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Abstract. Despite decades of effort, there remains an inability to measure snow water equivalent (𝑆𝑊𝐸) at high 

spatial resolutions using remote sensing. Passive gamma ray spectrometry is one of the only well-established methods 

to reliably remotely sense 𝑆𝑊𝐸 , but airborne applications to date have been limited to observing km-scale areal 10 

averages. Noting the increasing capabilities of unoccupied aerial vehicles (UAVs) and miniaturization of passive 

gamma ray spectrometers, this study tested the ability of a UAV-borne gamma spectrometer and concomitant UAV-

borne lidar to quantify the spatial variability of 𝑆𝑊𝐸 at high spatial resolutions. Gamma and lidar observations from 

a UAV were collected over two seasons from shallow, wind-blown, prairie snowpacks in Saskatchewan, Canada with 

validation data collected from manual snow depth and density observations. A fine-resolution (0.25 m) reference 15 

dataset of 𝑆𝑊𝐸, to test UAV-gamma methods, was developed from UAV-lidar snow depth and snow survey snow 

density observations. The ability of UAV-gamma to resolve the areal average and spatial variability of 𝑆𝑊𝐸 was 

promising with appropriate flight characteristics. Survey flights flown at a velocity of 5 m s-1, altitude of 15 m, and 

line spacing of 15 m were unable to capture the average or spatial variability of 𝑆𝑊𝐸 within the uncertainty of the 

reference dataset. Slower, lower, and denser flight lines at a velocity of 4 m s-1, altitude of 8 m, and line spacing of 8 20 

m were able to successfully observe areal average 𝑆𝑊𝐸 and its variability at spatial resolutions greater than 22.5 m. 

Using a combination of UAV-based gamma 𝑆𝑊𝐸  and UAV-based lidar snow depth improved the spatial 

representation of 𝑆𝑊𝐸 substantially and permitted estimation of 𝑆𝑊𝐸 at a spatial resolution 0.25 m with a ±14.3 mm 

error relative to the reference 𝑆𝑊𝐸 dataset. UAV-borne gamma spectrometry to estimate 𝑆𝑊𝐸 is a promising and 

novel technique that has the potential to improve the measurement of shallow prairie snowpacks, and when combined 25 

with UAV-borne lidar snow depths, can provide fine resolution, high accuracy estimates of prairie SWE. Research on 

optimal hardware, data processing, and interpolation techniques is called for to further improve this remote sensing 

product and explore its application in other environments. 

1 Introduction 

Snow is a defining feature of the hydrological cycle in cold regions and has significant socioeconomic and 30 

environmental implications (Pomeroy and Goodison, 1997; King et al., 2008). A basic and persistent challenge for 

snow hydrology is efficiently and accurately quantifying snow water equivalent. The overlapping variability of 

landscape, weather and climate, and snow processes combine to drive significant spatiotemporal differences in 
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snowpack characteristics (Pomeroy and Gray, 1995; Essery and Pomeroy, 2004b; Grünewald et al., 2010; Trujillo et 

al., 2007; Liston and Sturm, 1998; Shook and Gray, 1996) A significant body of research has been devoted to 35 

developing protocols and technologies to observe snow characteristics to inform scientific understandings and 

decision making (Kinar and Pomeroy, 2015). Quantifying the spatial variance of snow water equivalent (𝑆𝑊𝐸) allows 

calculation of snow covered area (SCA) depletion during the melt period (Essery and Pomeroy, 2004a; Faria et al., 

2000; DeBeer and Pomeroy, 2010) and in turn the SCA depletion is critical to estimate the contributing area, and 

duration, of runoff and infiltration from snowmelt (Shook et al., 1993; DeBeer and Pomeroy, 2010). To date the ability 40 

to directly and remotely observe the spatial variability of 𝑆𝑊𝐸  at the fine scales corresponding to the snow 

redistribution and ablation processes defining snowpack formation has remained elusive (Tedesco et al., 2015). 

