
1 

 

Supporting information of “Evaluating the use of smart sensors in 

ground-based monitoring of landslide movement with laboratory 

experiments” 

Alessandro Sgarabotto1, Irene Manzella1,2, Kyle Roskilly3, Miles J. Clark4, Georgie L. Bennett5, 

Chunbo Luo6, Aldina M. A. Franco4 5 

1School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK 
2Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, NL  
3Environment and Sustainability Institute, University of Exeter, Penryn, UK 
4School of Environmental Sciences, University of East Anglia, Norwich, UK 
5Department of Geography, University of Exeter, Exeter, UK 10 
6Department of Computer Science, University of Exeter, Exeter, UK 

Correspondence to: Alessandro Sgarabotto (alessandro.sgarabotto@plymouth.ac.uk) 

1 Methods 

1.1 Sensor calibration 

The measurement model for an accelerometer reads as (Frosio et al., 2009) 15 

 

𝒂𝑔 = 𝑀(𝒂 − 𝒃𝑎) (1) 

 

where 𝒂𝑔 is the calibrated acceleration in unit of 𝑔, 𝑀 is the error matrix, 𝒂 is the acceleration after the offset and 𝒃𝑎 is the 

bias. In the error matrix 𝑀, diagonal elements are the scale factors along the three axes, whereas the extra diagonal elements 

are due to both axes misalignment and crosstalk effects. Assuming 𝑀 symmetrical, there are 8 unknown parameters in eq. 20 

(1), e.g. 5 unknowns in 𝑀 and 3 unknowns in 𝒃𝑎. These parameters are computed through a nonlinear optimization so that, 

in static conditions, the intensity of the acceleration vector equals the 𝑔 acceleration. Collecting data in N random static 

positions (N>30), a least squares method allows computing the unknown parameters Frosio et al. (2008). The acceleration 

data used for the calibration procedure are represented in Figure S1. 
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Figure S1. Raw acceleration recordings in static positions used for accelerometers calibration. 

Under steady conditions, the angular velocity is expected to be nil. Thus, each of the three axes of the gyro should read 0 ˚/s 

when the gyroscope is in a still position. For this reason, the simplest calibration of a gyroscope consists of calculating the 

offset for each axis. The offsets are measured by record the signal when gyroscope is in a static position and then averaging 30 

the signal recorded in each direction. Without considering additional noise sources, the measurement error model for a 

gyroscope applied in all three directions read as (Glueck et al., 2013) 

 

𝝋̇ = 𝝋̇𝑚 − 𝝋̇𝑂 (2) 

 

where 𝝋̇ is the calibrated angular velocity, 𝝋̇𝑚 is the gyro reading, 𝝋̇𝑂 is the gyroscope offset. The gyroscope data used for 35 

the calibration procedure are represented in Figure S2. 
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Figure S2. Raw angular velocity recordings in static positions used for gyroscopes calibration. 

The measurement error for a magnetometer read as (Dewhirst et al., 2016) 

𝒎𝒂𝒈𝑚 = 𝑆𝒩(𝐴𝑠𝑖  𝒎𝒂𝒈 − 𝒃ℎ𝑖) + 𝒃𝑚 (3) 

where 𝒎𝒂𝒈𝒎 is the magnetic field measured by sensors, 𝑆 is scale factor to generate outputs that fall within our desired 40 

range, 𝒩 is the misalignment error, 𝒃𝑚 is the bias error (offset), 𝒃ℎ𝑖  is hard iron errors due to the presence of permanent 

magnets and residual magnetism, 𝐴𝑠𝑖 is soft iron errors due to presence of material that influences or distorts a magnetic 

field, but does not necessarily generate a magnetic field itself and 𝒎𝒂𝒈 is the actual magnetic field. Hence, the calibrated 

magnetic field can be computed as 

𝒎𝒂𝒈 = 𝐴𝑚
−1(𝒎𝒂𝒈𝑚 − 𝒃̅) (4) 

 

where 𝐴𝑚 =  𝑆𝒩𝐴𝑠𝑖 and 𝒃̅ = 𝑆𝒩𝒃ℎ𝑖 + 𝒃𝑚. The calibration procedure aims at taking the points over an elliptic surface, 45 

finding the offset, and recasting them over a spherical surface. The calibration procedure computes the arrays 𝐴𝑚
−1 and 𝒃̅ by 

using the orthogonality property of the magnetic field vector (Dewhirst et al., 2016). The magnetometer data used for the 

calibration procedure are represented in Figure S3. 

