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Abstract

We estimate  activeActive layer  thickness  (ALT)  is  estimated  for  part  of  northerna  study  area  in 

Northern Alaska’s  continuous  permafrost  zone  for  summer 2017 to 2022  using satellite  data  from 

Sentinel-1  (radar)  and  ICESat-2.  Interferograms (LiDAR)  for  the  period  2017  to  2022.  Synthetic 

Aperture Radar (SAR) interferograms were  invertedgenerated using a Short Baseline Subset (SBAS) 

approach to  estimate  the  amplitude  of  .  Displacement  time  series  over  the  thaw  season  (June-

September) are well fit with a linear model (RMSE scatter is less than 7 mm) and show maximum 

seasonal  subsidence;  ALT was  estimated  from the  measured  subsidence. of  20-60  mm. ICESat-2 

products were used to validate the InSAR displacement time-series. Most subsidence occursALT was 

estimated  from measured  subsidence  using  a  widely  used  model  exploiting  the  volume difference 

between  Juneice and  Augustwater,  reaching  a  maximum  depth in  our  study  area.  The  maximum 

amplitude of seasonal subsidence was 2-6 cm, with ALT reaching ~ of  1.5 m. Estimated ALT is in 

good agreement with in-situ and other remotely sensed data, but is sensitive to assumed thaw season 

onset, indicating the need for reliable surface temperature data. Our results suggest the feasibility of 

long-term  permafrost  monitoring  with  satellite  InSAR. However,  the  C-band  (~55  mm  center 

wavelength) Sentinel radar is sensitive to vegetation cover, and in our studies was not successful for 

similar monitoring in the heavily treed discontinuous permafrost zone of Central Alaska.

1. Introduction
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Permafrost  is  usually  covered with soil  or  sediment  – the active  layer  –  which freezes  and thaws 

seasonally.  This layer also moderates the impacts of surface temperature changes (Dobinsky., 2011). 

The annual freeze-thaw cycle of the active layer causes significant surface height changechanges due to 

the volume difference between ice and liquid water. Active layer thickness (ALT) can be estimated 

using simplified physical models andfrom the magnitude of surface subsidence  measurements  during 

the thaw season using simplified physical models (Liu et al., 2012, 2014, 2015; Schaefer et al., 2015; 

Hu et al., 2018).  ALT is expected to increase as Arctic temperatures rise and permafrost undergoes 

long-term  thaw,  so  remote  monitoring  of  this  feature  is  important.releasing  carbon  dioxide  and 

methane, both powerful greenhouse gases. The process thus represents a potentially powerful positive 

feedback in the global climate system (e.g. Schuur et al., 2009; Turetsky et al., 2020).  On the other 

hand  the  active  layer  can  also  moderate  the  impact  of  surface  temperature  changes  on  deeper 

permafrost (Dobinsky, 2011), perhaps limiting rapid increases in ALT.  Frequent monitoring of ALT 

across the Arctic landscape is clearly important, implying the need for remote sensing approaches.  

In the last three decades satellite-based Interferometric Synthetic Aperture Radar (InSAR) has been 

used  to  monitor  a  variety  of  Earth  processes  that  generate  subtle  surface displacements,  including 

earthquake and volcano deformation, and reservoir compaction from fluid withdrawal (e.g., Bürgmann 

et al.,  2000). Recent  examples include earthquake after-slip (e.g.,  Sadeghi Chorsi  et  al.,  2022a, b), 

volcano deformation (e.g., Poland and Zebker, 2022, Grapenthin et al., 2022), groundwater extraction 

(e.g.,  Castellazzi  et  al.,  2016),  carbon  sequestration  (e.g.,  Yang  et  al.,  2015;  Vasco  et  al.,  2020), 

seismicity induced by fluid injection (e.g., Deng et al., 2020), coastal sea ice dynamics (Dammann, 

2019)), glacier velocity estimation (e.g., Strozzi et al., 2020), and coastal flood hazard (e.g., Bekaert et 

al., 2017; Zhang et al., 2022). Pioneering work by L. Liu (Liu et al., 2010, 2012) demonstrated the 



utility of InSAR to monitor long-term permafrost thaw and changes in ALT. Here, we use InSAR from 

the Sentinel-1 satellite constellation to investigate permafrost thaw on the North Slope of Alaska for the 

period 2017 to 2022, focusing on multi-year changes in ALT.part of the North Slope of Alaska for the 

period 2017 to 2022, focusing on multi-year changes in ALT, and using available ICESat-2 LiDAR 

data to validate  the InSAR result.  Our study has the following objectives:  (1) examine the spatial 

distribution of seasonal thaw subsidence amplitude using SAR interferometry from 2017 to 2022; (2) 

use the annual variation of InSAR-measured displacements to estimate ALT and compare to long-term 

in-situ ALT observations; (3) assess the ability of the ICESat-2 ATL08 product to complement InSAR 

data in permafrost regions; and (4) test  the influence of some environmental  factors on the yearly 

variation of ALT. 

2. Previous Work

Satellite remote sensing of permafrost has been ongoing for at least three decades (e.g., Peddle and 

Franklin (,  1993).  In terms ofTable-1 summarizes microwave-based studies,  Singhroy et  al.  (2007) 

used RADARSAT-1 to monitor permafrost activity and landslide motion around the Mackenzie Valley 

Pipeline Corridor, Canada. Rykhus and Lu (2008) used JERS-1 L-band data to detect thaw settlement 

over the Alaskan Arctic coastal plain. Liu et al. (2010) used ERS-1 and -2 SAR images to monitor  

permafrost on the North slope of Alaska, observingin three categories: 1) seasonal subsidence of ~1-4 

cm and average secular subsidence of ~1-4 cm/decade. Liu et al. (2012) used SAR data to develop a 

novel  ALT retrieval  model,  relating  InSAR-derived subsidence  to ALT using air  temperature,  soil 

texture, and organic matter thickness, assuming subsidence in a given thaw season is related to the 

volume  reduction  associated  with  the  phase  change  between  ice  and  water.  We  follow a  similar 

approach in this study. 
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Schaefer et al. (2015) used ALOS PALSAR data from 2006-2010 to estimate average ALT thaw, 2) 

seasonal  and long-term subsidence; and 3) ALT estimation and other scientific applications. Papers 

most relevant to this study include Liu et al. (2010, 2012, 2015), and Schaefer et al. (2015).  in Barrow, 

Alaska. Their model showed good agreement between remotely estimated ALT, Ground Penetrating 

Radar (GPR) and in-situ data for more than 75% of the area. Daout et al. (2016) used multi-temporal  

InSAR  observations  to  quantify  ALT  over  Northwestern  Tibet.  They  found  that  unconsolidated 

sediments in flat basins have higher seasonal subsidence amplitude compared to slope sediments and 

proposed that ground water was the key controlling factor. Iwahana et al. (2016) used InSAR data from 

ALOS PALSAR together with GPS data to study the long-term impacts of wildfire on the permafrost 

regime in the Anaktuvuk, Alaskkan North Slope. Chen et al. (2018) used Sentinel-1 InSAR data to 

estimate seasonal thaw subsidence and inter-annual elevation change from 2016 to 2017 in Yedoma, 

Russia. They found that the top of the flat Yedoma upland exhibits large seasonal subsidence, and 

suggested that the delayed thaw season in 2017 was related to air temperature fluctuations. Strozzi et al. 