The 𝑆𝑊𝐸 (water equivalent water depth per unit area) of a snowpack is expressed in mm water equivalent or kg 

m-2. Snow surveys of depth (ℎ𝑠) and density (𝜌𝑠𝑛𝑜𝑤) observations along a linear transect are the traditional approach 

used to calculate 𝑆𝑊𝐸 , and remain the most reliable technique, but are time consuming, labour intensive, and 45 

ultimately a destructive sampling technique (Kinar and Pomeroy, 2015). Non-contact point scale observations such as 

snow pillows, passive radiometric sensors, and acoustic sensors have demonstrated success but do not capture spatial 

variability (Coles et al., 1985; Kinar and Pomeroy, 2007; Wright et al., 2011; Kinar and Pomeroy, 2015). Remote 

sensing has had great success in quantifying the spatial variability of ℎ𝑠 over wide ranges in extent and resolution 

ranging from satellite stereography (Marti et al., 2016), lidar (airplane-borne or UAV-based) (Harder et al., 2020; 50 

Jacobs et al., 2021; Deems et al., 2013; Hopkinson and Collins, 2009), and structure from motion techniques (Harder 

et al., 2016; Bühler et al., 2016; Walker et al., 2021). Snow depth observations alone capture a significant amount of 

the snowpack variability but need additional observations, or estimation, of 𝜌𝑠𝑛𝑜𝑤 in order to quantify 𝑆𝑊𝐸 (Painter 

et al., 2016). 𝑆𝑊𝐸 remote sensing products tend to be coarse scale, utilizing passive microwave or gamma remote 

sensing (Tuttle et al., 2018; Tong et al., 2010; Tedesco et al., 2015), or active radar sensors (Tsang et al., 2021) .  55 

Gamma remote sensing of 𝑆𝑊𝐸 relies on two principles. First, all soils contain naturally occurring gamma particle 

emitting radioisotope elements (Topp, 1970). Second, mass, including all phases of water, attenuates gamma radiation 

(Peck et al., 1971). Beer’s Law, which relates the transmission of radiation through a medium (𝐼) to the intensity of 

the source (𝐼0) as an exponential function of the attenuation coefficient (𝜇) and thickness (𝑑) of the attenuating 

medium, as 60 

𝐼 = 𝐼0𝑒𝜇𝑑,           (1) 

can be adapted to estimate 𝑆𝑊𝐸 from observations of gamma emissions over time. By using count rates of gamma 

particles above a surface when snow-covered (𝐶𝑠𝑛𝑜𝑤) and snow-free (𝐶𝑏𝑎𝑟𝑒) in place of 𝐼 and 𝐼0, respectively, and 

assuming a 𝜇 for water (5.835 10-3 mm-1, Carroll (2001)), the 𝑑 can be interpreted, and solved for, as 𝑆𝑊𝐸 (mm) as,  

𝑆𝑊𝐸 = −
1

𝜇
ln (

𝐶𝑏𝑎𝑟𝑒

𝐶𝑠𝑛𝑜𝑤
).          (2) 65 

This requires an assumption of isotropic gamma emissions from the soil and no change in soil water content in the 

time between the bare and snow-covered surface observations that would change 𝐶𝑏𝑎𝑟𝑒 (Carroll and Carroll, 1989). 

Two main limitations are inherent in quantifying 𝑆𝑊𝐸 with gamma approaches. The first is that high attenuation of 

gamma rays by water leads to complete attenuation of the gamma signal in large snowpacks, such that this technique 

is limited to medium or shallow snowpacks. In a point scale/stationary implementation the Campbell Scientific CS725 70 
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passive gamma radiation sensor (Wright et al., 2011; Kinar and Pomeroy, 2015) when fixed above a snowpack can 

estimate 𝑆𝑊𝐸 for footprints of 50-100 m2 at 3 m sensor height with 15% accuracy and is limited to snowpack’s with 

