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Abstract. Given the importance of constraining cloud droplet number concentrations (Nd) in low-level clouds, we explore two 10 

methods for retrieving Nd from surface-based remote sensing that emphasize the information content in lidar measurements. 

Because Nd is the zeroth moment of the droplet size distribution (DSD), and all remote sensing approaches respond to DSD 

moments that are at least two orders greater than the zeroth moment, deriving Nd from remote sensing measurements has significant 

uncertainty. At minimum, such algorithms require extrapolation of information from two other measurements that respond to 

different moments of the DSD. Lidar, for instance, is sensitive to the second moment (cross-sectional area) of the DSD, while other 

measures from microwave sensors respond to higher-order moments. We develop methods using a simple lidar forward model that 

demonstrates that the depth to the maximum in lidar attenuated backscatter (Rmax) is strongly sensitive to Nd when some measure 

of the liquid water content vertical profile is given or assumed. Knowledge of Rmax to within 5 m can constrain Nd to within several 

10’s of percent. However, operational lidar networks provide vertical resolutions of >15 m, making a direct calculation of Nd from 

Rmax very uncertain. Therefore, we develop a Bayesian optimal estimation algorithm that brings additional information to the 20 

inversion such as lidar-derived extinction and radar reflectivity near cloud top. This statistical approach provides reasonable 

characterizations of Nd and effective radius (re) to within approximately a factor of 2 and 30%, respectively. By comparing surface-

derived cloud properties with MODIS satellite and aircraft data collected during the Marcus and Capricorn 2 campaigns, we 

demonstrate the utility of the methodology. 

 

Short Summary:  The number of cloud droplets per unit volume, Nd, in a cloud is important for understanding aerosol-cloud 

interaction.   In this study we develop techniques to derive cloud droplet number concentration from lidar measurements combined 

with other remote sensing measurements such as cloud radar and microwave radiometer.  We show that deriving Nd is very 

uncertain although a synergistic algorithm seems to produce useful characterizations of Nd and effective particle size.     

1 Introduction 30 

The number of cloud droplets per unit volume (Nd) is essential for characterizing cloud properties. Particularly for lower 

tropospheric liquid-phase clouds, Nd forms a bridge between atmospheric aerosol and the earth’s albedo by determining how 

condensed water is partitioned into droplet surface area. Higher droplet concentrations for a given condensed mass result in more 

surface area and more reflective clouds (Twomey, 1974). Thus, many cloud parameterizations used in models include Nd as one of 

the moments in multi-moment cloud schemes where the other moment is typically related to the mass mixing ratio (Gettelman and 

Morrison, 2015; Thompson and Eidhammer, 2014; Seifert and Beheng, 2005). Conceptually, using Nd as a baseline parameter 

makes sense since droplets typically condense on hygroscopic aerosol particles (hereafter cloud condensation nuclei or CCN), 

thereby fixing Nd as the water droplets grow in an updraft. The initial Nd at the cloud base would be an upper limit on Nd in the 

ascending updraft because coalescence processes would reduce Nd, and precipitation would further scavenge cloud droplets. 
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However, aircraft observations often show that for shallow clouds of less than 1 km in depth with minimal precipitation, Nd is 40 

reasonably constant with height (Miles et al., 2000) and strongly correlated with CCN (McFarquhar et al., 2021). 

 

In this paper, we revisit the methodology used in Mace et al., (2021; Hereafter M21) and attempt to extend that methodology with 

a focus on lidar measurements from below cloud. In M21, a method derived therein was applied to non-precipitating clouds where 

the layer-averaged radar reflectivity provided the primary source of information. While M21 used the lidar measurements at the 

cloud base to contribute to the first guess, M21 did not fully exploit the information content available in the lidar measurements. 

Here, we more thoroughly examine what the lidar signal near the cloud base can tell us about cloud properties in optically thick 

boundary layer clouds. Because the lidar backscatter is much larger at the cloud base than in sub-cloud drizzle, we apply the 

methodology to lightly precipitating and non-precipitating clouds.   

 50 

2 Methods 

2.1. Instruments and Comparison Approach 

 

We focus on data collected during the summer of 2018 from two ship-based campaigns on the Australian Research Vessel (RV) 

Investigator and the Australian Ice Breaker Aurora Australis during voyages between Hobart, Australia, and East Antarctica. These 

campaigns are known respectively as the second Clouds Aerosols Precipitation Radiation and Atmospheric Composition Over the 

Southern Ocean (Capricorn 2) and Measurements of Aerosols, Radiation, and Clouds over the Southern Ocean (Marcus). These 

campaigns and a detailed accounting of instrumentation is described in McFarquhar et al. (2021) and Mace et al., (2021).     

 

The key observations we focus on in this paper are vertically-pointing depolarization elastic-backscatter lidars, vertically pointing 60 

W-band radars, microwave radiometers, and ancillary measurements provided by radiosondes and surface meteorological 

instruments.  This combination of active and passive instruments (radar, lidar, and radiometer) have become common in many 

cloud- and precipitation-focused field campaigns and enable derivation of cloud properties as we describe herein.  One important 

synergy in this instrument suite is that the lidar is very sensitive to the droplets at cloud base while the radar is most sensitive to 

the cloud top region where the droplets are largest in non-precipitating clouds thereby providing immediate information on cloud 

layer depth.  In terms of the measurable quantities, the lidar attenuated backscatter measurement is sensitive to the second moment 

of the droplet size distribution (DSD), the radar to the sixth moment of the DSD, and the microwave radiometer to the integrated 

condensed mass in the vertical column (liquid water path or LWP, hereafter).  For non-precipitating clouds, Frisch et al. (1995) 

illustrate how the radar reflectivity profile, being proportional to the square of the condensed mass, can be cast as a weighting 

function to vertically distribute the LWP.  The lidar then, being the most sensitive to the smaller droplets that compose the DSD, 70 

provides information regarding how the mass is distributed into the droplets.  Combining the layer depth information and the LWP, 

we have immediate and critical information regarding the degree of adiabaticity of the layer (Albrecht et al., 1990).  We seek to 

exploit these synergies in the algorithms described in the following sections. 

 

While we focus on the information in surface-based measurements, we also take advantage of airborne in situ measurements and 

measurements provided by satellites.  Again, with a theme of synergy, in situ data provide a direct measure of the cloud properties 

we seek to infer from remote sensing measurements in unique and rare instances of coordination while the satellite data provide 

regional observations from frequently occurring overpasses.  The satellite overpasses over periods of weeks to months provide 
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good coverage of diverse cloud fields collected over the course of a campaign.  We make use of these additional platforms to both 

validate our algorithms but also to provide context and understanding of the processes at work in a particular cloud field.     80 

 

 

2.2 Theory and Assumptions 

 

The observed lidar attenuated backscatter 𝛽𝑜𝑏𝑠 can be combined with other measurements to derive Nd in fully attenuating liquid 

phase clouds when measured from the surface.  Even though light precipitation may be present, we assume that 𝛽𝑜𝑏𝑠 is dominated 

by a droplet distribution (N(D)) describable by a modified gamma function.  Following Appendix B in Posselt and Mace (2014): 

 

𝑑𝑁(𝐷)

𝑑𝐷
= 𝑁0 (

𝐷

𝐷0
)

𝛼

𝑒𝑥𝑝 (−
𝐷

𝐷0
)                (1) 
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Where 
𝑑𝑁(𝐷)

𝑑𝐷
 is the droplet number concentration per unit size D with units of cm-4 in the cgs unit system. 𝑁0 with units of cm-4, 

𝐷0 with units of cm, and 𝛼 (unitless) are respectively the characteristic number, diameter and the shape parameter of the N(D) 

distribution function.  This simple integrable function allows us to express the microphysical quantities, Nd, q (liquid water content), 

re (effective radius), 𝜎 (extinction), and Z (radar reflectivity in the Rayleigh limit), with the following expressions by integrating 

over all D, 

𝑁𝑑 = 𝑁0𝐷0Γ(𝛼 + 1)       (2) 

