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Abstract. Hail remains a major threat to agriculture in Switzerlandand beyond and ,
::::
and assessments of current and future

hail risk are of paramount importance for decision-making in the insurance industry and the agricultural sector. However,

relating observational information on hail with crop-specific damages is challenging. Here, we build and systematically assess

a
::
an

:::::::::::
open-source model to predict hail damage footprints for field crops (wheat, maize, barley, rapeseed) and grapevine from

the operational radar product Maximum Expected Severe Hail Size (MESHS
:
,
::::
used

:::
as

:::::
proxy

:::
for

::::
hail

:::::::
intensity) at different5

spatial resolutions. To this end, we combine the radar information with detailed geospatial information on agricultural land

use and geo-referenced damage data from a crop insurer for 12 recent hail events in Switzerland. We find that for field crops

, model skill gradually increases when the spatial resolution is reduced from 1 km km down to 8 kmkm. For even lower

resolutions, the skill is diminished again. On the contrary, for grapevine, a lower model resolution tends to reduce skill, which

is attributed to the different spatial distribution of field crops and grapevine in the landscape. It is shown that identifying a10

suitable MESHS thresholds to model damage footprints always involves trade-offs. For the lowest possible MESHS threshold

(20 mmmm) the model predicts damage about two times too often
:::::
twice

::
as

::::
often

::
as

::::::::
observed (high frequency bias and number

of false alarms
::::
false

:::::
alarm

::::
ratio) but also has a high probability of detection (80%). The frequency bias decreases for larger

thresholds and reaches an optimal value close to 1 for MESHS thresholds of 30-40 mmmm. However, this comes at the cost of

a substantially lower probability of detection (around 50%) while overall model skill
:
,
::
as

::::::::
measured

:::
by

:::
the

::::::
Heidke

:::::
Skill

:::::
Score15

::::::
(HSS),

:
remains largely unchanged

:::::::::
(0.41-0.44). We argue that, ultimately, the best threshold selection therefore depends on

the user need and the
::::::
relative

:
costs of a false alarm or

:::::
versus

:
a missed event. Finally, the frequency of false alarms can be

substantially reduced
:
is

:::::::::::
substantially

:::::::
reduced

:::
and

::::
skill

::
is
::::::::
improved

:::::::::::
(HSS=0.54) when only areas with high cropland density

are considered. Results from this simple, open-source model show that modelling of hail damage footprints to crops from

single-polarization radar in Switzerland is skillful
:::::
skilful and is best done at 8 km km resolution for field crops and 1 km km20

for grapevine. They further allow different users of such models to identify the suitable threshold for their application, taking

into account associated trade-offs.
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1 Introduction

Hail storms frequently cause severe damage to agriculture and infrastructure in various places across the globe (Allen et al., 2020; SwissRe, 2022)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bell et al., 2020; Allen et al., 2020; Gobbo et al., 2021; Rana et al., 2022). In fact, severe convective storms (which include25

hailstorms) are among the costliest perils worldwide (SwissRe, 2021). Larger-scale catastrophes like tropical cyclones or

earthquakes cause substantially more damage per event, but severe convective (hail-)storms occur comparatively more often.

Switzerland is a particularly hail prone country with an
::::::::
hail-prone

:::::::
country

::::
with

:
a
:::::::::
nationwide

:
average of 32 hail days during the

convective season (April to September) and locally up to three and
::
or more hail days in hot spot regions (Schroeer et al., 2022).

The number of hail days varies strongly from year to year. Summer 2021 was an example for
::
of

:
a record hail seasoncausing30

extreme damages ,
:::::::

causing
:::::::
extreme

:::::::
damage

:
in a series of intense and widespread thunderstorms (Kopp et al., 2022). The

main crop insurer in Switzerland, Schweizer Hagel (SH), reported around 14’,000 damage claims and insured losses of around

CHF 110 Million (approx. USD 117 million, Schweizer Hagel, 2021) for this year. Hail remains currently the costliest natural

hazard for insured agricultural production in Switzerland and the events of summer 2021 demonstrated the need for reliable

assessments of hail risk for key stakeholders such as, among others,
:::::::
including

:
insurers, governments, and farmers.35

Here, we present a model to predict hail damage footprints to field crops and grapevine in Switzerland based on operational

radar data and detailed information on agricultural land use. The model is verified with geo-referenced damage claims from

SH. To make it accessible to stakeholders, the model is implemented in the open-source natural catastrophe modelling platform

CLIMADA (Aznar-Siguan and Bresch, 2019). Compared to other weather-related hazards, reliable data on hail remains scarce

due to the small scale of thunderstorms and accompanying hail streaks as well as the high costs to maintain observational40

networks at a large scale. Therefore, radar data is frequently used to obtain an estimate of hail on the ground because it is

continuous in space and time (Kunz and Kugel, 2015; Puskeiler et al., 2016). Recently, the Swiss Federal Office of Meteo-

rology and Climatology (MeteoSwiss) has compiled a comprehensive assessment of hail frequency and hail stone sizes for

Switzerland based on 20 years of single-polarization radar data at a 1 km km spatial resolution providing an important basis for

hail risk assessments (Schroeer et al., 2022; Trefalt et al., 2022). The climatology is based on two hail products that are com-45

puted operationally: The Maximum Expected Severe Hail Size (MESHS)
:
,
:::::
which

::
is

:::::::
different

:::::
from

:::
the

::::::
widely

::::
used

:::::::::
maximum

:::::::
expected

::::
size

::
of

:::
hail

:::::::
(MESH,

::::::::::::::
Witt et al., 1998)

:
and the Probability of Hail (POH; Betschart and Hering, 2012). Both are based

on a height difference between the melting level and the height of a certain
::::
given

:
reflectivity level, a criterion introduced by

Waldvogel et al. (1979).
:::::::
MESHS

:::
and

:::::
POH

:::
are

::::::::
physically

::::::::::
meaningful

::
as

::::
they

:::::
relate

::
to
:::
the

:::::::
vertical

:::::
extent

:::
of

:::
the

:::::::::::
thunderstorm

::::::
updraft

:::::
above

:::
the

::::::
melting

:::::
level,

::::::::::
representing

:::
the

::::
hail

::::::
growth

::::
zone.

::
A
:::::
larger

:::::::
vertical

:::::
extent

::
is

::::::::
associated

::::
with

::
a

:::::
higher

:::::::::
likelihood50

::
of

:::
hail

::
as

::::
well

::
as

:::
an

:::::::
increase

::
in

:::
the

:::::::
potential

::::
size

::
of

:::::::::
hailstones.

Single-polarization radar products such as MESHS and POH provide valuable estimates of the occurrence of hail on the ground

as verified with, e.g.
:
, insurance claims (Holleman et al., 2000; Kunz and Kugel, 2015; Puskeiler et al., 2016; Nisi et al., 2016),

reports of observers and media (Cică et al., 2015) and crowd-sourced
:::::::::::
crowdsourced

:
hail reports (Barras et al., 2019). More

specifically, verification
::::::::::
Verification based on insurance claims generally showed a high probability

:::::
shows

::::
high

:::::::::::
probabilities of55

detection [POD, fraction of damage events that is predicted, often around 0.8 or larger] but also relatively high false alarm ratios
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[FAR, fraction of predictions without damage, up to 0.8] (Kunz and Kugel, 2015; Puskeiler et al., 2016; Nisi et al., 2016; Warren et al., 2020; Schmid et al., 2023)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kunz and Kugel, 2015; Puskeiler et al., 2016; Nisi et al., 2016; Warren et al., 2020; Schmid et al., 2024). However, these met-

rics usually strongly depend on the hail intensity threshold
:::
used

::
to
:::::::

identify
:::::::::
damaging

:::
hail, the objective selection of which is

not always possible. For example, one can choose the threshold with the highest skill score (e.g. Puskeiler et al., 2016) or60

one can require that frequency of damage prediction equals the frequency of damage occurrence (i.e. a frequency bias of 1,

Warren et al., 2020). Further, these verification studies usually rely on pragmatic choices of
:::::::
regarding

:
the scale of spatial

aggregation or the distance between damage claim and radar signal tolerated. Often, a
:::
One

:
reason for this was

:
is that insur-

ance claims were
::
are

:::::
often

:
only available at the community

::::::::::
municipality

:
level, which does not allow assessing the skill at

the km-scale. But a
:
is

::::::::
typically

:::::
much

::::::
coarser

::::
than

:::
the

:::::::::
resolution

::
of

:::
the

:::::
radar

:::::::::::
observations

:::
(∼

:
1
:::::

km).
::
A

:
strong dependence65

of the skill on the spatial scale can be expected, as lowering the spatial resolution (or increasing the tolerated distance )

yields a higher chance
::::::
between

:::::::
damage

:::::
claim

::::
and

::::
radar

::::::
signal)

::::::::
increases

:::
the

:::::::::
likelihood

:
of overlap between radar signal and

damages (Holleman et al., 2000; Schmid et al., 2023).
:::::
signals

::::
and

::::::::
damages

:::::::::::::::::::::::::::::::::::
(Holleman et al., 2000; Schmid et al., 2024)

:
.
::::
The

:::::::
physical

::::::
reasons

:::
for

:::
this

:::
are

:::
the

:::::::::
horizontal

::::
drift

::
of

:::
hail

:::
by

::::
wind

::::
(e.g.