<600 mm 𝑆𝑊𝐸. The CS725 has been shown to work well for uniform and relatively deep mountain snowpacks, if 

placed on mild slopes where snowmelt runs off instead of ponding (Smith et al., 2017). In an airborne implementation, 

the NOAA Airborne Snow Survey program has utilized gamma spectrometry to observe peak 𝑆𝑊𝐸 over much the 75 

Red River Basin of the north-central US Great Plains and southern Canadian Prairies to inform flood predictions since 

1980 (Cho et al., 2019). This airborne program typically employs flight lines at 150 m altitude, 16 km long to provide 

𝑆𝑊𝐸 estimates with approximately 5-7 km2 footprints with errors less than 10% for snowpacks <300 mm 𝑆𝑊𝐸 (Cho 

et al., 2019; Carroll and Carroll, 1989; Tuttle et al., 2018). The second limitation is that variability in soil moisture is 

a significant source of uncertainty. A snow-free observation to capture the background gamma state as near as possible 80 

to freeze up is required. In the case of an overwinter increase in near surface soil moisture, due to snowmelt or rainfall 

infiltration, end of winter 𝑆𝑊𝐸 will be biased high (Carroll and Carroll, 1989). Approaches to correct for overwinter 

changes require independent estimates of soil moisture change (Offenbacher and Colbeck, 1991; Carroll, 2001; Carroll 

and Carroll, 1989) and recent applications have included independent data sources such as SMAP soil moisture  (Cho 

et al., 2020). 85 

Passive radiometric observation methods are sensitive to an integration time and, in mobile applications, 

challenged by small signal to noise ratios (Reinhardt and Herrmann, 2019; Peck et al., 1971). The ability to resolve a 

feature of interest with gamma spectrometry is directly related to the volume of the scintillation crystal, integration 

time, and proximity to the target which all need to be balanced by the physical limitations and operational 

characteristics of the platform, area of interest, and ability to precisely collocate sensors between different surveys 90 

(Reinhardt and Herrmann, 2019). The confluence of ever-increasing UAV capabilities (endurance, payloads, and 

spatial accuracy of navigation) and miniaturization of gamma ray spectrometers has opened the door to UAV-borne 

gamma spectrometry. Most UAV-gamma applications to date have focussed on mapping radiative properties for 

mineral exploration (Martin et al., 2020) and relationships to soil properties such as texture, type, nutrient status, 

erosion, organic matter and pH (Reinhardt and Herrmann, 2019). A significant advantage of UAV platforms over 95 

traditional crewed aircraft is the ability to repeatedly fly consistent flight lines at low altitudes and speeds.  

The ability of UAV-borne gamma spectrometry to quantify 𝑆𝑊𝐸 has not been reported in the scientific literature, 

nor has the possibility to interface gamma-measured 𝑆𝑊𝐸 with fine resolution snow depth observations from UAV-

lidar been examined. The purpose of this work is to demonstrate the workflows needed for deploying UAV-borne 

gamma spectrometry over snow and then to evaluate: 1) the ability of UAV-borne passive gamma spectrometry to 100 

directly observe the 𝑆𝑊𝐸 of shallow agricultural snowpacks; and 2) the potential for UAV-borne gamma spectrometry 

by itself, and combined with UAV-lidar, to estimate the spatial variability of 𝑆𝑊𝐸 at fine spatial scales.  
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2 Data and Methods 

2.1 Study Area 

Observations were collected over two snow seasons between fall 2020 and spring 2022 southeast of Saskatoon, 105 

Saskatchewan, Canada, in an agricultural region of the Canadian Prairie ecozone. Two study sites were chosen with 

both having low relief and hummocky topography (Table 1). The Stubble site is a cultivated field, seeded the previous 

year with barley that was harvested in September leaving a 15 cm standing stubble. The perennial grassland, which is 

grazed during summer, contained grasses, fescues, shrubs, and forbs with a height ≤ 30 cm in fall 2021. As a result of 

drought conditions in summer/fall, field observations showed low near surface soil moisture contents at both sites and 110 

with dampened spatial variability in both years. The snow season is typically 4-5 months in duration and on average 

30% of precipitation falls as snow (Pomeroy et al., 2007) . The regional hydrometeorological is extremely variable 

and peak 𝑆𝑊𝐸 can vary from  negligible in dry years to > 100 mm in cold and snowy winters (Pomeroy et al., 2007).  

