 

Uncert. 

(Fraction) 

Re 

Bootstrap 

Uncert. 

(Fraction) 

Info 

(bits) 

# Ind 

Params 

Case 1 229  0.69 0.77 9.8  0.24 0.23 3.1 1.7 

Case 2 231  0.83 0.93  9.9 0.42 0.35 1.2 1.4 

Case 3 36 0.70 0.88 16 0.19 0.28 3.6 1.7 

Case 4 37 0.84 1.2 15 0.40 0.32 1.2 1.4 

Case 5 95 0.70 0.95 13 0.18 0.27 3.5 1.7 

Case 6 91 0.84 1.2 12 0.40 0.34 1.3 1.5 

 

 

To provide a more realistic evaluation of the OE algorithm performance, we use data collected during the Socrates campaign, 

where ramps through low-level cloud layers were conducted.  Such a ramp is depicted in Fig. 4 which was collected on February 

18, 2018 (hereafter 2/18) at 0510 UTC when the GV was conducting a mission near the R/V Investigator at 57°S and 142°E.  We 

will expand on the February 18 case study below.  For this analysis, we focused on 1-second data collected by the Cloud Droplet 

Probe (CDP) that recorded droplet spectra in 2 𝜇m size bins up to 50 𝜇m.  The aircraft entered the cloud layer with a temperature 320 
near -5°C at 1100 m.  LWC and re steadily increased as the GV ascended and exited the cloud layer approximately 90 seconds later 

at an altitude of 1450 m where q reached a maximum of 0.4 g m-3 and the re near cloud top was ~15 microns.  We note an interesting 

structure in the vertical re profile with a sudden decrease near 1375 m.  During this ascent, Nd was quite variable but averaged 150 

cm-3 through most of the ramp until 1375 m here there is an abrupt increase in Nd to ~225 cm-3 in conjunction with the decrease 

in re.  Summing q vertically through the layer, the LWP was 65 g m-2 with an adiabatic LWP of 80 g m-2, suggesting a sub-adiabatic 

layer with fad of 0.8.  The radar reflectivity time series (discussed later) shows that drizzle was occurring sporadically during this 

 
Figure 4.  Ramp through an MBL cloud layer on 18 February 2018 collected by instruments on the NCAR Gulfstream 
V during Socrates.  This ramp was conducted near the RV Investigator ship during Capricorn 2.   
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case.  We used the cloud droplet concentrations collected during the ramp to get rmax (32 m), the expression for Z (Eqn. 3) to 

estimate Ztop (-15 dBZe), and the cross-sectional area of the droplet distribution to estimate 𝜎 (layer mean of 30 km-1 and layer 

optical depth (𝜏) of 14).  These values were used to drive the lidar forward model.  We implement the OE algorithm with fad and 

LWP to get a retrieved Nd of 165 cm-3 and re of 14 𝜇m in reasonable agreement with the input data.   330 
 

We repeated this exercise for other ramps collected during Socrates, excluding ramps that were super-adiabatic or had non-adiabatic 

structure in the vertical profile, reasoning that the finite distance over which the ramps occurred (~10-20 km) had the potential to 

sample cloud elements of varying properties.  For instance, on 2/18 three additional ramps were not considered.  The observational 

uncertainties used in the inversion are as discussed above for Cases 1, 3, and 5.   Figure 5 shows the relationship between observed 

and retrieved Nd and re., showing that the OE algorithm can reasonably capture the characteristics of the cloud layers.  While we 

would expect the algorithm to provide a reasonable comparison of the retrieved and observed Nd and re, we note that the OE 

uncertainty, for the most part, extends over the 1:1 line, suggesting that the characterization of uncertainty in the retrieved quantities 

is a reasonable estimation of the actual uncertainty of the algorithm.   