:::::::::::::
Schiesser, 1990

:
)
:::
and

:::::::::
limitations

::
in
:::
the

::::::
spatial

::::::::
accuracy

::
of

:::::::::
radar-based

::::
hail

:::::::::::
observations,

:::::
which

:::
rely

:::
on

:::::::::::
storm-related

::::::
proxies

::
to

::::
infer

::::
hail

::::
sizes

::
on

:::
the

::::::
ground

::::::::::::::::::::::::
(Betschart and Hering, 2012)70

:
. Also, information on the presence and density of cropland

::::::
exposed

::::::
assets

::::
(e.g.,

:::::::::
buildings,

::::
cars,

::::::::
cropland) is essential for reli-

able skill metrics but has often not been incorporated in previous verification studies.

First
:::::
Early

:
efforts to relate crop damage of individual fields to radar information (Omoto and Seino, 1978; Seino, 1980;

Schiesser, 1990) or to hail pad measurements (Changnon, 1971; Morgan, 1976; Katz and Garcia, 1981) derived crop-specific

damage functions based on data pairs of damaged fields and observed measures of hail intensity. Schiesser (1990) presented75

damage functions that link harvest loss at the field scale for individual crop types at various phenological stages to hail ki-

netic energy derived from single-polarization radar. Directly applying such functions to radar measurements without without

additional verification and taking into account cropland density will remain difficult to interpret. Sánchez et al. (1996) devel-

oped a statistical model to estimate harvest loss for barley and wheat based on hail sizes observed by hailpads
:::
hail

::::
pads

:
and

meteorological observers in northwestern Spain. More recent efforts used satellite imagery to estimate crop damage after a hail80

event (Bentley et al., 2002; Singh et al., 2017; Prabhakar et al., 2019; Bell et al., 2020; Sosa et al., 2021)

Despite these past efforts to quantify hail damages to specific crops, openly available models of this kind do currently,
::::
there

:
is
::
(to our knowledge, not exist anywhere)

::
a
::::
lack

::
of

::::::
openly

:::::::
available

:::::::
models

:::
for

::::::::
assessing

::::
crop

:::
hail

::::::::
damages. Existing models

have been developed in the insurance industry and are proprietary (AIR Worldwide, 2023). Hence, to build openly available

(operational) radar-based hail damage models for individual crops , more systematic and
::::
Here,

:::
we

:::::::
present

::
an

:
open-source85

approaches are needed
:::::
model

::
to

::::::
predict

:::
hail

:::::::
damage

::::::::
footprints

::
to
::::
field

:::::
crops

::::
and

::::::::
grapevine

::
in

::::::::::
Switzerland

:::::
based

::
on

::::::::::
operational

::::
radar

::::
data

::::
and

::::::
detailed

:::::::::::
information

::
on

::::::::::
agricultural

::::
land

::::
use.

::::
The

:::::
model

::
is

:::::::
verified

::::
with

:::::::::::::
geo-referenced

::::::
damage

::::::
claims

:::::
from

:::
SH.

:::
To

::::
make

::
it

::::::::
accessible

::
to
:::::::::::
stakeholders,

:::
the

::::::
model

:
is
:::::::::::
implemented

::
in

:::
the

::::::::::
open-source

::::::
natural

::::::::::
catastrophe

::::::::
modelling

::::::::
platform

:::::::::
CLIMADA

:::::::::
(CLIMate

:::::::::::
ADAptation)

:::::::::::::::::::::::::::
(Aznar-Siguan and Bresch, 2019)

:
).

To extend the CLIMADA platform with a hail damage footprint detection module, in this study hail intensity measures from90

operational, single-polarization radar (MESHS and POH) are coupled to
::::::::
combined

::::
with detailed, crop-specific, geo-referenced

3



cropland information to build simple yes/no damage models for field crops (wheat, corn, barley, rapeseed) and grapevine at

different spatial resolutions. The models are systematically verified based on detailed, crop-specific damage information from

SH of twelve recent hail events in Switzerland.

More specifically, the following questions are addressed:95

1. Which
::::
What

:
spatial resolution is most suitable to model hail damage footprints for field crops and grapevine based on

operational, single-polarization radar data in Switzerland?

2. Is it possible to objectively define the best hail intensity
::::::
MESHS

::::
and

::::
POH threshold(s) to model hail damage footprints?

3. How sensitive is the model performance to cropland density
:::
the

::::::::
minimum

:::::::
number

:::
of

::::
crop

:::::
fields

::::::
within

::
a
::::
grid

::::
cell

::::::::
(cropland

:::::::
density)?100

While most of the study focuses on MESHS, the same methodology is also applied to POH and results are compared.

The remainder of this paper is structured as follows. First, the three main datasets are introduced, and the model setup and

verification method described (Sect. 2). Then, it is discussed how the model skill depends on spatial resolution (Sect. 3.1) and

MESHS threshold (Sect. 3.2). Subsequently, the combined effect of threshold and resolution is analyzed
:::::::
analysed

:
(Sect. 3.3).

The sensitivity of this combined effect on
::
to cropland density and the selection

::
use

:
of POH as

:
a
:
hazard variable is then assessed105

in Sect. 3.4. Finally, the key results are discussed, including how the use of alternative verification approaches would
:::::
might

affect them (Sect. 3.5). The paper ends with a summary of the key conclusions in Sect. 4.

2 Data and Methods

2.1 Hail hazard data

In this study, single-polarization radar data products on a 1x1 km km regular grid are used to characterize hail hazard
:::::::
quantify110

:::
hail

::::::::
intensity. The Swiss radar network consists of 5 dual-polarization Doppler C-band radars and is

:::::
(black

::::
dots

:::
in

:::
Fig.

:::
1)

:::
and

:::
has

:::::
been in place in this form since 2016 (Germann et al., 2016). The two products used here, the Maximum expected

severe hail size
:::::::
Expected

::::::
Severe

::::
Hail

::::
Size (MESHS), and the Probability of Hail (POH)are single-polarization radar products

provided ,
::::

are
::::::::
computed

::::::::::::
operationally by MeteoSwiss (Betschart and Hering, 2012; Trefalt et al., 2022; Germann et al.,

2022)and are computed operationally. MESHS depends on .
::::

The
:::::::::
underlying

::::::::::
reflectivity

:::
data

:::
are

:::::::
mapped

::
to
::

a
::::::
regular

::::
1x1 km115

:::
grid

:::::
using

::
a
::::::::::::
pre-calculated

:::::::::
projection

::::
table

:::::::
relating

:::::
polar

:::
to

::::::::
Cartesian

::::::::::
coordinates.

::::::::::
Reflectivity

::
is
:::::::::

calibrated
::::
with

::::::::
multiple

::::::::::
independent

:::::::
sources

::
of

:::::::::::
information,

::::::::
including

:::::::
various

:::::
types

::
of

:::::::
weather

:::::::
echoes,

::::::
ground

:::::::
clutter,

::::::
signals

:::::
from

:::
the

::::
sun,

::::
and

:::::
others

:::::::::::::::::::
(Germann et al., 2015).

::::::
Radar

:::::
signal

::::::::::
attenuation

::::
can

::::
lead

::
to

::
a
::::
bias

::
in

:::::::::
individual

::::
hail

:::::
cells,

:::
but

:::
we

::::::
expect

::::
this

::::
bias

::
to

::
be

:::::
small

:::::::::
compared

:::
to

:::
the

::::::
known

::::::::
inherent

:::::::::
uncertainty

:::
of

::::
hail

::::::::
detection

:::::
from

:::::
radar

::::
data,

::::::
which

::
is
::::

due
::
to
::::

the
:::::::
indirect

::::::::
estimation

:::
of

::::
hail

::::
size.

:::::
Note

:::
that

::::::
direct

:::
hail

::::
size

:::::::::
estimation

:::
is

::::::
limited

:::
by

:::::::::
resonance

::::::::
scattering

::::::
effects

::
in
:::::

large
::::
hail

::::::
stones120

::::
(e.g.

::::::::::::::::::::::::::
Kaltenboeck and Ryzhkov, 2013

:
).
::::::::

MESHS
::::::::
describes the empirical relationship between the size of the largest hailstone

and the difference between the top of the 50 dBZ echo and the freezing level height. It is computed from the so-called "Treloar
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nomogram"
::::::
‘Treloar

::::::::::
nomogram’

:
of Joe et al. (2004), which is based on Treloar (1998). MESHS ranges from a minimum value

of 20 mm mm and theoretically has no upper limit. Note that MESHS is designed to indicate the size of the largest hailstone

within 1 kmkm2 and does not represent a spatial average. Although MESHS
::
it is not explicitly connected to actual hail size,125

positive relationships between crowd-sourced hail sizes and MESHS
:::::::
MESHS

::::
and

:::::::::::
crowdsourced

::::
hail

::::
sizes

:
have been reported

by Barras et al. (2019). Here, daily (06 UTC -
:
– 06 UTC) maximum MESHS values are used to define a hail day (or hail event).

We use 06 UTC (08am
:::
8 am

:
local time) to define a hail day because it represents the minimum of the average daily hail activity

(Schroeer et al., 2022). This minimizes the risk of splitting a hail storm
:::::
single

::::
hail

::::
event

:
into two consecutive hail days.

POH is based on an empirical relationship between the likelihood of hail at the ground and, similar to MESHS, the height130

difference between the top of the 45 dBZ echo and the environmental freezing level. It was originally introduced by Waldvogel

et al. (1979) and further developed by Witt et al. (1998) and Foote et al. (2005). The form of the relationship by Foote et al.

(2005) has been directly implemented by MeteoSwiss and is operational
:
is
::::
used

:::::::::::
operationally

:::
by

::::::::::
MeteoSwiss

:
since 2008 (Tre-

falt et al., 2022). As for MESHS, daily (06 UTC -
:
–
:
06 UTC) maximum values are used.