Table 1. Summary of sites and observations 

Site Name Stubble Grassland 

Location 51° 56.11' N 

106° 21.99' W 

51° 23.39' N 

106° 26.12' W 

Surface Condition Standing barley stubble  

height 0.15 m. 

Grass and small shrubs  

height <0.3 m  

Soil Texture Loamy Sand Sandy Loam 

Snow Free Observation Nov 7, 2020 Nov 9, 2021 

Snow-Cover Observation 1* Nov 13, 2020 (Fall) Mar 14, 2022 

Snow Cover Observation 2* Mar 9, 2021 (Spring)  

UAV flight profile 

characteristics 

5 m/s, 15-m altitude, 15-m flight 

line spacing 

4 m/s 8-m altitude, 8-m flight 

line spacing 

*bracketed identifiers denotes the specific observation for reference hereafter 115 

2.2 Data Collection  

2.2.1 Site Conditions and Surveys 

Several UAV gamma surveys were made, concomitant with UAV-lidar surveys. Meteorological conditions during the 

respective seasons were observed using well-instrumented meteorological stations (part of the Global Water Futures 

Observatories www.gwfo.ca) near the study locations. Each survey captured different environmental and deployment 120 

conditions. In fall 2020, a bare ground survey was conducted at the stubble site on November 6 immediately preceding 

60 mm of 𝑆𝑊𝐸 which fell over November 7-9. This provided an opportunity to test the 𝑆𝑊𝐸 estimation by conducting 

a subsequent snow-covered survey on November 13. For this survey interval there was a clear transition between 

exposed, unfrozen and relatively dry soil conditions to a continuous snow cover and frozen soil in the near surface. 

The weather after the snowfall event was consistently cold, with no snowmelt or rainfall, so soil moisture was static 125 

and the only change in gamma ray attenuation can be attributed to the accumulation of a snowpack. Wind redistribution 

http://www.gwfo.ca/
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of snow was a function of topography with transport from flat and wind exposed ridges and northwest facing slopes 

to deposition locations in relatively wind sheltered locations on southeast facing slopes. Development of transverse 

dunes (Filhol and Sturm, 2015) in wind-exposed locations also provided an increase in small-scale 𝑆𝑊𝐸  spatial 

variability. In contrast, the spring survey at this site, with the exact same flight profile as in the fall survey, observed 130 

end of the winter conditions and thus represents the accumulation and wind redistribution of several snowfall events 

over the winter, resulting in a generally deeper snowpack on southeast facing lee slopes with greater spatial variability 

in flat areas with development of transverse, sastrugi and barchan dune snowdrifts (Filhol and Sturm, 2015). For the 

second season, the grassland site was surveyed at a lower altitude and slower flight speed, with denser flight line 

spacing. The grassland site had greater 𝑆𝑊𝐸 than that observed in the stubble field surveys and spatial variability was 135 

primarily due to relatively large snowdrift formation in the lee of fences. There was a positive relationship between 

vegetation height and snow depth and taller vegetation suppressed the formation of snowdrift dunes. A significant 

mid-winter melt event took place February 7-10, 2022 with maximum air temperatures reaching 6 °C and a 15 cm 

decrease in snow depth observed at a GWFO meteorological station 10 km from the study site. Snow cover remained 

continuous and meltwater flow through the snowpack and refreezing as a spatially discontinuous basal ice lens were 140 

observed during snow surveys. 

