
RESPONSE TO THE COMMENTS ON Ms. Preprint egusphere-2023-2596 

Please note that in this rebuttal, reviewers’ comments are denoted in grey, our detailed response is in 

black, and the new text of the revised version is in italics. Two different fonts are used for the 

reviewer’s comments and the detailed response.  

 

Response to REVIEWER #2 

 

Referee’s comments on the manuscript “Evaluating the use of smart sensors in 

ground-based monitoring of landslide movement with laboratory experiments” 

The submitted manuscript aims to derive long-term rock movements and landslides through in-situ mounted 

sensors. Various laboratory experiments were carried out for this purpose. 

The long-term goal of in situ-based landslide detection is socially relevant, and its achievement is scientifically 

desirable. However, how this manuscript is presented is not (yet) relevant for publication in its present form. 

The applied methods are per se to be embraced (smart sensors and the fusion of their gyroscope data with 

those of the magnetometer and accelerometer), but the validation presented (e.g. Fig. 11-13) are too far from 

the compared mental model, namely the center of mass of a rigid body (=single point). This raises both the 

questions of whether (a) the measured data and its fusion chain are not consistent or (b) whether the applied 

model is suited for the used complex cobble. Usually, favorable laboratory conditions are chosen. This has not 

been the case here, as the damping through the cotton pads around the sensors (which should protect them) 

creates an environment that is not comparable with the rigid body model. 

So, in my opinion, the manuscript and its current results are not yet usable for the NHESS readership. On the 

one hand, the same results should be compared with a new comparison model. Instead of the cobble motions, 

the different movements of the sensors on its cotton pad are recorded. Therefore, the manuscript better fits in 

a signal processing journal, especially as the embedding in the natural hazards literature is not without some 

reservations (see specific comments). On the other hand, the experiments could be repeated with a rigid sensor 

attachment to the rock. Then, the simple single-point model can be applied, and the outcome will align with the 

NHESS scope.    

 

Response 

We thank the reviewer for their comments on the validation of the sensors in the lab for application 

in landslide movement tracking. We understand their reservation on the methods used here and we 

will try to explain the approach and the reasoning behind the submission of this manuscript to 

NHESS.  

The use of MEMS sensors in earth science application is still at an early stage. Understanding how 

to effectively use these sensors for geohazard evaluation is of great interest and requires a cross-

disciplinary effort. The potential and limitations of MEMS applications are of interest to all 

geoscientists who have been trying to use sensing technology on more and more lines of research 

(e.g. Mao et al., 2019; Hart, and Martinez, 2020; Wang et al., 2022). The novelty of the study is in 

the type of sensor, the phenomenon for which the sensor is tested in laboratory experiments, and the 

approach to couple sensor recordings and camera-based positions.  

Aim. The present study is part of a larger project named SENSUM (smart SENSing of landscapes 

Undergoing hazardous hydrogeologic Movement). The aim of the research on SENSUM and by 

extension in this paper was to test a sensing technology to estimate the timing of hazardous 



movement, the magnitude of movement and the mode of movement of boulders embedded in slow-

moving landslides. Moreover, the research on SENSUM wanted to test the transmission of 

movement-related data via LoRaWAN. The research project did not aim to measure any impact 

forces. The research goals on SENSUM are thus different from those in the existing body of work 

which performed more controlled experiments and wanted to measure physics and forces of processes 

such as rockfalls (Niklaus et al., 2017; Caviezel et al., 2018, 2019; Noël et al., 2023) or sediment 

transport (Maniatis et al., 2023). Regarding the motion of boulders embedded in a slow-moving 

landslide, Dini et al. (2021) managed to determine the timing of movement of using LoRaWAN but 

not the style or magnitude of movement as the sensor used was composed of just an accelerometer 

(i.e. not full IMU).  The sensor used on SENSUM was a 9-axis device equipped with accelerometers 

