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Abstract

We estimate  Active layer thickness (ALT)  is estimated  for  part of  a study area in  Northern Alaska’s 

continuous permafrost zone for summer 2017 to 2022 using satellite data from Sentinel-1 (radar) and 

ICESat-2. (LiDAR) for the period 2017 to 2022. Synthetic Aperture Radar (SAR) interferograms were 

invertedgenerated using  a  Short  Baseline  Subset  (SBAS)  approach to  estimate  the  amplitude  of  . 

Displacement  time  series  over  the  thaw season (June-September)  are  well  fit  with a  linear  model 

(RMSE scatter is less than 7 mm) and show maximum seasonal subsidence; ALT was estimated from 

the  measured  subsidence. of  20-60  mm. ICESat-2  products  were  used  to  validate  the  InSAR 

displacement time-series. Most subsidence occursALT was estimated from measured subsidence using 

a widely used model exploiting the volume difference between  Juneice and Augustwater, reaching a 

maximum depth in our study area. The maximum amplitude of seasonal subsidence was 2-6 cm, with 

ALT reaching ~ of 1.5 m. Estimated ALT is in good agreement with in-situ and other remotely sensed 

data, but is sensitive to assumed thaw season onset, indicating the need for reliable surface temperature 

data.  Our  results  suggest  the  feasibility  of  long-term permafrost  monitoring  with  satellite  InSAR. 

However, the C-band (~55 mm center wavelength) Sentinel radar is sensitive to vegetation cover, and 

in our studies was not successful for similar monitoring in the heavily treed discontinuous permafrost 

zone of Central Alaska.
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Permafrost  is  usually  covered with soil  or  sediment  – the active  layer  –  which freezes  and thaws 

seasonally.  This layer also moderates the impacts of surface temperature changes (Dobinsky., 2011). 

The annual freeze- thaw cycle of the active layer causes significant surface height changechanges due 

to the volume difference between ice and liquid water. Active layer thickness (ALT) can be estimated 

using simplified physical models andfrom the magnitude of surface subsidence  measurements  during 

the thaw season using simplified physical models (Liu et al., 2012, 2014, 2015; Schaefer et al., 2015; 

Hu et al., 2018). ALT is expected to increase as Arctic temperatures rise and permafrost undergoes 

long-term thaw, so remote monitoring of this feature is important.

releasing carbon dioxide and methane, both powerful greenhouse gases. The process thus represents a 

potentially  powerful  positive  feedback  in  the  global  climate  system  (e.g.,  Schaefer  et  al.,  2009; 

Turetsky et al.,  2020). On the other hand the active layer can also moderate the impact of surface 

temperature changes on deeper permafrost (Dobinski, 2011), perhaps limiting rapid increases in ALT. 

Frequent monitoring of ALT across the Arctic landscape is clearly important, implying the need for 

remote sensing approaches. In the last three decades satellite-based Interferometric Synthetic Aperture 

Radar (InSAR) has been used to monitor  a  variety of Earth processes that  generate  subtle  surface 

displacements,  including earthquake and volcano deformation,  and reservoir  compaction from fluid 

withdrawal (e.g., Bürgmann et al., 2000). Recent examples include earthquake after-slip (e.g., Sadeghi 

Chorsi et al.,  2022a, b2022b, a), volcano deformation (e.g., Poland and Zebker, 2022,; Grapenthin et 

al., 2022), groundwater extraction (e.g., Castellazzi et al., 2016), carbon sequestration (e.g., Yang et al., 

2015; Vasco et al., 2020), seismicity induced by fluid injection (e.g., Deng et al., 2020), coastal sea ice 

dynamics (e.g.,  Dammann, et al., 2019)), glacier velocity estimation (e.g., Strozzi et al., 2020), and 

coastal flood hazard (e.g., Bekaert et al., 2017; Zhang et al., 2022). Pioneering work by L. Liu (Liu et 



al., 2010, 2012) demonstrated the utility of InSAR to monitor long-term permafrost thaw and changes 

in ALT. Here, we use InSAR from the Sentinel-1 satellite constellation to investigate permafrost thaw 

on the North Slope of Alaska for the period 2017 to 2022, focusing on multi-year changes inpart of the 

North Slope of Alaska for the period 2017 to 2022, focusing on multi-year changes in ALT, and using 

available ICESat-2 LiDAR data to validate the InSAR result. Our study has the following objectives: 

(1) examine the spatial distribution of seasonal thaw subsidence amplitude using SAR interferometry 

from 2017 to 2022; (2) use the annual variation of InSAR-measured displacements to estimate ALT 

and compare to long-term in-situ ALT observations;  (3) assess the ability  of the ICESat-2 ATL08 

product  to  complement  InSAR  data  in  permafrost  regions;  and  (4)  test  the  influence  of  some 

environmental factors on the yearly variation of ALT.

2. Previous Work

Satellite remote sensing of permafrost has been ongoing for at least three decades (e.g., Peddle and 

Franklin (,  1993).  In  terms  of  microwave studies,  Singhroy et  al.  (2007)  used RADARSAT-1 to 

monitor permafrost activity), focusing on landslides and landslide motion around the Mackenzie Valley 

Pipeline Corridor, Canada.  Rykhuswildfires, thermokarst  processes, and  Lu (2008) used JERS-1 L-

band data to detect thaw settlement over the Alaskan Arctic coastal plain. Liu et al. (2010) used soil 

moisture dynamics.  The synthetic  aperture radar  (SAR) data  used in many of these studies comes 

satellites that include Radarsat-1, Envisat, JERS-1, ERS-1 and -2 SAR images to monitor permafrost 

on  the  North  slope  of  Alaska,  observing  seasonal  subsidence  of  ~1-4  cm  and  average  secular 

subsidence of ~1-4 cm/decade.  Liu et  al.  (2012) used SAR data to develop a novel  ALT retrieval  

model,  relating  InSAR-derived subsidence  to  ALT using air  temperature,  soil  texture,  and organic 
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matter  thickness,  assuming  subsidence  in  a  given  thaw season is  related  to  the  volume reduction 

associated with the phase change between ice and water. We follow a similar approach in this study. 

Schaefer et al. (2015) used, ALOS PALSAR data from 2006-2010 to estimate average ALT and long-

term subsidence in Barrow, Alaska. Their model showed good agreement between remotely estimated 

ALT, Ground Penetrating Radar (GPR) and in-situ data for more than 75% of the area. Daout et al.  

(2016) used multi-temporal InSAR observations to quantify ALT over Northwestern Tibet. They found 

that unconsolidated sediments in flat basins have higher seasonal subsidence amplitude compared to 

slope sediments and proposed that ground water was the key controlling factor. Iwahana et al. (2016) 

used InSAR data from ALOS PALSAR together with GPS data to study the long-term impacts of 

wildfire on the permafrost regime in the Anaktuvuk, Alaskkan North Slope. Chen et al. (2018) used 

Sentinel-1 InSAR data to estimate seasonal thaw subsidence and inter-annual elevation change from 

2016 to 2017 in Yedoma, Russia. They found that the top of the flat Yedoma upland exhibits large 

seasonal subsidence, and suggested that the delayed thaw season in 2017 was related to air temperature 

fluctuations. Strozzi et al. (2018) used Sentinel-1 InSAR to measure seasonal thaw subsidence in four 

sites, observing seasonal subsidence from 2 to 10 cm. Liu and Larson (2018) used GPS interferometric  

reflectometry (GPS-IR) at Barrow, Alaska, showing that surface elevation could be measured reliably 

during snow-free summer days. Hu et al. (2018) also used GPS-IR here, observing elevation changes 

with a seasonal amplitude of ~5 cm. Michaelides et al. (2019) used ALOS data to estimate seasonal 

subsidence, long-term subsidence and ALT to develop a fire response model. Bartsch et al. (2019) used 

Sentinel-1 (C-band) and , TanDEM-X, COSMO-Skymed (X-band) SAR images between 2013 to 2018 

to monitor seasonal subsidence in central Yamal, Russia. Wang et al. (2020) used Sentinel-1 time-

series in northern Canada, demonstrating the utility of C-band radar for monitoring ALT in a sub-arctic 

tundra  region.  Chen  et  al.  (2020)  used  ALOS PALSAR data  to  monitor  ALT in  Toolik,  Alaska. 