 340 
3.  Independent Comparisons 

 
The 2/18 case study provides a unique opportunity for independent comparisons of the algorithm with data collected while the GV 

aircraft operated in the vicinity of the R/V Investigator and with an overpass of the Terra satellite that provided independent 

retrievals of 𝜏 and re (Platnick et al., 2004) from which we can derive LWP and Nd (G18) using the MODIS 𝜏 and re. During this 

case study period, the ship remained stationary at 56.6°S and 141.5°E to facilitate coordination with the GV.  Figure 6 illustrates 

the data collected from the surface-based onboard instruments.  The lidar attenuated backscatter indicates a fully attenuating layer 

through the entire period.  With a cloud base temperature near -5C, the lidar depolarization ratio data suggest that the cloud base 

phase and the sub cloud precipitation were liquid.  The W-Band radar on the RV Investigator indicated episodic drizzle events of 

10-20 minute duration roughly every hour, some of it rather heavy. Intervening periods without drizzle had radar reflectivity near 350 
the detection threshold of the radar (~-25 dBZe during Capricorn 2).  The radar and sounding data collected at the ship showed 

 
Figure 5.  Comparison of Observed and Derived Nd and re from Socrates ramps.  The error bars on the retrieved 
quantities are as derived from the optimal estimation. 
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that the layer was topped by a strong marine inversion near 1.5 km in agreement with the GV ramp in Figure 4. The LWP was 

variable between 50-60 g m-2 during periods without drizzle to value near 250 g m-2 during periods of drizzle.  The retrieved cloud 

properties varied depending on the proximity of a drizzle event.  While the algorithm did not converge in regions of heavier drizzle, 

we find near the boundaries of several drizzle events that the Nd decreased to 20-30 cm-3 and re increased to be more than 20 𝜇m.  

Otherwise, the algorithm tended to produce Nd in the range of 100 cm-3 and re in the 10 𝜇m range.   

 

A Terra MODIS overpass occurred at 0025 UTC.  We collect the Level 2 retrieval of τ and re in a region of 50 km diameter centered 

on the ship and the ship data are collected between 23 UTC on 17 February and 0130 UTC on 2/18.   The comparison results are 

shown in Fig. 7.  A broad distribution of LWP is demonstrated during this period that has a similar character in both data sets.  The 360 
ship has an LWP mode near 160 g m-2, that is due to the drizzle event that is evident near 00 UTC in Fig. 6.   The mean LWP of 

the ship is slightly larger than MODIS but the two are in broad agreement.  The distributions of re in the two data sets overlap with 

the surface data skewed to larger values, likely because of the predominance of the drizzle event.  The Nd retrievals also demonstrate 

broad agreement with quite wide distributions even though the ship Nd is skewed to smaller values.  The ship 𝜏  distribution is 

 
Figure 6.  Surface-based measurements and derived properties from data collected on February 18, 2018 on the R/V 
Investigator near 55.6S and 141.5E.  a) radar reflectivity with cloud base, b) lidar attenuated backscatter, c) extinction 
derived from the lidar attenuated backscatter, d) effective radius and liquid water path, e) cloud droplet number 
concentration.  The blue circles and inset values are from an overpass at 0025 UTC of MODIS on Terra.  CCN at 
0.25% supersaturation is shown on e.   
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skewed to smaller values than MODIS, consistent with larger effective radii and smaller cloud droplet number.  It is worth noting 

that the 𝜏 and re are the quantities that are most directly retrieved from the MODIS algorithm, whereas the LWP and especially Nd 

require additional assumptions in their derivation from 𝜏 and re.   

 

On the other hand, the surface data LWP is independent of the radar, lidar, and other measurements and requires a minimum of 

assumptions to derive from the microwave radiometer brightness temperatures.  Nd and re from the surface data need a complicated 370 
algorithm to derive, and 𝜏 from the surface data is calculated using Eqn. 3. Thus, the surface-derived 𝜏 would capture the errors in 

the surface retrieval of re.  While there are biases in the comparison, given the substantial differences in the two independent data 

sets, we conclude that the comparisons demonstrate a reasonably consistent picture of the cloud field during the overpass.   