2.2.2 Gamma Observations 

Gamma emissions were observed with a Medusa Radiometrics MS-1000 passive gamma-ray spectrometer mounted 

on a Freefly AltaX UAV platform (Figure 1). Flight planning and control was done with the ALTA_QGroundControl 

software. Flight navigation used regular GPS signal for stubble surveys (± 5 m positioning) while navigation for 145 

grassland flights used an updated RTK system (cm level positioning). The MS-1000 utilised a 1 s integration time for 

gamma emissions and observed GPS, air temperature, humidity and air pressure information with an integrated sensor.  

 

Figure 1: Medusa MS-1000 mounted on a FreeFly AltaX prior to survey November 6, 2020. Photo credit Anders Hunter. 

In airborne applications with the spectrometer offset from the surface, airborne corrections are often implemented in 150 

order to account for the interactions of gamma rays in the air mass as well as to correct for radon and cosmic ray 

emissions that share this part of the electromagnetic spectrum. The Gamman software included with the MS-1000 by 

Medusa Radiometrics provides tools for airborne corrections with a full spectrum analysis approach. As flights were 
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≤ 15 m above the ground surface, where airborne corrections do not make a significant difference versus the 

uncertainty introduced, no airborne corrections were applied based on advice of the manufacturer. Gamman (Medusa 155 

Radiometrics, 2024) was used to perform energy stabilisation of the spectra and generate count rates (𝐶 ) and 

corresponding latitude, longitude and height data at 1 second intervals. Gamman employs a proprietary full spectrum 

analysis to fit a “standard spectra” to the measured spectrum with the fitting factors quantifying the radionuclide 

concentrations (Hendriks et al., 2001). To account for detector and environmental drive factors Gamman employs a 

stabilisation algorithm to align the measured spectra to the corresponding gamma energy. Total count rates are 160 

quantified from the integration of the stabilised and aligned spectrum. Due to data gaps in MS-1000 GPS data, the 

AltaX flight telemetry was used to resolve sensor trajectory. Manual alignment of the telemetry and MS-1000 GPS 

data was needed due to timestamp mismatches. Precision of the GPS data accessible from the AltaX telemetry logs 

was degraded despite RTK navigation so a 13-point rolling average was used to smooth the positioning data. The 13-

point rolling average was a compromise between increased precision and alignment with the known flight path. All 165 

data at the ends of the flight lines associated with platform slowing and turning around waypoints was removed with 

spatial clipping to ensure that count rate observations represented consistent flight speeds and footprint characteristics. 

An example of the raw count data and positioning is visualised in Appendix A. 

2.2.3 Validation Data 

A reference dataset of 𝑆𝑊𝐸  (𝑆𝑊𝐸𝑟𝑒𝑓 ) was developed from UAV-lidar ℎ𝑠  and snow survey 𝜌𝑠𝑛𝑜𝑤  observations. 170 

UAV-lidar surveys quantified the spatial variability of ℎ𝑠  at a 0.25-m spatial resolution. A Freefly AltaX UAV 

platform with a Riegl miniVUX2-UAV lidar was flown over the extent of the snow-covered survey areas on the same 

day as gamma flights. The data processing workflows to generate digital surface models (DSM) are detailed in Harder 

et al. (2020). Utilizing approaches from LAStools (Isenburg, 2019),  the irregular lidar point cloud was processed to 

a 0.25 m gridded representation via a TIN surface fitting approach.  Rescaling from the 0.25 m base resolution to other 175 

resolutions used the mean value of the larger grids. The ℎ𝑠 was computed as the difference between the snow-covered 

DSM and existing snow-free DSM’s of the respective sites. Flights were conducted at an elevation of 110 m, with 80 

m between flight lines, at a speed of 10 m s-1. The overall 𝑆𝑊𝐸𝑟𝑒𝑓  uncertainty (∆𝑆𝑊𝐸𝑟𝑒𝑓: mm) was propagated from 

the uncertainty of the observed snow density (∆𝜌𝑠𝑛𝑜𝑤) and UAV-lidar snow depth observations (∆ℎ𝑠−𝑈𝐴𝑉) as 