𝑞 = 𝜌
𝜋

6
𝑁0𝐷0

4 Γ(𝛼 + 4)                                                                    (3) 

𝑟𝑒 =
𝐷0

2
(𝛼 + 3)        (4) 

𝜎 =
𝜋

2
𝑁0𝐷0

3 Γ(𝛼 + 3)       (5) 

𝑍 = 𝑁0𝐷0
7 Γ(𝛼 + 7)       (6) 100 

Where 𝜌 is the density of liquid water and Γ is the gamma function.   re is derived as the ratio of the 3rd moment of N(D) to the 2nd 

moment of N(D) followed by application of the recursion relationship of the gamma function.  For 𝜎, we assume that the extinction 

efficiency can be approximated as 2 for integrations over typical water droplet distributions.  The radar reflectivity Z is written as 

the sixth moment of the DSD consistent with the Rayleigh approximation which is valid for cloud droplets and radar wavelengths 

up to W-Band (~94 GHz or ~3mm wavelength). Conversion from conventional units of mm6 m-3 to units in the cgs system (cm3) 

requires multiplication of Z by 10-12.  Using Eqns. 2-6, we develop relationships among the variables:    

 

𝑁𝑑 =
3

4

1

𝑘𝜋𝜌

𝑞

𝑟𝑒
3                (7) 

𝑍 = 𝑞𝑟𝑒
3𝐶           (8) 

𝜎 =
3

2𝜌

𝑞

𝑟𝑒
           (9) 110 

      

Where 𝑘 =
(𝛼+2)(𝛼+1)

(𝛼+3)2 , and 𝐶 =
48Γ(𝛼+7)

𝜋Γ(𝛼+4)(𝛼+3)3 
.  Eqn. 9 was first derived by Stephens (1978) and illustrates a pathway to deriving 

Nd from multi spectral satellite reflectance measurements.  For instance, the bi spectral method applied to MODIS (Nakajima and 

King, 1990; Platnick et al. 2003) returns measurements of optical depth (𝜏) and re.  Since 𝜏 is the vertical integral of 𝜎, Eqn. 3 can 
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be adapted for use with satellite retrievals.  A full derivation and error analysis of deriving Nd and other quantities from bi spectral 

satellite retrievals is presented in Grosvenor et al. (2018; Hereafter G18).   

 

Following Platt (1977) and extending through the work of Hu et al., (2007) and Li et al. (2011) among others, we express the 

observed lidar attenuated backscatter as 

𝛽𝑜𝑏𝑠(𝑅) = 𝛽(𝑅)𝑒−2 ∫ 𝜂𝜎𝑑𝑅   .     (10) 120 

𝛽𝑜𝑏𝑠  is the result of 2-way attenuation through the cloud to a point R (range) in the layer and 𝜎 is the extinction coefficient with 

units of inverse length where 𝜎 is expressed in terms of the lidar ratio, 𝑆 =
𝜎

𝛽
.  A factor 𝜂 hereafter referred to as the multiple 

scattering factor accounts for the addition of photons to the observed signal due to multiple scattering in optically dense clouds.  

Defining the layer-integrated total attenuated backscatter as 𝛾 = ∫ 𝛽∥+⊥and the layer integrated depolarization ratio as 𝛿 =
∫ 𝛽⊥

∫ 𝛽∥+⊥
 

we express 𝜂 = (
1−𝛿

1+𝛿
)

2
(Hu et al. 2009).  Platt et al. (1999) relates S with 𝜂 according to 𝑆𝜂 =

1−𝑇2

2𝛾
 and where T is the layer 

transmittance.  When the layer is fully attenuating (T=0) and 𝑆 =
1

2𝜂𝛾
.          

 

Figure 1 illustrates two examples of 𝛽𝑜𝑏𝑠 profiles measured by a Micropulse lidar (Lewis et al., 2020) on board the Aurora Australis 

during MARCUS.  Note that the units of the lidar signal in Fig. 1 are expressed as normalized relative backscatter (NRB) in Figure 

1 that is equivalent to 𝛽𝑜𝑏𝑠 via a calibration constant.  We convert NRB to 𝛽𝑜𝑏𝑠  using a calibration technique described in O’Connor 130 

et al. (2004). We see the typically small 𝛽𝑜𝑏𝑠  below the cloud that is due to aerosol and molecular scattering in Fig. 1a, while in 

Figure 1b, there is a contribution from drizzle (observed by a collocated w-band radar, not shown). There is an immediate increase 

in 𝛽𝑜𝑏𝑠  at a height where condensed liquid water droplets near the cloud base activate, grow rapidly with height, and begin to 

dominate the lidar signal scattering.   𝛽𝑜𝑏𝑠  then increases exponentially according to Eqn. 4 until the two-way attenuation causes 

𝛽𝑜𝑏𝑠  to reach a maximum value, which decays exponentially.  We define the range from cloud base to the maximum in 𝛽𝑜𝑏𝑠  as 

Rmax.    Beyond Rmax, 𝛽𝑜𝑏𝑠  gains more contribution by multiple-scattered light depending on the lidar field of view and, in liquid 

clouds, the signal  becomes increasingly depolarized relative to the transmitted signal because the orientation of the electric field 

vector is modified by the directionality of each scattering event. The progressive depolarization of the scattered signal is a function 

of the droplet size distribution (Hu et al., 2009).  The overall result is quantified by η which is a factor less than 1 that effectively 

adds signal to 𝛽𝑜𝑏𝑠  in Eqn. 10.  The logarithmic decay of 𝛽𝑜𝑏𝑠  was shown by Li et al. (2011) to be related to 𝜎:   140 

𝜂𝜎 = −
ln𝛽(𝑅2)𝑜𝑏𝑠−ln 𝛽(𝑅1)𝑜𝑏𝑠

2(𝑅2−𝑅1)
          (11) 

Where (𝑟2 − 𝑟1) is the range over which the change in 𝛽𝑜𝑏𝑠  is calculated.  Because we have estimated η from measurements, we 

can estimate σ in the optically thick part of the layer beyond the peak in 𝛽𝑜𝑏𝑠using linear regression.  Li et al. (2011) compare σ 

derived from this method to estimates of σ derived from passive reflectances and find an uncertainty of ~13% although we assume 

it to be higher (20%) below.  This method's accuracy depends on calculating the rate at which the signal decays with depth in the 

layer.  In practice, we fit a regression line to 𝛽𝑜𝑏𝑠  at ranges beyond Rmax until the signal is a factor of 2 above the lidar noise floor. 

We determine the lidar noise level from the mean 𝛽𝑜𝑏𝑠well beyond the point of full attenuation in the cloud layer.  The goodness 

of the linear regression fit depends on the number of measurements in this range where the signal is decaying. The accuracy 

depends on the vertical resolution of the lidar measurements for a given σ.  The accuracy of the fit is tracked and used to estimate 

uncertainty.  150 
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2.3 Direct Calculation of Nd and re 

  
The growth of the lidar signal from cloud base to Rmax can be used to gain information about the cloud layer.  Taking the natural 

logarithm of both sides of Eqn. 10, recognizing that 𝛽𝑆𝑐 =  𝜎, and then differentiating with range r in the cloud layer, we can write, 

 
𝜕 ln 𝛽𝑜𝑏𝑠

𝜕𝑅
=

𝜕 ln 𝜎

𝜕𝑅
− 2𝜂𝜎.         (12) 

 

We next derive an expression relating 𝜎 in terms of Nd and q. We can simply express N0 in terms of Nd:  𝑁0 =
𝑁𝑑

D0Γ(𝛼+1)
, and 

substitute into Eqn 5: 160 
 𝜎 =

𝜋

2

𝑁𝑑

Γ(𝛼+1)
𝐷0

2 Γ(𝛼 + 3)     (13) 