 

The GV arrived at the ship at approximately 02 UTC on 2/18 and operated in the vicinity of the ship for roughly 2 hours. It 

conducted ramps, level legs within the cloud layer, and legs above and below the layer for aerosol and remote sensing applications.    

We compare data collected during this time by gathering the aircraft data within 50 km of the ship.  The effective radius is derived 

from the aircraft CDP data in the upper ½ of the layer (above 1.2 km) and the aircraft Nd is collected from the CDP data in the 

lowest ½ of the layer.   The comparison of Nd and re distributions are shown in Fig. 8.  The aircraft re data are bimodal while the 

ship retrieved re are unimodal and centered on the lower mode of the aircraft re distribution.  We interpret the lack of bimodality in 380 
the ship-based re data as being due to the algorithm not converging in regions of heavier drizzle as noted above.  The aircraft 

penetrations of drizzle and non-precipitating clouds results in the bimodality shown in Fig. 8.  The Nd distributions are broadly 

similar, but the ship results are biased to lower values.  It is unclear the extent to which there is a bias toward the lower part of the 

cloud layer in the ship data. Regardless, both distributions are centered just in excess of 100 cm-3. This comparison suggests that 

the surface-based OE algorithm can reasonably replicate the cloud layer properties. 

 

 
Figure 7.  Comparison of properties observed and derived from data collected on the RV Investigator (blue) with cloud 
properties derived from a Terra MODIS overpass at 00:25 UTC on February 18, 2018.  a) Effective Radius, b) LWP, c) 
Optical depth, d) cloud droplet number concentration. 
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Finally, we compare with the MODIS-derived cloud properties from overpasses of the ships during the Marcus and Capricorn 

campaigns.  With MODIS instruments on the Terra and Aqua satellites and the ships being at sea over extended periods, we found 

several events where suitable low-level clouds occurred over the ships during MODIS overpasses.  Table 4 lists the information 

about the 14 overpasses of the ships that we use for the comparison in Fig. 9.   Our approach was to examine a 50 km region of 390 
MODIS data centered on the ship, and we compiled surface data from 90-minute periods before and after an overpass.   We find 

reasonable agreement in the comparisons.  The LWP is an interesting quantity since, as stated above, it is independent of the Nd - 

re retrieval.  The LWP from the MODIS data, on the other hand, is derived from the 𝜏 and re algorithm that uses the Nakajima and 

King (1990) bi spectral method so that the MODIS LWP would carry forward any uncertainties in 𝜏 and re.  The agreement, 

however, is reasonable with little bias.  Most of the cases have LWP<200 g m-2 since we focus on non- to lightly precipitating 

cloud scenes.  The re cases range over values that are very small corresponding to cases near the Antarctic continent with high Nd 

and no precipitation to re that exceeds 15 𝜇m.  The comparison in re is unbiased with a good correlation.  While Nd also has a good 

correlation, there does appear to be a slight bias in the comparison, with the surface data being, on average, 20-30 cm-3 higher than 

MODIS.  The optical depth appears unbiased for values less than ~15 but then seems to show a bias for values of more than 15 

with MODIS being larger than the surface-based results.  More data is highly desirable to establish how well and under what 400 
circumstances these data sets agree or don’t, but this preliminary comparison is encouraging.   

 

Table 4.  List of the MODIS overpasses shown in Fig. 9.  