To investigate how the model skill changes with reduced spatial resolution, the radar data (MESHS and POH) is aggregated to135

::
are

::::::::::
aggregated

::
at 2, 4, 8, 16, and 32 km regular grids km

::::::
spatial

::::::::
resolution using the maximum intensity value within each grid

cell. The maximum is preferred over the mean because it largely conserves the value range of the intensity variable
:::::::
MESHS

:::
and

::::
POH. Further, this approach is consistent with the assumption that the maximum intensity value determines the occurrence

of damage.

140

2.2 Agricultural exposure data

Detailed geospatial information on agricultural land use
::::::::
production

:
was obtained from Swiss cantonal data on agricultural

land use (geodienste.ch) that was then merged to a Swiss-wide dataset
::::::
official

:::::
Swiss

::::
land

::::
use

::::
data

:::::::::::::
(geodienste.ch). The data

used here are valid for
:::
are

:::::::
available

::::
only

:::::::
starting

:::::
from 2021and not available for earlier years but will be updated annually

after 2021.
:
,
:::::
which

:::
we

::::
use

::::
here

::
as

:
a
:::::::::
reference. The original data contain polygons of each agricultural field and information145

on its type of use and cultivated crop. For this study, the data are aggregated to the number of fields and the total crop area

within a 1x1 km km grid for winter wheat, maize (incl. silage and forage maize), winter barley, rapeseed, and grapevine, based

on the centre
:::::
center

:
point of each field. Further, an aggregate category called field crops is defined that incorporates winter

wheat, maize, winter barley and rapeseed. To model yes/no hail damage footprints at the grid scale, the exposure is turned
::::
these

:::::::
exposure

::::
data

:::
are

::::::::
converted

:
into a binary field depending on the number of fields n within a grid cell150

exposure=

0 n < nthresh

1 n≥ nthresh

(1)

If not specified otherwise, nthresh,
::::
nthresh:is set to 1. This means that a grid cell is considered

::::::
included

:
as exposure if it

contains at least one field of the considered crop type .
::::::
(shown

:::
for

::::
field

:::::
crops

::::
and

::::::::
grapevine

::
in

::::
Fig.

::
1).

:
Because it is expected

that the probability of damage increases with nthresh:::::
nthresh, the sensitivity of the model skill to different choices of nthresh
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:::::
nthresh is examined in Sect. 3.4. Cropland density can be expressed in

::
as

:::
the number of fields per kmkm2 (cropland number155

density, shown in Fig. A1) or, as also
::::
since the area of each field is known, as the fraction of land area covered by a specific

crop (cropland area fraction). For those grid cells containing at least one field at
::::::::
nthresh = 1

::::
and 1 km resolutionkm

:::::
spatial

::::::::
resolution,

:
the average cropland number densities are

:::::::
densities

::
(in

::::
grid

::::
cells

:::::
where

:::
the

:::::
crops

:::
are

:::::::
present)

:::
are: 36.7 (grapevine),

9.7 (field crops), 4.6 (wheat), 4.3 (corn), 2.5 (barley), and 2.4 (rapeseed). The corresponding cropland area fractions are: 7.3%

(grapevine), 14.4% (field crops), 5.7% (corn), 3.5% (barley), and 4.2% (rapeseed). The gridded cropland data (number of fields,160

total area) is provided open-source via the CLIMADA data API
:::::::::
Application

::::::::::::
Programming

:::::::
Interface

::::::
(API).

2.3 Model formulation

The model formulation evaluated here follows the risk framework of the IPCC (IPCC, 2022) implemented in CLIMADA

(Aznar-Siguan and Bresch, 2019) and defines a hazard, exposure and a vulnerability (or impact function). The
::
an

::::::
impact

:::::::
function.

::::
The

::::::
impact

:::::::
function

:::::::::
describes

:::
the

:::::::::::
vulnerability

::
of

:::::::
exposed

::::::
assets

::
to

:::
the

:::::::
hazard.

:::::
Here,

:::
the

:
exposure consists of a165

binary field and the hazard consist of the radar data (here shown for MESHS). The impact function is defined by one threshold

parameter s and represents a step function which is 0 below s and 1 above s.

f impimp
::

=

0 MESHS < s

1 MESHS ≥ s
(2)

The damage footprint then is
::::::
impact,

:::
i.e.

:::
the

::::::
damage

::::::::
footprint,

::
is
::::
then computed as the product of exposure and impact function

170

damagefootprintimpact
::::::

= exposure · fimp (3)

The resulting impact is a binary field of with 1 for grid cells where there is modeled damage and 0 where there is not.

2.4 Damage claims

To evaluate the skill of this model, damage information is obtained from damage claims
:::::
claims

::::
data

:
provided by the Swiss

Hail insurance company (SH) for ten hail days
:::::
events

:
between 2017 and 2021. Damage information includes

::
the

:::::
event

:
date,175

location, crop type and harvest loss as estimated by employees of SH in the field. Roughly a quarter of all claims indicated

zero harvest loss and were removed. This resulted in a total of 26’,292 crop-specific damage claims used for this study, out of

which 21% are winter wheat, 26.5% maize(incl. grain and silage maize), 34% grapevine, ,
:
10% rapeseed, 8.5% winter barley

:
,

:::
and

::::
34%

::::::::
grapevine. About 76 % of these claims contain explicit coordinates of the affected fields,

:
while the remaining claims

are only provided at the community
::::::::::
municipality level. To still be able to consider them in our analysis, these remaining claims180

are randomly distributed on all farmland (wheat, maize, barley, rapeseed) or all vineyards (grapevine) of that community. This

procedure was repeated 1000 times for wheat and grapevine to assess the uncertainty associated to this random placement. It

was found that the 95% confidence interval for the skill metrics considered in this study at 1 km km spatial resolution is below

1% for wheat and below 2% for grapevine. Therefore, the uncertainty introduced by the random placement is considered small.
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Based on a careful comparison with radar data and the Swiss Severe Weather Database (sturmarchiv.ch)
:
, some damage claims185

related to nocturnal hailstorms were re-dated to the previous day to match the time window of the radar data (06 UTC - 06
:::
–06

UTC). This resulted in a total of 12 hail days (see Table 1), instead of the 10 hail days provided in the original data by SH.

Further, two hail events
:::
Two

::
of

:::
the

::::
hail

::::::
events

::
(8

::::
July

::::
2017

::::
and

:
1
:::::::
August

:::::
2017) occurred when at least one of the crops had

::::::
already been completely or to a large extent

::::::
largely harvested. These dates were identified if no or very few damage claims to a

cropwere registered, even if this crop type was present in a region where numerous damage claims are recorded
::
by

:::::::::
comparing190

::
the

:::::::
number

::
of

:::::::
reporter

:::::::
damage

::::::
claims

::
for

:::
the

:::::::
various

:::::
crops

:::
(no

::
or

::::
only

:
a
::::

few
::::::
claims

:::
for

:
a
:::::
crop,

:::
but

:::::
many

:::::
claims

:
for the other

crops
:
) (see fourth column in Table 1). The obtained

:::::
These dates were further verified based on information on indicative starting

dates for harvests (wheat: end of July, barley: end of June, rapeseed: mid-July, maize: October) (www.schweizerbauern.ch,

2023).

Finally, to allow damages to be compared directly to exposures and modelled damage footprints, damage claims were gridded195

to the same 1x1 km km grid as the exposure data. This gridded dataset indicates the number of damaged fields separately

for each crop type as well as the aggregate category field crops
::::
field

:::::
crops

:::::::
category

:
(wheat, maize, barley, rapeseed). It is

important to note that
:
,
::
in

::::::::::
Switzerland,

:
average insurance coverage is 69% for field crops and 43% for grapevine (SH, personal

communication) indicating that
:
,
::
in

:::
our

::::::
study,

:
the total number of damaged fields is likely

:::::::
probably

:
underestimated. This is

expected to negatively affect model skill, mainly via a larger number of false alarms.200

Damage and exposure data are from different sources,
:
and therefore it is checked whether damage actually occurs where

exposure is identified. The fraction of claims that are in a 1
:::
1x1 km km grid cell without exposure is small (wheat: 3%, corn:

2%, barley: 7%, rapeseed 11%, field crops: 0.5%, grapevine: 0.4%) and reduces strongly for coarser resolutions. For the

aggregate category field crops, the mismatch is significantly lower than for the individual crops. The more relevant number for

our study is the fraction of grid cells with damage that have zero exposure, because such grid cells would
::::::::
artificially reduce205

model skill. This fraction is larger but remains in the range of a few percent (wheat: 5%, corn: 4%, barley: 9%, rapeseed 13%,

field crops: 1.5%, grapevine: 4%) . This fraction
:::
and also reduces for coarser resolutions, reaching almost zero at 8 km km for

all field crops and about 2% for grapevine. Hence, a coarser resolution can efficiently reduce the mismatch between damage and

exposure, in particular for field crops. Note that the exposure used here is in principle only valid for 2021. However, there are

only small differences in the mismatch between events in 2021 and events prior to 2021, indicating that this is not the
:
a major210

source of the mismatch
:::::::::
uncertainty. To avoid artificially reducing the skill of the model due to the (albeit small) mismatches,

grid cells with damage but no exposure are excluded from the verification process. The gridded damage data (number of fields)

is provided open-source via the CLIMADA data API.