∆𝑆𝑊𝐸𝑟𝑒𝑓 =
√∑ (𝑆𝑊𝐸𝑖∙√(

∆ℎ𝑠−𝑈𝐴𝑉
ℎ𝑠−𝑈𝐴𝑉,𝑖

)
2

+(
∆𝜌𝑠𝑛𝑜𝑤
𝜌𝑠𝑛𝑜𝑤

)
2

)

2

𝑖=𝑛
𝑖=1

𝑛
,       (3) 180 

where 𝑖 indexes all snow ℎ𝑠−𝑈𝐴𝑉  observations between 1 and 𝑛 (total number of observations). The ∆ℎ𝑠−𝑈𝐴𝑉  was 

assumed to be 5 cm, a conservative value for this domain from the literature (Harder et al., 2020; Jacobs et al., 2021). 

For each flight, manual snow surveys collected between 12 and 60 observations of 𝜌𝑠𝑛𝑜𝑤with an ESC-30 snow tube 

(Pomeroy and Gray, 1995). Survey specific mean 𝜌𝑠𝑛𝑜𝑤 was calculated and its uncertainty (∆𝜌𝑠𝑛𝑜𝑤) was estimated 

via error propagation. Assuming an ℎ𝑠  uncertainty (∆ℎ𝑠) of 1.27 cm (ruler had increments of inches) and snow mass 185 

uncertainty (∆𝑚𝑎𝑠𝑠) of 5% (0.05 ∙ 𝑚𝑎𝑠𝑠) the uncertainty of individual 𝜌𝑠𝑛𝑜𝑤 observations were consolidated to a 

survey scale ∆𝜌𝑠𝑛𝑜𝑤 as: 
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∆𝜌𝑠𝑛𝑜𝑤 =
√∑ (𝜌𝑠𝑛𝑜𝑤,𝑖∙√(

∆ℎ𝑠
ℎ𝑠,𝑖

)
2

+(
0.05∙𝑚𝑎𝑠𝑠𝑖

𝑚𝑎𝑠𝑠𝑖
)

2
)

2

𝑖=𝑛
𝑖=1

𝑛
 ,       (4) 

where 𝑖 indexes the individual 𝜌𝑠𝑛𝑜𝑤 observations, and its constituent terms, for the respect surveys. 

2.3 Gamma 𝑺𝑾𝑬 Processing  190 

To relate gamma emissions observed from a moving passive sensor to a spatially distributed 𝑆𝑊𝐸 is a signal to noise 

and interpolation challenge. Two main factors need to be considered: the first being the temporal stability of a gamma 

observation, and the second the footprint it represents. At one second integration intervals, and a scintillation crystal 

volume of 1 L, count rates are often unstable and, based on the flight profiles employed, each observation will have 

overlapping footprints in longitudinal and lateral dimensions.  195 

2.3.1 Count Rate Stability 

To understand the temporal stability of this system, 𝐶 observations were analysed at start of every flight when the 

system was static on the ground surface. The mean 𝐶 for a 75 second interval was assumed to be the true 𝐶 of the 

surface. Aggregating the 1 second 𝐶 with rolling means between 1 and 75 seconds simulates different integration 

times. Computing the coefficient of variation (CV) for the difference in integration time mean and the 75 second mean 200 

was used to articulate a relationship between signal stability and integration time. This provided a means to estimate 

the integration period required to establish a stable 𝐶. 