 



4 

 

 50 
Figure S3. Raw magnetometer recordings used for magnetometers calibration. 

1.2 Kalman filter 

The Kalman filter is a recursive algorithm that provides an estimate of the state of the system given some measurements. The 

unknown variables are usually noisy and define the state of the system 𝒙. Conversely, the measurements 𝒛 are reliable 

temporal observations feeding the algorithm to improve the estimate of the state of the system (Dewhirst et al., 2016; Kim 55 

and Bang, 2019). The model describes the evolution of the state from 𝑘 to 𝑘 − 1 as (Kim and Bang, 2019) 

𝒙𝑘 = 𝐴𝒙𝑘−1 + 𝐵𝒖𝑘−1 + 𝒘𝑘−1 (1) 

where 𝐴 is the transition matrix applied to the previous state 𝑘 − 1, 𝐵 is the control-input matrix applied to the control vector 

𝒖𝑘−1 and 𝒘𝑘−1 is the process noise vector. In the Kalman filter process model, the noise is assumed to be a zero-mean 

Gaussian variable with Q as covariance, i.e. 𝒘 ≈ 𝒩(0, 𝑄). In the present application, the state of the system at the step 𝑘 is 

defined as 60 

𝒙𝑘 = [𝑥, 𝑦, 𝑧, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 , 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧]
𝑇 (2) 

  

where 𝑥, 𝑦, 𝑧  are the position components, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  are the velocity components and 𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧  are the acceleration 

components. The transition matrix 𝐴 and the control-input matrix 𝐵 are defined as 
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𝐴 =

[
 
 
 
 
 
 
 
 1 0 0
0 1 0
0 0 1

Δ𝑡 0 0
0 Δ𝑡 0
0 0 Δ𝑡

 

   1/2Δ𝑡2 0 0

  0 1/2Δ𝑡2 0

   0 0 1/2Δ𝑡2

0 0 0
0 0 0
0 0 0

 
1 0  0
0 1  0
0 0   1 

 
Δ𝑡          0       0
0         Δ𝑡       0
0         0        Δ𝑡

0 0 0
0 0 0
0 0 0

0 0  0
0 0  0
0 0  0

   1          0         0
  0        1        0
  0          0         1 ]

 
 
 
 
 
 
 
 

   ;           𝐵 = [0]9𝑥6 

 

 

 

 

(3) 

 
where Δ𝑡 is the time step, that in the present application is equal to 0.017 s. The state-evolution equation is coupled with the 65 

measurement model describing the relation between the measurement 𝒛𝑘 and the state 𝒙𝑘 (Kim and Bang, 2019) 

𝒛𝑘 = 𝐻𝒙𝑘 + 𝝂𝑘−1 (4) 

 

where 𝐻 is the measurement matrix and 𝝂𝑘 the noise of the measurements assumed to be a zero-mean gaussian variable with 

𝑅 as covariance, i.e. 𝝂 ≈ 𝒩(0, 𝑃). In the present application, the measurement vector 𝒛  stores the camera-based positions 

𝑥𝑚 ,  𝑦𝑚,  𝑧𝑚 and the IMU-based linear accelerations 𝑎𝑥,𝑚,  𝑎𝑦,𝑚,  𝑎𝑧,𝑚 and at the step 𝑘 reads as 70 