2.5 Verification based on contingency table

To measure the model skill at different spatial resolutions and for different hail intensity thresholds,
:::::::
MESHS

::
or

:::::
POH

:::::::::
thresholds,215

::
we

:::
use

:
a 2x2 contingency table is used

::::::::
computed

:::::
based

::
on

:::
the

::::
joint

::::::::::
distribution

::
of

:::::::::
predictions

::::
and

::::::::::
observations

:::
on

::
all

::::
grid

::::
cells

::::
with

:::::::
non-zero

::::::::
exposure

:
(Table 2, c.f. Wilks, 2019). According to the model formulation, grid points with nonzero exposure

that coincide with a hail intensity larger than a threshold s are considered damage predictions (a+ b in Table 2). Grid points
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with nonzero damages and nonzero exposure are considered damage observations (a+c in Table 2). From the four numbers of

the contingency table (a = hits, b = false alarms, c = misses, d = correct negatives) a range of scalar attributes and skill metrics220

are computed (Wilks, 2019):

FAR=
b

a+ b
POD=

a

a+ c

BFB
::

=
a+ b

a+ c
=

POD

1−FAR
PC=

a+ d

a+ b+ c+ d

CSI =
a

a+ b+ c
=

1
1

1−FAR + 1
POD − 1

PCrand
:::::

=
(a+ b)(a+ c)+ (b+ d)(c+ d)

(a+ b+ c+ d)2
:::::::::::::::::::::::::::

HSS =
PC−PCrand

1−PCrand

PC−PCrand

1−PCrand
::::::::::

=
2(ad− bc)

(a+ c)(c+ d)+ (a+ b)(b+ d)
225

where FAR denotes the false alarm ratio(FAR=0 for a perfect model), POD the probability of detection or hit rate(POD=1 for

a prefect model), B ,
:::
FB

:
the frequency bias(perfect model: 1, overforecast: >1, underforecast: <1), ,

:
PC the proportion correct,

also called accuracy(PC=1 for a perfect model), CSI the critical success index, also known as threat score(CSI=1 for a perfect

model), and HSS the Heidke Skill Score.
:::
For

:
a
::::::
perfect

:::::::
model,

::::
FAR

::
is
::
0
:::
and

:::
all

:::::
other

:::::::
metrics

::
1,

::::
with

:::
an

:::::
FB>1

:::::::::
indicating

:::::::::::
overforcasting

::::
and

:::::
FB<1

::::::::::::::
underforecasting.

:
PC and CSI are both measures of forecast accuracy, but CSI has the advantage that230

it is a simple measure to account for the trade-off between high POD and low FAR (Roebber, 2009). However, PC has the

advantage
:::
over

::::
CSI that it takes into account the ability of the model to correctly predict non-events (correct negatives, d in

Table 2). The HSS is a classical forecast skill score on the basis of PC and quantifies the accuracy
:::
PC of the forecast compared

to
::
the

:::
PC

::
of

:
a random forecast,

::::::
PCrand:(perfect model:

:::::
HSS=1, no skill:

:::::
HSS=0, Heidke, 1926). The overall model performance

in this study is assessed based on the HSS. For comparison, the radar product used by Warren et al. (2020) to compile a hail235

climatology for Brisbane and Sydney, Australia, achieved a HSS of around
::::
prior

::::::
studies

:::::::
achieved

:::
an

::::
HSS

::
of

::::::::::
radar-based

::::
hail

:::::::
detection

:::::::
around

::::::
0.3-0.5

::::
(e.g.

:::::::::::::::::::::::::::::::::::::::::::::::
Kunz and Kugel, 2015; Ortega, 2018; Warren et al., 2020

:
)
::::
with

:::::::::::::::::
Warren et al. (2020)

::::::::
regarding

::::
their

:::::
values

::::::
around

:
0.5 , which the authors regarded as ‘moderate skill’

::
as

::::::::
‘moderate

:::::
skill’.

3 Results240

3.1 The effect of resolution on model skill

First, average model skill as measured by HSS across all events and its dependence on spatial resolution is investigated for

each crop type individually for a MESHS threshold of s=20 mm mm (Fig. 1
:
2). For wheat, maize, rapeseed and barley,

:
model

skill substantially increases
::::
with

:::::::::
decreasing

::::::
spatial

:::::::::
resolution

:
up to 8 km km and reduces or remains constant for higher

::::::
coarser resolutions. Aggregating them to one crop type (field crops) conserves this behaviour but increases overall skill. For245

grapevine, the behaviour is opposite: Skill reduces with coarser
:::::::::
decreasing

:
resolution up to 8 km km and increases again

thereafter. The increased skill when verifying hail damages on a larger scale is well known for neighbourhood-based ap-
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proaches (Warren et al., 2020; Schwartz, 2017; Schmid et al., 2023)
:::::::::::::::::::::::::::::::::::::::::::::::
(Warren et al., 2020; Schwartz, 2017; Schmid et al., 2024)

, even if these approaches have substantial methodological differences to our resolution-based approach. It can essentially be

explained by the reduced penalization of forecasts due to e.g. spatial displacement of forecast and
::::::
spatial

:::::::::::
displacement

::::
from

:::
the250

observation [hereafter referred to as
:::
the scale effect]. However, the reduced skill with coarser resolution for grapevine cannot

be explained with the scale effect.

To further explore this contrasting behaviour, the effect of a coarser resolution on model skill is considered for individual events

for both wheat (Fig. 2
:
3) and grapevine (Fig. 3) (

:
4)

:::::
with s=20 mm)mm. Focusing on wheat at 1 km km (Fig. 2a-c,d

:::::::
3a,c,e,g),

high average POD and FAR (both around 0.8) are found, with considerable differences between events. We discuss three repre-255

sentative examples (a shifted forecast, an overforecast, and a good forecast) in more detail. An event with low skill (HSS=0.16,

POD=0.47, FAR=0.89) occurred on 15 June 2019 over Western Switzerland (Fig. 2
:
3a). In this case, the observed damage

footprint (grey and blue grid cells) is shifted to the east relative to the predicted damage footprint (red and blue grid cells),

resulting in many misses and false alarms and few hits. Then, 28 June 2021 (Fig. 2b
::
3c) was an extreme hail event with an

exceptionally large spatial extent (Kopp et al., 2022) (HSS=0.21, POD=0.91, FAR=0.81). It is characterized by many false260

alarms, notably over North-Eastern Switzerland. This results in low skill, despite the high POD. With a large frequency bias

(B
::
FB=4.8) this forecast can be characterized as overforecast. Finally, the event on 12 July 2021 (Fig. 2c

::
3e) has the best skill

(HSS=0.51, POD=0.61, FAR=0.53). The main damage footprint over North-Eastern Switzerland was captured very well
:
, but

a number of misses at the edges of the damage footprint and scattered over the Swiss Plateau lead to a lower POD compared

to the previous examples.265

Reducing the resolution to 8 km affects metrics of the three representative examples km
::::::
affects

:::
the

:::::::::
verification

::::::::
statistics

:::
for

::
the

:::::
three

:::::
cases

::::::::
differently

:
(Fig. 2d-g

::::::
3b,d,f,g). The shifted forecast (15 June 2019, Fig. 2d

::
3b) greatly improves (HSS=0.42) due

to a substantially higher POD (0.93) ,
:::
and a lower FAR (0.67).

:::
This

::
is
::::::
mainly

:::::::
because

:::
the

:::::::
coarser

::::::::
resolution

:::::::::::
compensates

:::
for

::
the

::::::
spatial

::::
shift

:::
of

:
a
::::
few

::::
km,

:::::
which

:::::
turns

::::::
misses

:::
and

:::::
false

::::::
alarms

:::
into

::::
hits.

:
The overforecast (28 June 2021, Fig. 2e

::
3d) also

improves (HSS=0.38) but mostly because of a lower FAR (0.57) while POD remains unchanged. Finally, the skill of the
:::
The270

::::::
coarser

::::::::
resolution

:::::::::
effectively

:::::::::
eliminates

:::
the

:::
red

::::::
‘holes’

::
of

:::::
false

::::::
alarms

:::
that

:::::
occur

:::::::
between

:::
the

::::
blue

:::::
areas

::
of

::::
hits.

::::::::
However,

:::
its

:::::
impact

:::
on

::::::
misses

:
is
:::::::
limited,

::::::::::
considering

:::
they

:::::
were

::::::
already

:::::::
minimal

::
at

:::
the

::
1 km

::::::::
resolution.

::::::::
Similarly,

:::
the

:::::
more

:::::::
cohesive

:::::::
damage

:::::::
footprint

::
at

::
8 km,

::
in

::::::::::
comparison

::
to

::
1 km,

:::::::::
contributes

:::
to

:
a
:::::::
reduced

::::
FAR

:::::
(0.38)

:::
for

:::
the

:
good forecast (12 July 2021, Fig. 2f)

:::
3f).

::::::::
However,

:::
the

::::::
overall

::::
skill remains largely unchanged , as the benefit of a lower FAR (0.38) is compensated by a lower POD

(0.55). Again the
:::
due

::
to

:::
the

::::::::
increased

::::::::::
significance

:::
of individual scattered damage reports over the Swiss Plateaucontribute275

substantially to this relatively low POD (without them, the
:
,
:::::::
resulting

::
in

:
a
:::::
lower

:::::
POD

:::::
(0.55;

:::::::
without

::::
these

:::::::
reports, POD would

be 0.73). HSS increases for all 10 considered events if spatial resolution is reduced
::::
from

::
1 km

::
to

::
8 km (Fig. 2

:
3g). However,

there are substantial differences in the magnitude of the increase between events. The FAR reduces with lower resolution for

all events and POD increases for 7 out of 10 events. POD does not increase for events where it is already very high (e.g., the

overforecast) or where many misses are located far away from the modeled
:::::::
modelled damage footprint (e.g.