Date/Time Location Satellite Campaign 

2018/02/04, 0415 

UTC 
65.6°S, 150.0°E Aqua Capricorn 2 

2018/02/05, 0415 

UTC 
63.9°S, 150.0°E Aqua Capricorn 2 

2018/02/07, 2350 

UTC 
62.8°S, 143.6°E Terra Capricorn 2 

2018/02/13, 0545 

UTC 
63.9°S, 132.1°E Aqua Capricorn 2 

 
Figure 8.  Comparison of Nd (a) and re (b) derived from the surface-based data collected on the RV Investigator (red) 
with data collected from the NCAR GV on 18 February 2018.  Cloud properties are compiled over the period from 2-4 
UTC.   
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2018/02/20, 0010 

UTC 
50.2°S, 143.7°E Terra  Capricorn 2 

    

2018/01/02, 0110 

UTC 
66.3°S, 110.5°E Terra Marcus 

2018/01/05 0140 

UTC 
66.2°S, 110.2°E Terra Marcus 

2018/01/06 0720 

UTC 
66.5°S, 108.8°E Aqua Marcus 

2018/01/06 0225 

UTC 
64.0°S 111.3°E Terra Marcus 

2018/01/10 0425 

UTC 
47.0°S 142.6°E Terra Marcus 

2018/02/23 0805 

UTC 
59.3°S, 89.3°E Aqua Marcus 

2018/02/24 0305 

UTC 
56.9°S, 95.4°E Terra Marcus 

 

 

4.  Discussion 

 
Figure 9.  Comparison of MODIS derived cloud properties with cloud properties derived from data collected during 
the Marcus and Capricorn 2 campaigns in the Southern Ocean during Austral Summer 2018.  Error bars are 1 
standard deviation of the retrieved cloud properties during the time and over the spatial extent of the two data sets.   
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Since we focused our analysis on the 2/18 case study, it seems desirable to explore this case a bit more and illustrate what can be 

learned from the surface-based remote sensing of cloud – especially when combined with aircraft and satellite data.  We find that 

the aircraft, satellite, and surface-based data sources provide similar and very interesting characterizations of the cloud and CCN 

on 2/18.  Twohy et al. (2021) in their supplemental information show that the airmass above the marine boundary layer on 2/18 410 
had one of the highest sulfur-based concentrations of CCN recorded during Socrates at 224 cm-3. The air mass observed on 2/18 

followed a trajectory from the deep south from over the Antarctic continent and the biologically productive waters of the Southern 

Ocean.  The high concentrations of sulfate CCN in the free troposphere imply new particle formation along the trajectory was 

likely responsible for the high CCN (McCoy et al., 2021).  The CCN at the surface measured on the R/V Investigator was near 210 

cm-3 – slightly lower than that measured on the aircraft. 

 

On the other hand, the Nd seems to be consistently in the 100 cm-3 range from the surface, ship, and MODIS except for the near-

cloud top maxima in Nd observed by the GV in the ramp demonstrated in Fig. 4.  The other ramps (not shown) also had values of 

Nd near the CCN values of 200-250 cm-3.  We speculate that the difference between CCN and Nd is mostly likely due to precipitation 

droplet scavenging and coalescence process that is actively generating drizzle. The high CCN from the free troposphere transported 420 
to this location from the south is likely mixing into the marine boundary layer through entrainment (the cloud top spike in Nd in 

Fig. 4) and being processed through clouds explaining the lower surface CCN.  The cloud properties (Nd in the 100 cm-3 range) are 

a drizzle and coalescence damped response to the high free tropospheric CCN. 

 

This brief case study illustrates what is possible using surface-based remote sensing with instrumentation that has become common 

– a microwave radiometer, w-band radar, and depolarization lidar.  Combined with CCN and other ancillary data sources, we can 

directly probe the processes that govern the properties of clouds that, in turn, modulate the Earth’s albedo and control the sensitivity 

of the Earth’s climate to changes in atmospheric composition. 