𝒛𝑘 = [𝑥𝑚 , 𝑦𝑚 , 𝑧𝑚, 0,0,0, 𝑎𝑥,𝑚, 𝑎𝑦,𝑚, 𝑎𝑧,𝑚]𝑇  (5) 

  

The measurement matrix 𝐻 is defined as:    

𝐻 = 

[
 
 
 
 
 
1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1 ]

 
 
 
 
 

 

 

 

 

(6) 

 
The Kalman filter algorithm consists of two stages, prediction, and update. The state is predicted from a former state and 

then is updated using the measurements available for the process investigated. The iterative process starts from the initial 

uncertainty regarding the state and the measurements. The initial measurement noise is 10-14 m for position and 10-8 m/s2 75 

for acceleration in the case of rolling experiments and 10-6 m/s2 in the case of sliding experiments.  

 

2 Additional results 

 

2.1 Cobble experiments 80 

Additional comparisons between the modelling framework and the filtered data are shown in Figure S4-S17.  
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Figure S4. Comparison between the experiments and the analytical model describing the trajectories of the cobble on a 18˚ incline 

in the vertical plane z-y. The response of the conceptual model is obtained for 𝒓 =0 m and Ф = 7.5˚. Solid lines represent the 

average behaviour during the experiments at the same slope, whereas the grey area show the standard deviation of the variable 85 
considered. 

 

Figure S5. Comparison between the experimental results and the analytical model for rolling experiments on a 18˚ incline. (a) 

Horizontal velocity vy. (b) Vertical velocity vz. (c) Horizontal acceleration ay. (d) Vertical acceleration az.  Dashed lines show the 

response of the conceptual model obtained 𝒓 =0 m and Ф = 7.5˚ for the sliding experiments. Solid lines represent the average 90 
behaviour during the experiments at the same slope, whereas the grey area show the standard deviation of the variable considered. 
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Figure S6. Comparison between the experiments and the analytical model describing the trajectories of the cobble on a 25˚ incline 

in the vertical plane z-y. (a) Rolling experiments where the response of the conceptual model is obtained for 𝒓 =0 m and Ф = 7.5˚. 95 
(b) Sliding experiments where the response of the conceptual model is obtained for 𝒓 =0 m and Ф = 2.5 ˚. Solid lines represent the 

average behaviour during the experiments at the same slope, whereas the grey area show the standard deviation of the variable 

considered. 

 
Figure S7. Comparison between the experimental results and the analytical model for (a, c, e, and g) rolling and (b, d, f, and h) 100 
sliding on a 25˚ incline. (a and b) Horizontal velocity vy. (c and d) Vertical velocity vz. (e and f) Horizontal acceleration ay. (g and h) 

Vertical acceleration az.  Dashed lines show the response of the conceptual model obtained 𝒓 =0 m and Ф = 7.5˚ for the sliding 
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experiments and 𝒓 =0 and Ф =2.5˚ for the sliding experiments. Solid lines represent the average behaviour during the experiments 

at the same slope, whereas the grey area shows the standard deviation of the variable considered. 

 105 

Figure S8. Comparison between the experiments and the analytical model describing the trajectories of the cobble on a 35˚ incline 

in the vertical plane z-y. (a) Rolling experiments where the response of the conceptual model is obtained for 𝒓 =0 m and Ф = 7.5˚. 

(b) Sliding experiments where the response of the conceptual model is obtained for 𝒓 =0 m and Ф = 2.5˚. Solid lines represent the 

average behaviour during the experiments at the same slope, whereas the grey area show the standard deviation of the variable 

considered. 110 

 

Figure S9. Comparison between the experimental results and the analytical model for (a, c, e, and g) rolling and (b, d, f, and h) 

sliding on a 35˚ incline. (a and b) Horizontal velocity vy. (c and d) Vertical velocity vz. (e and f) Horizontal acceleration ay. (g and h) 

Vertical acceleration az. Dashed lines show the response of the conceptual model obtained 𝒓 =0 m and Ф = 7.5˚ for the sliding 
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experiments and 𝒓 =0 and Ф =2.5˚ for the sliding experiments. Solid lines represent the average behaviour during the experiments 115 
at the same slope, whereas the grey area shows the standard deviation of the variable considered. 