:
, the good forecast).280

For grapevine, the story is different (Fig. 3
:
4), as illustrated in the following with the 15 June 2019 event. At 1 kmkm, the model

predicts damage footprints for grapevine well (HSS=0.47; Fig. 3
:
4a,g). Reducing the resolution to 8 km km in this case increases
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the FAR from 0.65 to 0.78 and reduces HSS to 0.30, despite a higher POD .
:::::::::
(Fig. 4b,g).

:
A similar behaviour is observed for the

24 July 2021 event (Fig. 3c
::
4e,f,g), while for the 28 June 2021 event, the skill remains unchanged (Fig. 3b,e

::::
4c,d,g). Considering

all events,
:
the following overall pattern emerges (Fig. 3

:
4g): Reducing the resolution reduces HSS or does at least not increase285

it
:::::::::
significantly, despite a higher POD. This is in contrast to the behaviour for wheat. The difference mostly arises because FAR

:::::::
generally

:
increases for grapevine but

:::::::::
consistently

:
reduces for wheat. A key difference between the two considered crops is

that the damage footprints for grapevine are more heterogeneous and scattered than for wheat
:
, due to the very localized dis-

tribution of grapevine in the landscape compared to the spatially more evenly spread distribution of wheat. Many false alarms

appear in the regions with low density of grapevine while hits populate the regions with high grapevine density,
:
notably at the290

shores of the Lake Geneva , Neuchâtel and Biel
::::
Lake

:::::::
Geneva

:::
and

:::
the

::::::::::::::::
Three-Lake-Region

:
in Western Switzerland and the Lake

Zurich in the North-East. Reducing the resolution mainly increases the fraction of these false alarms, leading to lower skill

(Fig. 3d
::
4e,f,g).

It is clear that the scale effect tends to reduce FAR with coarser resolution, irrespective of the crops
::::
crop’s

:
spatial distribu-

tion. To understand the behaviour for grapevine, an additional effect of a coarser resolution on FAR has to be considered: The295

chance of a false alarm also depends on cropland density [herafter
:::::::
hereafter

:
referred to as

::
the

:
density effect]. The main reason

for this is the enormous variability of hail within a storm at the scales of a few hundred meters (Morgan and Towery, 1975)

:::::::::::::::::::::::::::::::::::::::
(Morgan and Towery, 1975; Ortega et al., 2009) combined with insured fractions of fields well below 100%. Hence, the aver-

age FAR at 1 km km grid points with 1 field is higher (wheat: 82%, grapevine: 79%) than at gridpoints
:::
grid

::::::
points with 10 fields

(wheat: 74%, grapevine: 60%). In conclusion,
:
if
::::::::

cropland
::::::
density

::::::::
strongly

::::::
reduces

:
with coarser resolution, FAR is affected300

depending on how cropland density changes
:::
will

:::::::
increase

::::::::::
accordingly. For a crop that occurs everywhere in

:
is

::::::::::
widespread

:::::
across

:
the domain, average cropland density within a grid cell is independent of

:::
less

::::::::
dependent

:
the resolution (even if density

within individual 1 km km grid cells varies). However, the more a crop occurs fragmented in distinct parts of the domain
:
, the

stronger cropland density decreases with coarser resolution. Hence, this density effect contributes to an increase of FAR. For

wheat, the average cropland density within a grid cell decreases by slightly more than a factor of 2 from 4.6 fields per kmkm2305

at 1 km km to 1.9 fields per kmkm2 at 8 km km resolution. For grapevine however, it decreases from 36.7 fields per kmkm2 to

4.2 fields per kmkm2 which is about a factor of 9 (note that the results are almost identical if cropland area fraction is used).

The reason for these differences can also be expressed in terms of an areal inflation factor: Only every 9th .
::::
That

:::
is,

:::
the

::::
area

::::::
covered

:::
by

::
all

::::::::
exposure

::::
grid

::::
cells

::
at
::

a
:::::
given

::::::
spatial

::::::::
resolution

:::::::
divided

:::
by

:::
the

::::
area

::::::
covered

:::
by

:::
all

:::::::
exposure

::::
grid

:::::
cells

::
at

::::
1km

::::::::
resolution.

:::
By

::::
this

::::::::
definition,

:::
the

:::::::
inflation

::::::
factor

:
is
:
1
::
at

:
1
:::
km

:::::::::
resolution

:::
and

::::::::
increases

:::
for

::::::
coarser

:::::::::
resolutions

:::::
(Fig. km grid cell310

within a 8 km grid cell actually contains exposure (inflation factor of 9
::
A2). At all resolutions,

:
these inflation factors are much

larger for grapevine than for wheat(Fig. A2). .
:

In conclusion, the scale effect dominates over the density effect for wheat and the density effect dominates over the scale effect

for grapevine. Hence, to achieve a good skill when modelling hail damage footprints it is beneficial to reduce the resolution

from the original 1 km km to about 8 km km for field crops while 1 km km provides the best skill for grapevine.315

10



3.2 The effect of MESHS threshold on model skill

Next, we aim to identify suitable MESHS threshold(s) to model hail damage footprints for field crops and grapevine. An often

used method to determine an ideal hail intensity threshold is to evaluate a skill metric (e.g. HSS or CSI) as
:
a
:
function of

threshold and determine the location of the maximum (see e.g. Puskeiler et al., 2016; Kunz and Kugel, 2015). However, for

wheat and grapevine at 1 km km resolution, CSI and HSS do not exhibit a clear maximum. They remain largely unchanged up320

to 40 mm mm for field crops and 35 mm for grapevinemm
::
for

:::::::::
grapevine, and decline at higher thresholds (Fig. 4

:
5). Note that

the sample size for grapevine is substantially smaller, especially at large MESHS thresholds (grey bars in Fig. 4
:
5), leading to

larger uncertainty of the exact skill values. Warren et al. (2020) suggest to additionally constrain the optimal threshold with the

condition that B
::
FB

:
is close to 1 to avoid overforecasting. Here, this would result in an optimal threshold even above 40 mm

mm for wheat and 45 mm mm for grapevine. A
:::::::::
Conversely,

::
a MESHS threshold of 30 mm mm for field crops would result325

in a frequency bias of 2, i.e. it results in twice as many forecasts than observations. Hence, selecting a threshold comes with a

trade-off between (i) a high POD (blue line in Fig. 4
:
5) and (ii) a low FAR (red line in Fig. 4) and B

::
5)

:::
and

:::
FB

:
closer to 1.

3.3 Combined effects of resolution and threshold on model skill

To provide an overview of the combined effects of resolution and threshold on model skill, the performance diagram is used

(Fig. 5; Roebber, 2009; Wilks, 2019)
::::::::::::::::::::::::::::::
(Fig. 6; Roebber, 2009; Wilks, 2019). The performance diagram shows the relationship330

between POD and 1-FAR for model set-ups based on
::::
(also

::::::
known

::
as

:::
the

:::::::
success

:::::
ratio)

:::
for

::::::
spatial

:::::::::
resolutions

:::
of 1, 4,

:
and

8 km spatial resolution km and MESHS thresholds of 20, 30, and 40 mmmm. A perfect model is located in the top right of the

diagram. For field crops
::::
(Fig.

:::
6a)

:
it becomes evident that, for all three resolutions, an increase of the threshold strongly reduces

POD but also reduces FAR and B
::
FB

:
(dashed diagonal lines), leaving its skillpractically unchanged (shading, ,

::
as

:
measured

by CSI; Fig. 5a
:
,
:::::::::
practically

:::::::::
unchanged

:::::::
(shading). Reducing the model resolution shifts the points in the diagram towards the335

top right, i.e. increases the skill by strongly reducing FAR , increasing PODand reducing B
:::
and

:::::::::
increasing

::::
POD. Note that the

more favourable skill measure, HSS, can not be shown in the performance diagram directly
:
,
::
as,

::::::
unlike

::::
CSI,

:
it
::::
also

:::::::
depends

:::
on

::
the

:::::::
number

::
of

::::::
correct

::::::::::
non-events,

:
d. However, CSI behaves similar to HSS for resolutions below 8 kmkm.

The diagram also reveals the key differences between grapevine and field crops (Fig. 5
:
6b). Consistent with the results from

Sect. 3.1, the main difference is that
:
,
:::
for

:::::::::
grapevine, the FAR is not reduced with reduced

::::::
coarser

:
resolution but even slightly340

increased ,
::
for

::
a

::::
given

::::::::
threshold

:
(i.e.,

:
the "threshold-resolution

::::::::::::::::
threshold–resolution

:
web" is squeezed together in the horizontal

direction
:
). This results in a tendency for lower skill despite the small increase in POD.

::
An

::::::::
exception

::
is
:::
the

:::::
slight

::::::::
increase

::
in

:::
CSI

:::
for

:::
the

:::
40mm

:::::::
threshold

:::::
from

:
1
:::
to

:
8 km

::::::::
resolution

:::
due

::
to

::
a
:::::::::
substantial

:::::::
increase

::
in

:::::
POD

:::
and

:::
an

::::::
almost

:::::::::
unchanged

:::::
FAR.

::::
This

:
is
:::::::
because

::
in

::::
this

:::::
region

::
of

:::
the

:::::
phase

::::::
space,

:::
CSI

::
is
:::::
more

:::::::
sensitive

::
to
:::::::
changes

::
in
:::::
POD

::::
than

:::::::
changes

::
in

:::::
FAR.

345

3.4 Sensitivity to cropland density and hazard variable
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Now
::::
Here, the sensitivities of the model performance to , first, cropland density (via nthresh) and second, to

:::::
nthresh)

::::
and the

selection of an alternative hazard variable
::::
radar

::::::
product

:
(POH) are discussed.