(2018) used Sentinel-1 InSAR to measure seasonal thaw subsidence in four sites, observing seasonal 

subsidence from 2 to 10 cm. Liu and Larson (2018) used GPS interferometric reflectometry (GPS-IR) 

at  Barrow,  Alaska,  showing  that  surface  elevation  could  be  measured  reliably  during  snow-free 

summer days. Hu et al. (2018) also used GPS-IR here, observing elevation changes with a seasonal 

amplitude of ~5 cm. Michaelides et al. (2019) used ALOS data to estimate seasonal subsidence, long-

term subsidence and ALT to develop a fire response model. Bartsch et al. (2019) used Sentinel-1 (C-

band)  and  COSMO-Skymed  (X-band)  SAR  images  between  2013  to  2018  to  monitor  seasonal 

subsidence  in  central  Yamal,  Russia.  Wang  et  al.  (2020)  used  Sentinel-1  time-series  in  northern 

Canada, demonstrating the utility of C-band radar for monitoring ALT in a sub-arctic tundra region. 

Chen et al. (2020) used ALOS PALSAR data to monitor ALT in Toolik, Alaska. Honglei et al. (2021) 



used ALOS PALSAR for the period 2007 to 2010 to permafrost-related subsidence in the Qinghai-

Tibet Plateau, observing settlement up to 12 cm. Michaelides et al. (2021) and Chen et al. (2023) used 

L-band UAVSAR InSAR and AirMOSS P-band polarimetric backscatter data over different sites in 

Alaska and western Canada to simultaneously estimate seasonal subsidence, ALT and volumetric water 

content. Here, we use Sentinel-1 interferometry to monitor seasonal subsidence and ALT changes from 

2017 to 2022 for part of northern Alaska.         

 Table-1. Microwave-based studies on permafrost monitoring.

Technical Application Studies Scientific Focus Data Study Area

Singhroy et al. (2007) Landslide  and 

wildfire 

RADARSAT-1 Mackenzie  Valley, 

Canada

Rykhus and Lu (2008) - JERS-1 Alaskan Arctic coastal 

plain

Liu et al. (2010), - ERS-1 and ERS-2 North slope of Alaska

Iwahana et al. (2016) Thermokarst, 

wildfire

ALOS  PALSAR, 

GPS

North slope of Alaska

Strozzi et al. (2018) - Sentinel-1 Multiple  sites  in 

Alaska,  Greenland, 

Russia and Antarctica

Zwieback et al. (2018) Thermokarst TanDEM-X Tuktoyaktuk 

coastlands,  Canada 



Seasonal Thaw

and  Lena  River  delta, 

Russia

Bartsch et al. (2019) - Sentinel-1  and 

COSMO-Skymed

Yamal, Russia

Wang et al. (2020) - Sentinel-1, 

TerraSAR-X, 

ALOS PALSAR 

Northern Canada

Seasonal  and  Long-

term subsidence

Liu et al. (2012) - ERS-1 and ERS-2 North slope of Alaska

Daout et al. (2016) - Envisat Northwestern Tibet

Chen et al. (2018) - Sentinel-1 Yedoma, Russia

Liu and Larson (2018) - GPS-IR Barrow,  Alaska

Hu et al. (2018) - GPS-IR Barrow,  Alaska

Michaelides et al. (2019) Wildfire ALOS PALSAR Yukon–Kuskokwim 

Delta, Alaska

Chen et al. (2020) Soil Moisture ALOS PALSAR Toolik, Alaska

Bernhard et al. (2020) Thermokarst TanDEM-X Northern Canada

Honglei et al. (2021) - ALOS PALSAR Qinghai-Tibet Plateau

Liu et al. (2012) - ERS-1 and ERS-2 North slope of Alaska

Schaefer et al. (2015) Thermokarst ALOS PALSAR Barrow, Alaska

Michaelides et al. (2019) Wildfire ALOS PALSAR Yukon–Kuskokwim 



ALT estimation; other

Delta, Alaska

Chen et al. (2020) Soil Moisture ALOS PALSAR Toolik, Alaska

Michaelides et al. (2021) Soil Moisture L-band  UAVSAR 

and  AirMOSS  P-

band

Alaska  and  western 

Canada

Chen et al. (2023) Soil Moisture L-band  UAVSAR 

and  AirMOSS  P-

band

Alaska  and  western 

Canada
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 Figure 1. (a): DEM ofincluding study area in northern Alaska. Solid (black box) in northern Alaska. 

Black box is expanded in Figure- 1b, red box outlinesboxes outline focused test area shown in Figure- 

5.  TriangleBlack  triangle shows  CALM  site  (U8)  used  to  compare  ALT.where  ground-based 

measurements of ALT are available. Blue circle represents location of closest meteorological site used 

in this studystation (Sagwon). (b): Line of sight (LOS) displacement of the study area from 2022-06-10 

to 2022-09-02. as measured by InSAR. Negative values meansmean displacement away from satellite., 

positive  values  mean  displacement  towards  satellite. DEM  relief  map  is  shown  in  background. 

Triangles show location of CALM site and displacement time-series shown in Figure 3. Black square 

represents reference point used for InSAR analysis.

shown in background. Triangles show location of displacement time-series shown in Figure-3 and 

CALM site. Black square represents reference point for InSAR used in this study.

3. Study area
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3. Study area

The Alaskan North Slope is bounded by the Brooks Range to the south and southeast and the Arctic 

Ocean to the north. Our main study areasite on the North Slope is located in northern Alaskaa 15 km by 

30 km area in the vicinity of the Sag river and Dalton highway (69.68 N, 148.7 W; Figure- 1). It is ~50 

km south of Prudhoe Bay and ~130 km westnorth of the Brookes range. It is locatedBrooks Range, in 

athe continuous permafrost region of Alaska with more than 90% permafrost coverage (Jorgenson et 

al., 2008). The

Our study site  is described as having 23 cm organic layer thickness with seasonal high water table 

subject  to  saturation.  The  U8  includes  CALM  site’s  site  U-8.  The  Circumpolar  Active  Layer 

Monitoring (CALM) program is  designed  to monitor  the active layer and permafrost sensitivity  to 

climate  change  over  extended  periods,  typically  spanning  multiple  decades  (Brown  et  al.,  2000). 

CALM site U8 has recorded ALT since 1996. The site encompasses a one-hectare area containing 121 

sample square arrays, each measuring approximately 10 meters horizontally. It is located 88 m above 

sea level, is relatively flat, and lies within an inner coastal plain with river terraces. The site has an 

organic  layer  ~23  cm  thick  that  is  usually  water-saturated  during  thaw  season.  U8’s  vegetation 

coverage is classified as graminoid-moss tundra, graminoid, prostrate-dwarf-shrub, and moss tundra. 

This site’s landscape is described as inner coastal plain with river terraces. Its soil texture is classified 

as predominantly sand, gravel and peat. Soil taxonomy is Ruptic-Histic-Aquorthel (Ping et al., 2015; 

US Department of Agriculture, 1999), i.e., a poorly drained, occasionally to frequently water-saturated 

soil  with  a  significant  amount  of  organic  matter. 

(https://www2.gwu.edu/~calm/data/webforms/u8_f.htm).  A 12 km by 12 km test site around U8 (red 
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box  in  Figure  1)  is  used  for  focused  studies  of  ALT  estimation,  based  on  our  InSAR-derived 

displacement estimates during thaw season.

The Circumpolar Arctic Vegetation Map (CAVM)  describeat this location describes graminoid and 

prostrate-dwarf-shrub vegetation  as  5-10 cm  tallin  height.  This  short  vegetation  structure  is likely 

favorable for shorter radar wavelength radars  like Sentinel’ssuch as Sentinel-1’s C-band  ((~5.5 cm 

wavelength ~5.5 cm) to retain phase coherence. For comparison we also studied the Beta site of the 

APEX (Alaska Peatland EXperiment), located approximately 30 miles southwest of Fairbanks (64.696 

N, 148.322 W). This is a located in discontinuous permafrost zone with abundant black spruce, up to 5 

m in height., but also suggests that accounting for vegetation height will be important to assess seasonal 

and longer term elevation changes in this area. 

4. Methods

4.1. InSAR Data Processing

4.1.1. Data and Material 

Sentinel-1 SAR images from June to September 2017 to 2022 were selected to cover the end of freeze  

season to the end of thaw season (Table-S1). Changes in surface scattering characteristics in the freeze 

season (surface covered with snow and ice) could decorrelate the radar wave.  Significant changes in 

scattering characteristics are expected during the freeze season when the surface is covered with snow 

and ice, hence we focus on the summer thaw season. Changes in soil moisture in any season could also 

decorrelate the radar wave, but terrain in the continuous permafrost zone is saturated at the beginning 

of thaw season and is likely to remain so for most of the remaining thaw season as the permafrost layer 
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continues to melt. We focused our study on the June to September time frame, using Sentinel-1 SAR 

images with a 12 day revisit interval and descending geometry for the years 2017 to 2022 (Table-S1). 

We used the Alaska Satellite Facility's Hybrid Pluggable Processing Pipeline (HyP3) software to form 

interferograms (Hogenson et al., 2020). HyP3 uses the Copernicus GLO-30 Digital Elevation Model 

(DEM)  for  scene  coregistrationco-registration and  topographic  phase  corrections  (ESA.,  2021). 

Interferograms were filtered using the adaptive phase filter in Goldstein & Werner (1998). Individual 

interferograms were unwrapped using a minimum-cost-flow algorithm (Chen & Zebker.,  2002) and 

geocoded to a 30-m grid spacing.  We used the open-source Miami InSAR time-series software in 

python  (MintPy)  to  generate  LOS  displacement  time-series  from  the  unwrapped  and  geocoded 

interferograms (Fattahi et al., 2016; Zhang et al., 2019). Interferograms with high spatial coherence and 

short time-interval between scenes were chosen to avoid decorrelation and phase unwrapping errors. 

Phase unwrapping artifacts occur in permafrost regions when disconnected wetlands and large seasonal 

deformation precludes smooth unwrapping of the phase (e.g.,  Strozzi  et  al.,  2018). Noisy 

interferograms were removed from the time-series and seasonal amplitude inversion processes (Section 

4.3.2). Geocoded LOS displacement data for active layer thickness estimation was then extracted for 

the study area.

4.1.2. Reference Point Selection

InSAR  is  a  double-difference  technique  thatInSAR measures  phase  differences  between  SAR 

observations in space and time. To relate these phase difference measurements to surface displacement, 

we need to choose a reference location with assumed or known displacement. In is required, with high 

temporal coherence (> 0.8) to avoid introducing noise into the time series. In most permafrost regions, 



rock outcrops are a  suitablegood reference  locations  as they can be assumed to show only minimal 

displacement, but. However, they may not be available for all  regions.  For this study, we use two 

criteria for reference point selection: first, we require the point to have high temporal coherence (> 0.8) 

to avoid introducing noise into our time series.  Second,  we look for locations  that  either  are  rock 

outcrops or lie in a floodplain (but not a river channel, which can undergo large elevation changes from 

erosion/deposition events; see Figure-S1). Liu et al. (2010) point out that river floodplains usually have 

well-drained sandy soils and hence tend not to experience significant frost heave. They may be used as 

reference points if they are not within a river channel, which can undergo large elevation changes from 

erosion/deposition events (see Figure S1). Figure 1b shows theour reference point we identified using 

these criteria, a rock outcrop immediately northeast of our study area which remains coherent (temporal 

coherence ~0.95) during the 2017 to 2022 thawingthaw seasons.  

4.1.3. Atmospheric delay correction                                                                        

Atmospheric effects are one of the main error sources in the InSAR process (Meyer et al., 2006). While 

InSAR data can be affected by both the ionosphere and the troposphere, here we focus on tropospheric 

effects as ionospheric impacts are less pronounced in C-band data (Meyer.,, 2011). Tropospheric phase 

impacts can be modeled as (Ding et al., 2008): 

                                                                                    (1)

where   is the phase of a SAR image,   is the range from satellite to surface,   is the tropospheric 

propagation delay, and   is the radar wavelength. Tropospheric phase signals in InSAR data can be 

caused by two processes: changes in the atmospheric stratification and turbulent mixing. The stratified 

phase component typically correlates with topography (Hanssen, 2001) and may be estimated and then 

removed based on delay-elevation correlations, then removed from the radar phase (Doin et al., 2009). 



The turbulent component plays an important role in phase delay because it is uncorrelated in time and 

space, although its amplitude isis usually much less than the stratified component, but is uncorrelated in 

time and space and hence harder to predict or measure. According to (1) if the atmospheric propagation 

conditions at the time of SAR acquisitions are not the same ( ), then tropospheric phase 

components  will  be  introduced,  contaminating  the  true  displacement  signal.  To  reduce  these 

tropospheric effects, one approach is to apply a global weather model. This approach mainly reduces 

the stratified component.Applying atmospheric corrections to C-band radar images can improve signal 

to noise ratio, especially when there is a considerable height difference between the study area and 

reference point. We applied the atmospheric correction model described in Jolivet et al. (2011, 2014) 

using ECMWF reanalysis (ERA-5) datasets (Hersbach et al., 2020). This approach mainly reduces the 

stratification component of the tropospheric delay. 

4.2. ICESat-2 data processing

We used the ICESat-2 level 3A product for land and vegetation height (ATL-08) to validate the InSAR 

time-series displacement estimates. While the nominal temporal resolution of ICESat-2 data is 91 days, 

cloud cover greatly limits the amount of usable data in Alaska (e.g., Neuenschwander & Pitts., 2019). 

Two  observations  were  available  in  our  study  area,  acquired  on  2021-06-08  and  2021-09-06.To 

validate our InSAR measurements of thaw season subsidence, we used independent LiDAR elevation 

data from the ICESat-2 satellite (Martino et al.,  2019). The ATLAS (Advanced Topographic Laser 

Altimeter System) LiDAR on ICESat-2 uses a multi-beam photon-counting laser operating at 532 nm, 

i.e., the green portion of the electromagnetic spectrum. Surface range is determined by the travel time 

of each detected photon. When coupled with the satellite's position, the range data provides accurate 

geolocation of the surface, in this case referenced to the WGS-84 ellipsoid. With a laser repetition rate 
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of 10 kHz, pulses occur approximately every 70 cm on Earth's surface. Each footprint is about 13 m in 

diameter. Beam pairs, with different energies to adjust for surface reflectance, are spaced about 3.3 km 

apart across tracks, forming six tracks with beams in each pair separated by 90 m. Ranging precision 

for flat surfaces is expected to have a standard deviation of around 25 cm, primarily influenced by 

ATLAS timing uncertainty (Neuenschwander et al., 2019).

The ATL08 product algorithm is designed to extract terrain and canopy heights from vegetated surfaces 

using  the  geolocated  photons  (Neuenschwander  et  al.,  2019;  2021). We  used  the  ‘h_te_best_fit’ 

parameter,  which  estimates  terrain  height  by  fitting  a  plane  to  along-track  points  in  each  100  m 

segment and report the height of the middle of the fitted plane (Neuenschwander et al., 2019; 2021). 

Due to pointing-related errorsreports the height of the middle of the fitted plane (Neuenschwander et 

al., 2019; 2021), reducing the impact of random errors. The height of the terrain midpoint is calculated 

by choosing the best fit among three models: linear, third-order, and fourth-order polynomials applied 

to the terrain photons. This allows for interpolation of the elevation at the midpoint of the 100-meter 

segment  (Neuenschwander  et  al.,  2019;  2021,  Neuenschwander  and  Pitts,  2019).  The  standard 

deviation of terrain points around the interpolated ground surface within the segment is one measure of 

surface  roughness. Neuenschwander  et  al.,  (2019) provide additional  details  describing the ATL08 

algorithms. ATL06 is an alternate product algorithm, optimized for ice surfaces, and has been used in 

some permafrost studies (e.g., Michaelides et al., 2021) (See Supplement).  

 

While the nominal temporal resolution of ICESat-2 data is 91 days, cloud cover often limits the amount 

of usable data in Alaska (e.g.,  Neuenschwander & Pitts., 2019). Two repeat track observations were 

available  in  our  study  area,  acquired  on  2021-06-08  and  2021-09-06.  Due  to  pointing-related 



uncertainty, observations are not always repeated in expected locations,  which amplifies the height 

uncertainty. To address this issue, we divided the study area into 50 m grid cells, and assigned each 

observation in 2021-06-08 and 2021-09-06 repeat tracks to one of those grid cells. Figure- S1 shows 

the height difference between all reported terrain observations in the study area between 2021-06-08 

and 2021-09-06. In the limited area where both InSAR and ICESat-2 data are available (four points 

shown in Figure 1a),, we used the ICESat-2 data to evaluate thecompare to our InSAR results (Figure 3 

and Supplement).

4.3. ALTActive Layer Thickness estimation model

To relate  the  InSAR observations  to  ALT,  we  assume that  the  measured  LOS displacements  are 

predominantly due to vertical  motion (negligible horizontal motion) and that this vertical  motion is 

caused by thawing ground ice in the active layer. The assumption of negligible horizontal motion is 

justified because over the short data time interval is short and the technique doesis not sensesensitive to 

long-term tectonic motion. We observed large displacements in Displacements from the M 6.4 August 

2018 earthquake, ~130 km east of study area due to the M 6.4 earthquake (USGS hypocenter at north 

of  Brooke  range:  145.291  W,  

69.576 N, depth 15.8 km). Since our study area was far from this  area,  we believe  most of  )  are 

negligible. Most surface motion in the deformation in thaw season is because oftherefore likely reflects 

thawing ground ice thawing. We project the LOS displacements into the vertical direction using the 

local  incidence  angle  (θ)  for  each  radar  pixel  (see  Equation- 3).  We follow the  simplified  Stefan 

solution to estimate  depth of thawing in the soil  (Nelson et  al.,  1997) aided by field-observed air  

temperature data. We also assume that subsidence can be related to a simple thaw index, for example  

the  accumulated  degree  days  of  thawing (ADDT).  Our  procedures  are  virtually  identical  to  those 
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described in Liu et al. (2012) and Schaefer et al. (2015), with the exception that we do not estimate 

multi-year  subsidence  and  do  not  average  ALT across  multiple  thaw seasons.  This  enables  us  to 

directly compare our space-based estimates with yearly ground truth estimates from CALM site U8 and 

evaluate inter-annual changes in ALT.

4.3.1 ADDT Accumulated Degree Days of Thawing calculation

To calculate ADDT, we use the NOAA Climate Data Online (CDO) tool to find nearby meteorological  

stations. The closest station is ~2030 km south to our studytest area (Name: Sagwon, Figure 1a). We 

assume that our studytest area has the same temperature trend as this station fromfor the 2017 to 2022 

thaw seasons. We define the first and last day with temperature > 0 ◦C as the first and last day of the 

thaw season. ADDT is defined by the following equation (Riseborough., 2003):

                                                                                                   (2)

where   is the duration of thawing season, in days.   is surface temperature (◦C),   is equal to 

freezing  point,  0  ◦C,  and   is  daily  mean  surface  temperature.  Due  to  lack  of  in-situ  surface 

temperature data, we set  using air temperature observations.

4.3.2 Seasonal Amplitude Inversion

The relationship  between the seasonal  vertical  surface  displacement  magnitude  and ADDT can be 

written as (Liu et al., 2012; Schaefer et al., 2015): 

                                                                                                (3) 

where  is the vertical displacement estimate for a given pixel in the i th  interferogram,  is the local 

incidence  angle  at  that  pixel  calculated  from  nadir,   is  the  amplitude  of  the  seasonal  vertical 

displacement estimate which reflects physical parameters such as soil thermal conductivity, latent heat 
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of fusion, soil density and relative water content. (Nelson et al., 1997).  and  are normalized 

accumulated degree days of thawing at the first and second acquisition date.   is an error term that 

captures model deficiencies, noise, and other unknown error sources. We do not consider secular (long-

term) displacement signals in (3) because we analyze the thaw seasons of 2017 to 2022 separately. 

This is the major difference between our approach and those described in Liu et al. (2012), Schaefer et 

al.  (2015)  and  Michaelides  et  al.  (2019),  where  seasonal  and  interannual  trends  were  estimated 

simultaneously.

We can rewrite (3) in matrix form, considering the interferograms listed in table-S1, to estimate   

using least squares. for separate thaw seasons:                                     

                                                                                              (4)  

4.3.3 ALTActive Layer Thickness Inversion

If we assume that the seasonal vertical surface displacement amplitude E is caused only by thawing ice 

and corresponding volume reduction, we can write E as a function of physical properties such as soil 

porosity, soil moisture fraction, and density of ice and water through a vertical profile from surface to 

depth of the active layer (Liu et al., 2012; Schaefer et al., 2015):

                                                                                                          (5)

The variables  and  in Eq (5) are the density of water and ice [kg m-3], respectively.  is the soil 

porosity which is a function of depth and depends on soil  content.,  and    is the soil  moisture 

fraction of saturation.  Here,Following Schaefer et al. (2015), we assume that , which means 



that the active layer is fully saturated and does not change with depth (Schaefer et al.,  20152015). In 

the next section, we describe relation between porosity  in depth and ALT in  (5).

4.3.4 Porosity Model

WeFollowing earlier  authors, we assume  the  soil in the active layer consists of organic matter and 

mineral  soil.  In this  case,  the  ,  with  porosity  decreasesdecreasing exponentially  with depth due to 

decreasing organic matter.  There is  one active  CALM site  insidein our  studytest area:  U8 (Figure 

1a1b). This site is described as having 23 cm organic layer thickness, consisting mainly of peat plus 

sand  and  gravel  (https://www2.gwu.edu/~calm/data/webforms/u8_f.htm).  We  consider  this  organic 

matter  thickness  in  modeling  of  porosity  versus  depth.(Section  3). We  applied  the  formulation 

introduced by Liu et al (2012) and presumeassume that   is the weighted average of organic and 

mineral matter:

                                                                                                       (6)

where  is the porosity, and  is defined as the organic soil fraction by Schaefer et al.,. (2009) as:

                                                                                                                    (7)

In Eq (7),   and  are the simulated mass of organic matter and organic soil density in a given 

layer of soil, respectively.   and  are bulk organic matter mass and bulk density for 

pure organic soil, respectively. We set  = 0.95 based on model from Bakian-Dogaheh et al. (2022). 

The  porosity  of  mineral  soil  then  depends  on  the  sand  fraction  of  soil.  To  estimate   we 

utilizedused the porosity-sand fraction relation provided in Liu et al.,. (2012):

                                                                                                          (8)

We used Global Land Data Assimilation System (GLDAS) soil parameters with 0.25 degree spatial 

resolution to extract the soil sand fraction (Rodell et al., 2004). We set  = 0.488, and  

https://www2.gwu.edu/~calm/data/webforms/u8_f.htm


= 130 kg m-3 for bulk density of peat (Grigal et al., 1989; Hossain et al. 2015). As mentioned earlier, to 

formalize  with depth, we assume the organic matter amount decreases exponentially with depth: 

                                                                                                                                (9)

where  is an empirical constant (m-1), set to 5.5 (Liu et al., 2012; Jackson et al., 2003). To retrieve , 

we use simulated mass of organic matter ( : total soil carbon content) from Johnson et al. (2011) 

and Mishra et al. (2012) and ensure that total carbon mass is conserved.

                                                                                                               (10)

We set  = 70 kg m-2 (Johnson  et al., 2011; Mishra et al., 2012). The spatial divergence of total soil 

carbon content for the 0-100 cm depth range is large in Arctic tundra regions considering vegetation 

type. Mishra et al. (2012) and Johnson et al. (2011) estimated  estimate total soil carbon around 

our study area at [60-80] and [50-70] kg m-2, respectively. Root depth is the maximum observed ALT 

at a given site since roots cannot penetrate solid ice. Here, we set maximum root depth at 1.1 m because 

maximum observed ALT at site U8 is reported as ~1.1 m for 2022. Then we solve (10) for   and 

replace it  in (9).  Figure 2 shows the relation  between porosity  and depth in  a mixed soil.  We set 

porosity=0.95 for the first ~2023 cm depth reflecting organic matter thickness. After  2023 cm depth, 

the porosity decreases exponentially, reaching its minimum near the top of the frost table. Finally, we 

put all equations into (5) and use a numerical bisection algorithm to solve for the upper integral limit, 

ALT. We set the accuracy of bisection to be at the mm level.

Finally, we put all equations into (5) and use a numerical bisection algorithm to solve for upper integral 

limit, ALT. 

[Figure 2]

We set the accuracy of bisection to be at the mm level.



Figure 2. Depth-porosity model used in this study assuming a mixture of organic and mineral matter.

 

5. 

Results and Discussion

5.1 Estimating Seasonal Vertical Displacement 

Figure  3  shows displacement  time-series  for  the  four  test  locations  shown in  Figure  1b.  All  four 

locations show subsidence during thaw season. The maximum amplitude of subsidence ranges from 20 

mm (Location 4) to 60 mm (Location 1). In 2021 the subsidence amplitude was small and similar  

among the four locations (~20 mm). The subsidence rate is approximately constant during the thaw 

season. The root mean square error (RMSE) of the linear fit to the displacement data is less than 7 mm 

at all four locations over all six years. The maximum subsidence rate observed during the short (~3-4 

month) thaw season is ~18 mm/month.  
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Note that we do not attempt to connect our displacement time series across adjacent years. The freezing 

process, consequent frost heave, and deep snow at these sites during winter makes phase connection 

difficult due to loss of coherence (e.g., Strozzi et al., 2018). Nevertheless, our approach can still be 

used to assess long term (multi-year) changes in permafrost, as shown in Section 5.3. 

Figure 4 shows the seasonal subsidence rates at the four locations over the six-year test period. No clear 

long-term trend is observed. Location (1) has the largest rate variation, from 4 mm/month in 2018 to 18 

mm/month  in  2020.  Location  (3)  has  the  minimum  rate  variation,  5  mm/month  in  2017  to  ~10 

mm/month in 2021. We do not observe spatial  correlation between subsidence rates at  the various 

locations. For example, location (1) shows the fastest subsidence, with high rates in 2017, 2020 and 

2022 but much smaller rates in 2018, 2019 and 2021. Location (2)’s fastest subsidence occurs in 2019 

while the fastest rates for .location (3) and location (4) occurred in 2019 and 2021. 

5.2 Validation of InSAR Surface Displacement Estimates with ICESat-2 Data

We used the ICESat-2 ATL-08 productsdata product to evaluatecompare with our InSAR time-series 

results.  We found four locations  in  common between ICESat-2 and InSAR data  of relative  height 

change for the 2021 thaw season, (Figure 3). Comparisons using the optical LiDAR data are primarily 

limited by cloud cover (Figure S1). Unfortunately, there were no), however all four of our test locations 

had suitable ICESat-2 comparison data for 2019, 2020 and 2022 thaw season. ATL-08 reports surface 

height  relative  to  the  WGS84  datum since  mid-2018.  To  compare  with  relative  InSAR data,  we 

subtracted the two available ICESat-2 height data and assignat the beginning and end of the 2021 thaw 

season. To minimize the effect  of systematic  errors,  we used repeat  data from the same reference 

ground track, and considered only elevation change during thaw season, referencing the height of the 

second  acquisition  (end  of  thaw  season;  2021/09/06)  to  the  first  (beginning  of  thaw  season; 
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2021/06/08). The height of the first date’s height as LiDAR data is assigned ‘zero elevation.elevation’, 

to agree with the InSAR estimate. This  is  a reasonable assumption because the two datasets  have 

comparablesimilar start dates in 2021, June 8 for ICESat-2, and June 3 for SAR. 

Figure 3 shows that with these assumptions, the LiDAR and radar approaches agree well. Since the two 

approaches to elevation change estimation are independent, their agreement is a strong validation of the 

InSAR approach, albeit limited to a small number of test cases. 

The agreement between the two approaches agree well. This indicatesalso suggests that our reference 

point  for  the  InSAR data  experiences  negligible  change  during  the  study  period.  Reference  point 

selection  for  InSAR is  difficult  in  remote  permafrost  regions  as  most  area  subsideareas  undergo 

subsidence during  the  thaw  season.  Comparing  InSAR  displacement  with  reliable  and  available 

ICESat-2 data when available could be an option to evaluate result in remote areas. However, finding 

suitable repeated ICESat-2 points is also difficult because of LiDAR help in this regard, but will be 

limited  by  pointing errors,  cloud cover,  and  density  of  the  vegetation  canopy density.  The chosen 

locations for comparison here are less than 50 m distant and have less than 7% slope. 

We also tested the utility of ICESat-2’s ATL06 data product (“h_li”; Smith et al., 2019), described in 

the Supplement. For this test, we expanded the comparison to a larger number of sites and dates, but 

otherwise used the same general procedures as for the ATL08 product. For our original four test sites, 

the ATL08 product shows better agreement with the InSAR data (Figure S5). In our larger study area,  

78 cells reported both ATL08 and ATL06 data. For these cases, the two products are equivalent (within 

1 cm height difference. ) in 9% of cases, and agree within 10 cm in 61% of cases (Figure S6). Including 

the four original test sites described above, for the 15 cases where InSAR and ICESat-2 products were 

available, ATL08 shows better agreement with InSAR in 8 cases, while ATL06 shows better agreement 

in 7 cases. In relatively flat areas, both data products show similar performance. The larger footprint of 



the averaged ATL08 data product (100 m) compared to ATL06 (40 m) may also be advantageous given 

the high spatial variability of ALT (see section 5.3). The Supplement also includes a description of the 

formal uncertainties associated with both the ATL06 and ATL08 data products.

[Figure 3.]

Figure 3. LOS displacement time-series for four  test  locations (black triangles in Figure- 1b) with 

respect to the first SAR acquisition in the thaw

 season. Black dashed lines are best-fitting regression lines for InSAR LOS displacement only. Rate 

and RMSE of fitted lines are shown in

 the top-left of each sub-figure. Red squares in 2021 show ICESat-2 ATL-08 terrain height product. 

Latitude and longitude of each analyzed location are shown in the bottom-left of each panel. Note that 

subsidence only occurs during the thaw season and not the entire year.

location are shown in the bottom-left of each panel.
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[Figure 4]

Figure 4.  Rate  comparison of  LOS displacement  between selected  pointsduring the summer  thaw 

season for the locations shown in Figure- 1b. Rate and an error bar are from fitted linear line (See 

Figure-3).

line (See Figure-3).

5.2. Estimated Seasonal Vertical Displacement and ALT

Figure 3 shows time-series for the four locations shown in Figure-1b. The maximum amplitude of 

subsidence for these locations ranges from 2-6 cm. Location (4) and location (1) have the minimum 

and maximum subsidence amplitude in the entire time-series. Most subsidence occurs in the first two 

months of data acquisition (Mid-June to mid-August) for all locations. The subsidence amplitude is 

similar between the four locations (up to ~2 cm) in 2021. The maximum rate of subsidence is ~20 

cm/yr and the rate is approximately linear for most locations, with a root mean square error (RMSE) of  

the linear trend of less than 1 cm for all four locations from 2017 to 2022. 

Figure 4 shows the subsidence rate change at the four locations over six years. No clear long-term trend 

is observed. Location (1) has the largest rate variation,  from 5.7 in 2018 to 22.4 cm/year in 2020. 

Location (3) has the minimum rate variation, 7.1 in 2017 to 11.7 cm/year in 2021. We do not observe 

correlation  between subsidence rates  at  the various  locations.  For example,  location (1) shows the 

fastest subsidence, with high rates in 2017, 2020 and 2022 but much smaller rates in 2018, 2019 and 

2021. Location (2)’s fastest subsidence occurs in 2019 while the fastest rates for point-3 and 4 occurred 

in 2019 and 2021. 



5.3. Active Layer Thickness Estimation and Validation

Figure 5 shows the seasonal vertical displacement amplitude and its RMSE calculated from equation 

(4) and estimated ALT from 2017 to 2022  in our test area  (red box in Figure-1a).  The shallowest 

overall 1) using procedures described in Section 4.3. Minimum ALT in this area occuredoccurred in 

2018  and  2021.  The  deepestMaximum ALT  occurred  in  2019  and  2020.  The  variation  in  these 

estimates may in part reflect uncertainty in thaw season length. Thaw season usually starts around May 

20 and ends around September 20, but the accumulated degree days differ each year. Sagwon station 

data for this time period shows that  the maximum and minimum ADDT occurred in 2019 and 2018, 

respectively (Table-3). The overall pattern of ALT remained the same in 2017, 2018, 2021 and 2022, 

but differed in 2019 and 2020. Maximum ALT occurred west and west-south of site U8. This was also 

true in 2019 and 2020 but spatial variation was higher than other years. 
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ALT in some areas showed a deeper-than-usual pattern in 2019 and 2020, but recovered in 2021 and 

2022. For example, an area a few kilometers south-east of U8 showed high variability in 2019 and 

2020, but  shallow ALT before (2017 and 2018) and after  (2021 and 2022).  Deeper  ALT in 2019 



correlates with ADDT. However, deeper ALT in 2020 and shallower ALT in other years does not 

clearly correlate with ADDT — 2020 was the second coolest thaw season in our study period with 

ADDT = ~876 °C days (Table-3).

Table–3: Thaw onset, end and ADDT for 2017 to 2022 based on Sagwon station (Figure 1). 

Year Thaw onset [m / d] Thaw end [m / d] ADDT [°C day]

2017 5 / 24 9 / 19 980.8

2018 6 / 12 9 / 21 713.5

2019 5 / 20 9 / 14 1040.2

2020 5 / 21 9 / 19 875.7

2021 5 / 21 9 / 17 943.5

2022 5 / 19 9 / 21 970.8

[Figure 5]

Figure 5. Estimated seasonal amplitude, its RMSE and ALT for study area (red box Figure- 1a) from 

2017 to 2022. Black triangle shows location of CALM site U8. White areas represent low coherence 

which are masked out in the model calculations. The Sag river runs south to north in the center of each 

panel (See Figure- S1).

5.3. ALT Evaluation



We  can  compare  our  results  with  in-situ  data.  CALM  site  U8  is  a  one  hectare  area  with  121 

samplesamples in a square arraysarray. Each array has a ~10sample area is 10x10 m length. Its ALT 

has been observed at the end of the thaw season since 1996. Thaw depth is measured by pushing a 

metal rod into the soil to refusal, assumed to represent the top of the permanently frozen layer.  The 

ALT is not reported whenif the arrayprobe intersects large pondsponded water or rocks. The mean of 

all 121 ALT measurements and therethe corresponding RMSE are reported. Our approach for reporting 

the  InSAR-derived ALT is similar.  We averaged ALTThe pixel to closest to U8 and adjacent pixels 

with within 50 m in the center of closest pixel to U8, a radius of 100 m, and calculatedeast-west and 

north-south directions are defined. We report the corresponding RMSEmean of these pixels and their 

RMSE for comparison with in-situ data. 

Figure 6 shows ALT data around the U8 CALM site for different years. Our estimated ALT agrees 

within uncertainty with  the  in-situ data  infor all five of the years, 2017, 2018, 2019, 2021 and 2022 

(Table-1). when data is available. In-situ ALT is not reported for 2020. 

Chen  et  al.  (2022)  estimated  ALT  and  volumetric  water  content  for  large  areas  in  Alaska 

coveringincluding the  U8 CALM site  using  L-band UAVSAR and AirMOSS P-band polarimetric 

SAR, respectively.  Their result is in  reasonablegood agreement with the in-situ data and this study 

considering joint uncertainties. Data processing details are provided in Michaelides et al. (2022) and 

Chen et al. (2023). Table-1 shows a summary of the ALT comparison. 

Table1. Estimates of ALT at CALM site U8. ‘ND’ means no data available.

Year This Study CALM (U8) Chen et al. (2022)

2017 60.9 ± 33.5 68.9 ± 11.7 49 ± 17
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2018 70.7 ± 41.5 61.7 ± 11.7 ND

2019 73.7 ± 31.7 70.3 ± 12.1 ND

2020 98.5 ± 8.5 ND ND

2021 76.7 ± 18.9 60.8 ± 9.7 ND

2022 58.7 ± 22.4 65 ± 12.1 ND

Our results and in-situ data suggest that ALT exhibits high spatial variability, perhaps reflecting local  

variability  in  topography  or  soil  moisture.  Since  soil  moisture  reflects  in  part  local  topographic 

variation,  measuring  ground  elevation  to  high  precision  may  be  important  to  understanding  this 

variability. 

 

[Figure 6]

Figure 6.  ALT comparison at  CALM site  U8.  Blue  triangles  represent  average  in-situ  ALT from 

manual  mechanical  probing  across  all  grid  cell  from  1996  to  2022 

(https://www2.gwu.edu/~calm/data/north.htm). Green circle is estimated ALT for the closest pixel to 

U8, using airborne L- and P-band SAR images (Chen et al., 2022). Red squares (this study) are average 

estimated ALT for pixels with 10050 m distance toof U8. In-situ ALT is not reported for 2020.

https://www2.gwu.edu/~calm/data/north.htm


To assess the agreement between in-situ data and estimated ALT, we follow Liu et al. (2012) and use 

equation 11 to evaluate whether a given year’s InSAR-based estimate of ALT is consistent with the in-

situ observation given its data uncertainty:

                                                                                                                (11)

where the numerator is the residual between in-situ and InSAR-based ALT, and the denominator is the 

reported in-situ data uncertainty.  values lower than 1 indicate good agreement. Except for the 2017 

estimate,  with   =  2,  all  other  years  have   less  than  1.  Estimated  ALT in 2022 show the best 

agreement with  = 0.3. Figure S4 gives more details. 

Our  results  and the  in-situ  data  suggest  that  ALT exhibits  high  spatial  variability.  It  is  generally 

assumed that ALT depends on parameters such as ADDT, precipitation, and local topography, the latter 

reflecting  its  influence  on soil  moisture  and aspect.  Our results  show a  moderate  correlation  with 

ADDT but no correlation with precipitation, although the latter could reflect limited spatial resolution 

of the available data. 

The influence of local topography on ALT can be tested by examining available high resolution in-situ 

data. Data from the U8 CALM site provides an excellent opportunity to investigate both spatial and 

temporal variability of ALT. Over this small area we expect that local topography will show minimal 

year to year variation. Figure 7 shows ALT variation over an 11x11 square array of sample points, with 

each point sampling an area of 10x10 m. Data are available for the period between 1996 and 2022 with 

a gap in 2020. Location is described in local coordinates. We also show the RMSE of each grid point  

from its average over this time period, and a time series of ALT for three representative points in the 

array.
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Even over this small area we see no significant spatial or temporal pattern in ALT over the quarter-

century period of available data. At least for this example, the influence of local topography appears to 

be minimal,  although we cannot preclude microtopographic (less than 10 m) effects that vary over 

time. 

The Mann-Kendall  test  was employed to  evaluate  this  in a rigorous way. The test  determines if  a 

significant monotonic trend is present for either increasing or decreasing ALT at each grid point. Data 

spanning from 1996 to 2019 were analyzed due to the absence of data in 2020. To maintain consistency 

and  account  for  possibly  significant  temporal  variation  in  ALT,  data  from  2021  and  2022  were 

excluded. The null hypothesis was rejected for 31.4% of the cells; the remaining 68.6% of cells do not 

show  a  statistically  significant  trend.  In  other  words,  only  38  out  of  121  cells  had  a  significant 

increasing or decreasing ALT trend. Among these 38 cells, 35 cells showed an increase in active layer 

thickness over the sample time period. The maximum RMSE of the cells is ~20 cm. Variation of the 

same grid cell in two consecutive years reaches as high as ~60 cm. Since air temperature (related to 

ADDT) and precipitation are unlikely to vary significantly over this 100x100 m area, and since overall 

morphology is  unlikely  to  vary  significantly  over  this  time period,  other  factors  must  explain  the 

variation  in  ALT.  Micro-topographic  effects,  temporal  changes  in  sub-surface  moisture  flow,  soil 

organic content and vegetation growth and decay are possible factors. Nelson et al. (1998), Nelson et 

al. (1999), Hinkel and Nelson (2003) conclude that in-situ ALT shows Markovian behavior with high 

spatial and temporal variation.

[Figure 7]

Figure 7. ALT variation of CALM site U8, RMSE of each cell relating to its annual average from 1996 

to 2022, ALT trend and ALT time-series for three selected cell (10x10 m) shown by white star.



5.4. Relation of meteorological parameters and ALTto Active Layer Thickness

We investigated correlations between in-situ ALT and several meteorological parameters,  including 

ADDT and precipitation in thaw seasons from 2002 to 2022.  ADDT and precipitation data are from 

the Sagwon meteorological station. Figure  7a8a shows the relation between ADDT and ALT. From 

Stefan’s equation, we expect a positive correlation between ADDT and ALT.  However, the correlation 

is  statistically  weak (R-squared = 0.42; Figure  7b8b) suggesting the influence of additional factors. 

Precipitation may influence ALT, e.g., by advecting heat downward to promote permafrost thaw, but 

there are additional factors to consider. For example, an increase in soil moisture leads to a rise in the 

thermal conductivity of soil, potentially increasing the depth  of  the active layer during thaw season. 

However, an increase in soil moisture also increases the total amount of heat required for thawing, 

promoting a shallower active layer. Clayton et al. (2021) showed that ALT has a positive correlation 

with volumetric water content (VWC) in the upper 12 cm of soil,  a negative correlation with bulk 

VWC, and no statistically significant correlation with VWC in the upper 20 cm of soil. We also do not 

see a statistically significant correlation between ALT and precipitation, presumably perhaps reflecting 

these opposing impacts (Figure 7c).

8c). We also used simple regression analyses to relate ALT to several multi-parameter factors including 

ADDT,  precipitation  and  accumulated  degree  days  of  freezing  (ADDF)  from  the  previous  year. 

However, these did not improve the correlation. Perhaps other factors such as local elevation gradients 

(influencing local hydrology), vegetation type, or the previous year’s snowfall need to be considered. It 

is also possible that some of the variability in our ALT estimates reflects instead variations in total ice 

content (Zwieback et al., 2024).



[Figure 78]

Figure 8. (a): Relation between ADDT and ALT from 2002 to 2022 in CALM site U8 and Sagwon 

station. Red circles show ADDT. Blue triangles show in-situ ALT. (b) scatter plot of ALT vs ADDT.  

(c) scatter plot of ALT vs precipitation. R-squared of relation is shown in top-left of panels. ADDT and 

precipitation are calculated from first of  June  1 to  first of  September 1 of each year to be consistent 

with ALT measurements.

5.5 Applicability to other regions

Alaska’s North Slope is an optimum region for InSAR-based approaches to permafrost monitoring 

because of limited tree cover. We also tested our technique in a region with more extensive tree cover, 

the Beta site  of  the APEX (Alaska Peatland EXperiment)  project,  located  approximately  30 miles 

southwest  of  Fairbanks  (64.696  N,  148.322  W).  This  site  is  located  in  Alaska’s  discontinuous 

permafrost zone and has abundant black spruce, up to 5 m in height. The technique was not successful,  

as phase coherence was not maintained in successive SAR images, perhaps reflecting the relatively 

short wavelength (C-band) of the Sentinel-1 SAR instrument (see next section). Average spatial and 

temporal coherence maps for these two sites are compared in Figure S1.

5.6 Limitations and Future Research

Four aspects of our model mayapproach limit its utility: and are an obvious focus for future research.

1.  Decorrelation  of  InSAR  phase  is  the  main  limitation  of  thisour technique.  Accurate  InSAR 

measurements require a high degree of coherence, a measure of the correlation in radar phase between 
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the two SAR images. Decorrelation occurs due to temporal changes in surface scattering properties, 

changes in viewing angles, and noise in the SAR data (e.g., Schaefer et al., 2015).  C-band InSAR has 

demonstrated its ability to monitor deformation over continuous permafrost region at higher latitudes 

(see Previous Work, and this study). Wang et al.  (2020) compared the efficiency of Sentinel-1 for 

monitoring permafrost deformation in discontinuous permafrost regions. They concluded that Sentinel- 

1 InSAR time-series performs effectively over discontinuous permafrost landscapes mainly beyond the 

tree line, such as tundra, tundra wetlands, and less developed shrub-tundra areas, during thaw season.. 

However,  the  outcomes  and  precision  are  less  favorable  in  shrub-tundra  and  forest-tundra 

environments.  We  comparedOur  results  are  essentially  the  same: temporal  and  spatial  coherence 

betweenin our main study area and a, north of the tree line near CALM site U8 (almost entirely free of 

trees,  (https://www2.gwu.edu/~calm/data/webforms/u8_f.html)  are  significantly  better  than  those 

obtained in the discontinuous permafrost region near Fairbanks, Alaska, and obtained similar results. 

Decorrelation (section 5.5). Significant decorrelation also occurred around CALM site U18 (~15 km 

southwest of Fairbanks, Alaska) during the 2023 thaw season. ). Land cover here is open black spruce 

forest  (https://www2.gwu.edu/~calm/data/webforms/u18_f.htm).   In  contrast,  temporal  and  spatial 

coherence remained high at CALM site U8 site, located in the continuous permafrost region to the 

north.  Land cover here is classified as graminoid-moss tundra and graminoid, postrate-dwarf-shrub 

and moss tundra (https://www2.gwu.edu/~calm/data/webforms/u8_f.html  .    Longer wavelengths such as 

L-band may be more useful in densely vegetated terrains. The launch of the NiSARNISAR mission , 

scheduled for launch in 2024, with its L-band wavelength and repeat frequency of 6- 12 days, should 

prove useful for more densely vegetated discontinuous permafrost regions.

2. The spatial and temporal resolution of models that allow estimation of key ancillary parameters may 

limit accuracy in some regions,  especiallyfor example soil parameters from the GLDAS model, and 

https://www2.gwu.edu/~calm/data/webforms/u8_f.html


atmospheric parameters from ERA-5. The spatial resolution of GLDAS’ soil parameter model is 0.25 

degrees,  an  area  that  spans  our  study  entire  study  area  in  the  Alaska  north  slope.  The  temporal 

resolution of ERA-5 is adequate, but its spatial resolution precludeslimits local analysis.

3. The model does not estimate long-term subsidence due to thawing of segregated ice, instead 

estimating ALT only by considering volume change from pore ice to water in the active layer. 

Development of a long-term (multi-year) ALT-subsidence model is desirable.

4.  Accurate and, dense  and  widespread  porosity-depth  profiles  based  on  in-situ  data  would  also 

improve ALT estimation. from remotely sensed data. In particular, empirical and statistical models of 

soil properties calibrated with in situ data could significantly improve radar-based ALT models (e.g., 

O’Connor et al., 2020; Bakian Dogaheh et al., 2020, 2022, 2023).

4.  Variations  in  soil  ice  content  and  non-linear  thaw  season  subsidence  time  series  need  to  be 

considered (Zwieback et al., 2024).

6. Conclusions

We  used  Sentinel-1  interferometric  SAR  data  in  the  from  2017  to  2022  around  CALM  site  of 

northernU8 in Northern Alaska  forto measure thaw season  2017 to 2022 tosubsidence and estimate 

active layer thickness (with a widely used physical model that exploits the volume difference between 

ice  and  water.  Limited  ICESat-2  LiDAR  data  are  consistent  with  InSAR  estimates  of  seasonal 

subsidence. We do not attempt to estimate long term (multi-year) elevation change. Instead we estimate 

ALT) using interferometric analysis. at the end of each thaw season and compare its yearly evolution, 

avoiding issues of decorrelation of the radar signal over the winter season. 

ALT estimates  in our study area  range from ~20 cm to  largermore than 150 cm in our study area, 

similar to in-situ measurements at the CALM site and previous remotely sensed estimates. Agreement 

with the later part of the quarter century-long CALM time series is notable and suggests that annual 
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ALT estimates from satellite InSAR can be effective at monitoring longer-term permafrost health, at 

least for Alaska’s continuous permafrost zone north of the tree line. However, the technique was not 

effective  in  the  discontinuous  permafrost  region  of  central  Alaska  near  Fairbanks,  reflecting 

decorrelation of the C-band radar signal, probably from heavy tree cover. At the northern study site, 

ALT shows high spatial and temporal variability in both the satellite and in- situ data sets, sometimes 

changing dramatically between adjoiningadjacent 10 m cells. Subsidence rate also varies significantly 

between  closeclosely spaced points, ranging from ~3-20 cm/yr during the thaw season at our study 

locations. Applying atmospheric corrections to C-band radar images improves signal to noise ratio. 

Limited ICESat-2 LiDAR data is consistent with the InSAR estimates of seasonal subsidence.  Our 

results suggest that InSAR could be used to assess long-term continuous permafrost changes in the 

region2-18 mm/month at our northern study site during thaw season. The reasons for such high spatial 

and temporal variability of ALT are not clear and warrant further research.
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