 

 
Figure S10. Comparison between the experiments and the analytical model describing the trajectories of the cobble on a 40˚ 

incline in the vertical plane z-y. (a) Rolling experiments where the response of the conceptual model is obtained for 𝒓 =0 m and Ф = 120 
7.5˚. (b) Sliding experiments where the response of the conceptual model is obtained for 𝒓 =0 m and Ф = 2.5˚. Solid lines represent 

the average behaviour during the experiments at the same slope, whereas the grey area show the standard deviation of the variable 

considered. 

 
Figure S11. Comparison between the experimental results and the analytical model for (a, c, e, and g) rolling and (b, d, f, and h) 125 
sliding on a 40˚ incline. (a and b) Horizontal velocity vy. (c and d) Vertical velocity vz. (e and f) Horizontal acceleration ay. (g and h) 

Vertical acceleration az. Dashed lines show the response of the conceptual model obtained 𝒓 =0 m and Ф = 7.5˚ for the sliding 
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experiments and 𝒓 =0 and Ф =2.5˚ for the sliding experiments. Solid lines represent the average behaviour during the experiments 

at the same slope, whereas the grey area shows the standard deviation of the variable considered. 

 130 

 
Figure S12. Comparison between the experiments and the analytical model describing the trajectories of the cobble on a 45˚ 

incline in the vertical plane z-y. The response of the conceptual model is obtained for 𝒓 =0 m and Ф = 7.5˚. Solid lines represent the 

average behaviour during the experiments at the same slope, whereas the grey area show the standard deviation of the variable 

considered. 135 

 

 

Figure S13. Comparison between the experimental results and the analytical model for rolling experiments on a 45˚ incline. (a) 

Horizontal velocity vy. (b) Vertical velocity vz. (c) Horizontal acceleration ay. (d) Vertical acceleration az. Dashed lines show the 

response of the conceptual model obtained 𝒓 =0 m and Ф = 7.5˚ for the sliding experiments. Solid lines represent the average 140 
behaviour during the experiments at the same slope, whereas the grey area shows the standard deviation of the variable 

considered. 



11 

 

 
Figure S14. Comparison between the experiments and the analytical model describing the trajectories of the cobble on a 50˚ 

incline in the vertical plane z-y. The response of the conceptual model is obtained for 𝒓 =0 m and Ф = 7.5˚. Solid lines represent the 145 
average behaviour during the experiments at the same slope, whereas the grey area show the standard deviation of the variable 

considered. 
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Figure S15. Comparison between the experimental results and the analytical model for rolling experiments on a 50˚ incline. (a) 

Horizontal velocity vy. (b) Vertical velocity vz. (c) Horizontal acceleration ay. (d) Vertical acceleration az. Dashed lines show the 

response of the conceptual model obtained 𝒓 =0 m and Ф = 7.5˚ for the sliding experiments. Solid lines represent the average 

behaviour during the experiments at the same slope, whereas the grey area shows the standard deviation of the variable 155 
considered. 
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Figure S16. Comparison between the experiments and the analytical model describing the trajectories of the cobble on a 55˚ 

incline in the vertical plane z-y. The response of the conceptual model is obtained for 𝒓 =0 m and Ф = 7.5˚. 160 

 

Figure S17. Comparison between the experimental results and the analytical model for rolling experiments on a 55˚ incline. (a) 

Horizontal velocity vy. (b) Vertical velocity vz. (c) Horizontal acceleration ay. (d) Vertical acceleration az. Dashed lines show the 

response of the conceptual model obtained 𝒓 =0 m and Ф = 7.5˚ for the sliding experiments. Solid lines represent the average 

behaviour during the experiments at the same slope, whereas the grey area show the standard deviation of the variable considered. 165 
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