(16-g range), gyroscopes (2000 ˚/s range), and magnetometers (16-Gauss range) that start recording 

when the acceleration exceeds a custom-defined threshold. This experimental study aimed to test this 

sensor to track cobble motion down an inclined plane as a preparatory investigation to monitor 

boulders embedded in slow-moving landslides. Sensors were thus used to find an overall estimate of 

the magnitude of the movement and understand the mode of movement. Moreover, the data 

transmission through LoRaWAN was tested under different thicknesses of sand layers to investigate 

how sand medium can affect data sending as it has not been tested before. Hence, beside trying to 

match with equation of motion, there are other ways the experimental data can be useful for the use 

of the sensor in field applications in slow-moving landslides.  

Approach. In the present study, camera-based position and sensor data are fused into the Kalman 

filter. Hence, the approach is different from previous MEMS applications in rockfalls tracking (e.g. 

Niklaus et al., 2017; Caviezel et al., 2018, 2019; Noël et al., 2023) and granular flow experiments 

(Dost et al., 2020). In rockfall MEMS application, videogrammetric trajectory is aided by an 

accelerometer and gyroscope. Position and velocity are inferred by videogrammetric trajectory, 

acceleration is used to characterise the impacts with the ground and the number of block rotations 

over a given number of video frames. In recent granular flow experiments published on NHESS (Dost 

et al., 2020), the pebbles are not tracked by the camera since they are buried within the granular flow. 

Thus, in research papers mentioned, acceleration and position are not combined in the fusion 

algorithm. 

Sensor. The sensor used in the present study is similar to that used in granular flow experiments (Dost 

et al., 2020), cobble tracking (Gronz et al., 2016), and debris tracking (Spreizter et al, 2019) in 

laboratory flume experiments. Differently from rockfall MEMS applications (Volkwein and Klette, 

2014; Niklaus et al., 2017; Caviezel et al., 2018, 2019; Noël et al., 2023), the sensor used on SENSUM 

and by extension in the present work does not have a high-range IMU since the research does not aim 

to measure forces or study the impacts on the ground. 

In industrial applications, there are different ways to clamp a sensor to a machine (e.g., stud, magnetic, 

wax, and adhesive mounting; Ewins 2000 - chp3). The sensor accuracy on high-frequency signals 

depends on the rigid attachment between the sensors and the object to monitor (e.g., Ewins 2000 - 

chp3).  Indeed, the stiff mechanical connection between the inertial sensor and the object ensures that 

the motion of both bodies at all frequencies is the same. Therefore, any inertial force applied to the 

object is transmitted to the sensor due to the rigid attachment. High inertial force may require 

increasing the sensor range making the sensor sensitivity decrease (Dini et al., 2021). However, under 

high inertial (impact) forces, regardless of the range, MEMS sensors are likely not to be robust enough 



to withstand the impact and thus they can break apart or malfunction (Feng et al., 2023). To prevent 

damage to the sensors, soft buffers can dampen the impact overload and preserve the integrity of the 

sensors affecting its accuracy (Feng et al., 2023). Hence, the rigid attachment would be ideal for a 

comparison with a reference (numerical model, theoretical model, standard motion equation), but it 

is not ideal for sensor integrity. 

Despite the limitations related to the cotton pad buffer and the nonfixed position of the sensor 

embedded in the cobble, the averaged values of motion variables computed by the data-fusion 

approach are within the range predicted by the standard motion equation (Table 2).  