 

5.  Summary and Conclusions 430 
 

Given the importance of knowing cloud droplet number concentrations (Nd) in low-level clouds for understanding how these clouds 

interact with aerosol and precipitation-producing processes to influence the earth’s albedo, we have explored two techniques that 

allow us to derive Nd and layer effective radius (re) using surface-based remote sensing techniques with an emphasis on the 

information brought to this problem by lidar data.  The depth a laser pulse penetrates a cloud layer is a function of the amount of 

water droplet cross-sectional area presented to the laser pulse, and that cross-sectional area is dependent upon the Nd and the liquid 

water content (q).  This observable is quantified by the lidar attenuated backscatter, 𝛽!"#, (Eqn. 4) that is modulated by the 

directionality of the scattering as represented by the multiple scattering factor.  As the lidar beam penetrates a cloud layer, the signal 

initially increases until two-way attenuation causes the signal to reach a maximum, after which it decays exponentially depending 

upon multiple scattering.  The rate of increase in 𝛽!"# is easily quantified if Nd and q are known, or turning the problem around, 440 
one can calculate Nd if 𝛽!"#is observed, and q is known.  The math becomes more tractable where the lidar signal is at a maximum 

(a distance we term rmax) since the rate of change of 𝛽!"#is zero (Eqn 9) there.  The liquid water content, q, can be expressed in 

terms of the rate of increase of q with height for an adiabatic cloud which can be made more realistic by scaling the q profile by 

an adiabaticity factor that can be derived from LWP and cloud layer depth.   This simple model (Eqn. 9) can be implemented with 

an estimated cloud depth, LWP, and a lidar.  The effective radius near cloud top can then be derived easily.  This simple method, 

however, is very sensitive to uncertainty in rmax which is, in turn, dependent on the vertical resolution of the lidar.  Since rmax 
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typically ranges from a few 10’s to maybe 100 m, the uncertainty in derived Nd becomes prohibitively large for range resolutions 

much above 5 m. Most lidars in operational networks, however, have range bin spacings of 15 or more meters.  The uncertainty in 

rmax translates predictably into uncertainties in re. 

 450 
To lessen the effects of uncertainty in rmax, we bring more information to bear on the problem by quantifying the cloud layer 

extinction in terms of the rate of decay of the lidar signal beyond rmax using a published methodology (Li et al., 2011).  In addition, 

we use the radar reflectivity near cloud top as a constraint on the liquid water content profile and re.   This is cast in an optimal 

estimation (OE) algorithm that seeks to balance the uncertainty in the observations and uses prior information such as CCN 

concentrations that provide an upper limit on Nd.  The OE algorithm is only marginally successful in reducing the uncertainty in 

Nd and re.  The uncertainties, especially on Nd remain substantial since rmax provides the most significant information on Nd and the 

other measurements provide minimal constraint on Nd as quantified in the Jacobian (Kx) matrix.  What we find interesting is that 

the use of CCN as a prior constraint allows us to balance the information content in rmax and the other observations with what we 

know as a significant constraint on Nd and, therefore re.  Overall, the OE uncertainties that are shown to be reasonable through a 

bootstrapping experiment and through comparison to aircraft data, are in the range of just under a factor of 2 for Nd and 30% for 460 
re for lidar range bins of 10-15 m.  The only way to reduce this uncertainty is to have dedicated lidar measurements that have 

vertical resolution less than about 5 m. Using comparisons with in-situ aircraft data and with cloud properties derived from MODIS, 

we show that the OE algorithm provides results consistent with the uncertainty in the data and retrievals.   

 

Finally, a case study is explored that shows how synergistic remote sensing data from the surface, especially when combined with 

aircraft and satellite data, can be exploited. The February 18, 2018 case study that took place in the Southern Ocean near 56 S and 

141 E shows how aerosol transport and likely new particle formation from the biologically productive waters of the deep south 

modulated the cloud properties that existed on this day.  The CCN measured at the surface and from the GV aircraft was about a 

factor of two larger than the ~100 cm-3 Nd inferred from the ship and MODIS data and observed by the GV.  This difference between 

Nd and CCN was likely a response to the widespread precipitation processes that were occurring on this day.    470 
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