2.3.2 Spatial Representation 

A drop-in-the-bucket (DIB) oversampling scheme was used to resolve a gridded product with minimal noise (Long et 

al., 2019) as common grids are needed to compare observed and estimated 𝑆𝑊𝐸, and determine errors when varying 205 

spatial resolution. Spatial interpolation techniques such as kriging or spline interpolation, were not implemented in 

this work to avoid associated biases and artefacts and rather focus on the implications of spatial resolution and number 

of individual observations aggregated. For DIB, a dense grid was generated for the respective areas of interest with 

resolutions ranging between 10 and 50 m at 2.5-m intervals. For each grid resolution the mean 𝐶, and number of 1 

second integrations included, at each grid point are computed from all points within a radius equivalent to the distance 210 

between the centre and corner of the raster pixel. Upon computation of the respective 𝐶 for the various resolutions, 

and snow and snow-free situations, the 𝐶 values were input to equation 1 to compute 𝑆𝑊𝐸. Henceforth all 𝑆𝑊𝐸 

estimated from gamma observations are denoted as 𝑆𝑊𝐸𝑔𝑎𝑚 . The 𝑆𝑊𝐸𝑟𝑒𝑓  was resampled to the respective 

resolutions to allow for direct comparison with the 𝑆𝑊𝐸𝑔𝑎𝑚. 
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2.3.3 Gamma and Lidar Data Fusion 215 

A completely non-contact UAV based 𝑆𝑊𝐸 (𝑆𝑊𝐸𝑔𝑎𝑚−𝑙𝑖𝑑) was made by fusing fine resolution ℎ𝑠 from lidar data and 

density from 𝑆𝑊𝐸𝑔𝑎𝑚. A field-scale mean snow density (𝜌𝑠𝑛𝑜𝑤) was quantified from a field-scale mean gamma 𝑆𝑊𝐸 

(𝑆𝑊𝐸𝑔𝑎𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) and an independent field-scale mean snow depth (ℎ𝑠

̅̅ ̅̅ ) from lidar as, 

𝜌𝑠𝑛𝑜𝑤 =
𝑆𝑊𝐸̅̅ ̅̅ ̅̅ ̅𝑔𝑎𝑚

ℎ̅𝑠
.            (5) 

The 𝜌𝑠𝑛𝑜𝑤  in turn was reapplied to the spatially variable ℎ𝑠  from the UAV-Lidar to estimate spatially distributed 220 

𝑆𝑊𝐸𝑔𝑎𝑚−𝑙𝑖𝑑 as, 

𝑆𝑊𝐸𝑔𝑎𝑚−𝑙𝑖𝑑 = ℎ𝑠 ∙ 𝜌𝑠𝑛𝑜𝑤.          (6) 

3 Results  

3.1 Snow density uncertainty 

The uncertainty of 𝑆𝑊𝐸𝑟𝑒𝑓  was compromised of observational errors associated with density and depth observations. 225 

For the respective manual snow surveys the mean 𝜌𝑠𝑛𝑜𝑤 and uncertainty was summarised in Table 2. No meaningful 

relationships between ℎ𝑠 -𝜌𝑠𝑛𝑜𝑤  (Figure 1) were observed, so survey average values of 𝜌𝑠𝑛𝑜𝑤  are deemed to be 

appropriate.  

 

Table 2. Snow density mean and uncertainty from Eq. 4 for respective snow surveys. 230 

Survey 𝜌𝑠𝑛𝑜𝑤 (𝑘𝑔 𝑚−3) ∆𝜌𝑠𝑛𝑜𝑤(𝑘𝑔 𝑚−3) 

Fall Stubble 256 25 

Spring Stubble 312 23 

Grassland 249 17 
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Figure 2: Manual snow survey density (kg m-3) versus snow depth (cm) observations (top) with mean value (horizontal solid 

line) for respective surveys (colour). 

3.2 Count Rate Stability 235 

Stable count rates are needed to ensure confidence that meaningful observations are being collected. For this, the 

primary factor, specific to the volume of the scintillation crystal, was the integration time. Operating the spectrometer 

on the ground prior to takeoff demonstrated the influence of integration time (Figure 3). By varying the integration 

time with application of different rolling mean windows it was evident that the coefficient of variation (CV) decreases 

logarithmically with integration time while mean bias was relatively stable. The longer the integration time the lower 240 

the CV. An inflection point in integration time occurs near 20 seconds where CV was between 0.01 and 0.02. Longer 

integration times have a decreasing rate of CV change.  