Table 2. Uncertainty estimation metrics for motion variables as derived from experiments on a 30⁰ inclined. Uncertainty 

estimation metrics. µ, σ the sample mean, and standard deviation of experiments as described by camera and sensors 

considering all repeats, respectively. Maximum and minimum values computed for motion equation predictions.   

   y (m) z (m) vy (m/s) vz (m/s) ay (m/s2) az (m/s2) 

R
o

ll
in

g
 Experiments 

𝜇 1.933 0.096 1.040 -0.378 0.025 -2.977 

𝜎 0.181 0.019 0.410 0.220 2.285 2.586 

Standard 

motion 

equation 

Max 3.7 0.547 2.714 0.0 3.287 0.0 

Min 0.088 0.060 0.0 -1.359 -1.281 -1.898 

S
li

d
in

g
 Experiments 

𝜇 0.786 0.229 0.974 -0.150 3.161 5.246 

𝜎 0.080 0.025 0.379 0.158 5.701 1.567 

Standard 

motion 

equation 

Max 0.547 0.547 2.965 0.0 3.927 0.0 

Min 0.062 6.077 0.0 -1.428 -0.428 -2.267 

 

The sensor integration involved in the filtering procedure described in this study addresses this 

problem. Recently, the sensor filtering procedure for granular flow experiments was published on this 

journal (Dost et al., 2020) without measuring position and providing validation. The present study 

builds on the filtering technique shown in their work and validate the overall motion magnitude using 

standard motion equations. Moreover, this study investigates the sensitivity of LoRaWAN data 

transmission to sand layers of different thicknesses which has never been studied before. The data 

transmission sensitivity to sand has important implications for the development and use of this 

technology in the field as part of the research on SENSUM.  For these reasons, the present manuscript 

was not submitted to a sensor-focused journal. The method has some limitations that were openly 

discussed in the manuscript to favour a possible technological advancement and a scientific 

discussion. Despite the limitations indicated in the discussion, the range of camera-sensor motion is 

similar to that of the conceptual model.  

Table 2 shown above was added to the updated version of the manuscript to improve the evaluation 

of the uncertainty of the data-fusion approach compared to the standard motion equation. Thanks to 

the reviewer’s comment, the limitations related to the cotton pad buffer and the nonfixed position of 

the sensor embedded in the cobble are planned to be added to the discussion. 
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Specific comments 

 

L13: 

process type instead of hazard 

Response 

We changed “hazard” with “process type” in the abstract. Thank you. 

 

L28: 

Sim et al. 2022 are talking rather about risks, not the hazard. 

Response 

The sentence was rephrased as (lines 27-29): 

“The higher frequency and intensity of extreme weather conditions under climate change have 

increased global landslide hazards (e.g., Gariano and Guzzetti, 2016) leading to the development of 

different approaches in landslide risk management (e.g., Sim et al., 2022).”   

 

L34: 

https://doi.org/10.1038/s43247-023-00909-z is also an important source here. 

Response 

Thank you for bringing this very recent publications to us. I added it as you suggested in Line 34. 

 

L65/557 

Citing EGU-General assembly abstracts is not the best practice. 

Response 

Field investigations using MEMS sensors to monitor boulders embedded in a landslide and 

LoRAWAN to transmit data are rare because the technology has just started being deployed in 

geoscience applications. We mentioned the two most recent abstracts on this topic.  

 

 L74-76: 

The data of pressure sensors were barely used in these studies. 

Response 

We wanted to highlight the sensors composing StoneNode (Niklaus et al., 2017; Caviezel et al., 2018, 

2019) which are different from those composing the device used in our study. We rephrased the 

sentence as: 

“The sensor was equipped with accelerometers, gyroscopes, and a pressure sensor. The linear and 

angular motion were tracked by the accelerometers and the gyroscopes respectively. Both sensors 

helped to detect and characterise the collision with the ground. Conversely, the pressure sensor was 

used to measure altitude differences.” 

 

https://doi.org/10.3389/feart.2022.899509


 L78: 

The cited sources here make no sense: They were all published before the smart sensors publications (L74-76) 

and the mentioned 3D rockfall modeling approach was already validated with the publication by Dorren (2005). 

Response 

True, the sentence is misleading and thus was rephrased as  

“This provides a new tool to collect a dataset to further improve and validate modelling frameworks 

on rock falls that had been previously calibrated only through case studies (Caviezel et al., 2018, 

Dorren et al., 2011; Dorren, 2016).” 