Then solve the expression for 𝜎 in Eqn. 5 for D0:  𝐷0
3 =

𝜎
𝜋
2

N0Γ(𝛼+3)
 and substitute into Eqn. 3 and rearrange to obtain 𝐷0 =

3

𝜌

𝑞

𝜎

Γ(𝛼+3)

Γ(𝛼+4)
.  Now substitute the expression for D0 into Eqn. 13 and rearrange:   

𝜎 = 𝑁𝑑

1
3𝑞

2
3B.      (14) 

 

  
Figure 1.  Two Examples of Normalized Relative Backscatter (NRB; Campbell et al., 2002) from Micropulse Lidar data 

collected during Marcus on January 26, 2018. a) shows a profile in a non-drizzling cloud collected at 02:50:30 UTC. b) 

shows a profile collected at 02:22:30 that had sub cloud drizzle as indicated by the cloud radar.  The green line indicates 

the height determined to be cloud base while the red line indicate the maximum in 𝜷𝒐𝒃𝒔.  The distance between the green 

and red lines is defined as Rmax 
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where 𝐵 = (
9𝜋

2𝜌2

[Γ(𝛼+3)]3

[Γ(𝛼+4)]2Γ(𝛼+1)
)

1

3
 collects constants and assumptions.   Now we combine Eqns. 12 and 14:  

𝑑𝑙𝑛(𝛽𝑜𝑏𝑠)

𝑑𝑟
=

𝐵𝑁𝑑

1
3

𝜎

𝑑

𝑑𝑟
(𝑞

2
3) − 2𝜂𝜎.  Solving the derivative for q, 

 
𝑑

𝑑𝑟
(𝑞

2
3) =

2

3
𝑞−

1
3

𝑑𝑞

𝑑𝑟
, substituting into Eqn. 14 and simplifying we arrive at: 

𝑑𝑙𝑛(𝛽𝑜𝑏𝑠)

𝑑𝑟
=

2

3

𝑑𝑙𝑛𝑞

𝑑𝑟
− 2𝐵𝜂𝑁𝑑

1
3𝑞

2
3 and solving for Nd: 

𝑁𝑑

1

3 =
2

3

𝑑𝑙𝑛𝑞

𝑑𝑅
−

𝑑𝑙𝑛(𝛽𝑜𝑏𝑠)

𝑑𝑟

2𝐵𝜂𝑞
2
3

     (15) 

Since 𝑞 = 𝑓𝑎𝑑Γ𝑙𝑅 where Γ𝑙  is the layer mean adiabatic liquid water lapse rate that depends on temperature and pressure and the 170 
moist adiabatic lapse rate (G18), we substitute into Eqn. 15 and noting that 

𝑑𝑙𝑛𝑞

𝑑𝑅
=

1

𝑅
, we can write Eqn. 15 as, 

𝑁𝑑 = (
2

3𝑟
−

𝑑 ln 𝛽𝑜𝑏𝑠
𝑑𝑟

2𝜂(Γ𝑙𝑅𝑓𝑎𝑑)
2
3𝐵

)

3

      (16) 

Now where 
𝑑𝑙𝑛(𝛽𝑜𝑏𝑠)

𝑑𝑟
= 0 at Rmax, we simplify the expression to arrive at 

𝑁𝑑 =
1

27𝐵3𝜂3Γ𝑙
2𝑅𝑚𝑎𝑥

5 𝑓𝑎𝑑
2      (17) 

 

 

In Eqn. 17, Nd is a function of observable quantities with an assumption that the liquid water profile has an adiabatic shape. The 

DSD shape parameter 𝛼 is also assumed and typically given a value that conforms to in situ data (see below).  𝑓𝑎𝑑 , which scales 

the adiabatic liquid water content, can be calculated as the ratio of the vertically integrated liquid water mass or liquid water path 

(LWP) that is readily retrieved from measurements collected by a microwave radiometer (Turner et al., 2016) to the adiabatic LWP 180 

that can be derived by integrating Γ𝑙  over the depth of the layer (G18).  The depth of the layer must be determined from some 

means such as a vertically pointing cloud radar or perhaps from recent radiosonde soundings.  Thus, Nd can be derived with a 

combination of a depolarization lidar, some means of determining cloud top, and a microwave radiometer.  Neither the lidar nor 

the radar, if present, must be calibrated to derive Nd with Eqn. 17.  With LWP and Nd, and a measure of layer depth, it is 

straightforward to estimate a characteristic cloud droplet size.  Typically, the cloud top re is most representative of the layer 

reflectance and is derived from bi spectral measurements such as MODIS to which we will compare later.  Following G18,  

𝑟𝑒 = (

3ℎ
4𝜋𝜌𝑙

Γ𝑙𝑓𝑎𝑑

𝑘𝑁𝑑
)

1/3

         (18) 

where h is the layer thickness and k is the cubed ratio of a volume weighted characteristic droplet size to the effective droplet size 

assumed constant at 0.8 following G18.    
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 190 

Figure 2 shows the response of Equations 17 and 18 to typical ranges of Rmax and fad.  In these calculations, we fix 𝜂 at 0.4 (a typical 

value for the lidar on CAPRICORN 2) and the cloud layer thickness at 500 m.  We find that Rmax contributes most significantly to 

the Nd calculation, given the fifth power exponent in the denominator of Eqn. 17.  Nd ranges from near 1000 cm-3 for low Rmax 

values that would correspond to very opaque layers to values less than 10 cm-3 for layers with Rmax exceeding 100 m.  These 

correspond to the approximate typical extremes for Rmax found in measurements.  re ranges from 5 𝜇m for small Rmax to more than 

50 𝜇m for very large Rmax corresponding to the change in Nd from high to low, respectively.  For a given Rmax, an increasingly 

adiabatic cloud layer causes Nd to decrease and re to increase.  This tendency makes physical sense since for our simple conceptual 

model of an adiabatically increasing q profile, increasing fad for a given LWP and layer thickness (h) implies more liquid water in 

the profile.  Therefore, for a given Rmax, fewer and but larger droplets are required to achieve a given extinction profile that allows 

the lidar beam to penetrate the layer.  200 

 

 

 
Figure 2.  Response of Equation 18 (a - re) and Equation 17 (b - Nd) to typical values of Rmax and fad.   
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While Eqns. 17 and 18 produce physically plausible results as illustrated in Fig. 2, the sensitivity of Nd to uncertainty in Rmax is 

substantial.  The resulting uncertainty in Nd then translates into uncertainty in re.  Clearly, with the typical range in Rmax between a 

few 10’s of meters to values not much greater than about 100 m, the vertical resolution of the lidar has a significant bearing on 

how well we can know Rmax.  Lidars in operational networks typically operate with range bin spacing of between 10 and 15 m. The 

Micropulse lidars operated by the DOE Atmospheric Radiation Measurement (ARM) program (Mather, 2021) use 15 m spacing 

while Vaisala laser ceilometers use a range bin spacing of 10 m. We use a bootstrap approach to evaluate the effect of this 

uncertainty in Rmax. We assume that the 1 standard deviation uncertainty in Rmax would be ½ of the range bin spacing.   Fixing the 

uncertainty in fad and 𝜂 at 20% and allowing a variable Rmax uncertainty of 1m, 5m, 10m, and 15m, we use a normally distributed 

set of random numbers to perturb the Rmax, fad, and 𝜂 about their assumed values prior to implementation of Eqns. 9 and 10.  25000 210 

iterations are used to compute the frequency distribution of the resulting Nd and re (Fig. 3) for each Rmax uncertainty.  We find that 

range bin spacing in excess of 10 m is inadequate for calculating Nd.  A 30 m range bin spacing results in a normalized standard 

deviation in the Nd distribution for the example shown here of ~3.  The re normalized standard deviation is approximately 29% in 

this case.  The uncertainty in Nd and re decrease as the uncertainty in Rmax is reduced from 15 m to 1 m.  At 1 m and 5 m uncertainty 

in Rmax corresponding to 2 m and 10 m range bin spacing, Nd (re) has fractional uncertainties of 0.16 (0.16) and 0.55 (0.18), 

respectively. These levels of uncertainty would convey useful information about a cloud layer although the magnitude of the 

uncertainty as illustrated by the frequency distribution (blue) in Fig. 3 illustrates the uncertainty is non negligible relative to the 

typical ranges of these quantities. The ranges of uncertainty that we encounter with typical operational lidars and ceilometers are 

only marginally to insignificantly informative.   

