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Abstract. We estimate active layer thickness (ALT) for part of northern Alaska’s permafrost zone for summer 2017 to 2022

using satellite data from Sentinel-1 and ICESat-2. Interferograms were inverted using a Short Baseline Subset (SBAS) approach

to estimate the amplitude of seasonal subsidence. ALT was estimated from the measured subsidence. ICESat-2 products were

used to validate the InSAR displacement time-series. Most subsidence occurs between June and August in our study area. The

maximum amplitude of seasonal subsidence was 2-6 cm, with ALT exceeding 1.5 m. Estimated ALT is in good agreement with5

in-situ and other remotely sensed data, but is sensitive to assumed thaw season onset, indicating the need for reliable surface

temperature data. Our results suggest the feasibility of long-term permafrost monitoring with satellite InSAR.

1 Introduction

Permafrost is usually covered with soil or sediment – the active layer – which freezes and thaws seasonally. This layer also

moderates the impacts of surface temperature changes (Dobinski, 2011). The annual freeze-thaw cycle of the active layer10

causes significant surface height change due to the volume difference between ice and liquid water. Active layer thickness

(ALT) can be estimated using simplified physical models and surface subsidence measurements during the thaw season (Liu

et al., 2012, 2014, 2015; Schaefer et al., 2015; Hu et al., 2018). ALT is expected to increase as Arctic temperatures rise and

permafrost undergoes long-term thaw, so remote monitoring of this feature is important.

In the last three decades satellite-based Interferometric Synthetic Aperture Radar (InSAR) has been used to monitor a15

variety of Earth processes that generate subtle surface displacements, including earthquake and volcano deformation, and

reservoir compaction from fluid withdrawal (e.g., Bürgmann et al., 2000). Recent examples include earthquake after-slip (e.g.,

Sadeghi Chorsi et al., 2022b, a), volcano deformation (e.g., Poland and Zebker, 2022; Grapenthin et al., 2022), groundwater

extraction (e.g., Castellazzi et al., 2016), carbon sequestration (e.g., Yang et al., 2015; Vasco et al., 2020), seismicity induced

by fluid injection (e.g., Deng et al., 2020), coastal sea ice dynamics (e.g., Dammann et al., 2019) and coastal flood hazard (e.g.,20

Bekaert et al., 2017; Zhang et al., 2022). Pioneering work by L. Liu (Liu et al., 2010, 2012) demonstrated the utility of InSAR

to monitor long-term permafrost thaw and changes in ALT. Here, we use InSAR from the Sentinel-1 satellite constellation to

investigate permafrost thaw on the North Slope of Alaska for the period 2017 to 2022, focusing on multi-year changes in ALT.
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2 Previous Work

Satellite remote sensing of permafrost has been ongoing for at least three decades (e.g., Peddle and Franklin, 1993). In terms of25

microwave studies, Singhroy et al. (2007) used RADARSAT-1 to monitor permafrost activity and landslide motion around the

Mackenzie Valley Pipeline Corridor, Canada. Rykhus and Lu (2008) used JERS-1 L-band data to detect thaw settlement over

the Alaskan Arctic coastal plain. Liu et al. (2010) used ERS-1 and -2 SAR images to monitor permafrost on the North slope

of Alaska, observing seasonal subsidence of ∼1-4 cm and average secular subsidence of ∼1-4 cm/decade. Liu et al. (2012)

used SAR data to develop a novel ALT retrieval model, relating InSAR-derived subsidence to ALT using air temperature, soil30

texture, and organic matter thickness, assuming subsidence in a given thaw season is related to the volume reduction associated

with the phase change between ice and water. We follow a similar approach in this study. Schaefer et al. (2015) used ALOS

PALSAR data from 2006-2010 to estimate average ALT and long-term subsidence in Barrow, Alaska. Their model showed a

good agreement between remotely estimated ALT, Ground Penetrating Radar (GPR) and in-situ data for more than 75% of the

area. Daout et al. (2017) used multi-temporal InSAR observations to quantify ALT over Northwestern Tibet. They found that35

unconsolidated sediments in flat basins have higher seasonal subsidence amplitude compared to slope sediments and proposed

that ground water was the key controlling factor. Iwahana et al. (2016) used InSAR data from ALOS PALSAR together with