 

L94-97: 

This section is unnecessary. If you use meaningful sub-titles (as you do), the reader can easily navigate without 

this section. However, if you want to add this section, add at least the purpose and content of section 4.   

Response 

Thank you for this comment. We rephrased that part at the end of the introduction. The amended 

lines read as follows (lines 97-100): 

“This study shows the results from LoRaWAN data transmission tests and the findings on raw and 

processed data for the cobble motion (Section 3). After comparing experimental results to simple 

conceptual models (Section 4), the study discusses the strengths and weaknesses of the smart sensor 

technology in monitoring boulders and the challenges awaiting to be addressed to improve the 

technology (Section 5). “ 

 

L107: 

The squared, inclined board was hinged to the rectangular, horizontal board along its shorter side. 

Response 

We changed the sentence following your suggestion. Thank you. 

 

L108: 

Synchronized recordings to what? 

Response 

True, the sentence is misleading. We rephrased the sentence as “The GoPro camera was paired to a 

remote controller via Wi-Fi to start and stop the recording remotely”. 

 

L155: 

How many different training images?  

Second, in each training image, … 

Response 

The training images were 390. I added this detail in the text. Then, I made the amendments in the 

sentence following your suggestion. 

“First, different training images of the object were collected (i.e. 390 images).  The images were the 

ground truths to train the model. Second, in each training image, …” 

 



L162: 

Which one is the suitable built-in function in OpenCV? 

Response 

The rectification was carried out using the built-in Python functions cv2.initUndistortRectifyMap and 

cv2.warpPerspective. We plan to add this detail between brackets in the updated version of the 

manuscript. 

 

L165: 

Missing “.” after “occurred” 

Response 

True. We corrected the oversight. Thank you. 

 

L228-234: 

Belongs rather to the methods section. 

Response 

We moved this part to the method section (lines 222-226) following your suggestion. Thank you. 

 

L248-250: 

Belongs rather to the discussions section. 

Response 

We moved this part to the method section (lines 575-578) following your suggestion. Thank you. 

 

L280, Fig. 5: 

Better comparability if the x-axis comprises in all subplots (a-f) the same interval (e.g., 0.0 s – 2.8 s). The same 

would also be nice for the y-axis in the corresponding subplots (a and d; b and e; c and f). 

Response 

We made changes to Figure 5 following your suggestion. Please find below the corrected figure. 



 
Figure 5. Raw recordings of the three sensor types on a 30˚ incline for (a, b and c) a rolling experiment and (d, e and f) a sliding 

experiment. (a, d) gyroscopes data, (b and e) accelerometers data. (c, f) Magnetometers data after upsampling. The solid line 

refers to the x axis, the dashed line to the y axis and the dotted line to the z axis. The solid red line shows the time when the 

cobble passes over the slope break. 

 

L306-310: 

A procedure description belongs to the methods section. 

Response 

We moved this part to the method section (lines 236-240) following your suggestion. Thank you. 

 



L320: 

“We speculate” belongs never in a result section. 

Response 

We deleted the sentence from the result section. The concept is already described in the discussion 

section. Thank you. 

 

L324: 

Wrong sub figures mentioned (7 c,d instead of 7b,c) 

Response 

True. We corrected the oversight. Thank you. 

 

L365: 

From where do you have the linear velocity? Pronounce it (again) that this is from the video footage analysis. 

Response 

The linear velocity is not inferred from the video analysis, but it is computed by the Kalman filter fed 

by the camera-based position and the sensor-based linear acceleration. We rephrased the sentence to 

make this point clear. Thank you. 

“The linear velocity is computed through the Kalman filter fed by the camera-based positions and 

sensor-based linear accelerations, whereas the angular velocity is evaluated from the orientation 

angles (Section 2.3, Figure 3).” 

 