 220 
2.4 An Optimal Estimation Algorithm 

 

To lessen the effects of uncertainty in Rmax, we attempt to bring additional information to bear by developing a Bayesian optimal 

estimation (OE) inversion algorithm (Maahn et al., 2019) to retrieve Nd and re.  This methodology allows us to use additional data 

 

 
Figure 3.  Sensitivity of Eqns. 17 (a) and 18 (b) to uncertainty in input parameters.  Inset lists the resulting 

uncertainties corresponding to the color-coded frequency distributions.  Insets list normalized standard deviations for 

an assumed standard deviation in Rmax of 1, 5, 10, and 15 m.    The lidar range gate spacing would be twice the 

standard deviation in Rmax. 
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sources that contribute to our understanding of droplet Nd and re while balancing the observational and forward modeling errors 

that contribute to retrieval uncertainty.  In addition to the independent variables in equations 9 and 10, we also use the layer 𝜎 

derived from the lidar data (Eqn. 5) and the radar reflectivity near cloud top (Ztop) from a collocated millimeter radar.  We choose 

to use the radar reflectivity near the cloud top to avoid, to the extent possible, multimodal droplet distributions that often occur as 

drizzle or snow sediments through a cloud layer.  Near layer top, at least for reasonably shallow clouds, we assume the precipitation 

droplet mode to be nascent and the cloud droplet distribution to be approximately unimodal. Inspection of aircraft in situ drop size 230 

distributions collected over multiple campaigns reasonably support this assumption (Lawson et al., 2017).   Ztop provides a useful 

constraint on the liquid water profile's shape and conveys information on fad and re. We define an observational vector, 

 

𝑦 = [𝑅𝑚𝑎𝑥 𝜎 𝐿𝑊𝑃 𝑍𝑡𝑜𝑝]      (19) 

 

An observational error covariance matrix, Sy, is a 4x4 element matrix that records the uncertainty of the measurements in y due to 

random noise and uncertainties in forward modeling of that quantity along the diagonal. We allow for covariance among the 

observations using the correlations listed in Table 1 and the variances of the individual quantities as listed along the diagonal.  

These correlations are derived from the Capricorn 2 and Marcus combined data set.  We find significant correlations among the 

measurements in y.  These correlations show that the measurements in y are not independent and are not, therefore, unique in terms 240 

of information.  We address the information content below.      

 

Table 1.  Sources of uncertainty estimates (diagonal) and correlations (off diagonal) among measurements in y (Eqn. 11) 

used in the OE algorithm.  Correlations are derived from the combined Marcus and Capricorn 2 data sets. 

 𝑅𝑚𝑎𝑥 𝜎 𝐿𝑊𝑃 𝑍𝑡𝑜𝑝 

𝑅𝑚𝑎𝑥 Lidar Range 

Bin Space 

   

𝜎 -0.58 20% (Lin et 

al. 2011) 

  

𝐿𝑊𝑃 +0.24 -0.22 20 g m-2 

(LWP<100) 

30% 

(LWP>100) 

(Turner et al., 

2016) 

 

𝑍𝑡𝑜𝑝 +0.23 +0.48 +0.47 1 dB 

Capricorn, 4 

dB Marcus 

(Kollias et 

al., 2019) 

 
The quantities to be estimated and their covariance are denoted in the state vector x respectively:  

      𝑥 = [𝑁𝑑 𝑟𝑒]      (20) 

And Sx is a 2x2 element matrix that records the uncertainties of x along the diagonal.  𝑟𝑒 is assumed to be near the layer top as 

defined in Eqn. 18.    

 250 

We use x and additional observations and assumptions to derive a forward calculation of y or F(x) based on initial and incremental 

x guesses (see below) with a simple forward model.  Our forward model begins with the observed thermodynamics such as 

temperature, pressure and relative humidity profiles, cloud base height, and layer thickness.  With an observed or simulated LWP 
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and a temperature-dependent Γ𝑙 , we create a vertical profile of liquid water that varies with an adiabatic shape scaled by fad.  Using 

an assumed shape parameter (𝛼=2, justified below), we then calculate profiles of re and Nd allowing us to estimate the terms in y 

using the simple lidar equation (Eqn. 11) and the expressions for Z and 𝜎 in Eqns. 8 and 9.     

 

To derive x from y using OE, we express the first order derivatives of y with respect to x in a Jacobian matrix, 𝐾𝑥, that has 

dimensions of the number of elements in y (4) by the number of elements in x (2):   

𝐾𝑥 =

𝜕𝑅𝑚𝑎𝑥

𝜕𝑁𝑑
= −0.29

𝜕𝜎

𝜕𝑁𝑑
= 0.24

𝜕𝐿𝑊𝑃

𝜕𝑁𝑑
= 0

𝜕𝑍𝑡𝑜𝑝

𝜕𝑁𝑑
= 0.01

𝜕𝑅𝑚𝑎𝑥

𝜕𝑟𝑒
= 0.92

𝜕𝜎

𝜕𝑟𝑒
= −2.9

𝜕𝐿𝑊𝑃

𝜕𝑟𝑒
= 0.44

𝜕𝑍𝑡𝑜𝑝

𝜕𝑟𝑒
= 1.2

 260 

These terms are calculated analytically using the expressions in Eqns. 2-10, 14 and 17.  Also, we set 
𝜕𝐿𝑊𝑃

𝜕𝑁𝑑
= 0 because we assume 

that the amount of water made available for condensation is the result of thermodynamics while how that water is distributed into 

droplets depends more on the CCN that is available for the water to condense onto.  The quantities listed in the Kx matrix show 

typical values of the terms for Case 5 listed in Table 3 below in terms of 
𝜕ln (𝑦)

𝜕ln (𝑥)
.  We find that re influences 𝜎, LWP, and Ztop in 

predictable ways.  For instance, the derivative is negative in the re - 𝜎 relationship.  The sensitivities of the observations in y are 

much more sensitive to re than to Nd illustrating the challenge of retrieving Nd with remote sensing observations as discussed earlier.    

 

The OE formalism derives x by balancing the uncertainties and information in the measurements with what is known about the 

statistical properties of x given the atmospheric state. The information from prior knowledge is contained in an a priori vector of 

statistical estimates of the quantities in x (Eqn. 12) or xa and their covariance, Sa.  For the prior estimate of Nd, we reason that 270 

coincident cloud condensation nuclei (CCN) measurements provide an upper limit on the droplet number.  These measurements 

were collected during Marcus and CAPRICORN 2 and are available hourly when the wind direction was favorable by not 

contaminating aerosol inlets with ship exhaust (Humphries et al. 2021). These hourly CCN measurements collected by a Droplet 

Measurement Technologies (DMT) CCN-100 at 0.2% supersaturation are simply multiplied by 0.8 to account for coalescence 

processes and used in xa. We found that the use of CCN, while a broad constraint and upper bound on Nd, was quite necessary for 

accurate convergence of the OE algorithm.  The hourly standard deviation of the CCN is then used along the diagonal of Sa.  When 

CCN are not available, within the previous 6 hours, we use averages of the surface-based CCN measurements for the latitudinal 

bands from 40°S-50°S, 50°S-60°S, and >60°S (Humphries et al., 2023).   For the prior value of re, we use the 0.8*CCN, the LWP, 

and layer thickness in Eqn. 10.   For re we use in situ aircraft data collected during the Southern Ocean Cloud Radiation and Aerosol 

Transport Experiment (SOCRATES; McFarquhuar et al., 2021) that was conducted in the Southern Ocean region south of Hobart 280 

Australia during the Austral Summer of 2018 by the NSF/NCAR HIAPER Gulfstream V (GV) aircraft.  In this campaign, the GV 

completed 15 research flights.  We combine the Cloud Droplet Probe (CDP manufactured by DMT) and 2DS (manufacture by 

SPEC Inc.) measurements into a single droplet size distribution (DSD) and use a moments minimization method (Zhao et al., 2011) 

to estimate Eqn. 1 for each low-level cloud 1-second DSD.  See Baumgardner et al., (2017) and Lawson et al. (2006) for discussions 

of the in situ droplet probes.  W-Band radar reflectivity is then calculated using Eqn. 3. For a particular retrieval where we have a 

measured Ztop, the Socrates data set is searched for all instances where Z is within 1.5 dB of the measurement and the prior re is 

then estimated from the mean of the in-situ measurements. For the covariance among the quantities in Sa, we know from analysis 

of in situ data that re and Nd are strongly correlated (G18) at a level of  ~0.7 among those terms.   
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The OE formalism also allows us to quantify the added uncertainty in our forward model calculations due to model parameters 290 

and assumptions (Maahn et al. 2019; Austin and Stephens, 2001) which we take to include 𝛼 (droplet distribution function shape 

parameter), fad (the adiabaticity of the column) and 𝜂.  We find that a value of α=2 with a standard deviation of 1.5 reasonably 

characterizes the in-situ cloud data collected during Socrates.  fad is estimated by taking the LWP and cloud thickness observations 

collected over the Marcus and CAPRICORN 2 voyages and deriving a linear regression of fad in terms of LWP following Miller et 

al., (1998) to wit: 𝑓𝑎𝑑 = 1. −(0.002 ∗ 𝐿𝑊𝑃). With LWP in g m-2, this equation returns fad=0.6 for LWP=200 gm-2 and 0.5 for 

LWP=250 g m-2.   The scatter in the LWP-fad observations suggest an uncertainty in this estimate of 0.15.  𝜂  is derived from the 

depolarization lidar data following the method described in Hu et al. (2007).  While the uncertainty of this quantity is difficult to 

assess, examining the consistency of the estimates over periods of persistent cloud cover we determined that an uncertainty of 30% 

is reasonable.   A term of the form 𝐾𝑏𝑆𝑏𝐾𝑏
𝑇 is added to the instrumental uncertainties where Kb is a Jacobian matrix that contains 

the first derivatives of the measurements in y with respect to 𝛼, fad, and  𝜂 determined through finite differences in the forward 300 

model: 

𝐾𝑏 =

𝜕𝑅𝑚𝑎𝑥

𝜕𝛼
= −0.08

𝜕𝑅𝑚𝑎𝑥

𝜕𝑓𝑎𝑑
= −0.60

𝜕𝑅𝑚𝑎𝑥

𝜕𝜂
= −0.63

𝜕𝜎

𝜕𝛼
= 0.11

𝜕𝜎

𝜕𝑓𝑎𝑑
= 0.55

𝜕𝜎

𝜕𝜂
= 0.03

𝜕𝐿𝑊𝑃

𝜕𝛼
= 0.20

𝜕𝐿𝑊𝑃

𝜕𝑓𝑎𝑑
= 1.0

𝜕𝐿𝑊𝑃

𝜕𝜂
= 0.0

𝜕𝑍𝑡𝑜𝑝

𝜕𝛼
= −0.35

𝜕𝑍𝑡𝑜𝑝

𝜕𝑓𝑎𝑑
= 2.0

𝜕𝑍𝑡𝑜𝑝

𝜕𝜂
= 0.0

 

The numbers in the Kb matrix expression are in terms of 
𝜕ln (𝑦)

𝜕ln (𝑥)
 and are derived from the forward model over the physically 

reasonable ranges of the parameters.    We find that these numbers vary by less than 20% in the Capricorn and Marcus data sets.  

Sb contains the variance of 𝛼, fad, and 𝜂 determined from in situ and remote sensing mearuements.  We assume that the covariance 

among these quantities can be neglected.   

 

Inversion of y for x then follows a standard iterative approach by applying a Gauss-Newton minimization technique derived in 

Rodgers (2000).  See also Maahn et al., (2019).  In this approach, successive guesses of x are derived using the well-known 

expression, 310 

 𝛿𝑥 = (𝑆𝑎 + 𝐾𝑥𝑆𝑦𝐾𝑥
𝑇)

−1
[𝑆𝑎

−1(𝑥̂ − 𝑥𝑎) + 𝐾𝑥
𝑇𝑆𝑦

−1(𝑦 − 𝐹(𝑥̂))]    (21) 

Where 𝑥̂ is a present guess, 𝐹(𝑥̂) is the forward estimate of the measurements in y using the present guess.   𝛿𝑥 then becomes the 

next increment on 𝑥̂.  Eqn. 21 is iterated until either a convergence criterium is met or divergence of the result occurs.  Typically, 

less than 10 iterations are necessary if the algorithm converges which it does > 90% of the time in non-precipitating conditions 

while convergence occurs less frequently as drizzle and light snow increase due to the inability to accurately estimate Rmax.   

 

2.5 Optimal Estimation Algorithm Evaluation 

 

The response of the OE algorithm is equivalent to the results presented in Fig. 3, except that additional information is used to 

hopefully lessen the effects of uncertainty in Rmax.  In Table 2, we list 6 cases that we use to examine the response of the OE 320 

algorithm in terms of the retrieved quantities and their uncertainties.  Cases 2, 4 and 6 differ from cases 1, 3, and 5, respectively 

only by the level of uncertainty applied. Cases 2, 4, and 6 use twice the listed uncertainties in Cases 1, 3, and 5 but otherwise 

identical inputs. Cases 1 and 2 are designed to illustrate a situation that might be found in a heavy aerosol environment with a low 
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𝑅𝑚𝑎𝑥 , high 𝜎, and low 𝑍𝑡𝑜𝑝 that produces high Nd, small cloud drops and moderately high LWP.  Cases 3 and 4 show the opposite 

with a rather large 𝑅𝑚𝑎𝑥 and lower 𝜎.  𝑍𝑡𝑜𝑝 is set higher with a larger LWP.  The algorithm returns a small Nd and large re in cases 

3 and 4.  Cases 5 and 6 are in between the two extremes.  fad in these cases range from 0.8 to 0.9, and this is by design as the cloud 

depth is specified.  The uncertainties listed in Table 2 are used in Cases 1, 3, and 5; except for Ztop which is listed in dB, the 

uncertainties are a fraction of the measurement. As a fraction of the returned values, the 1 standard deviation uncertainties do not 

change significantly from case to case, and they respond predictably to a doubling of the observational errors increasing 

approximately by a factor of 2.  We also test the OE uncertainty by randomly perturbing the observations about their stated 330 

uncertainties until the error statistics converge.  These are reported in Table 2 in the “Bootstrapping” column.  The bootstrap 

experiment generally returns uncertainty in re that is equivalent to or slightly smaller than the OE results.  For Nd, the bootstrap 

experiment returns marginally larger uncertainties than the OE results.    

 

The Shannon information content measures the extent to which the observations reduce the uncertainty in the prior.  The studies 

of L’Ecuyer et al. (2006) and Cooper et al. (2006) provide detailed discussions of this concept.  Doubling the observational 

uncertainty reduces the information content by approximately 1/3.  The number of independent parameters is less than the number 

of elements in y (the observations) because the observations are correlated.  For instance, as shown in Table 2, 𝑅𝑚𝑎𝑥  and 𝜎 both 

constrain Nd while LWP and 𝑍𝑡𝑜𝑝 constrain re.  Even in the lower error cases, the observations do not provide sufficient information 

to retrieve three independent quantities, suggesting that the results are correlated and not independent.   340 

 

The uncertainty in re remains roughly equivalent to the results shown in Fig. 3, although we consider the results of the OE to be 

more accurate because a better accounting of information is used.   Notable is the magnitude of the uncertainties for the retrieved 

Nd.  We find that it remains large, although the additional information provided by the other observations reduces the uncertainty 

compared to the results in Fig. 3.  We also tested how well the OE algorithm without Rmax would do where just extinction is the 

primary constraint on Nd.  This was accomplished by setting the Kx term 
𝜕𝑅𝑚𝑎𝑥

𝜕𝑁𝑑
= 0.   We found that for the uncertainties in the 

other quantities listed in Table 2, the uncertainty in Nd was approximately 150%, showing that Rmax is a useful quantity in this 

regard.  However, retrieval of Nd remains highly uncertain when lidar range bin spacing exceeds 5 m.   

 

Table 2.  Cases used to illustrate the response of the OE algorithm.  Observables are listed in rows 2-5 (shaded) with 350 

uncertainties in parentheses.  The retrieved quantities, their uncertainties in the OE algorithm and using a bootstrap 

approach (see text) are in lower rows. We also list the Shannon information content in bits, and the number of independent 

observations in the retrieval as derived from the OE formalism – see Rodgers, (2000).  Cases 2, 4, and 6 have observational 

uncertainties a factor of 2 greater than Cases 1, 3 and 5. 

   

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 
𝑅𝑚𝑎𝑥(m) 38 (4) 38 (8) 62 (6) 62 (12) 56 (5.5) 56 (11) 
𝜎 (km-1) 28 (4.5) 28 (9) 16 (2.5) 16 (5) 23 (3.5) 23 (7) 
𝑍𝑡𝑜𝑝 (dBZ) -19 (2) -19 (4) -12 (2) -12 (4) -15 (2) -15 (4) 
LWP (g m-2) 126 (30) 126 (60) 101 (25) 101 (50) 150 (37) 150 (74) 
Nd (cm-3) 229 231 36 37 95 91 
Nd OE 

Uncert. 

0.69 0.83 0.70 0.84 0.70 0.84 
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(Fraction) 
Nd Bootstrap 

Uncert. 

(Fraction) 

0.77 0.93 0.88 1.2 0.95 1.2 

re (um) 9.8 9.9 16 15 13 12 
re OE 

Uncert. 

(Fraction) 

0.24 0.42 0.19 0.40 0.18 0.40 

re Bootstrap 

Uncert. 

(Fraction) 

0.23 0.35 0.28 0.32 0.27 0.34 

Info (bits) 3.1 1.2 3.6 1.2 3.5 1.7 

# Ind Params 1.7 1.4 1.7 1.4 1.7 1.4 

 

 

 

 

To provide a more realistic evaluation of the OE algorithm performance, we use data collected during the Socrates campaign, 360 

where ramps (constant rate ascents and descents between cloud base and cloud top) through low-level cloud layers were conducted.  

Such a ramp is depicted in Fig. 4 which was collected on February 18, 2018 (hereafter 2/18) at 0510 UTC when the GV was 

conducting a mission near the R/V Investigator at 57S and 142E.  We will expand on the February 18 case study below.  For this 

analysis, we focused on 1-second data collected by the CDP that recorded droplet spectra in 2 𝜇m size bins up to 50 𝜇m.  The 

aircraft entered the cloud layer with a temperature near -5C at 1100 m.  q and re steadily increased as the GV ascended and exited 

the cloud layer approximately 90 seconds later at an altitude of 1450 m where q reached a maximum of 0.4 g m-3 and the re near 

 

 
Figure 4.  Ramp through an MBL cloud layer on February 18, 2018 collected by instruments on the NCAR Gulfstream 

V during Socrates.  This ramp was conducted near the RV Investigator ship during Capricorn 2.  As a function of 

height between cloud base near 1100 m and cloud top near 1450m, the panel show (a) q, (b) re, and (c) Nd.   
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cloud top was ~15 microns.  We note an interesting structure in the vertical re profile with a sudden decrease near 1375 m.  During 

this ascent, Nd was quite variable but averaged 150 cm-3 through most of the ramp until 1375 m where there is an abrupt increase 

in Nd to ~225 cm-3 in conjunction with the decrease in re.  Integrating q vertically through the layer, the LWP was 65 g m-2 with 

an adiabatic LWP of 80 g m-2, suggesting a sub-adiabatic layer with fad of ~0.8.  The radar reflectivity time series (discussed later) 370 

shows that drizzle was occurring sporadically during this case.  We used the cloud droplet concentrations collected during the ramp 

to get Rmax (32 m), the expression for Z (Eqn. 8) to estimate Ztop (-15 dBZe), and the cross-sectional area of the droplet distribution 

to estimate 𝜎 (layer mean of 30 km-1 and layer optical depth (𝜏) of 14).  These values were used as input to the lidar forward model.  

We implement the OE algorithm with fad and LWP to get a retrieved Nd of 165 cm-3 and re of 14 𝜇m in reasonable agreement with 

the input data.   

 

We repeated this exercise for other ramps collected during Socrates, excluding ramps that were super-adiabatic or had non-adiabatic 

structure in the vertical profile, reasoning that the finite distance over which the ramps occurred (~10-20 km) had the potential to 

sample cloud elements of varying properties.  For instance, on 2/18 three additional ramps were rejected.  The observational 

uncertainties used in the inversion are as discussed above for Cases 1, 3, and 5.   Figure 5 shows the relationship between observed 380 

and retrieved Nd and re., showing that the OE algorithm can reasonably capture the characteristics of the cloud layers.  While we 

would expect the algorithm to provide a reasonable comparison of the retrieved and observed Nd and re in this rather contrived 

experiment, we note that the OE uncertainty, for the most part, extends over the 1:1 line, suggesting that the characterization of 

uncertainty in the retrieved quantities is a reasonable estimation of the actual uncertainty of the algorithm.   

 

3.  Results and Discussion 

 

In this section, we present independent comparisons of the results the Nd OE algorithm using a detailed case study collected 

when the Terra satellite passed over the RV Investigator approximately 1 hour prior to an in-situ sampling period conducted by 

 

 
Figure 5.  Comparison of Observed and Derived Nd (a) and re (b) from Socrates ramps.  The error bars on the 

retrieved quantities are as derived from the optimal estimation. 
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the NCAR GV during Socrates on February 18, 2018 (2/18).  We then expand our view to examine comparisons of multiple 390 

overpasses of the ship by the NASA MODIS instrument on the Terra and Aqua satellites during the 2018 Summer campaigns.    

 

3.1. A Case Study 

 

The 2/18 case study provides a unique opportunity for independent comparisons of the algorithm with data collected while the GV 

aircraft operated in the vicinity of the RV Investigator and with an overpass of the Terra satellite that provided independent retrievals 

of 𝜏 and re (Platnick et al., 2004) from which we can derive LWP and Nd (G18) using the MODIS 𝜏 and re. During this case study 

period, the ship remained stationary at 56.6S and 141.5E to facilitate coordination with the GV.  Figure 6 illustrates the data 

collected from the shipboard instruments.  The lidar attenuated backscatter indicates a fully attenuating layer through the entire 

period.  With a cloud base temperature near -5C, the lidar depolarization ratio data suggest that the cloud base phase and the sub 400 

cloud precipitation were liquid.  The W-Band radar on the RV Investigator indicated episodic drizzle events of 10-20 minute 

duration roughly every hour, some of it rather heavy. Intervening periods without drizzle had radar reflectivity near the detection 

threshold of the radar (~-25 dBZe in the Capricorn 2 configuration).  The radar and sounding data collected at the ship showed that 

the layer was topped by a strong marine inversion near 1.5 km in agreement with the GV ramp in Figure 4. The LWP was variable 

between 50-60 g m-2 during periods without drizzle to values near 250 g m-2 during periods of drizzle.  The retrieved cloud 

properties varied depending on the proximity of a drizzle event.  While the algorithm did not converge in regions of heavier drizzle, 

we find near the boundaries of several drizzle events that the Nd decreased to 20-30 cm-3 and re increased to be more than 20 𝜇m.  

Otherwise, the algorithm tended to produce Nd in the range of 100 cm-3 and re in the 10 𝜇m range.   
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A Terra MODIS overpass occurred at 0025 UTC.  We collect the Level 2 retrieval of τ and re in a region of 50 km diameter centered 410 

on the ship and the ship data are collected between 23 UTC on 17 February and 0130 UTC on 2/18.   The comparison results are 

shown in Fig. 7 (see also Fig. 6).  A broad distribution of LWP is demonstrated during this period that has a similar character in 

both data sets.  The ship has an LWP mode near 160 g m-2, that is due to the drizzle event that is evident near 00 UTC in Fig. 6.   

The mean LWP from the ship is slightly larger than MODIS but the two are in broad agreement.  The distributions of re in the two 

data sets overlap with the surface data skewed to larger values, likely because of the predominance of the drizzle event.  The Nd 

retrievals also demonstrate broad agreement with quite wide distributions even though the ship Nd is skewed to smaller values.  

The ship 𝜏  distribution is skewed to smaller values than MODIS, consistent with larger re and smaller Nd.  We note that 𝜏 and re 

  
Figure 6.  Surface-based measurements and derived properties from data collected on February 18, 2018 on the RV 

Investigator near 55.6S and 141.5E.  a) radar reflectivity (Z) with ceilometer cloud base indicated by purple dots, b) 

lidar attenuated backscatter, 𝛽𝑜𝑏𝑠 , c) extinction () derived from 𝛽𝑜𝑏𝑠 , d) re and LWP, e) Nd.  The blue circles in panels (d) 

and (e) and inset values are from an overpass at 0025 UTC (vertical dashed line) of MODIS on Terra.  CCN at 0.25% 

supersaturation is shown on (e) using red circles.   
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are the quantities that are most directly retrieved from the MODIS algorithm, whereas the LWP and especially Nd require additional 

assumptions.  

 420 

On the other hand, the surface data LWP is independent of the radar, lidar, and other measurements and requires a minimum of 

assumptions to derive from the microwave radiometer brightness temperatures (Turner et al., 2016).  Nd and re from the surface 

data require a complicated algorithm, and 𝜏 from the surface data is calculated using Eqn. 9. Thus, the surface-derived 𝜏 would 

include the errors in the surface retrieval of re.  While there are biases in the comparison, given the substantial differences in the 

two independent data sets, we conclude that the comparisons demonstrate a reasonably consistent picture of the cloud field during 

the overpass.   

 

The GV arrived at the ship at approximately 02 UTC on 2/18 and operated in the vicinity of the ship for roughly 2 hours. It 

conducted ramps, level legs within the cloud layer, and legs above and below the layer for aerosol and remote sensing applications.    

We compare data collected during this time by gathering the aircraft data within 50 km of the ship.  The effective radius is derived 430 

from the aircraft CDP data in the upper ½ of the layer (above 1.2 km) and the aircraft Nd is collected from the CDP data in the 

lowest ½ of the layer.   The comparison of Nd and re distributions are shown in Fig. 8.  The aircraft re data are bimodal while the 

ship retrieved re are unimodal and centered on the lower mode of the aircraft re distribution.  We interpret the lack of bimodality in 

the ship-based re data as being due to the algorithm not converging in regions of heavier drizzle as noted above.  The aircraft 

penetrations of drizzle and non-precipitating clouds results in the bimodality in the re distribution shown in Fig. 8.  The Nd 

distributions are broadly similar, but the ship results are biased to lower values.  It is unclear the extent to which there is a bias 

toward the lower part of the cloud layer in the ship data. Regardless, both distributions are centered just in excess of 100 cm-3. This 

comparison suggests that the surface-based OE algorithm reasonably replicates the cloud layer properties in this case. 

 

 
Figure 7.  Comparison of properties observed and derived from data collected on the RV Investigator (blue) with cloud 

properties derived from a Terra MODIS overpass at 00:25 UTC on February 18, 2018.  a) re, b) LWP, c) Optical depth, 

d) Nd.  The vertical red line on panel (d) shows the 0.25% supersaturation CCN measured on the RV Investigator at 

this time. 
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Overall, we find that the aircraft, satellite, and surface-based data sources provide similar and very interesting characterizations of 440 

the cloud and CCN on 2/18.  Twohy et al. (2021) in their supplemental information show that the airmass above the marine 

boundary layer on 2/18 had one of the highest sulfur-based concentrations of CCN recorded during Socrates at 224 cm-3. The air 

mass observed on 2/18 followed a trajectory from the deep south over the Antarctic continent and the biologically productive 

waters of the Southern Ocean.  The high concentrations of sulfate CCN in the free troposphere imply new particle formation along 

the trajectory was likely responsible for the high CCN (McCoy et al., 2021).  The CCN at the surface measured on the RV 

Investigator was near 210 cm-3 – slightly lower than that measured on the aircraft. 

 

On the other hand, Nd seems to be consistently in the 100 cm-3 range from the surface, ship, and MODIS except for the near-cloud 

top maxima in Nd observed by the GV in the ramp demonstrated in Fig. 4.  The other ramps (not shown) also had values of Nd near 

the CCN values of 200-250 cm-3.  We speculate that the difference between CCN and Nd is mostly likely due to precipitation droplet 450 

scavenging and coalescence process that is actively generating drizzle in this case. The high CCN from the free troposphere 

transported to this location from the south is likely mixing into the marine boundary layer through entrainment (the cloud top spike 

in Nd in Fig. 4) and being processed through clouds explaining the lower surface CCN.  The cloud properties (Nd in the 100 cm-3 

range) are a drizzle and coalescence damped response to the higher free tropospheric CCN. 

 

3.2. Expanded MODIS Comparison 

 

Finally, we compare with the MODIS-derived cloud properties from overpasses of the ships during the Marcus and Capricorn 

campaigns.  With MODIS instruments on the Terra and Aqua satellites and the ships being at sea over extended periods, we found 

several events where suitable low-level clouds occurred over the ships during MODIS overpasses.  Table 4 lists the information 460 

about the 14 overpasses of the ships that we use for the comparison in Fig. 9.   Our approach was to examine a 50 km region of 

MODIS data centered on the ship, and we compiled surface data from 90-minute periods before and after an overpass.   We find 

  
Figure 8.  Comparison of Nd (a) and re (b) derived from the surface-based data collected on the RV Investigator (red) 

with data collected from the NCAR GV on 18 February 2018.  Cloud properties are compiled over the period from 2-4 

UTC.   

 

 



 19 

reasonable agreement in the comparisons.  The LWP is an interesting quantity since, as stated above, it is independent of the Nd - 

re retrieval.  The LWP from the MODIS data, on the other hand, is derived from the 𝜏 and re algorithm that uses a bi spectral method 

(Nakajima and King, 1990) so that the MODIS LWP would carry forward any uncertainties in 𝜏 and re.  The agreement, however, 

is reasonable with little bias.  Most of the cases have LWP<200 g m-2 since we focus on non- to lightly precipitating cloud scenes.  

The re of the cases range over values that are very small corresponding to cases near the Antarctic continent with high Nd and no 

precipitation to re that exceeds 15 𝜇m.  The comparison in re is unbiased with a reasonable correlation.  While Nd also demonstrates 

reasonable correlation, there does appear to be a slight bias in the comparison, with the surface data being, on average, 20-30 cm-

3 higher than MODIS.  The optical depth appears unbiased for values less than ~15 but then seem to show a bias for values of more 470 

than 15 with MODIS being larger than the surface-based results.  More data is highly desirable to establish how well and under 

what circumstances these data sets agree or don’t, but this comparison is encouraging.   

 

Table 4.  List of the MODIS overpasses shown in Fig. 9.  

Date/Time Location Satellite Campaign 

2018/01/29,  0450 

UTC 

 Aqua Capricorn 2 

2018/02/04, 0415 

UTC 

65.6S, 150.0E Aqua Capricorn 2 

2018/02/05, 0455 

UTC 

63.9S, 150.0E Aqua Capricorn 2 

2018/02/07, 2350 

UTC 

62.8S, 143.6E Terra Capricorn 2 

2018/02/13, 0545 

UTC 

63.9S, 132.1E Aqua Capricorn 2 

2018/02/18, 0025 

UTC 

56.5S, 141.6E Terra  Capricorn 2 

2018/02/20, 0010 

UTC 

50.2S, 143.7E Terra  Capricorn 2 

    

2018/01/02, 0110 

UTC 

66.3S, 110.5E Terra Marcus 

2018/01/05, 0140 

UTC 

66.2S, 110.2E Terra Marcus 

2018/01/05, 0720 

UTC 

66.1S, 110.0E Aqua Marcus 

2018/01/06, 0225 

UTC 

64.0S 111.3E Terra Marcus 

2018/01/10, 0425 

UTC 

47.0S 142.6E Terra Marcus 
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2018/02/23, 0805 

UTC 

59.3S, 89.3E Aqua Marcus 

2018/02/24, 0305 

UTC 

56.9S, 95.4E Terra Marcus 

 

 

5.  Summary and Conclusions 

 

Given the importance of knowing cloud droplet number concentrations (Nd) in low-level clouds for understanding how these clouds 

interact with aerosol and precipitation-producing processes to influence the earth’s albedo, we have explored two techniques that 480 

allow us to derive Nd and layer effective radius (re) using surface-based remote sensing techniques with an emphasis on the 

information brought to this problem by lidar data.  The depth a laser pulse penetrates a cloud layer is a function of the amount of 

water droplet cross-sectional area presented to the laser pulse, and that cross-sectional area is dependent upon the Nd and the liquid 

water content (q).  This observable is quantified by the lidar attenuated backscatter, 𝛽𝑜𝑏𝑠 , (Eqn. 10) that is modulated by the 

directionality of the scattering as represented by the multiple scattering factor.  As the lidar beam penetrates a cloud layer, the signal 

initially increases until two-way attenuation causes the signal to reach a maximum, after which it decays exponentially depending 

upon multiple scattering.  The rate of increase in 𝛽𝑜𝑏𝑠  is easily quantified if Nd and q are known, or turning the problem around, 

 

 
Figure 9.  Comparison of MODIS derived cloud properties with cloud properties derived from data collected during 

the Marcus and Capricorn 2 campaigns in the Southern Ocean during Austral Summer 2018.  Error bars are 1 

standard deviation of the retrieved cloud properties during the time and over the spatial extent of the two data sets.  

The Pearson correlation coefficient of the comparison is shown as an inset in each panel.   
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one can calculate Nd if 𝛽𝑜𝑏𝑠is observed, and q is known.  The math becomes more tractable where the lidar signal is at a maximum 

(a distance we term Rmax) since the rate of change of 𝛽𝑜𝑏𝑠 is zero there (Eqns. 16 and 17).  The liquid water content, q, can be 

expressed in terms of the rate of increase of q with height for an adiabatic cloud which can be made more realistic by scaling the 490 

q profile by an adiabaticity factor that can be derived from LWP and cloud layer depth.   This simple model (Eqn. 17) can be 

implemented with an estimated cloud depth, LWP, and a lidar.  The effective radius near cloud top can then be derived (Eqn. 18).   

 

The method, however, is very sensitive to uncertainty in Rmax which is, in turn, dependent on the vertical resolution of the lidar.  

Since Rmax typically ranges from a few 10’s to maybe as much as 100 m, the uncertainty in derived Nd becomes prohibitively large 

(> 100%) for range resolutions much above 15 m.  Rmax also depends on an estimate of where in the vertical profile activation of 

cloud droplets begin.  In non-precipitating clouds, this level is easily discerned to be where the signal first rises significantly above 

the aerosol and molecular background.  In light precipitation, this level is less obvious, and we extrapolate the signal to a level of 

signal strength that was previously identified in non-precipitating conditions. We found empirically that the cloud base identified 

by most automated ceilometer or lidar algorithms typically identify a cloud base to be very near where the lidar attenuated 500 

backscatter reaches a maximum which is not useful in this context.  Uncertainty in Rmax translates predictably into uncertainties in 

re.  Another limitation of the method is the need to estimate the q profile above cloud base.  We take advantage of an assumed 

adiabatically shaped q profile to estimate q at the point where 𝛽𝑜𝑏𝑠  reaches a maximum.  This allows us to essentially have two 

pieces of information to solve Eqn. 2 with the third, 𝛼, being assumed.  A cloud that does not have this adiabatic shape in q would, 

therefore, not provide an accurate estimate of Nd and re.  Additionally, the cloud must be fully attenuating to have an accurate value 

for Rmax.  We assume that most optically thick stratocumulus would satisfy these assumptions.  Note that it would be difficult to 

adapt this method to down looking observing systems from aircraft or satellite because of the assumption of the adiabatic shape of 

the q profile.  The tops of many MBL clouds contain a region where q is decreasing with height from a layer maximum q due to 

interaction with dry air at the layer top.  The depth of this region would depend on the strength of the marine inversion and the 

amount of mixing.     510 

 

To lessen the effects of uncertainty in Rmax, we bring more information to bear on the problem by quantifying the cloud layer 

extinction in terms of the rate of decay of the lidar signal beyond Rmax using a published methodology (Li et al., 2011).  In addition, 

we use the radar reflectivity near cloud top as a constraint on the q profile and re.   This is cast in an optimal estimation (OE) 

algorithm that seeks to balance the uncertainty in the observations and uses prior information such as CCN concentrations that 

provide an upper limit on Nd.  The OE algorithm is only marginally successful in reducing the uncertainty in Nd and re.  The 

uncertainties, especially on Nd, remain substantial since Rmax provides the most significant information on Nd and the other 

measurements provide minimal constraint on Nd as quantified in the Jacobian (Kx) matrix.  What we find interesting but not 

surprising is that the use of CCN as a prior constraint allows us to balance the information content in Rmax and the other observations 

with what we know as a significant constraint on Nd and, to a lesser extent, re.  Overall, the OE uncertainties that are shown to be 520 

reasonable through a bootstrapping experiment and through comparison to aircraft data, are in the range of just under a factor of 2 

for Nd and 30% for re for lidar range bins of 10-30 m.  The only way to reduce this uncertainty is to have dedicated lidar 

measurements that have vertical resolution less than 10 m. Using comparisons with in-situ aircraft data and with cloud properties 

derived from MODIS, we show that the OE algorithm provides results consistent with the uncertainty in the data and retrievals.   

 

Finally, a case study is explored that shows how synergistic remote sensing data from the surface, especially when combined with 

aircraft and satellite data, can be exploited. The February 18, 2018 case study that took place in the Southern Ocean near 56°S and 
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141°E suggests how long-range aerosol transport of an air mass from the biologically productive waters of the deep southern 

latitudes modulated the cloud properties that existed on this day.  The CCN measured at the surface and from the GV aircraft was 

about a factor of two larger than the ~100 cm-3 Nd inferred from the ship-based remote sensing and MODIS data and observed by 530 

the GV.  This difference between Nd and CCN was likely a response to the widespread precipitation processes that were occurring 

on this day.    
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