 

 

 245 
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Figure 3: Total count coefficient of variation for static operation, prior to all survey flights, of UAV passive gamma ray 

spectrometer with varying integration time. 

3.3 Errors versus Spatial Resolution 

The root mean square error (RSME), mean bias, and coefficient of determination (r2) errors of 𝑆𝑊𝐸𝑔𝑎𝑚  versus the 250 

resampled 𝑆𝑊𝐸𝑟𝑒𝑓  are shown in Figure 4. The RMSE and r2 improve as the spatial resolution increases while the 

mean bias remains static. An important dynamic was the influence of flight characteristics on survey errors. The 

surveys conducted at the stubble site, which had higher altitudes, wider line spacing and higher speed clearly show 

higher errors than the slower, lower, and narrow flight spacing of the grassland surveys. The median number of points 

for each raster cell for the bare and snow-covered surveys are also noted. For grassland surveys, the 22.5 m spatial 255 

resolution was associated with approximately 20 gamma observations. In contrast for stubble surveys, a spatial 

resolution of 35 m is required before the median number of observations reaches a similar 20 observation target. The 

22.5 m resolution coincides with an inflection point for the RMSE and r2 metrics for the grassland survey. The RMSE 

and r2 values decrease between 10 and 22.5m resolutions and thereafter the rate of change slows. Variability in the 

grassland metrics begins to appear at the 22.5 m resolution and was explained by the overall extent of the area 260 

increasing and decreasing as pixels progressively increase in size and entire rows/columns on the edges of the extent 

are dropped progressively. 
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Figure 4: The root mean square error (mm: RMSE), mean bias (mm), coefficient of determination (r2), and median number 

of count rate observations versus raster resolution for all surveys. RMSE, mean bias, and r2 are computed relative to 265 
resampled 𝑺𝑾𝑬𝒓𝒆𝒇. The 22.5-m and 35-m spatial resolutions are highlighted by the respective vertical black lines.  

The scatter plot between the resampled 𝑆𝑊𝐸𝑟𝑒𝑓  and 𝑆𝑊𝐸𝑔𝑎𝑚  in Figure 5 for 22.5-m and 35-m resolutions 

demonstrates the positive and negatives biases of fall and spring stubble surveys respectively. The grassland 

relationship was stronger with limited bias in the 𝑆𝑊𝐸𝑔𝑎𝑚 , though the variability was muted relative to the resampled 

𝑆𝑊𝐸𝑟𝑒𝑓 .  270 
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Figure 5: UAV-lidar and snow density survey reference versus UAV-gamma estimated snow water equivalent for 22.5 and 

35 m resolutions for respective surveys with 1:1 line plotted. Vertical errors bars are the propagated uncertainty of the 

𝑺𝑾𝑬𝒓𝒆𝒇. 

Comparisons of the spatial features discernible for the 22.5 m resolution 𝑆𝑊𝐸𝑔𝑎𝑚 and 𝑆𝑊𝐸𝑟𝑒𝑓 , and in original 0.25-275 

m resolution, visualise the ability of the technique to discern 𝑆𝑊𝐸 features (Figure 6). The negative bias of the fall 

stubble 𝑆𝑊𝐸𝑔𝑎𝑚  was evident and with little spatial coherence to the resampled 𝑆𝑊𝐸𝑟𝑒𝑓 . While muted and nosier than 

the resampled 𝑆𝑊𝐸𝑟𝑒𝑓  the diagonal snowdrift features in the southeast of the domain was captured by the gamma in 

spring stubble survey. The grassland survey demonstrates the most coherence between the 22.5 m resampled 𝑆𝑊𝐸𝑟𝑒𝑓  

and 𝑆𝑊𝐸𝑔𝑎𝑚. The snowdrifts on the north and south are evident as well as increases in 𝑆𝑊𝐸 in the depressions in the 280 

centre of the domain. