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Abstract. Accurate snow cover modeling is a high stake for mountain regions. Alpine snow evolution and spatial variability

result from a multitude of complex processes including interactions between wind and snow. The SnowPappus blowing snow

model was designed to add blowing snow modeling capabilities to the SURFEX/Crocus simulation system for applications

across large spatial and temporal extents. This paper presents the very first spatialized evaluation of this simulation system

over a 902 km2 domain in the French Alps. Here we compare snow cover simulations to the spatial distribution of snow height5

obtained from Pleiades
:::::::
Pléiades

:
satellites stereo-imagery and to Snow Melt-Out Dates

::::
snow

::::::::
melt-out

::::
dates

:
from Sentinel-2

:::
and

:::::::
Landsat

:
8 time series over three snow seasons. We analyzed the sensitivity of the simulations to three different precipitation

datasets and two horizontal resolutions. The evaluations are presented as a function of elevation and landform types. The results

show that the SnowPappus model forced with high-resolution wind fields enhances the snow cover spatial variability at high

elevations allowing a better agreement with observations
:::::::
between

::::::::
observed

:::
and

::::::::
simulated

::::::
spatial

:::::::::::
distributions above 2500 m10

and near peaks and ridges. Model improvements are not obvious at low to medium altitudes where precipitation errors are

the prevailing uncertainty. Our study illustrates the necessity to consider error contributions from blowing snow, precipitation

forcings, and unresolved subgrid variability for robust evaluations of spatialized snow simulations. Despite the significant effect

of the unresolved spatial scales of snow transport, 250 m horizontal resolution snow simulations using SnowPappus are found

to be a promising avenue for large-scale modeling of alpine snowpacks.15

1 Introduction

Snow cover in mountainous terrains is characterized by an important variability at multiple temporal and spatial scales

(Pomeroy and Gray, 1995; Clark et al., 2011; Anderson et al., 2014; Mott et al., 2018). This variability results from a large

diversity of slopes, aspects, and elevations which induce a high variability of precipitation, wind, temperature, and radiation.

Accurate snowpack modeling is key to describing this high variability in hydrological applications, climate projections, and20

hazard forecasting in mountainous terrains (IPCC, 2022; Morin et al., 2020).
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The spatial variability of precipitation amount and phase at different scales is known to be one of the main sources of

snowpack variability at the mountain range scale (1-100 km) (Clark et al., 2011). These patterns are speci�c to the regional

topography and atmospheric �ow, with regions of increased or decreased precipitation (Colle et al., 2013). At the slope scale

(a few hundred meters), preferential deposition and snowfall enhancement are the main processes responsible for snowfall25

variability (before snow�ake settlement) (Mott et al., 2018). The preferential deposition is the result of the interaction of

the near-surface �ow �eld with particle trajectories, creating areas of local accumulation (Lehning et al., 2008). Snowfall

enhancement is a process in which surface �ows are responsible for locally increased air moisture, leading to the formation

or maintenance of low-level clouds, ultimately enhancing solid precipitations through a seeder-feeder mechanism (Bergeron,

1965; Choularton and Perry, 1986; Minder et al., 2011). Post-depositional processes �nally, determine the snow variability at30

the slope scale and below. Blowing snow transport, snow sublimation, snow redistribution by avalanches, snow compaction,

and melt are the main processes at work (Winstral et al., 2002; Bernhardt and Schulz, 2010; Mott et al., 2018). Blowing snow

transport produces a mass transfer of snow from windward areas to leeward deposition zones. Additional mass loss occurs in

those events due to the sublimation of suspended snow Liston and Sturm (1998); Yang et al. (2010). The heterogeneity of snow

mass loss due to snow melt (Brauchli et al., 2017) and surface sublimation (Pomeroy et al., 1998; Strasser et al., 2008) also35

contribute to snowpack variability in alpine terrain.

The multi-scale variability of the alpine snowpack makes it challenging to represent in numerical models. Various ap-

proaches have been developed for that purpose. Numerical Weather Prediction (NWP) models at the kilometer scale or higher

resolution models can explicitly represent the orographic precipitation patterns, and in some cases local low-level cloud for-

mation, triggering snowfall enhancement (Lehning et al., 2006; Vionnet et al., 2017; Wang and Huang, 2017; Monteiro et al.,40

2022). However, the quanti�cation of the precipitation is still impacted by important uncertainties
::::
with

:::::
errors

::
in

:::::::::::
precipitation

:::::::
amounts

:::
and

::::::
phases,

:::::::::::
localization,

:::
and

::::::
timing

::::::::
increased

::::
with

:::::
coarse

::::
grid

:::
size

:
(Clark et al., 2011; Ménard et al., 2019; Lundquist

et al., 2019). Downscaling tools can be used to better represent the local meteorology from NWP models (Sen Gupta and Tar-

boton, 2016; Marsh et al., 2023; Bernhardt et al., 2010; Mital et al., 2022).Eventually,therepresentationof post-depositional

processes,notably45

:::
Due

:::
to

:::
the

::::::::
complex

::::::::::
intertwining

:::
of

:::::
snow

::::::::
variability

:::::::::
processes,

:::
in

::::::::
particular

:
blowing snow transport,bene�ts from

:::
the

:::::::::
community

:::::
found

:::::::
bene�ts

::
in the development of dedicated high-resolution models coupled to

::::::::::::::::::::::::::::::::::::::
(e.g. Vionnet et al., 2014; Sharma et al., 2021)

or forced by atmospheric models(e.g., Lehning et al., 2006; Liston et al., 2007; Marsh et al., 2020; Sharma et al., 2021; Baron et al., 2024; Quéno et al., 2023)

.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Lehning et al., 2006; Liston et al., 2007; Marsh et al., 2020; Baron et al., 2024; Quéno et al., 2023)

:
. The spatial evalu-50

ation of thislasttype of system,
::::::::
dedicated

:::
to

::::::::
modeling

:::
part

::
of

:::
the

::::::::
observed

::::
snow

::::::
spatial

:::::::::
variability is a challenge in itself. The

snow modeling community has long been evaluating this kind of model locally. Evaluations can be carried out using direct

measurements of the variable of interest, for example for blowing snow modeling, Vionnet et al. (2014) evaluated directly the

simulated blowing snow �uxes of the Meso-NH/Crocus system against locally measured �uxes from a Snow Particle Counters

(Sato et al., 1993). Amory et al. (2021) also compares simulated snow transport occurrence and mass �uxes to on-�eld ob-55

servations in Antarctica. Similarly, Baron et al. (2024) compares the simulated snow transport occurrence and transport mass
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�uxes from the SnowPappus model to �eld observations. One of the main drawbacks of this method is the low number of

direct snow transport observations found in literature, combined with the very high spatial variability of snow transport �uxes.

As a result, spatialized snow simulations are more classically evaluated using measurements of snow height and Snow Water

Equivalent (SWE). Prasad et al. (2001) and Liston et al. (2007) compare snow simulations done using the SnowTran-3D sys-60

tem (Liston and Sturm, 1998; Liston et al., 2007) with SWE measurements from manual snow surveys. Marsh et al. (2020)

compare simulated SWE from the Canadian Hydrological Model (CHM) to point observations. Mott et al. (2008) evaluate the

Alpine3D system (Lehning et al., 2006) comparing simulation with an interpolated map of snow height measurements. The use

of interpolation methods in Mott et al. (2008) is justi�ed by the high measurement density of the study area. However, in the

majority of other study areas, in situ measurements areway too sparse to characterize the complex spatial variability of alpine65

snow cover (Pepin et al., 2015; Bales et al., 2006; Vernay et al., 2022; Pomeroy et al., 2009). This situation explains the recent

use of snow remote sensing (unmanned aerial vehicle, satellite) as a means of spatial evaluation for large-scale snow cover

models. Those methods are still limited by the low availability of remotely sensed variables, mainly snow cover fraction and

derived variables or snow height. For example, Vionnet et al. (2021) compare CHM snow simulations (Marsh et al., 2020) with

airborne Lidar snow height maps as well as Sentinel 2 snow cover maps. Very recently, (Quéno et al., 2023) used Lidar aquired70

snow height maps to evaluate the ability of the FSM2oshd framework (Quéno et al., 2023) of representing snow accumulation

and erosion areas.

In the above-cited studies using the snow height, SWE, or snow presence related variables, the evaluation experiments are

generally carried out using a single set of meteorological inputs. However, it is known that meteorological inputs explain an

important part of the variability (Clark et al., 2011; Colle et al., 2013; Mott et al., 2018) and uncertainty Raleigh et al. (2015);75

Günther et al. (2019) in simulated snowdepth
:::::
height and SWE. While the evaluations of model inputs and simulated processes

are usually conducted separately, they are often interdependent. Thus, it is dif�cult to determine if potential errors come from

the model or the input variable. For instance, a good simulation of snow height requires both accurate precipitation input

and a robust snow evolution model.In order to
:::
To

:::::::
robustly assess the value of a distributed snow modelin the presenceof

uncertaintyin themeteorologicalforcing , this uncertaintyhasto beaccountedfor to raiserobustconclusions,
:::
the

::::::::::
uncertainty80

::
in

::::::::::::
meteorological

::::::
forcing

:::::
must

::
be

:::::::::
considered.

To improve the snow spatial variability of the French snow modeling system, Baron et al. (2024) have developed a novel

explicit blowing snow transport model, SnowPappus, coupled with the Crocus physical snow simulation model (Vionnet et al.,

2012). This model explicitly represents the vertically integrated saltation and suspension mass �uxes, as a function of wind

speed and surface snowpack properties simulated by Crocus. This system is implemented on a regular grid to simulate snow-85

pack evolution at a mountain range scale (approx. 100000 km2), for multiple snow seasons. Baron et al. (2024) focused on the

evaluation of the model at point scale, demonstrating its ability to accurately simulate blowing-snow �uxes and occurrence at

observation stations. However, spatial evaluations of simulations on large distributed domains are currently missing.

The goal of this paper is to present a spatial evaluation of the SnowPappus blowing snow simulation framework (Baron

et al., 2024), considering the uncertainty of precipitation estimates through different data sources that exhibit contrasted spatial90

patterns. The evaluation is based onPleiadessnowdepth
::::::
Pléiades

:::::
snow

::::::
height

:
maps (Deschamps-Berger et al., 2020) and
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Sentinel-2
:::::::
/Landsat

::
8 snow melt-out dates (Gascoin et al., 2019) and covers three consecutive snow seasons. We discuss the

relative in�uence of precipitation sources, and blowing snow implementation on the simulated snow cover variability and

how their interactions can affect the evaluation of a distributed snow model. By using two contrasted horizontal resolution

simulations, we also analyze how the unresolved spatial scales of blowing snow can affect simulation results at a 250 m spatial95

scale. Finally, we emphasize the main challenges to be solved for more advanced evaluations of spatialized snow simulations.

2 Data and Methods

2.1 Study area

The simulation study site is located east of Grenoble in the French Alps (Fig. 1). It covers 902 km2 including the Grandes-

Rousses and Arves massifs. This area exhibits a complex topography, with elevations ranging from 700 up to 3900 meters100

a.s.l., a wide range of snow and temperature conditions, and different types of landscape features such as valleys, forests,

alpine pastures, lakes, and glaciers. In this area, the local knowledge of precipitation �ow patterns tells us that most winter

storms come from North-Western �ows usually giving increased precipitation on western slopes. The study area includes the

Col du Lac Blanc observatory (Guyomarc'h et al., 2019) where Baron et al. (2024) evaluated the blowing snow �uxes and

occurrence simulated by SnowPappus. It counts 41 distinct ice patches or glaciers of various sizes as de�ned in the RGI105

Consortium (2017), forested areas, and three hydroelectric dams which underline the hydrological importance of the area.

As our simulation system is only able to represent snow in open areas, the forests, glaciers, lakes, and rivers in the study

zone are masked in our simulations and observation datasets. For the forest mask, the BD FORET® V2 dataset has been used

(IGN©, 2021a) with a masking threshold of 25% of forested sub-pixel area. Waterways are masked following data from BD

TOPO® (IGN©, 2021b). In the valley, the urban areas around the city of Bourg d'Oisans, Allemont, and Saint Michel de110

Maurienne are also discarded from the analysis.

2.2 Grid generation and spatial resolution

The simulations are based on two grid resolutions, 30 m and 250 m. Both simulation grids are built using as reference the

French 5 m RGE ALTI® digital elevation model (DEM) from IGN© (2021c). The 5 m high-resolution DEM is resampled us-

ing the average method to 30 m and 250 m horizontal resolutions using GDAL/OGR contributors (2023). At 250 m resolution,115

the 902 km2 full simulation area is composed of 14 443 grid points. At 30 m horizontal resolution, the test zone is composed

of 1 005 699 simulation points.

A geomorphons classi�cation (or landform) is performed on the 250 m resolution DEM, for a more detailed analysis of

simulation domain features. Geomorphons introduced by Jasiewicz and Stepinski (2013) are de�ned as the fundamental struc-120

tural elements of a landscape. Here, we used the Whitebox Geospatial (2023) classi�cation tool, an open-source software from

Lindsay (2014). The algorithm is based on a line-of-sight analysis with similarities to the more classical topographic posi-
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Figure 1. Map of the simulation domain (red) and evaluation areas (Pleiades
::::::
Pléiades green and blue,Sentinel2

::::
snow

::::
melt

:::
out

:::
date

::
in red).

Points of interest are shown as well as forest, glacier, and lake masks. The classi�cation of 250 m pixels is visible with a 300 m step elevation

in shades of blue. The summer aerial photography base map is from IGN© (2022).

tion index (TPI). This method identi�es a set of topographic patterns corresponding to speci�c terrain attributes and landform

types. The advantage of this type of classi�cation is that it allows topographic information to be conveyed mimicking the

result of a classi�cation process carried out by a human analyst. Another advantage of the geomorphons classi�cation is that it125

adapts to the surrounding terrain and can lead to the identi�cation of landform elements regardless of their scale. Jasiewicz and

Stepinski (2013) identify the 10 most common landform elements used for geomorphons classi�cation (peak (summit), ridge,

shoulder, spur (convex), slope, hollow (concave), footslope, valley, pit (depression) and �at, illustration can be found in Fig. 3

of Jasiewicz and Stepinski (2013)). This allows us to generate a simple, intuitive, and scale-independent landform map of our

simulation domain (Jasiewicz and Stepinski, 2013). Figure 2 illustrates the geomorphons classi�cation result (called landform130

classi�cation in the following) of each 250 m grid cell of our simulation domain in terms of the 10 most common landform
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