The sensitivity to cropland density is substantial. An increase in nthresh :::::
nthresh leads to a decrease in FAR for all crops (Fig. 6

:
7),

while POD remains largely unaffected (not shown). Until nthresh values of about
::
For

::::::
nthresh :::::

values
:::
up

::
to

::::::
around

:
20 for field350

crops at
:
(8 km km

:::::::::
resolution)

:
and 10 for grapevine

:
(at 1 kmkm

:::::::::
resolution), the FAR decreases strongly by about 10 percent

points for field crops and about 20 percent points for grapevine, respectively. Beyond these thresholds, the FAR-nthresh curve

tends to flatten out. Increasing nthresh :::::
nthresh:comes with the cost that the fraction of fields included is reduced (Fig. A3).

Hence, an optimal value of nthresh :::::
nthresh reduces FAR as much as possible but keeps the included fraction of fields or crop

area high. Here, a pragmatic choice for all field crops at 8 km resolution is nthreshkm ::::::::
resolution

:
is
::::::
nthresh=20, which maintains355

95% of the number of fields for rapeseed, 96% for barley, 98% for wheat and maize,
:
and 99% for

::
the

:::::::::
combined field crops

(Fig. 6
:
7a). Note that, for certain crops, even higher nthresh ::::

nthresh:are justified (e.g. wheat, maize, field crops, see Fig. A3a).

For the aggregate crop class field crops, even a nthresh :::::
nthresh=100 (or larger) is justified, as it still preserves 96% of fields.

:
;

:::::::
however,

:::
the

:::::::::
associated

::::::::
reduction

::
in
:::::

FAR
::
is

:::::
rather

:::::::
modest

:::::::
(approx.

::
5

:::::::::
percentage

:::::::
points). Very similar numbers result when

crop area is considered instead of field number. For grapevine at 1 km km resolution, a suitable choice is nthresh:::::
nthresh=10,360

which reduces FAR by almost 0.2 and still preserves 95% of the number of vineyards (Figs. 6
:
7b and A3b). However, it con-

serves only 86% of vineyard area, which would also justify a lower threshold.

The effect of a nthresh:::::
nthresh=20 for field crops on model performance is illustrated in the

:::::
using

:
a
:

performance diagram

(Fig. 7
:
8a). For all resolutions, the "threshold-resolution-web

:::::::::::::::::::::
threshold–resolution-web" shifts to the right in the diagram com-

pared to the original nthresh ::::
nthresh=1. Hence, FAR is substantially reduced and POD remains nearly constant, leading to a365

higher skill. Note, however, that the choice of the optimal nthresh :::thresh:heavily depends on the chosen spatial resolution.
::
In

::::
other

::::::
words,

::
an

:::::::::
nthresh=20

::::::::
preserves

::::
99%

::
of

::::
field

:::::
crops

::
at

::
8 km

::::::::
resolution

:::
but

:::
less

::::
than

:::::
30%

::
at

:
1 km

::::::::
resolution.

Finally, the sensitivity of the model performance to the selection of POH instead of MESHS , is tested (Fig. 7
:
8b). The identical

analyses as for MESHS are performed for POH for
:::::
model

::
is

:::::
tested

:::
for

::::
POH

:
thresholds of 70, 85, and 100%and

:
,
::
at

::::::
spatial

:::::::::
resolutions

::
of 1, 4, and 8 km resolution and nthreshkm,

::::
and

::::
with

:::::
nthresh=1. Compared to MESHS, the "threshold-resolution-web

::::::::::::::::
threshold–resolution370

:::
web" is shifted towards the top left in the performance diagram. This indicates higher POD but also a higher FAR, and lower

overall skill. These results are consistent with previous studies (Nisi et al., 2016; Schmid et al., 2023)
::::::::::::::::::::::::::::::
(Nisi et al., 2016; Schmid et al., 2024)

. Further, the highest possible threshold (100%) still exhibits substantial frequency biases
:
a
::::
large

:::::::::
frequency

::::
bias (>1.5), lim-

iting POH-based models to applications where overforcasting is not a problem. Hence, MESHS is better suited to model hail

damage footprints for most applications.375

3.5 Discussion

In this section, the key results are discussed in more detail, including how they would be affected by the use of different

verification approaches.The optimal resolution was found to differ for field crops (8 kmkm) and grapevine (1 kmkm). It was

argued that two competing effects play a role: First, the scale effect tends to increase skill for coarser resolutions, because

larger distances of forecast and damage observation are tolerated (Warren et al., 2020; Schwartz, 2017; Schmid et al., 2023)380
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:::::::
between

:::::::
forecast

:::
and

::::::::
observed

:::::::
damage

:::
are

::::::::
tolerated

:::::::::::::::::::::::::::::::::::::::::::::::
(Warren et al., 2020; Schwartz, 2017; Schmid et al., 2024). Second, the

fact that the area covered by the exposure grid cells is artificially inflated with coarser resolution leads to lower cropland

densities and hence, higher chances of false alarms, which reduces skill (density effect). The effect of a changing cropland

density is particularly relevant, because hail storms are very localized phenomena with a high within-storm spatial variability

(Morgan and Towery, 1975)
::::::::::::::::::::::::::::::::::::::
(Morgan and Towery, 1975; Ortega et al., 2009). The density effect strongly depends on the spatial385

distribution of crops: It is larger for crops that are scattered unevenly (like grapevine) and smaller for crops that
::::
area occur

more homogeneously distributed across the domain (like wheat and other field crops). Hence, reducing the spatial resolution

is only beneficial for crops that are sufficiently evenly distributed in the landscape. We acknowledge that it remains open what

‘sufficiently’ is
:::::
means in this context. The dependence of cropland density on spatial resolution has also been acknowledged

by (Griffith et al., 2000)
::::::::
discussed

:::
by

:::::::::::::::::
Griffith et al. (2000). In fact, it is a property that can be found for aggregation of any390

spatially heterogeneously distributed feature. For example, Baker et al. (2007) found that the density of drainage channels per

unit area strongly reduced with coarser resolution.

Considering the MESHS threshold, the identified trade-off between high POD and
::::
either

::::::::
achieving

::
a
::::
high

::::
POD

:::
or a low FAR

or a B
:::
and

::
an

:::
FB

:
close to 1 eventually signifies that the optimal threshold depends on user needs and the

::::::
relative costs of a false

alarm and
:::::
versus a missed event. For example, if an insurance company wants to use this model to verify damage claims, it395

will prioritize a low threshold with a high POD. On the other hand, if scientists or governments use this model to communicate

the damaged crop area after a hail event, they may want to avoid a systematic overestimation of the damage extent and chose

a higher threshold. To incorporate the costs of false alarms and missed events in decision making
:::::::::::::
decision-making

:
with this

model, user-tailored cost-loss
:::::::
cost–loss

:
models would have to be developed (de Elía, 2022). It is important to note that the best

threshold for end users is not necessarily the one with the highest skill, but depends on their specific cost functions (Manzato,400

2007).

The strongly reduced FAR with larger minimum number of fields within a grid cell (nthresh ::::
nthresh) is again related to the

large within-storm spatial variability of hail. The lower the cropland density, the higher the chances that a hail event does not

lead to damage.
:
,
:::
i.e.,

::
a
::::
false

:::::
alarm

::::::
occurs

::::::
despite

:::
the

::::::::
presence

::
of

::::
hail.

:
Hence, hail damage footprints can be better modeled

:::::::
modelled

:
within the main crop production areas. These results are comparable to Tian et al. (2018) who found that the FAR of405

satellite-based detection of rainfall occurrence reduces with increased rain gauge density.

Finally, it is noted that other , equally valid, verification procedures exist than the ones used in this study. Two alternatives and

their effect on our results are briefly discussed. First, Ebert and Milne (2022) suggest the use of the Pierce Skill Score (PSS,

Peirce, 1884) as alternative to HSS for rare and severe events. PSS
::::
One

::
of

::::
their

:::::::::
arguments

::
in

::::::
favour

::
of

::::
PSS

::
is
::::
that

::
it

::
is

:::
the

::::
only

::::
skill

:::::::
measure

:::::
taking

::::
into

:::::::
account

::::
that,

:::
for

::::
rare

:::
and

::::::
severe

::::::
events,

::::::
misses

::::
tend

::
to

::
be

:::::
more

::::::::::
problematic

::::
than

::::
false

:::::::
alarms.410

:::
For

::::
more

::::::
details

:::
on

:::
this

::::::::::
discussion,

:::
the

:::::
reader

::
is
:::::::
referred

::
to

:::::::::::
Ebert (2008)

:
.
:::
PSS

:
favours a high POD and hence,

:
in our case, a

MESHS threshold of 20 mmmm. Because of its high POD, a POH-based based model therefore outperforms a MESHS-based

model when evaluated using PSS instead of HSS. PSS of the MESHS-based model for field crops remains nearly constant

with coarser resolution until 8 km km but reduces for even coarser resolutions, which corroborates the meaningfulness of the

selection of an 8 km km resolution.415
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Second, the use of fuzzy forecast verification has been proposed as alternative to point-based techniques to verify precipitation

forecasts (Ebert, 2008). An often used fuzzy verification metric is the fractions skill score (FSS), which measures the fractional

coverage of events in windows of different length scale around observations and forecasts (Roberts and Lean, 2008). It allows

identifying
:::
can

:::
be

::::
used

::
to

:::::::
identify the scale at which a forecast should be believed. Using a nthresh:::::

nthresh=20 , the 1, 2, and

4 km we find that models are skillful
::
for

::::
field

:::::
crops

:::
are

:::::
skilful

::::::::::
(FSS≥0.5) beyond a scale of 4 km km and for MESHS thresholds420

between 20-30 mmmm. In general, the skill increases with larger scales and lower model resolutions. However, the 8 km km

model does not further increase FSS compared to
:::
have

::
a
:::::
larger

::::
FSS

::::
than

:
the 4 km km model. This perspective confirms that

modeling
::::::::
modelling

:
hail damage footprints is not skillful

:::::
skilful at the 1 km km scale but suggests that a 4 km km resolution

could also be a suitable choice. Considering grapevine (nthresh:::::
nthresh=10), the lowest scale at which skillful

:::::
skilful

:
prediction

is possible is 6 km km at a threshold of 20 mmmm. The FSS confirms that the skill does not improve with coarser spatial425

resolution, except for very large scales beyond 64 kmkm.

4 Conclusions

This study presents an open-source model implemented in CLIMADA to predict the
::::::::::
open-source

::::::
natural

:::::::::
catastrophe

:::::::::
modelling

:::::::
platform

::::::::::
CLIMADA

::::::::::::::::::::::::::::
(Aznar-Siguan and Bresch, 2019)

:
to
:::::::

predict hail damage footprints (occurrence of hail damageyes/no)

for individual crops after the passage of a hailstorm based on the operational single-polarization meteorological radar product430

MESHS and detailed agricultural land use data. Damage information from a crop insurer was used to quantify the skill of the

model with different skill metrics. The main goal was to assess the model performance for different choices of spatial resolu-

tion (aggregation), MESHS threshold, and threshold of the number of fields used to define the exposure (cropland density).

For field crops (wheat, maize, rapeseed, barley) the model
::::::::::
performance

:
improves substantially when coarsening spatial res-

olution gradually from 1 km km to 8 kmkm, mainly because it relaxes the requirement for exact spatial overlap of modeled435

:::::::
modelled

:
and observed damage footprints (scale effect). Beyond 8 km, the km,

:
model skill tends to reduce again. On the con-

trary, for grapevine, coarser resolution tends to lower the model skill. We conclude that this difference between field crops

and grapevine is mainly related to the different spatial distribution of these crops in the landscape [scattered for grapevine vs.

more evenly
:::::::::::
homogeneous for field crops]

:
, which determines how strongly cropland density reduces with coarser resolution.

A lower cropland density leads to a higher chance of a false alarm (density effect). For wheat, the scale effect dominates, while440

for grapevine the density effect dominates.

Increasing the hail intensity
:::::::
MESHS threshold from 20 mm mm to 40 mm mm strongly decreases the probability of damage

detection (POD)
::
for

::::
hail

:::::::
damage but also reduces false alarm ratio (FAR) and frequency bias

::::
(FB). The overall skill (HSS)

remains largely unaffected
:
is
::::
only

::::::::::
moderately

:::::::
affected by the threshold selection, due to the trade-off between POD and FAR

that has to be aligned with user needs and their specific cost functions.445

Model performance can be substantially improved at all resolutions by selecting a higher minimum cropland density (nthresh:::::
nthresh)

for the exposure definition, mainly due to a reduction in FAR. Considering an alternative radar-based hail product (POH) reveals

higher POD, higher FAR and lower skill compared to MESHS, confirming previous studies (Nisi et al., 2016; Schmid et al., 2023)
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:::::::::::::::::::::::::::::::
(Nisi et al., 2016; Schmid et al., 2024).

Finally, suitable model setups (resolution, threshold s, minimum exposure density nthresh) can be identified to model damage450

footprints to field crops and grapevine. Some of the most suitable setups
:::
the

:::
key

::::
skill

::::::
metrics

:::
of

:::::::
selected

:::::::::::
representative

::::::
model

:::::
setups

:::
for

:::
the

::::
best

:::::::::
resolution

:::
(8 km for field cropsand grapevineare presented ,

:::
1 km

::
for

::::::::::
grapevine)

:::
are

::::::
shown

:
in Table

3including associated skill metrics. For all crops, MESHS thresholds of 20 and 30 mm outperform MESHS thresholds mm

:::::::::
outperform

:
a
::::::::
MESHS

::::::::
threshold of 40 mm in particular for higher nthresh. mm,

::
in

::::::::::
particularly

:::
for

:::::
higher

::::::
nthresh.

::
In

:::::::
general,

::
a

:::::
larger

:::::
nthresh::::

will
::::
yield

::::::
results

:::::
closer

:::
to

:::
the

:::::
“true”

::::
skill

::
of

::::::::
MESHS,

::::
i.e.,

:::
the

::::
skill

:
it
::::::

would
::::
have

:::::
given

::
a
::::::
gapless

::::
hail

::::::::
detection455

:::::::
network

::
on

:::
the

:::::::
ground,

:::
but

::::::
comes

::
at

:::
the

::::
cost

::
of

:::::::
reduced

:::::::
number

::
of

::::
data

::::::
points

:::
for

::::::::::
verification.

:
The best performing setups

::::::::::
(HSS∼0.53)

:
for field crops are achieved at 8 km km resolution and reach a POD of about 0.8 combined with a FAR of about

0.5 (for MESHS > 20 mmmm) or a POD around 0.7 combined with an FAR
:
of

:
about 0.4 (for MESHS > 30 mmmm). For

grapevine, the best performance
::::::::::
(HSS∼0.48)

:
is achieved at 1 km km and reaches either POD of around 0.7 and a FAR of

0.6 (for MESHS > 20 mmmm) or POD and FAR of around 0.55 (for MESHS > 30 mm). mm
::
).

:
).
::::

We
::::
note

:::::
again

::::
that

:::
the460

::::::
suitable

::::::::
threshold

:::::::
depends

:::
on

:::
the

:::::::
purpose

:::
for

::::::
which

:::
the

:::::
model

::
is
:::::
used.

::::
For

::::::::::::
climatological

::::::::
purposes,

::
it

::
is

::::::::
important

::::
that

:::
the

::::::::
frequency

::::
bias

::
is

::::
close

:::
to

::
1.

:::::
While

:::::::::
thresholds

::
of

::::::
20–30mm

:::::::
strongly

:::::::::
overpredict

:::::::
damage

::::::::::
occurrence

:::::::
(FB>1),

:
a
::::::::

threshold
:::

of

::
40mm

:::::::::::
underpredicts

:
it
:::::::
(FB<1).

::::
The

:::::::
MESHS

::::::::
threshold

::::
with

:::
FB

:::::
closest

::
to

::
1

:
is
:::
34mm

::
for

::::
both

::::
field

:::::
crops

::
at

:
8 km

::
and

:::::::::
grapevine

:
at
::
1 km

:::
and

::
is
:::::
hence

::::::::::::
recommended

::
to

::::::
derive

:::::::
accurate

::::::::::::
climatological

::::::::::
frequencies

::
of

::::
crop

:::
hail

:::::::
damage

::::::::::
occurrence.

These results are comparable to previous verification efforts of MESHS (Nisi et al., 2016) or the original Waldvogel et al. (1979)465

criterion (Puskeiler et al., 2016),
:
as
::::
well

::
as

::::::
MESH

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cintineo et al., 2012; Skripniková and Řezáčová, 2014; Kunz and Kugel, 2015; Warren et al., 2020)

:
, although methodological verification approaches substantially differ from ours. Traditionally, verification of radar-based hail

detection has focused on the dependence of the skill on the hail intensity threshold. Our work highlights that it is crucial to also

consider the dependence on spatial scale and the density of cropland or, more generally, the observation network.

This simple damage yes/no model
:::
The

::::::
model

::::::::
presented

::::
here

:
provides a first step towards the (operational) modelling of hail470

damages
::::::
damage as well as hail risk assessments for crops in Switzerland. It is important to note that larger damage datasets

would substantially increase the robustness of the results due to the large event-to-event variability. Gridded exposure and

damage information are provided open-source via the CLIMADA data API to facilitate their use for operational purposes as

well as the further development and validation of (hail) damage models for crops in Switzerland.

Code and data availability. The code (Python 3.9) to produce the figures in this manuscript and run the model is available at https://github.475

com/CLIMADA-projec/climada_papers. Gridded exposure, damage and hazard information is available via the CLIMADA data API https:

//climada.ethz.ch/data-types/. CLIMADA is an open-source and -access software (https://doi.org/10.5281/zenodo.7691855) and can be used

with any user-provided portfolio under the General Public Licence gpl-3.0.
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Figure 1.
:::::
Study

:::::
region

::::::
showing

:::::::
exposed

:::
field

:::::
crops

:::::::
(orange),

:::::::
grapevine

:::::::
(purple),

:::
and

::::
both

::
of

::
the

::::
two

:::::::
categories

:::::::
(green),

:
at
::::
1km

::::::::
resolution

:::
with

::
at

::::
least

:
1
::::
field

:::
per km

:

2,
:::
and

:::
the

:::
five

::::
radar

:::::::
locations

:::::
(black

:::::
dots).

::::::
Regions

:
/
:::::
Lakes

:::::::
appearing

::
in

:::
the

::::::::
discussion

::
of

:::
the

:::::
results

::
are

::::::
named

:
in
::::
blue.
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Figure 2. Skill (HSS) of the prediction of hail damage footprints with MESHS (20 mm mm threshold) for wheat
::::
(blue), maize

::::::
(orange),

rapeseed
:::::
(green), barley

::::
(red) and grapevine

::::
(grey

:::::
dotted)

:
as well as an aggregate class field crops (

:::
black

:::::::
dashed, includes wheat, maize,

rapseed
:::::::
rapeseed, barley) as a function of spatial resolution.
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Figure 3. (a-c
:::
a,c,e) 1x1 km km and (d-f

:::
b,d,f) 8x8 km km grid cells classified as false alarms (red), hits (blue), and misses (grey) for damages

to wheat based on MESHS > 20 mmmm. Dates shown are (a,d
:
b) 15 June 2019, (b

:
c,e

:
d) 28 June 2021, and (ce,f) 12 July 2021.