Honglei  et  al.  (2021)  used  ALOS  PALSAR  for  the  period  2007  to  2010  to  permafrost-related 

subsidence in the Qinghai-Tibet Plateau, observing settlement up to 12 cm. Michaelides et al. (2021) 

and  Chen  et  al.  (2023)  used  L-band,  TerraSAR-X,  Envisat,  and  Sentinel-1,  and  airborne  sensors 

including UAVSAR InSAR, and AirMOSS P-band polarimetric backscatter data over different sites in 

Alaska and western Canada to simultaneously estimate seasonal subsidence, ALT and volumetric water 

content. Here, we use Sentinel-1 interferometry to monitor seasonal subsidence and ALT changes from 

2017 to 2022 for part of northern Alaska.  . GNSS has also been exploited using the GPS-IR (GPS 

Interferometric Reflectometry) technique. These studies have been conducted the Northern and Central 

Alaska, Northern and Western Canada, Greenland, Antarctica, Russia, and Tibet, contributed to our 

understanding of permafrost dynamics and providing insights into seasonal and long-term changes in 

permafrost regions.  Table-1 summarizes these microwave-based studies, categorizing them into three 

main  technical  applications:  1)  seasonal  thaw,  2)  seasonal  and long-term subsidence,  and 3)  ALT 

estimation and other scientific applications. Papers most relevant to this study include Liu et al. (2010, 

2012, 2015), and Schaefer et al. (2015).

Table-1. Microwave-based studies on permafrost monitoring.

Technical Application Studies Scientific Focus Data Study Area

Singhroy et al. (2007) Landslide  and 

wildfire 

Radarsat-1 Mackenzie  Valley, 

Canada

Rykhus and Lu (2008) - JERS-1 Alaskan Arctic coastal 

plain

Liu et al. (2010), - ERS-1 and ERS-2 North slope of Alaska



Seasonal Thaw

Iwahana et al. (2016) Thermokarst, 

wildfire

ALOS  PALSAR, 

GPS

North slope of Alaska

Strozzi et al. (2018) - Sentinel-1 Multiple  sites  in 

Alaska,  Greenland, 

Russia and Antarctica

Zwieback et al. (2018) Thermokarst TanDEM-X Tuktoyaktuk 

coastlands,  Canada 

and  Lena  River  delta, 

Russia

Bartsch et al. (2019) - Sentinel-1  and 

COSMO-Skymed

Yamal, Russia

Wang et al. (2020) - Sentinel-1, 

TerraSAR-X, 

ALOS PALSAR 

Northern Canada

Liu et al. (2012) - ERS-1 and ERS-2 North slope of Alaska

Daout et al. (2016) - Envisat Northwestern Tibet

Chen et al. (2018) - Sentinel-1 Yedoma, Russia

Liu and Larson (2018) - GPS-IR Barrow,  Alaska

Hu et al. (2018) - GPS-IR Barrow,  Alaska



Seasonal  and  Long-

term subsidence

Michaelides et al. (2019) Wildfire ALOS PALSAR Yukon–Kuskokwim 

Delta, Alaska

Chen et al. (2020) Soil Moisture ALOS PALSAR Toolik, Alaska

Bernhard et al. (2020) Thermokarst TanDEM-X Northern Canada

Honglei et al. (2021) - ALOS PALSAR Qinghai-Tibet Plateau

ALT estimation; other

Liu et al. (2012) - ERS-1 and ERS-2 North slope of Alaska

Schaefer et al. (2015) Thermokarst ALOS PALSAR Barrow, Alaska

Michaelides et al. (2019) Wildfire ALOS PALSAR Yukon–Kuskokwim 

Delta, Alaska

Chen et al. (2020) Soil Moisture ALOS PALSAR Toolik, Alaska

Michaelides et al. (2021) Soil Moisture L-band  UAVSAR 

and  AirMOSS  P-

band

Alaska  and  western 

Canada

Chen et al. (2023) Soil Moisture L-band  UAVSAR 

and  AirMOSS  P-

band

Alaska  and  western 

Canada

[Figure 1]

 Figure  1.  (a):  DEM  ofincluding study area  (black  box)  in  Northern  Alaska. Solid Black  box is 

expanded in Figure  -1b, red  box outlinesboxes outline focused test area shown in Figure  -5. Black 

triangle shows CALM site (U8) used to compare ALT.where ground-based measurements of ALT are 
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available. Blue  circle  represents  location  of  closest  meteorological  site  used  in  this  studystation 

(Sagwon). (b): Line of sight (LOS) displacement of the study area from 2022-06-10 to 2022-09-02. as 

measured by InSAR. Negative values  meansmean displacement away from satellite., positive values 

mean displacement towards satellite. DEM relief map is shown in background. Triangles show location 

of CALM site and displacement time-series shown in Figure 3. Black square represents reference point 

used for InSAR analysis.

shown in background. Triangles show location of displacement time-series shown in Figure-3 and 

CALM site. Black square represents reference point for InSAR used in this study.

3. Study area

3. Study area

The Alaskan North Slope is bounded by the Brooks Range to the south and southeast and the Arctic 

Ocean to the north. Our main study areasite on the North Slope is located in northern Alaskaa 15 km by 

30 km area in the vicinity of the Sag river and Dalton highway (69.68 N, 148.7 W; Figure -1). It is ~50 

km south of Prudhoe Bay and ~130 km westnorth of the Brookes range. It is locatedBrooks Range, in 

athe continuous permafrost region of Alaska with more than 90% permafrost coverage (Jorgenson et 

al., 2008). The

Our study site  is described as having 23 cm organic layer thickness with seasonal high water table 

subject to saturation. The U8 includes Circumpolar Active Layer Monitoring (CALM site’s) site U8. 

The CALM program is  designed to  monitor  the  active  layer  and permafrost  sensitivity  to  climate 

change over extended periods, typically spanning multiple decades (Brown et al., 2000). CALM site 

U8 has recorded ALT since 1996. The site encompasses a one-hectare area containing 121 sample 

square arrays, each measuring approximately 10 m horizontally. It is located 88 m above sea level, is 
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relatively flat, and lies within an inner coastal plain with river terraces. The site has an organic layer 

~23 cm thick that is usually water-saturated during thaw season. U8’s vegetation coverage is classified 

as  graminoid-moss  tundra,  graminoid, prostrate-dwarf-shrub,  and  moss  tundra 

(https://www2.gwu.edu/~calm/data/webforms/u8_f.htm).  The  .  Its  soil  texture  is  classified  as 

predominantly  sand, gravel  and peat.  Soil  taxonomy is  Ruptic-Histic-Aquorthel  (Ping et  al.,  2015; 

Staff, 1999), i.e., a poorly drained, occasionally to frequently water-saturated soil with a significant 

amount of organic matter (https://www2.gwu.edu/~calm/data/webforms/u8_f.htm). A 12 km by 12 km 

test site around U8 (red box in Figure 1) is used for focused studies of ALT estimation, based on our  

InSAR-derived displacement estimates during thaw season. 

The  Circumpolar Arctic Vegetation Map (CAVM)  describeat this location describes graminoid and 

prostrate-dwarf-shrub vegetation  as  5-10 cm  tallin  height.  This  short  vegetation  structure  is likely 

favorable for shorter radar wavelength radars  like Sentinel’ssuch as Sentinel-1’s C-band  ((~5.5 cm 

wavelength ~5.5 cm) to retain phase coherence. For comparison we, but also studied the Beta site of 

the  APEX (Alaska  Peatland  EXperiment),  located  approximately  30 miles  southwest  of  Fairbanks 

(64.696 N, 148.322 W). This is a located in discontinuous permafrost zone with abundant black spruce, 

up to 5 m in height.suggests that accounting for vegetation height will be important to assess seasonal 

and longer term elevation changes in this area.

4. Methods

4.1. InSAR Data Processing

4.1.1. Data and Material 

Sentinel-1 SAR images from June to September 2017 to 2022 were selected to cover the end of freeze  

season to the end of thaw season (Table-S1). Changes in surface scattering characteristics in the freeze 
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season (surface covered with snow and ice) could decorrelate the radar wave.  We used the Alaska 

Satellite  Facility'sFacility’s Hybrid  Pluggable  Processing  Pipeline  (HyP3)  software  to  form 

interferograms from Sentinel-1 SAR data (Hogenson et al., 2020). HyP3 uses the Copernicus GLO-30 

Digital  Elevation  Model  (DEM)  for  scene  coregistrationco-registration and  topographic  phase 

corrections (ESA.,, 2021). Interferograms were filtered using the adaptive phase filter  in Goldstein 

&and Werner (1998). Individual interferograms were unwrapped using a minimum-cost-flow algorithm 

(Chen &and Zebker.,, 2002) and geocoded to a 30 -m grid spacing. We used the open-source Miami 

InSAR time-series software in python (MintPy) to generate LOS displacement time-series from the 

unwrapped and geocoded interferograms (Fattahi et al., 2016; Zhang et al., 2019).2016; Yunjun et al., 

2019). Interferograms with high spatial coherence and short time-interval between scenes were chosen 

to avoid decorrelation and phase unwrapping errors. Phase unwrapping artifacts occur in permafrost 

regions when disconnected wetlands and large seasonal deformation preclude smooth unwrapping of 

the phase (e.g.,  Strozzi et  al.,  2018). Noisy interferograms were removed from the time-series and 

seasonal amplitude inversion processes (Section 4.3.2). Geocoded LOS displacement data for active 

layer thickness estimation was then extracted for the study area.

Significant changes in scattering characteristics are expected during the freeze season when the surface 

is covered with snow and ice, hence we focus on the summer thaw season. Variations in soil moisture 

can also significantly affect coherence. To mitigate this possibility, we looked for noisy interferograms, 

which  could  be  partly  due  to  such  moisture  changes,  and  excluded  these  from our  analysis.  We 

employed two criteria to assess noise. First, we manually reviewed the interferograms and eliminated 

noisy ones. Second, we assessed the spatial coherence of the chosen interferograms to ensure they all 

had high coherence. Note that data were collected at a time likely to retain soil moisture, the period that 



begins immediately after snowmelt, when the soil column is saturated, and end near the end of thaw 

season, when the soil column may still be wet due to the complete thawing of any residual ice in the 

active layer. We focused our study on the June to September time frame, using Sentinel-1 SAR images 

with  a  12  day  revisit  interval  and  descending  geometry  for  the  years  2017  to  2022  (Table  S1). 

Available meteorological data suggest no anomalous drought periods during these years. 

4.1.2. Reference Point Selection

InSAR  is  a  double-difference  technique  thatInSAR measures  phase  differences  between  SAR 

observations in space and time. To relate these phase difference measurements to surface displacement, 

we need to choose a reference location with assumed or known displacement. In is required, with high 

temporal coherence (> 0.8) to avoid introducing noise into the time series. In most permafrost regions, 

rock outcrops are a  suitablegood reference  locations  as they can be assumed to show only minimal 

displacement, but. However, they may not be available for all  regions.  For this study, we use two 

criteria for reference point selection: first, we require the point to have high temporal coherence (> 0.8) 

to avoid introducing noise into our time series.  Second,  we look for locations  that  either  are  rock 

outcrops or lie in a floodplain (but not a river channel, which can undergo large elevation changes from 

erosion/deposition events; see Figure-S1). Liu et al. (2010) point out that river floodplains usually have 

well-drained sandy soils and hence tend not to experience significant frost heave. They may be used as 

reference points if they are not within a river channel, which can undergo large elevation changes from 

erosion/deposition events (see Figure S3). Figure 1b shows theour reference point we identified using 

these criteria, a rock outcrop immediately northeast of our study area which remains coherent (temporal 

coherence ~0.95) during the 2017 to 2022 thawingthaw seasons.

4.1.3. Atmospheric delay correction                                                                        



Atmospheric effects are one of the main error sources in the InSAR process (Meyer et al., 2006). While 

InSAR data can be affected by both the ionosphere and the troposphere, here we focus on tropospheric 

effects as ionospheric impacts are less pronounced in C-band data (Meyer.,, 2011). Tropospheric phase 

impacts can be modeled as (Ding et al., 2008):

                                                                                    (1)

where   is the phase of a SAR image,   is the range from satellite to surface,   is the tropospheric 

propagation delay, and   is the radar wavelength. Tropospheric phase signals in InSAR data can be 

caused by two processes: changes in the atmospheric stratification and turbulent mixing. The stratified 

phase component typically correlates with topography (Hanssen, 2001) and may be estimated and then 

removed based on delay-elevation correlations, then removed from the radar phase (Doin et al., 2009). 

The turbulent component plays an important role in phase delay because it is uncorrelated in time and 

space, although its amplitude isis usually much less than the stratified component, but is uncorrelated in 

time and space and hence harder to predict or measure. According to (1) if the atmospheric propagation 

conditions at the time of SAR acquisitions are not the same ( ), then tropospheric phase 

components  will  be  introduced,  contaminating  the  true  displacement  signal.  To  reduce  these 

tropospheric effects, one approach is to apply a global weather model. This approach mainly reduces 

the stratified component.Applying atmospheric corrections to C- band radar images can improve signal 

to noise ratio, especially when there is a considerable height difference between the study area and 

reference point. We applied the atmospheric correction model described in Jolivet et al. (2011, 2014) 

using ECMWF reanalysis (ERA-5) datasets (Hersbach et al., 2020). This approach mainly reduces the 

stratification component of the tropospheric delay. 

4.2. ICESat-2 data processing

Unknown Author, 05/02/24
1. Short description of specification and products of ICESat-2 data is added in the  first paragraph (RC-2 & CC-3).

2. The bold sentence in second paragraph is added (CC-3). We discuss on ATL06 product in discussion section (RC-2 & CC-3).



We used the ICESat-2 level 3A product for land and vegetation height (ATL-08) to validate the InSAR 

time-series displacement estimates. While the nominal temporal resolution of ICESat-2 data is 91 days, 

cloud cover greatly limits the amount of usable data in Alaska (e.g., Neuenschwander & Pitts., 2019). 

Two observations were available in our study area, acquired on 2021-06-08 and 2021-09-06. We used 

the  ‘h_te_best_fit’To  validate  our  InSAR  measurements  of  thaw  season  subsidence,  we  used 

independent LiDAR elevation data from the ICESat-2 satellite  (Martino et al.,  2019). The ATLAS 

(Advanced  Topographic  Laser  Altimeter  System)  LiDAR on ICESat-2  uses  a  multi-beam photon-

counting laser operating at 532 nm, i.e., the green portion of the electromagnetic spectrum. Surface 

range is determined by the travel  time of each detected photon. When coupled with the satellite’s 

position,  the range data provides accurate geolocation of the surface, in this case referenced to the 

WGS-84 ellipsoid. With a laser repetition rate of 10 kHz, pulses occur approximately every 70 cm on 

Earth’s surface. Each footprint is about 13 m in diameter. Beam pairs, with different energies to adjust  

for surface reflectance, are spaced about 3.3 km apart across tracks, forming six tracks with beams in 

each  pair  separated  by  90  m.  Ranging  precision  for  flat  surfaces  is  expected  to  have  a  standard 

deviation of around 25 cm, primarily influenced by ATLAS timing uncertainty (Neuenschwander et al., 

2019).

The ATL08 product algorithm is designed to extract terrain and canopy heights from vegetated surfaces 

using the geolocated photons (Neuenschwander et al., 2019). We used the "h_te_best_fit" parameter, 

which estimates terrain height by fitting a plane to along-track points in each 100 m segment and report 

the height of the middle of the fitted plane (Neuenschwander et al.,  2019; 2021). Due to pointing-

related errorsreports the height of the middle of the fitted plane (Neuenschwander and Magruder, 2019; 

Neuenschwander et al., 2021), reducing the impact of random errors. The height of the terrain midpoint 



is  calculated  by  choosing  the  best  fit  among  three  models:  linear,  third-order,  and  fourth-order 

polynomials  applied  to  the  terrain  photons.  This  allows  for  interpolation  of  the  elevation  at  the 

midpoint of the 100 m segment (Neuenschwander and Magruder, 2019; Neuenschwander et al., 2021; 

Neuenschwander and Pitts,  2019).  The standard deviation of terrain points around the interpolated 

ground surface within the segment is one measure of surface roughness. Neuenschwander and Pitts 

(2019) provide additional  details  describing  the ATL08 algorithms.  ATL06 is  an alternate  product 

algorithm, optimized for ice surfaces, and has been used in some permafrost studies (e.g., Michaelides 

et al., 2021a) (See Supplement). 

While the nominal temporal resolution of ICESat-2 data is 91 days, cloud cover often limits the amount 

of usable data in Alaska (e.g., Neuenschwander and Pitts, 2019). Two repeat track observations were 

available  in  our  study  area,  acquired  on  2021-06-08  and  2021-09-06.  Due  to  pointing-related 

uncertainty, observations are not always repeated in expected locations,  which amplifies the height 

uncertainty. To address this issue, we divided the study area into 50 m grid cells, and assigned each 

observation in 2021-06-08 and 2021-09-06 repeat tracks to one of those grid cells. Figure-S1 S3 shows 

the height difference between all reported  terrain  observations  (ATL08)  in the study area with same 

location between 2021-06-08 and 2021-09-06. In the limited area where both InSAR and ICESat-2 data 

are available (four points shown in Figure 1a),, we used the ICESat-2 data to evaluate thecompare to 

our InSAR results (Figure 3 and Supplement).

4.3. ALTActive Layer Thickness estimation model

To relate  the  InSAR observations  to  ALT,  we  assume that  the  measured  LOS displacements  are 

predominantly due to vertical  motion (negligible horizontal motion) and that this vertical  motion is 
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caused by thawing ground ice in the active layer. The assumption of negligible horizontal motion is 

justified because over the short data time interval is short and the technique doesis not sensesensitive to 

long-term tectonic motion. We observed large displacements in Displacements from the M 6.4 August 

2018 earthquake, ~130 km east of study area due to the M 6.4 earthquake (USGS hypocenter at north 

of Brooke range: 145.291 W, 69.576 N, depth 15.8 km). Since our study area was far from this area, we 

believe most of  ) are negligible. Most surface motion in  the  deformation in  thaw season  is because 

oftherefore likely reflects  thawing ground ice thawing. We project the LOS displacements into the 

vertical direction using the local incidence angle (θ)  forffor each radar pixel (see Equation  -3). We 

follow the simplified Stefan solution to estimate depth of thawing in the soil (Nelson et al., 1997) aided 

by field-observed air temperature data. We also assume that subsidence can be related to a simple thaw 

index, for example the accumulated degree days of thawing (ADDT).  Our procedures are virtually 

identical to those described in Liu et al. (2012) and Schaefer et al. (2015), with the exception that we do 

not estimate multi-year subsidence and do not average ALT across multiple thaw seasons. This enables 

us to directly compare our space-based estimates with yearly ground truth estimates from CALM site 

U8 and evaluate inter-annual changes in ALT.

4.3.1 ADDT Accumulated Degree Days of Thawing calculation

To calculate ADDT, we use the NOAA Climate Data Online (CDO) tool to find nearby meteorological  

stations. The closest station is ~2030 km south to our studytest area (Name: Sagwon, Figure 1a). We 

assume that our studytest area has the same temperature trend as this station fromfor the 2017 to 2022. 

thaw seasons. We define the first and last day with temperature > 0 ◦°  C as the first and last day of the 

thaw season. ADDT is defined by the following equation (Riseborough.,, 2003):

                                                                                                   (2)



where   is the duration of thawing season, in days.   is surface temperature (◦C),   is equal to 

freezing  point,  0  ◦C,  and   is  daily  mean  surface  temperature.  Due  to  lack  of  in-situ  surface 

temperature data, we set  using air temperature observations.

4.3.2 Seasonal Amplitude Inversion

The relationship  between the seasonal  vertical  surface  displacement  magnitude  and ADDT can be 

written as (Liu et al., 2012; Schaefer et al., 2015):

                                                                                                (3) 

where  is the vertical displacement estimate for a given pixel in the i th  interferogram,  is the local 

incidence  angle  at  that  pixel  calculated  from  nadir,   is  the  amplitude  of  the  seasonal  vertical 

displacement estimate which reflects physical parameters such as soil thermal conductivity, latent heat 

of fusion, soil density and relative water content. (Nelson et al., 1997).  and  are normalized 

accumulated degree days of thawing at the first and second acquisition date.   is an error term that 

captures model deficiencies, noise, and other unknown error sources. We do not consider secular (long-

term) displacement signals in (3) because we analyze the thaw seasons of 2017 to 2022 separately. 

This is the major difference between our approach and those described in Liu et al. (2012), Schaefer et 

al.  (2015)  and  Michaelides  et  al.  (2019),  where  seasonal  and  interannual  trends  were  estimated 

simultaneously.

We can rewrite (3) in matrix form, considering the interferograms listed in table-S1, to estimate   

using least squares. for separate thaw seasons:                                     
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                                                                                              (4)  

4.3.3 ALTActive Layer Thickness Inversion

If we assume that the seasonal vertical surface displacement amplitude E is caused only by thawing ice 

and corresponding volume reduction, we can write E as a function of physical properties such as soil  

porosity, soil moisture fraction, and density of ice and water through a vertical profile from surface to 

depth of the active layer (Liu et al., 2012; Schaefer et al., 2015):

                                                                                                          (5)

The variables  and  in Eq (5) are the density of water and ice [kg m-3], respectively.  is the soil 

porosity which is a function of depth and depends on soil  content.,  and    is the soil  moisture 

fraction of saturation.  Here,Following Schaefer et al. (2015), we assume that , which means 

that the active layer is fully saturated and does not change with depth (Schaefer et al., 2015). In the next 

section, we describe relation between porosity  in depth and ALT in  (52015).

4.3.4 Porosity Model

Following earlier authors, we assume the soil in the active layer consists of organic matter and mineral 

soil. In this case, the  , with  porosity  decreasesdecreasing exponentially with depth due to decreasing 

organic matter. There is one active CALM site insidein our studytest area: U8 (Figure 1a1b). This site 

is described as having 23 cm organic layer thickness, consisting mainly of peat plus sand and gravel 

(https://www2.gwu.edu/~calm/data/webforms/u8_f.htm). We consider this organic matter thickness in 

modeling of porosity versus depth.(Section 3). We applied the formulation introduced by Liu et al. 

(2012) and presumeassume that  is the weighted average of organic and mineral matter:

https://www2.gwu.edu/~calm/data/webforms/u8_f.htm


                                                

(6)

where  is the porosity, and  is defined as the organic soil fraction by Schaefer et al.,. (2009) 

as:

                                                 

(7)

In Eq (7),   and  are the simulated mass of organic matter and organic soil density in 

a given layer of soil, respectively.   and   are bulk organic matter 

mass and bulk density for pure organic soil, respectively. We set  = 0.95 based on model from 

Bakian-Dogaheh et al. (2022). The porosity of mineral soil then depends on the sand fraction of soil. 

To estimate  we utilizedused the porosity-sand fraction relation provided in Liu et al.,. 

(2012):

                                                      

(8)

We used Global Land Data Assimilation System (GLDAS) soil parameters with 0.25 degree spatial 

resolution to extract the soil sand fraction (Rodell et al., 2004). We set  = 0.488, and 

 = 130 kg m-3 for bulk density of peat (Grigal et al., 1989; Hossain et al. 2015). As 

mentioned earlier, to formalize   with depth, we assume the organic matter amount decreases 

exponentially with depth: 

                                                         

(9)



where  is an empirical constant (m-1), set to 5.5 (Liu et al., 2012; Jackson et al., 2003). To retrieve 

, we use simulated mass of organic matter ( : total soil carbon content) from Johnson et al. 

(2011) and Mishra et al. (2012) and ensure that total carbon mass is conserved.

                                                   

(10)

We set  = 70 kg m-2 (Johnson et al., 2011; Mishra et al., 2012). The spatial divergence of total 

soil  carbon  content  for  the  0-100  cm  depth  range  is  large  in  Arctic  tundra  regions  considering 

vegetation type. Mishra et al. (2012) and Johnson et al. (2011) estimated estimate total soil carbon 

around our study area at [60-80] and [50-70] kg m-2, respectively. Root depth is the maximum observed 

ALT at a given site since roots cannot penetrate solid ice. Here, we set maximum root depth at 1.1 m 

because maximum observed ALT at site U8 is reported as ~1.1 m for 2022. Then we solve (10) for  

and replace it in (9). Figure 2 shows the relation between porosity and depth in a mixed soil. We set  

porosity=0.95 for the first ~2023 cm depth reflecting organic matter thickness. After  2023 cm depth, 

the porosity decreases exponentially, reaching its minimum near the top of the frost table. Finally, we 

put all equations into (5) and use a numerical bisection algorithm to solve for the upper integral limit, 

ALT. We set the accuracy of bisection to be at the mm level.

Finally, we put all equations into (5) and use a numerical bisection algorithm to solve for upper integral 

limit, ALT. We set the accuracy of bisection to be at the mm level.



[Figure 2]

Figure 2. Depth-porosity model used in this study assuming a mixture of organic and mineral matter.

 

5. Results and Discussion

5.1. Validation of InSAR Surface Displacement Estimates

We  used  ICESat-2  ATL-08  products  to  evaluate  our  InSAR  time-series  results.  We  found  four 

locations in common between ICESat-2 and InSAR data for the 2021 thaw season, primarily limited by 

cloud cover (Figure S1). Unfortunately, there were no suitable ICESat-2 comparison data for 2019, 

2020 and 2022 thaw season. ATL-08 reports surface height relative to the WGS84 datum since mid-

2018. To compare with relative InSAR data, we subtracted the two available ICESat-2 height data and 

assign the first date’s height as zero elevation. This is a reasonable assumption because the two datasets 

have comparable start dates, June 8 for ICESat-2, and June 3 for SAR. Figure 3 shows that with these 

assumptions,  the  two  approaches  agree  well.  This  indicates  that  our  reference  point  experiences 

negligible  change  during  the  study  period.  Reference  point  selection  for  InSAR  is  difficult  in 

permafrost regions as most area subside during thaw season. Comparing InSAR displacement  with 
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reliable and available ICESat-2 data could be an option to evaluate result in remote areas. However,  

finding suitable repeated ICESat-2 points is also difficult  because of LiDAR pointing errors, cloud 

cover, and vegetation canopy density. The chosen locations for comparison here are less than 50 m 

distant and have less than 7% slope difference. 

Figure 3. LOS displacement time-series for four locations (black triangles in Figure-1b) with respect to 

the first SAR acquisition in the thaw

season. Black dashed lines are best-fitting regression lines for InSAR LOS displacement only. Rate and 

RMSE of fitted lines are shown in

the top-left of each sub-figure. Red squares in 2021 show ICESat-2 ATL-08 terrain height product. 

Latitude and longitude of each analyzed

location are shown in the bottom-left of each panel.

Figure 4. Rate comparison of LOS displacement between selected points shown in Figure-1b. Rate and 

an error bar are from fitted linear

line (See Figure-3).



5.2. Estimated Estimating Seasonal Vertical Displacement and ALT

Figure 3 shows  displacement  time-series  for  the four  test  locations  shown in Figure  -1b. All  four 

locations  show  subsidence  during  thaw  season. The  maximum  amplitude  of  subsidence  for  these 

locations  ranges from  2-6 cm.  20 mm (Location  (4)  and location (to 60 mm (Location  1) have). In 

2021, the  minimum and maximum  subsidence amplitude  in the entire time-series. Most subsidence 

occurs in the first two months of data acquisition (Mid-June to mid-August) for all locations.was small 

and similar among the four locations (~20 mm). The subsidence amplitude is similar between the four 

locations  (up  to  ~2 cm)  in  2021.  The maximum rate  of  subsidence  is  ~20 cm/yr  and the  rate  is 

approximately linear for most locations, with aconstant during the thaw season. The root mean square 

error (RMSE) of the linear trend offit to the displacement data is less than 1 cm for all four locations 

from 2017 to 2022. 

Figure  4  shows  the  subsidence  rate  change7  mm at  theall four  locations  over  all  six  years.  The 

maximum subsidence rate observed during the short (~3-4 month) thaw season is ~18 mm/month.

Note that we do not attempt to connect our displacement time series across adjacent years. The freezing 

process, consequent frost heave, and deep snow at these sites during winter makes phase connection 

difficult due to loss of coherence (e.g., Strozzi et al., 2018). Nevertheless, our approach can still be 

used to assess long term (multi-year) changes in permafrost, as shown in Section 5.3. 

Figure 4 shows the seasonal subsidence rates at the four locations over the six-year test period. No clear 

long-term trend is observed. Location (1) has the largest rate variation, from 5.74 mm/month in 2018 to 

22.4 cm/year18 mm/month in 2020. Location (3) has the minimum rate variation,  7.15 mm/month in 



2017  to  11.7  cm/year~10  mm/month in  2021.  We  do  not  observe spatial correlation  between 

subsidence rates at the various locations. For example, location (1) shows the fastest subsidence, with 

high rates in 2017, 2020 and 2022 but much smaller rates in 2018, 2019 and 2021. Location (2)’s 

fastest subsidence occurs in 2019 while the fastest rates for point-location (3) and location (4) occurred 

in 2019 and 2021.

5.2 Validation of InSAR Surface Displacement Estimates with ICESat-2 Data

We used the ICESat-2 ATL08 data product to compare with our InSAR time-series of relative height 

change for the 2021 thaw season (Figure 3). Comparisons using the optical LiDAR data are primarily 

limited  by  cloud  cover,  however  all  four  of  our  test  locations  had  suitable  ICESat-2  data  at  the 

beginning and end of the 2021 thaw season. To minimize the effect of systematic errors, we used repeat 

data from the same reference ground track (RGT=1150), and considered only elevation change during

thaw season, referencing the height of the second acquisition (end of thaw season; 2021/09/06) to the 

first (beginning of thaw season; 2021/06/08). The height of the first date’s LiDAR data is assigned 

‘zero elevation’, to agree with the InSAR estimate. This is a reasonable assumption because the two 

datasets have similar start dates in 2021, June 8 for ICESat-2, and June 3 for SAR. 

Figure 3 shows that with these assumptions, the LiDAR and radar approaches agree well. Since the two 

approaches to elevation change estimation are independent, their agreement is a strong validation of the 

InSAR approach,  albeit  limited  to  a  small  number  of  test  cases.  The  agreement  between  the  two 

approaches also suggests that our reference point for the InSAR data experiences negligible change 

during the study period. Reference point selection for InSAR is difficult in remote permafrost regions 

as most areas undergo subsidence during the thaw season. ICESat-2 data when available could help in 

this regard, but will be limited by pointing errors, cloud cover, and density of the vegetation canopy.
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We also tested the utility of ICESat-2’s ATL06 data product (“h_li”) (Smith et al., 2019), described in 

the Supplement. For this test, we expanded the comparison to a larger number of sites and dates, but 

otherwise used the same general procedures as for the ATL08 product. For our original four test sites, 

the ATL08 product shows better agreement with the InSAR data (Figure S4-S5). In our larger study 

area, 78 cells reported both ATL08 and ATL06 data. For these cases, the two products are equivalent 

(within 1 cm height difference) in 9% of cases, and agree within 10 cm in 61% of cases (Figure S4).  

Including the four original test sites described above, for the 15 cases where InSAR and ICESat-2 

products were available, ATL08 shows better agreement with InSAR in 8 cases, while ATL06 shows 

better agreement in 7 cases. In relatively flat areas, both data products show similar performance. The 

larger footprint of the averaged ATL08 data product (100 m) compared to ATL06 (40 m) may also be 

advantageous given the high spatial variability of ALT (see section 5.3). The Supplement also includes 

a description of the formal uncertainties associated with both the ATL06 and ATL08 data products.

[Figure 3]

Figure 3. LOS displacement  time-series for four test  locations  (black triangles  in  Figure 1b) with 

respect to the first SAR acquisition in the thaw season. Black dashed lines are best-fitting regression 

lines for InSAR LOS displacement only. Rate and RMSE of fitted lines are shown in the top-left of  

each  sub-figure.  Red squares  in  2021 show ICESat-2  ATL08 terrain  height  product.  Latitude  and 

longitude of each analyzed location are shown in the bottom-left of each panel. Note that subsidence 

only occurs during the thaw season and not the entire year.
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[Figure 4]

Figure 4.  Rate comparison of LOS displacement during the summer thaw season for the locations 

shown in Figure 1b. Rate and an error bar are from fitted linear line (See Figure 3).

5.3. Active Layer Thickness Estimation and Validation

Figure 5 shows the seasonal vertical displacement amplitude and its RMSE calculated from equation 

(4) and estimated ALT from 2017 to 2022  in our test area  (red box in Figure-1a).  The shallowest 

overall ALT in this area occured 1) using procedures described in Section 4.3. Minimum ALT occurred 

in 2018 and 2021.  The deepestMaximum ALT occurred in 2019 and 2020. The variation  in these 

estimates may in part reflect uncertainty in thaw season length. Thaw season usually starts around May 

20 and ends around September  20,  but  the  accumulated  degree  days  of  thawing  differ  each  year. 

Sagwon station data for this time period shows that  the  maximum and minimum ADDT occurred in 

2019 and 2018, respectively (Table 2). The overall pattern of ALT remained the same in 2017, 2018, 

2021 and 2022, but differed in 2019 and 2020. Maximum ALT occurred west and west-south of site 

U8. This was also true in 2019 and 2020 but spatial variation was higher than other years. 

ALT in some areas showed a deeper-than-usual pattern in 2019 and 2020, but recovered in 2021 and 

2022. For example, an area a few kilometers south-east of U8 showed high variability in 2019 and 

2020, but  shallow ALT before (2017 and 2018) and after  (2021 and 2022).  Deeper  ALT in 2019 

correlates with ADDT. However, deeper ALT in 2020 and shallower ALT in other years does not 

clearly correlate with ADDT — 2020 was the second coolest thaw season in our study period with 

ADDT = ~876 ◦  C day (Table 2).
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Table–2: Thaw onset, end and ADDT for 2017 to 2022 based on Sagwon station (Figure 1).

Year Thaw onset [m / d] Thaw end [m / d] ADDT [°C day]

2017 5 / 24 9 / 19 980.8

2018 6 / 12 9 / 21 713.5

2019 5 / 20 9 / 14 1040.2

2020 5 / 21 9 / 19 875.7

2021 5 / 21 9 / 17 943.5

2022 5 / 19 9 / 21 970.8

[Figure 5]

Figure 5. Estimated seasonal amplitude, its RMSE and ALT for study area (red box Figure -1a,b) from 

2017 to 2022. Black triangle shows location of CALM site U8. White areas represent low coherence 

which are masked out in the model calculations. The Sag river runs south to north in the center of each 

panel (See Figure-S1 S3).

5.3. ALT Evaluation

We  can  compare  our  results  with  in-situ  data.  CALM  site  U8  is  a  one  hectare  area  with  121 

samplesamples in a square arraysarray. Each array has a ~10sample area is 10x10 m length. Its ALT 

has been observed at the end of the thaw season since 1996. Thaw depth is measured by pushing a 

metal rod into the soil to refusal, assumed to represent the top of the permanently frozen layer.  The 

ALT is not reported whenif the arrayprobe intersects large pondsponded water or rocks. The mean of 



all 121 ALT measurements and therethe corresponding RMSE are reported. Our approach for reporting 

the  InSAR-derived ALT is similar.  We averaged ALTThe pixel to closest to U8 and adjacent pixels 

with within 50 m in the center of closest pixel to U8, a radius of 100 m, and calculatedeast-west and 

north-south directions are defined. We report the corresponding RMSEmean of these pixels and their 

RMSE for comparison with in-situ data. 

Figure 6 shows ALT data around the U8 CALM site for different years. Our estimated ALT agrees 

within uncertainty with  the  in-situ data  infor all five of the years, 2017, 2018, 2019, 2021 and 2022 

(Table-1). when data is available. In-situ ALT is not reported for 2020. This agreement suggest that our 

assumptions  about  model  parameters,  based  on  available  in-situ  data  and published  literature,  are 

reasonable.

Chen  et  al.  (20222020)  estimated  ALT  and  volumetric  water  content  for  large  areas  in  Alaska 

coveringincluding the  U8 CALM site  using  L-band UAVSAR and AirMOSS P-band polarimetric 

SAR, respectively.  Their result is in  reasonablegood agreement with the in-situ data and this study 

considering joint uncertainties. Data processing details are provided in Michaelides et al. (20222021b) 

and Chen et al. (2023). Table-1 shows a summary of the ALT comparison. 

Table1. Estimates of ALT at CALM site U8. ‘ND’ means no data available.

Year This Study CALM (U8) Chen et al. (2022)

2017 60.9 ± 33.5 68.9 ± 11.7 49 ± 17

2018 70.7 ± 41.5 61.7 ± 11.7 ND

2019 73.7 ± 31.7 70.3 ± 12.1 ND



2020 98.5 ± 8.5 ND ND

2021 76.7 ± 18.9 60.8 ± 9.7 ND

2022 58.7 ± 22.4 65 ± 12.1 ND

Our results and in-situ data suggest that ALT exhibits high spatial variability, perhaps reflecting local  

variability  in  topography  or  soil  moisture.  Since  soil  moisture  reflects  in  part  local  topographic 

variation,  measuring  ground  elevation  to  high  precision  may  be  important  to  understanding  this 

variability. 

 

[Figure 6]

Figure 6.  ALT comparison at  CALM site  U8.  Blue  triangles  represent  average  in-situ  ALT from 

manual  mechanical  probing  across  all  grid  cell  from  1996  to  2022 

(https://www2.gwu.edu/~calm/data/north.htm).(https://www2.gwu.edu/~calm/data/north.htm). Green 

circle is estimated ALT for the closest pixel to U8, using airborne L- and P-band SAR images (Chen et 

al., 2022). Red squares (this study) are average estimated ALT for pixels with 10050 m distance toof 

U8. In-situ ALT is not reported for 2020. 

https://www2.gwu.edu/~calm/data/north.htm


To assess the agreement between in-situ data and estimated ALT, we follow Liu et al. (2012) and use 

equation 11 to evaluate whether a given year’s InSAR-based estimate of ALT is consistent with the in-

situ observation given its data uncertainty:

                                                                                                                (11)

where the numerator is the residual between in-situ and InSAR-based ALT, and the denominator is the 

reported in-situ data uncertainty.  values lower than 1 indicate good agreement. Except for the 2017 

estimate,  with   =  2,  all  other  years  have   less  than  1.  Estimated  ALT in 2022 show the best 

agreement with  = 0.3. Figure S4 gives more details. 

Our  results  and the  in-situ  data  suggest  that  ALT exhibits  high  spatial  variability.  It  is  generally 

assumed that ALT depends on parameters such as ADDT, precipitation, and local topography, the latter 

reflecting  its  influence  on soil  moisture  and aspect.  Our results  show a  moderate  correlation  with 

ADDT but no correlation with precipitation, although the latter could reflect limited spatial resolution 

of the available data. 

The influence of local topography on ALT can be tested by examining available high resolution in-situ 

data. Data from the U8 CALM site provides an excellent opportunity to investigate both spatial and 

temporal variability of ALT. Over this small area we expect that local topography will show minimal 

year to year variation. Figure 7 shows ALT variation over an 11x11 square array of sample points, with 

each point sampling an area of 10x10 m. Data are available for the period between 1996 and 2022 with 

a gap in 2020. Location is described in local coordinates. We also show the RMSE of each grid point  

from its average over this time period, and a time series of ALT for three representative points in the 

array.
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Even over this small area we see no significant spatial or temporal pattern in ALT over the quarter-

century period of available data. At least for this example, the influence of local topography appears to 

be minimal,  although we cannot preclude microtopographic (less than 10 m) effects that vary over 

time. 

The Mann-Kendall  test  was employed to evaluate  this  in a rigorous way. The test  determines if  a 

significant monotonic trend is present for either increasing or decreasing ALT at each grid point. Data 

spanning from 1996 to 2019 were analyzed due to the absence of data in 2020. To maintain consistency 

and  account  for  possibly  significant  temporal  variation  in  ALT,  data  from  2021  and  2022  were 

excluded. The null hypothesis was rejected for 31.4% of the cells; the remaining 68.6% of cells do not 

show  a  statistically  significant  trend.  In  other  words,  only  38  out  of  121  cells  had  a  significant 

increasing or decreasing ALT trend. Among these 38 cells, 35 cells showed an increase in active layer 

thickness over the sample time period. The maximum RMSE of the cells is ~20 cm. Variation of the 

same grid cell in two consecutive years reaches as high as ~60 cm. Since air temperature (related to 

ADDT) and precipitation are unlikely to vary significantly over this 100x100 m area, and since overall 

morphology is  unlikely  to  vary  significantly  over  this  time period,  other  factors  must  explain  the 

variation in ALT. Given that our estimated ALT aligns well with in-situ ALT (Figure 6, Figure S2) and 

that  the  long-term  in-situ  ALT  measurements  (2002-2022)  show  no  correlation  with  ADDT  and 

precipitation  (Figure  8),  we  suggest  that  other  factors  are  likely  influencing  the  results.  Micro- 

topographic effects, temporal changes in sub-surface moisture flow, soil organic content and vegetation 

growth and decay are possible factors. Nelson et al. (1998), Nelson et al. (1999) and Hinkel and Nelson 

(2003) conclude that in-situ ALT shows Markovian behavior with high spatial and temporal variation. 



[Figure 7]

Figure 7. ALT variation of CALM site U8, RMSE of each cell relating to its annual average from 1996 

to 2022, ALT trend and ALT time- series for three selected cell (10x10 m) shown by white star.

5.4. Relation of meteorological parameters and ALTto Active Layer Thickness

We investigated correlations between in-situ ALT and several meteorological parameters,  including 

ADDT and precipitation in thaw seasons from 2002 to 2022. ADDT and precipitation data are from the 

Sagwon  meteorological  station.  Figure  7a8a shows  the  relation  between  ADDT  and  ALT.  From 

Stefan’s equation, we expect a positive correlation between ADDT and ALT. However, the correlation 

is  statistically  weak (R-squared = 0.42; Figure  7b8b) suggesting the influence of additional factors. 

Precipitation may influence ALT, e.g., by advecting heat downward to promote permafrost thaw, but 

there are additional factors to consider. For example, an increase in soil moisture leads to a rise in the 

thermal conductivity of soil, potentially increasing the depth  of  the active layer during thaw season. 

However, an increase in soil moisture also increases the total amount of heat required for thawing, 

promoting a shallower active layer. Clayton et al. (2021) showed that ALT has a positive correlation 

with volumetric water content (VWC) in the upper 12 cm of soil,  a negative correlation with bulk 

VWC, and no statistically significant correlation with VWC in the upper 20 cm of soil. We also do not 

see a statistically significant correlation between ALT and precipitation, presumably perhaps reflecting 

these opposing impacts (Figure 7c).8c). 

We also used simple regression analyses to relate ALT to several multi-parameter factors including 

ADDT,  precipitation  and  accumulated  degree  days  of  freezing  (ADDF)  from  the  previous  year. 

However, these did not improve the correlation. Perhaps other factors such as local elevation gradients 

(influencing local hydrology), vegetation type, or the previous year’s snowfall need to be considered. It 



is also possible that some of the variability in our ALT estimates reflects instead variations in total ice 

content (Zwieback et al., 2024).

[Figure 78]

Figure 8. (a): Relation between ADDT and ALT from 2002 to 2022 in CALM site U8 and Sagwon 

station. Red circles show ADDT. Blue triangles show in-situ ALT. (b) scatter plot of ALT vs ADDT.  

(c) scatter plot of ALT vs precipitation. R-squared of relation is shown in top-left of panels. ADDT and 

precipitation are calculated from first of  June  1 to  first of  September 1 of each year to be consistent 

with ALT measurements.

5.5 Applicability to other regions

Alaska’s North Slope is an optimum region for InSAR-based approaches to permafrost monitoring 

because of limited tree cover. We also tested our technique in a region with more extensive tree cover, 

the Beta site  of  the APEX (Alaska Peatland EXperiment)  project,  located  approximately  30 miles 

southwest  of  Fairbanks  (64.696  N,  148.322  W).  This  site  is  located  in  Alaska’s  discontinuous 

permafrost zone and has abundant black spruce, up to 5 m in height. The technique was not successful,  

as phase coherence was not maintained in successive SAR images, perhaps reflecting the relatively 

short wavelength (C-band) of the Sentinel-1 SAR instrument (see next section). Average spatial and 

temporal coherence maps for these two sites are compared in Figure S1.

5.6 Limitations and Future Research

Four aspects of our model mayapproach limit its utility: and are an obvious focus for future research. 

1.  Decorrelation  of  InSAR  phase  is  the  main  limitation  of  thisour technique.  Accurate  InSAR 

measurements require a high degree of coherence, a measure of the correlation in radar phase between 

Unknown Author, 05/03/24
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the two SAR images. Decorrelation occurs due to temporal changes in surface scattering properties, 

changes in viewing angles, and noise in the SAR data (e.g., Schaefer et al., 2015). C-band InSAR has 

demonstrated its ability to monitor deformation over continuous permafrost region at higher latitudes 

(see Previous Work, and this study). Wang et al.  (2020) compared the efficiency of Sentinel-1 for 

monitoring permafrost deformation in discontinuous permafrost regions. They concluded that Sentinel-

1 InSAR time-series performs effectively over discontinuous permafrost landscapes mainly beyond the 

tree line, such as tundra, tundra wetlands, and less developed shrub-tundra areas, during thaw season.. 

However,  the  outcomes  and  precision  are  less  favorable  in  shrub-tundra  and  forest-tundra 

environments.  We  comparedOur  results  are  essentially  the  same: temporal  and  spatial  coherence 

betweenin our main study area and a, north of the tree line near CALM site U8 (almost entirely free of 

trees,  (https://www2.gwu.edu/~calm/data/webforms/u8_f.html)  are  significantly  better  than  those 

obtained in the discontinuous permafrost region near Fairbanks, Alaska, and obtained similar results. 

Decorrelation (section 5.5). Significant decorrelation also occurred around CALM site U18 (~15 km 

southwest of Fairbanks, Alaska) during the 2023 thaw season. ). Land cover here is open black spruce 

forest  (https://www2.gwu.edu/~calm/data/webforms/u18_f.htm).   In  contrast,  temporal  and  spatial 

coherence remained high at CALM site U8 site, located in the continuous permafrost region to the 

north.  Land cover here is classified as graminoid-moss tundra and graminoid, postrate-dwarf-shrub 

and moss tundra (https://www2.gwu.edu/~calm/data/webforms/u8_f.html  .    Longer wavelengths such as 

L-band  may  be  more  useful  in  densely  vegetated  terrains.  The  launch  of  The  NISAR  mission, 

scheduled for launch in 2024, with its L-band wavelength and repeat frequency of 6-12 days, should 

prove useful for more densely vegetated discontinuous permafrost regions.

2. The spatial and temporal resolution of models that allow estimation of key ancillary parameters may 

limit accuracy in some regions,  especiallyfor example soil parameters from the GLDAS model, and 

https://www2.gwu.edu/~calm/data/webforms/u8_f.html


atmospheric parameters from ERA-5. The spatial resolution of GLDAS’ soil parameter model is 0.25 

degrees,  an  area  that  spans  our  study  entire  study  area  in  the  Alaska  north  slope.  The  temporal 

resolution of ERA-5 is adequate, but its spatial resolution precludeslimits local analysis.

3.  The model  does  not  estimate  long-term  Accurate,  dense and widespread porosity-depth profiles 

would  improve  ALT estimation  from remotely  sensed  data.  In  particular,  empirical  and statistical 

models of soil properties calibrated with in-situ data could significantly improve radar- based ALT 

models (e.g., O’Connor et al., 2020; Bakian-Dogaheh et al., 2020, 2022, 2023).

4. Variations in soil ice content and non-linear thaw season subsidence due to thawing of segregated 

ice, instead estimating ALT only by considering  time series need to be considered (Zwieback et al., 

2024).

6. Conclusions

We used Sentinel-1 interferometric SAR data from 2017 to 2022 around CALM site U8 in Northern 

Alaska to measure thaw season subsidence and estimate active layer  thickness with a widely used 

physical model that exploits the  volume change from pore  difference between ice  toand water in the 

active layer. Development of a . Limited ICESat-2 LiDAR data are consistent with InSAR estimates of 

seasonal subsidence. We do not attempt to estimate  long-term (multi-year)  ALT-subsidence model is 

desirableelevation change. Instead we estimate ALT at the end of each thaw season and compare its 

yearly evolution,  avoiding issues of decorrelation of the radar signal  over the winter season. ALT 

estimates in our study area range from ~20 cm to more than 150 cm, similar to in-situ measurements at 

the CALM site and previous remotely sensed estimates. Agreement with the later part of the quarter 

century-long CALM time  series  is  notable  and  suggests  that  annual  ALT estimates  from satellite 

InSAR can be effective at monitoring longer-term permafrost health, at least for Alaska’s continuous 

permafrost zone north of the tree line. However, the technique was not effective in the discontinuous 

Unknown Author, 06/04/24
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permafrost region of central Alaska near Fairbanks, reflecting decorrelation of the C-band radar signal, 

probably from heavy tree cover.  At the northern study site,  ALT shows high spatial  and temporal 

variability in both the satellite and in- situ data sets, sometimes changing dramatically between adjacent 

10 m cells. Subsidence rate also varies significantly between closely spaced points, ranging from ~2-18 

mm/month  at  our  northern  study  site  during  thaw season.  The  reasons  for  such  high  spatial  and 

temporal variability of ALT are not clear and warrant further research.

4.  Accurate  and  dense  porosity-depth  profiles  based  on  in-situ  data  would  also  improve  ALT 

estimation.

6. Conclusions

We used Sentinel-1 SAR data in the CALM site of northern Alaska for thaw season 2017 to 2022 to 

estimate active layer thickness (ALT) using interferometric analysis. 

ALT estimates  range from ~20 cm to larger  than 150 cm in our study area,  similar  to in-situ and 

previous  remotely  sensed  estimates.  ALT  shows  high  spatial  variability,  sometimes  changing 

dramatically between adjoining cells. Subsidence rate also varies between close points, ranging from 

~3-20 cm/yr during the thaw season at our study locations. Applying atmospheric corrections to C-

band radar images improves signal to noise ratio. Limited ICESat-2 LiDAR data is consistent with the 

InSAR estimates of seasonal subsidence. Our results suggest that InSAR could be used to assess long-

term continuous permafrost changes in the region.
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