GPS data to study the long-term impacts of wildfire on the permafrost regime in the Anaktuvuk, Alaskan North Slope. Chen

et al. (2018) used Sentinel-1 InSAR data to estimate seasonal thaw subsidence and inter-annual elevation change from 2016 to

2017 in Yedoma, Russia. They found that the top of the flat Yedoma upland exhibits large seasonal subsidence, and suggested40

that the delayed thaw season in 2017 was related to air temperature fluctuations. Strozzi et al. (2018) used Sentinel-1 InSAR to

measure seasonal thaw subsidence in four sites, observing seasonal subsidence from 2 to 10 cm. Liu and Larson (2018) used

GPS interferometric reflectometry (GPS-IR) at Barrow, Alaska, showing that surface elevation could be measured reliably

during snow-free days. Hu et al. (2018) also used GPS-IR here, observing elevation changes with a seasonal amplitude of 5

cm. Michaelides et al. (2019) used ALOS data to estimate seasonal subsidence, long-term subsidence and ALT to develop a45

fire response model. Bartsch et al. (2019) used Sentinel-1 (C-band) and COSMO-Skymed (X-band) SAR images between 2013

to 2018 to monitor seasonal subsidence in central Yamal, Russia. Wang et al. (2020) used Sentinel-1 time-series in northern

Canada, demonstrating the utility of C-band radar for monitoring ALT in a sub-arctic tundra region. Chen et al. (2020) used

ALOS PALSAR data to monitor ALT in Toolik, Alaska. Honglei et al. (2021) used ALOS PALSAR for the period 2007 to 2010

to permafrost-related subsidence in the Qinghai-Tibet Plateau, observing settlement up to 12 cm. Michaelides et al. (2021) and50

Chen et al. (2023) used L-band UAVSAR InSAR and AirMOSS P-band polarimetric backscatter data over different sites in

Alaska and western Canada to simultaneously estimate seasonal subsidence, ALT and volumetric water content. Here, we use

Sentinel-1 interferometry to monitor seasonal subsidence and ALT changes from 2017 to 2022 for part of northern Alaska.

3 Study Area

Our main study area is located in northern Alaska in the vicinity of the Sag river and Dalton highway (69.68 N, 148.7 W;55

Figure-1). It is∼50 km south of Prudhoe Bay and∼130 km west of the Brookes range. It is located in a continuous permafrost
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Figure 1. (a): DEM of study area in northern Alaska. Solid black box is expanded in Figure-1b, red box outlines Figure-5. Triangle shows

CALM site (U8) used to compare ALT. Blue circle represents location of closest meteorological site used in this study (Sagwon). (b):

LOS displacement from 2022-06-10 to 2022-09-02. Negative values means displacement away from satellite. DEM relief map is shown in

background. Triangles show location of displacement time-series shown in Figure-3 and CALM site. Black square represents reference point

for InSAR used in this study.

region with more than 90% permafrost coverage (Jorgenson et al., 2008). The site is described as having 23 cm organic

layer thickness with seasonal high water table subject to saturation. The U8 CALM site’s vegetation coverage is classified

as graminoid-moss tundra, graminoid, prostrate-dwarf-shrub, and moss tundra (https://www2.gwu.edu/~calm/data/webforms/

u8_f.htm). The Circumpolar Arctic Vegetation Map (CAVM) describe graminoid and prostrate-dwarf-shrub vegetation as 5-1060

cm tall (CAVM Team, 2003). This short vegetation is likely favorable for shorter radar wavelength radars like Sentinel-1’s

C-band (wavelength ∼5.5 cm) to retain phase coherence. For comparison we also studied the Beta site of the APEX (Alaska

Peatland EXperiment), located approximately 30 km southwest of Fairbanks (64.696 N, 148.322 W). This site is located in

discontinuous permafrost zone with abundant black spruce, up to 5 m in height.
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4 Methods65

4.1 InSAR Data Processing

4.1.1 Data and Material

Sentinel-1 SAR images from June to September 2017 to 2022 were selected to cover the end of freeze season to the end of thaw

season (Table-S1). Changes in surface scattering characteristics in the freeze season (surface covered with snow and ice) could

decorrelate the radar wave. We used the Alaska Satellite Facility’s Hybrid Pluggable Processing Pipeline (HyP3) software to70

form interferograms (Hogenson et al., 2020). HyP3 uses the Copernicus GLO-30 Digital Elevation Model (DEM) for scene

coregistration and topographic phase corrections (ESA, 2021). Interferograms were filtered using the adaptive phase filter in

Goldstein and Werner (1998). Individual interferograms were unwrapped using a minimum-cost-flow algorithm (Chen and

Zebker, 2002) and geocoded to a 30 m grid spacing. We used the open-source Miami InSAR time-series software in python

(MintPy) to generate LOS displacement time-series from the unwrapped and geocoded interferograms (Fattahi et al., 2016;75

Yunjun et al., 2019). Geocoded LOS displacement data for active layer thickness estimation was then extracted for the study

area.

4.1.2 Reference Point Selection

InSAR is a double-difference technique that measures phase differences between SAR observations in space and time. To relate

these phase difference measurements to surface displacement, we need to choose a reference location with assumed or known80

displacement. In permafrost regions, rock outcrops are a suitable reference locations as they can be assumed to show only

minimal displacement, but may not be available for all regions. For this study, we use two criteria for reference point selection:

first, we require the point to have high temporal coherence (> 0.8) to avoid introducing noise into our time series. Second, we

look for locations that either are rock outcrops or lie in a floodplain (but not a river channel, which can undergo large elevation

changes from erosion/deposition events; see Figure-S1). Liu et al. (2010) point out that floodplains usually have well-drained85

sandy soils and hence tend not to experience significant frost heave. Figure-1b shows the reference point we identified using

these criteria, a rock outcrop immediately northeast of our study area which remains coherent (temporal coherence ∼0.95)

during the 2017 to 2022 thawing seasons.

4.1.3 Atmospheric delay correction

Atmospheric effects are one of the main error sources in the InSAR process (Meyer et al., 2006). While InSAR data can be90

affected by both the ionosphere and the troposphere, here we focus on tropospheric effects as ionospheric impacts are less

pronounced in C-band data (Meyer, 2011). Tropospheric phase impacts can be modeled as (Ding et al., 2008):

∆ϕ = ϕ2−ϕ1 =
4π

λ
[d2− d1] +

4π

λ
[δd2− δd1] (1)
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where ϕ is the phase of a SAR image, d is the range from satellite to surface, δd is the tropospheric propagation delay, and λ is

the radar wavelength. Tropospheric phase signals in InSAR data can be caused by two processes: changes in the atmospheric95

stratification and turbulent mixing. The stratified phase component typically correlates with topography (Hanssen, 2001) and

may be estimated based on delay-elevation correlations, then removed from the radar phase (Doin et al., 2009). The turbulent

component plays an important role in phase delay because it is uncorrelated in time and space, although its amplitude is much

less than the stratified component. According to (1) if the atmospheric propagation conditions at the time of SAR acquisitions

are not the same (δd2- δd1 ̸= 0), then tropospheric phase components will be introduced, contaminating the true displacement100

signal. To reduce these tropospheric effects, one approach is to apply a global weather model. This approach mainly reduces

the stratified component. We applied the atmospheric correction model described in Jolivet et al. (2011, 2014) using ECMWF

reanalysis (ERA-5) datasets (Hersbach et al., 2020).

4.2 ICESat-2 data processing

We used the ICESat-2 level 3A product for land and vegetation height (ATL-08) to validate the InSAR time-series displacement105

estimates. While the nominal temporal resolution of ICESat-2 data is 91 days, cloud cover greatly limits the amount of usable

data in Alaska (e.g., Neuenschwander and Pitts, 2019). Two observations were available in our study area, acquired on 2021-

06-08 and 2021-09-06. We used the "h_te_best_fit" parameter, which estimates terrain height by fitting a plane to along-track

points in each 100 m segment and report the height of the middle of the fitted plane (Neuenschwander and Magruder, 2019;

Neuenschwander et al., 2021). Due to pointing-related errors, observations are not always repeated in expected locations,110

which amplifies the height uncertainty. To address this issue, we divided the study area into 50 m grid cells, and assigned

each observation in 2021-06-08 and 2021-09-06 to one of those grid cells. Figure-S1 shows the height difference between

all reported observations in the study area between 2021-06-08 and 2021-09-06. In the limited area where both InSAR and

ICESat-2 data are available (four points shown in Figure-1a), we used the ICESat-2 data to evaluate the InSAR results (Figure-

3).115

4.3 ALT estimation model

To relate the InSAR observations to ALT, we assume that the measured LOS displacements are predominantly due to vertical

motion (negligible horizontal motion) and this vertical motion is caused by thawing ground ice in the active layer. The as-

sumption of negligible horizontal motion is justified because the data time interval is short and the technique does not sense

long-term tectonic motion. We observed large displacements in August 2018, ∼130 km east of study area due to the M 6.4120

earthquake (USGS hypocenter at north of Brooke range: 145.291 W, 69.576 N, depth 15.8 km). Since our study area was

far from this area, we believe most of the deformation in thaw season is because of ground ice thawing. We project the LOS

displacements into the vertical direction using the local incidence angle (θ) for each radar pixel (see Equation-3). We follow

the simplified Stefan solution to estimate depth of thawing in the soil (Nelson et al., 1997) aided by field-observed air temper-

ature data. We also assume that subsidence can be related to a simple thaw index, for example the accumulated degree days of125

thawing (ADDT).
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4.3.1 ADDT calculation

To calculate ADDT, we use the NOAA Climate Data Online (CDO) tool to find nearby meteorological stations. The closest

station is∼20 km south to our study area (Name: Sagwon, Figure-1a). We assume that our study area has the same temperature

trend as this station from 2017 to 2022. We define the first and last day with temperature > 0 ◦C as the first and last day of the130

thaw season. ADDT is defined by the following equation (Riseborough, 2003):

ADDT =

αs∫

0

(Ts−Tf )dt≈
αs∑

0

T̄s (2)

where αs is the duration of thawing season, in days. Ts is surface temperature (◦C), Tf is equal to freezing point, 0 ◦C, and T̄s

is daily mean surface temperature. Due to lack of in-situ surface temperature data, we set T̄s using air temperature observations.

4.3.2 Seasonal Amplitude Inversion135

The relationship between the seasonal vertical surface displacement magnitude and ADDT can be written as (Liu et al., 2012;

Schaefer et al., 2015):

Di =
LOS

cos(θ)
= E(

√
A2,i−

√
A1,i) + ε (3)

where Di is the vertical displacement estimate for a given pixel in the ith interferogram, θ is the local incidence angle at that

pixel calculated from nadir, E is the amplitude of the seasonal vertical displacement estimate which reflects physical parameters140

such as soil thermal conductivity, latent heat of fusion, soil density and relative water content. A1,i and A2,i are normalized

accumulated degree days of thawing at the first and second acquisition date. ε is an error term that captures model deficiencies,

noise, and other unknown error sources. We do not consider secular (long-term) displacement signals in (3) because we analyze

the thaw seasons of 2017 to 2022, separately. We can rewrite (3) in matrix form considering the interferograms listed in table-

S1, to estimate E using least squares.145




D1

D2

...

DN




=




√
A2,1−

√
A1,1√

A2,2−
√

A1,2

...
√

A2,N −
√

A1,N




[
E

]
(4)

4.3.3 ALT Inversion

If we assume that the seasonal vertical surface displacement amplitude E is caused only by thawing ice and corresponding

volume reduction, we can write E as a function of physical properties such as soil porosity, soil moisture fraction, and density

of ice and water through a vertical profile from surface to depth of the active layer (Liu et al., 2012; Schaefer et al., 2015):150
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E =
ρw − ρi

ρi

ALT∫

0

P (z)S(z)dz (5)

The variables ρw and ρi in (5) are the density of water and ice [kg m−3], respectively. P (z) is the soil porosity which is a

function of depth and depends on soil content. S(z) is the soil moisture fraction of saturation. Here, we assume that S(z) = 1,

which means that the active layer is fully saturated and does not change with depth (Schaefer et al., 2015). In the next section,

we describe relation between porosity in depth and ALT in (5).155

4.3.4 Porosity Model

We assume the soil in the active layer consists of organic matter and mineral soil. In this case, the porosity decreases expo-

nentially with depth due to decreasing organic matter. There is one active Circumpolar Active Layer Monitoring (CALM) site

inside our study area: U8 (Figure 1a). This site is described as having 23 cm organic layer thickness, consisting mainly of

peat plus sand and gravel (https://www2.gwu.edu/~calm/data/webforms/u8_f.htm). We consider this organic matter thickness160

in modeling of porosity versus depth. We applied the formulation introduced by Liu et al. (2012) and presume that P (z) is the

weighted average of organic and mineral matter:

P = forgPorg + (1− forg)Pmin (6)

where P is the porosity, and forg is defined as the organic soil fraction by Schaefer et al. (2009) as:

forg =
Morg

Morg_max
=

ρorg

ρorg_max
(7)165

In (7), Morg and ρorg are the simulated mass of organic matter and organic soil density in a given layer of soil, respectively.

Morg_max and ρorg_max are bulk organic matter mass and bulk density for pure organic soil, respectively. We set Porg = 0.95

based on model from Bakian-Dogaheh et al. (2022). The porosity of mineral soil depends on the sand fraction of soil. To

estimate mineral porosity, Pmin, we utilized the porosity-sand fraction relation provided in Liu et al. (2012):

Pmin = 0.489− 0.00126frsand (8)170

We used Global Land Data Assimilation System (GLDAS) soil parameters with 0.25◦ spatial resolution to extract frsand,

the soil sand fraction (Rodell et al., 2004). We set Pmin = 0.488, and ρorg_max = 130 [kg m−3] for bulk density of peat

(Grigal et al., 1989; Hossain et al., 2015). As mentioned earlier, to formalize with depth, we assume the organic matter amount

decreases exponentially with depth:

ρorg = B exp(−kz) (9)175
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Figure 2. Depth-porosity model used in this study assuming a mixture of organic and mineral matter.

where k is an empirical constant [m−1], set to 5.5 (Liu et al., 2012; Jackson et al., 2003). To retrieve B, we use simulated

mass of organic matter (Morg: total soil carbon content) from Johnson et al. (2011) and Mishra and Riley (2012) and ensure

that total carbon mass is conserved:

root∫

0

B exp(−kz)dz = Morg (10)

The spatial divergence of total soil carbon content for the 0-100 cm depth range is large in Arctic tundra regions considering180

vegetation type. Johnson et al. (2011) and Mishra and Riley (2012) estimated Morg around our study area at [60-80] and [50-

70] [kg m−2], respectively. We set Morg = 70 [kg m−2]. Root depth is the maximum observed ALT at a given site since roots

cannot penetrate solid ice. Here, we set maximum root depth at 1.1 m because maximum observed ALT at site U8 is reported

as ∼1.1 m for 2022. Then we solve (10) for B and replace it in (9). Figure-2 shows the relation between porosity and depth in

a mixed soil. We set P = 0.95 for the first ∼20 cm depth reflecting organic matter thickness. After 20 cm depth, the porosity185

decreases exponentially, reaching its minimum near the top of the frost table.

Finally, we put all equations into (5) and use a numerical bisection algorithm to solve for upper integral limit, ALT. We set

the accuracy of bisection to be at the mm level.
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5 Results and Discussion

5.1 Validation of InSAR Surface Displacement Estimates190

We used ICESat-2 ATL-08 products to evaluate our InSAR time-series results. We found four locations in common between

ICESat-2 and InSAR data for the 2021 thaw season, primarily limited by cloud cover (Figure-S1). Unfortunately, there were

no suitable ICESat-2 comparison data for 2019, 2020 and 2022 thaw season. ATL-08 reports surface height relative to the

WGS84 datum since mid-2018. To compare with relative InSAR data, we subtracted the two available ICESat-2 height data

and assign the first date’s height as zero elevation. This is a reasonable assumption because the two datasets have comparable195

start dates, June 8 for ICESat-2, and June 3 for SAR. Figure-3 shows that with these assumptions, the two approaches agree

well. This indicates that our reference point experiences negligible change during the study period. Reference point selection

for InSAR is difficult in permafrost regions as most area subside during thaw season. Comparing InSAR displacement with

reliable and available ICESat-2 data could be an option to evaluate result in remote areas. However, finding suitable repeated

ICESat-2 points is also difficult because of LiDAR pointing errors, cloud cover, and vegetation canopy density. The chosen200

locations for comparison here are less than 50 m distant (grid cell size) and have less than 7% slope difference.
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Figure 3. LOS displacement time-series for four locations (black triangles in Figure-1b) with respect to the first SAR acquisition in the thaw

season. Black dashed lines are best-fitting regression lines for InSAR LOS displacement only. Rate and RMSE of fitted lines are shown in

the top-left of each sub-figure. Red squares in 2021 show ICESat-2 ATL-08 terrain height product. Latitude and longitude of each analyzed

location are shown in the bottom-left of each panel.
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Figure 4. Rate comparison of LOS displacement between selected points shown in Figure-1b. Rate and an error bar are from fitted linear

line (See Figure-3).

5.2 Estimated Seasonal Vertical Displacement and ALT

Figure-3 shows time-series for the four locations shown in Figure-1b. The maximum amplitude of subsidence for these loca-

tions ranges from 2-6 cm. Location (4) and location (1) have the minimum and maximum subsidence amplitude in the entire

time-series. Most subsidence occurs in the first two months of data acquisition (Mid-June to mid-August) for all locations. The205

subsidence amplitude is similar between the four locations (up to ∼2 cm) in 2021. The maximum rate of subsidence is ∼20

cm/year and the rate is approximately linear for most locations, with a root mean square error (RMSE) of the linear trend of

less than 1 cm for all four locations from 2017 to 2022. Figure-4 shows the subsidence rate change at the four locations over

six years. No clear long-term trend is observed. Location (1) has the largest rate variation, from 5.7 in 2018 to 22.4 cm/year

in 2020. Location (3) has the minimum rate variation, 7.1 in 2017 to 11.7 cm/year in 2021. We do not observe correlation210

between subsidence rates at the various locations. For example, location (1) shows the fastest subsidence, with high rates in

2017, 2020 and 2022 but much smaller rates in 2018, 2019 and 2021. Location (2)’s fastest subsidence occurs in 2019 while

the fastest rates for point-3 and 4 occurred in 2019 and 2021.

Figure-5 shows the seasonal vertical displacement amplitude and its RMSE calculated from (4) and estimated ALT from

2017 to 2022 (red box in Figure-1a). The shallowest overall ALT in this area occurred in 2018 and 2021. The deepest ALT215

occurred in 2019 and 2020. The variation in these estimates may in part reflect uncertainty in thaw season length. Thaw season

usually starts around May 20 and ends around September 20, but the accumulated degree days differ each year. Sagwon station

data for this time period shows that the maximum and minimum ADDT occurred in 2019 and 2018, respectively.
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Figure 5. Estimated seasonal amplitude, its RMSE and ALT for study area (red box Figure-1a) from 2017 to 2022. Black triangle shows

location of CALM site U8. White areas represent low coherence which are masked out in the model calculations. The Sag river runs south

to north in the center of each panel (See Figure-S1).
12
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Figure 5. Continued

5.3 ALT Evaluation

We can compare our results with in-situ data. CALM site U8 is a one hectare area with 121 sample square arrays. Each array220

has a ∼10 m length. Its ALT has been observed at the end of the thaw season since 1996. Thaw depth is measured by pushing

a metal rod into the soil to refusal, assumed to represent the top of the permanently frozen layer. The ALT is not reported when

the array intersects large ponds or rocks. The mean of 121 ALT measurements and their RMSE are reported. Our approach for

reporting the InSAR-derived ALT is similar. We averaged ALT pixels with the center of closest pixel to U8, a radius of 100 m,

and calculated the corresponding RMSE (Table-1).225

Figure 6 shows ALT data around the U8 CALM site for different years. Our estimated ALT agrees within uncertainty with

in-situ data in five of the years, 2017, 2018, 2019, 2021 and 2022 (Table-1). In-situ ALT is not reported for 2020.

Chen et al. (2023) estimated ALT and volumetric water content for large areas in Alaska covering the U8 CALM site using

L-band UAVSAR and AirMOSS P-band polarimetric SAR, respectively. Their result is in reasonable agreement with in-situ

data and this study considering joint uncertainties. Data processing details are provided in Michaelides et al. (2021) and Chen230

et al. (2023). Table-1 shows a summary of the ALT comparison.
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Table 1. Estimates of ALT at CALM site U8. ‘ND’ means no data available.

Year This Study CALM (U8) Chen et al. (2022)

2017 60.9 ± 33.5 68.9 ± 11.7 49 ± 17

2018 70.7 ± 41.5 61.7 ± 11.7 ND

2019 73.7 ± 31.7 70.3 ± 12.1 ND

2020 98.5 ± 8.5 ND ND

2021 76.7 ± 18.9 60.8 ± 9.7 ND

2022 58.7 ± 22.4 65 ± 12.1 ND

Figure 6. ALT comparison at CALM site U8. Blue triangles represent average in-situ ALT from manual mechanical probing across all

grid cell from 1996 to 2022 (https://www2.gwu.edu/ calm/data/north.htm). Green circle is estimated ALT for the closest pixel to U8, using

airborne L- and P-band SAR images (Chen et al., 2022). Red squares (this study) are average estimated ALT for pixels with 100 m distance

to U8. In-situ ALT is not reported for 2020.

Our results and in-situ data suggest that ALT exhibits high spatial variability, perhaps reflecting local variability in topog-

raphy or soil moisture. Since soil moisture reflects in part local topographic variation, measuring ground elevation to high

precision may be important to understanding this variability.

5.4 Relation of meteorological parameters and ALT235

We investigated correlations between ALT and several meteorological parameters, including ADDT and precipitation in thaw

seasons from 2002 to 2022. ADDT and precipitation data are from the Sagwon meteorological station. Figure-7a shows the
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relation between ADDT and ALT. From Stefan’s equation, we expect a positive correlation between ADDT and ALT. However,

the correlation is statistically weak (R-squared = 0.42; Figure-7b) suggesting the influence of additional factors. Precipitation

may influence ALT, e.g., by advecting heat downward to promote permafrost thaw, but there are additional factors to consider.240

For example, an increase in soil moisture leads to a rise in the thermal conductivity of soil, potentially increasing the depth of

the active layer during thaw season. However, an increase in soil moisture also increases the total amount of heat required for

thawing, promoting a shallower active layer. Clayton et al. (2021) showed that ALT has a positive correlation with volumetric

water content (VWC) in the upper 12 cm of soil, a negative correlation with bulk VWC, and no statistically correlation with

VWC in the upper 20 cm of soil. We also do not see a statistically significant correlation between ALT and precipitation,245

perhaps reflecting these opposing impacts (Figure-7c).

We also used simple regression analyses to relate ALT to several multi-parameter factors including ADDT, precipitation and

accumulated degree days of freezing (ADDF) from the previous year. However, these did not improve the correlation. Perhaps

other factors such as local elevation gradients (influencing local hydrology), vegetation type, or the previous year’s snowfall

need to be considered.250

5.5 Limitations and Future Research

Four aspects of our model may limit its utility:

1. Decorrelation of InSAR phase is the main limitation of this technique. Accurate InSAR measurements require a high

degree of coherence, a measure of the correlation in radar phase between the two SAR images. Decorrelation occurs due to

temporal changes in surface scattering properties, changes in viewing angles, and noise in the SAR data (Schaefer et al., 2015).255

C-band InSAR has demonstrated its ability to monitor deformation over continuous permafrost region at higher latitudes

(see Previous Work). Wang et al. (2020) compared the efficiency of Sentinel-1 for monitoring permafrost deformation in

discontinuous permafrost regions. They concluded that Sentinel-1 InSAR time-series performs effectively over discontinuous

permafrost landscapes mainly beyond the tree line, such as tundra, tundra wetlands, and less developed shrub-tundra areas,

during thaw season. However, the outcomes and precision are less favorable in shrub-tundra and forest-tundra environments.260

We compared temporal and spatial coherence between our study area and a discontinuous permafrost region near Fairbanks,

Alaska, and obtained similar results. Decorrelation occurred around Beta site of the APEX (∼30 km southwest of Fairbanks,

Alaska) during the 2023 thaw season (Figure-S2). Land cover here is open black spruce forest. In contrast, temporal and

spatial coherence remained high at CALM site U8 site, located in the continuous permafrost region to the north. Land cover

here is classified as graminoid-moss tundra and graminoid, postrate-dwarf-shrub and moss tundra (See Study Area). Longer265

wavelengths such as L-band may be more useful in densely vegetated terrains. The launch of the NiSAR mission in 2024, with

its L-band wavelength and repeat frequency of 6- 12 days, should prove useful for densely vegetated permafrost regions.

2. The spatial and temporal resolution of models that allow estimation of key ancillary parameters may limit accuracy

in some regions, especially soil parameters from the GLDAS model, and atmospheric parameters from ERA-5. The spatial

resolution of GLDAS’ soil parameter model is 0.25 degree, an area that spans our entire study area in the Alaska north slope.270

The temporal resolution of ERA-5 is adequate, but its spatial resolution precludes local analysis.
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Figure 7. (a): Relation between ADDT and ALT from 2002 to 2022 in CALM site U8 and Sagwon station. Red circles show ADDT. Blue

triangles show in-situ ALT. (b) scatter plot of ALT vs ADDT. (c) scatter plot of ALT vs precipitation. R-squared of relation is shown in

top-left of panels. ADDT and precipitation are calculated from first of June to first of September of each year to be consistent with ALT

measurements.

3. The model does not estimate long-term subsidence due to thawing of segregated ice, instead estimating ALT only by

considering volume change from pore ice to water in the active layer. Development of a long-term (multi-year) ALT-subsidence

model is desirable.

4. Accurate and dense porosity-depth and water content profiles based on in-situ data would also improve ALT estimation.275

6 Conclusions

We used Sentinel-1 SAR data in the CALM site of northern Alaska for thaw season 2017 to 2022 to estimate active layer

thickness using interferometric analysis. ALT estimates range from ∼20 cm to larger than 150 cm in our study area, similar to

in-situ and previous remotely sensed estimates. ALT shows high spatial variability, sometimes changing dramatically between

adjoining cells. Subsidence rate also varies between close points, ranging from ∼3-20 cm/year during the thaw season at our280
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study locations. Applying atmospheric corrections to C-band radar images improves signal to noise ratio. Limited ICESat-2

LiDAR data is consistent with the InSAR estimates of seasonal subsidence. Our results suggest that InSAR could be used to

assess long-term continuous permafrost changes in the region.

Code and data availability.

Meteorological data from NOAA climate data online tool (CDO) is publicly available at (https://www.ncei.noaa.gov/cdo-web).285

Copernicus GLO-30 Digital Elevation Model is publicly available through (https://portal.opentopography.org). Sentinel-1

data are publicly available through Alaska Satellite Facility (https://search.asf.alaska.edu/#/). Interferograms were formed us-

ing Alaska Satellite Facility’s Hybrid Pluggable Processing Pipeline (https://hyp3-docs.asf.alaska.edu/using/vertex/). Time-

series analysis is done by using (https://github.com/insarlab/MintPy) in OpenScienceLab JupyterHub computing environ-

ment (https://opensciencelab.asf.alaska.edu). ERA-5 data for tropospheric corrections are available at (https://cds.climate.290

copernicus.eu). Soil fraction data are available at (https://ldas.gsfc.nasa.gov/gldas/soils). The code for ALT estimation is

archived at (Sadeghi Chorsi, 2023).
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