:::::::
Unshaded

:::
cells

::::::
indicate

::::
grid

::::
cells

::::::
without

:::::::
exposure.

:
(g) FAR, POD, HK, and HSS for all 10 recorded events and for (filled symbols) 1 km km spatial

resolution and (empty symbols) 8 km km spatial resolution. Black boxes in panel (d
:
g) indicate the events shown in panels (a-f).
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Figure 4. (a-c) 1x1 km and (d-f) 8x8 km grid cells classified as false alarms (red), hits (blue), and misses (grey)
::
As

:::
Fig.

::
3

::
but

:
for damages

to grapevine on
::
and

:
(a

:
,b) 15 June 2019, (b

::
c,d) 28 June 2021, and (c

::
e,f) 12 July 2021 based on MESHS > 20 mm.

:::
and (d

:
g) FAR, POD, HK,

and HSS for all 12 recorded eventsand for (filled symbols) 1 km spatial resolution and (empty symbols) 8 km spatial resolution. Black
::::
Grey

::::::
hatched boxes in panel (d

:
g) indicate the events shown in panels (a-f) and grey hatched boxes show events where the modeled

:::
with

::
a
:::::::
modelled

damage footprint is smaller than 80km
::::
below

::
80km2.
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Figure 5. POD (blue), FAR (red), HSS (black dotted),
::
and

:
CSI (black dashed) as a function of MESHS threshold for (a) field crops and (b)

grapevine. Vertical green bars show thresholds with frequency biases (B
::
FB) of approximately 1 and 2 and grey bars

:::
show

:
the total number

of
:::
hail

::::::
damage predictions at each threshold, as indicated by the vertical axis on the right. The total number of predictions summed over all

thresholds is indicated at the top of each panel.
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Figure 6. Performance diagrams showing POD vs. 1-FARand
:
, CSI (shading),

:::
and

::::::::
frequency

:::
bias

::::::
(dashed

:::::
lines) for (a) field crops and (b)

grapevine for MESHS thresholds of 20, 30 and 40 mm mm and spatial resolutions of 1, 4, and 8 kmkm.Dashed diagonal lines denote the

frequency bias B.
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Figure 7. Change of the
:
in

:
FAR as a function of nthresh ::::

nthresh (number of fields per grid cell) for (a) wheat (blue), maize (orange), rapeseed

(green), barley (red), and field crops (black, dashed) at 8 km km resolution and for (b) grapevine at 1 km km resolution. The vertical bars

denote pragmatic choices of nthresh ::::
nthresh that avoid too high

:::
limit

:
FAR but still includes

::::
retain a large fractions (>95%) of

::
the total exposed

crop area / number of fields.
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Performance diagrams for field crops for (a) alternative exposure, with an nthresh=20 and (b) an alternative hazard (POH, 70, 85, and 100%

thresholds). The values indicated with the red shape are shown for reference and are identical with the values shown in Figure 5a (MESHS,

nthresh=1).

Figure 8.
:::::::::
Performance

:::::::
diagrams

:::
for

::::
field

::::
crops

:::
for

::
(a)

::::::::
alternative

::::::::
exposure,

::::
with

:::::::
nthresh=20

::::
and

::
(b)

:::
an

::::::::
alternative

::::
radar

::::::
product

:::::
(POH

::
at

:::::::
thresholds

::
of
:::
70,

:::
85,

:::
and

:::::
100%).

::::
The

:::::
values

:::::::
indicated

:::
with

:::
the

:::
red

::::
shape

:::::::::
correspond

:::
tho

::::
those

:::::
shown

::
in

:::::
Figure

::
6a

::::::::
(MESHS,

:::::::
nthresh=1).
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Table 1. Overview of the 12 investigated hail days
:::::
events.

date number of claims damaged crops harvested crops comment

27 June 2017 2192 wheat, maize, barley, rapeseed, grapevine -

08
:
8 July 2017 2824 wheat, maize, barley, rapeseed, grapevine, apples barley

01
:
1
:
August 2017 1267 wheat, maize, rapeseed, grapevine, apples wheat, barley, rapeseed nocturnal hailstorm

15 June 2019 2185 wheat, maize, barley, rapeseed, grapevine, apples -

30 June 2019 632 wheat, maize, barley, rapeseed, grapevine - nocturnal hailstorm

01
:
1 July 2019 549 wheat, maize, barley, rapeseed, grapevine, apples -

20 June 2021 558 wheat, maize, barley, rapeseed, grapevine, apples -

21 June 2021 2228 wheat, maize, barley, rapeseed, grapevine, apples -

28 June 2021 7383 wheat, maize, barley, rapeseed, grapevine, apples -

12 July 2021 2109 wheat, maize, barley, rapeseed, grapevine, apples - nocturnal hailstorm

13 July 2021 96 maize, grapevine - weak hail event

24 July 2021 4269 wheat, maize, barley, rapeseed, grapevine, apples -

Table 2. 2x2 contingency table

observation

yes no

prediction
yes a (hits) b (false alarms)

no c (misses) d (correct negatives)
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Table 3. Most suitable model setups
::::::::
(resolution,

:::::::
MESHS

:::::::
threshold

::
s,

:::::::
cropland

::::::
number

:::::
density

::::::::
threshold

:::::
nthresh) for field crops (aggregate

crop class including wheat, maize, rapeseed, and barley) and grapevine
:::
with

:::
the

:::::::
associated

::::
skill

::::::
metrics,

:::::::
including

:::
the

::::::::
probability

::
of

:::::::
detection

:::::
(POD),

:::
the

::::
false

::::
alarm

::::
ratio

:::::
(FAR),

:::
the

::::::
Heidke

::::
Skill

::::
Score

::::::
(HSS),

:::
and

::
the

::::::::
frequency

:::
bias

::::
(FB).

crop type parameters skill metrics

resolution (km) s (mm) nthresh::::
nthresh: POD FAR HSS

:::
FB

field crops 8 20 100 0.80 0.46
:::
0.48 0.55

::::
0.53∗

:::
1.54

field crops 8 20 20 0.82
:::
0.81 0.52

:::
0.54 0.51

:::
0.49

:::
1.79

:

field crops 8 20 1 0.82 0.62
:::
0.64 0.43

:::
0.41

:::
2.27

:

field crops 8 30 100 0.67 0.40
:::
0.42 0.55

::::
0.54∗

:::
1.13

:

field crops 8 30 20 0.68 0.47
:::
0.49 0.52

:::
0.51

:::
1.33

field crops 8 30 1 0.68 0.57
:::
0.60 0.45

:::
0.44

:::
1.69

:

field crops 8 40
::
34 100

:::
0.59

: :::
0.40

: :::
0.52

: :::::
0.99∗∗

:::
field

:::::
crops

:
8

:
34

: ::
20

: :::
0.61

:
0.47 0.34

:::
0.49

:::
1.15

:

:::
field

:::::
crops

:
8

:
40

: :::
100

:::
0.48

: :::
0.35

:
0.47

:::
0.74

:

field crops 8 40 20 0.50 0.41
:::
0.43 0.47

:::
0.88

:

field crops 8 40 1 0.50 0.52
:::
0.54 0.43

:::
0.42

:::
1.09

:

grapevine 1 20 10 0.71
:::
0.70 0.60

:::
0.61 0.48∗

:::
1.78

grapevine 1 20 1 0.75 0.79 0.30
:::
3.54

:

grapevine 1 30 10 0.55
:::
0.54 0.56 0.46

:::
0.47

:::
1.23

:

grapevine 1 30 1 0.57 0.76 0.32
:::
2.41

:

:::::::
grapevine

:
1

:
34

: ::
10

: :::
0.44

: :::
0.55

: :::
0.42

: :::
0.99

::

∗∗

∗ highest skill for this crop type. ∗∗ frequency bias closest to 1 for this crop type. Note that nthresh=100 is only a sensible choice for the

aggregate field crops class due to its high cropland density. For individual crop types, lower values like nthresh=20 are to be preferred.
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Figure A1. Cropland number density at 1km spatial resolution for (a) wheat, (b) maize, (c) rapeseed, (d) barley, (e) field crops, and (f)

grapevine.
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Figure A2. Relative change of the
::::
Total area covered by all exposure grid points (inflation factor) as

::::
cells

::
at a function of

::::
given

:
spatial

resolution relative to
:::::
divided

:::
by the

:::
area

::::::
covered

:::
by

::
all

:::::::
exposure

::::
grid

:::
cells

::
at
:

1 km km resolution
:::::::
(inflation

:::::
factor)

:
for wheat (blue) and

grapevine (grey, dashed).
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Figure A3. Change of the fraction of total number of fields included in the exposure as a function of nthresh::::
nthresh:for (a) wheat (blue), maize

(orange), rapeseed (green), barley (red), and field crops (black, dashed) at 8 km km resolution and for (b) grapevine at 1 km km resolution.

In (b) the fraction of cropland area is also shown (dashed) because it deviates substantially from the fraction of fields for grapevine, but not

crops shown in panel (a). The vertical bars denote the pragmatic choices of nthresh ::::
nthresh:(panel (a): 20, panel (b): 10) that avoid too high

FAR but still includes a large fraction (>95%) of total exposed crop area / number of fields (see Fig. 6
:
7).
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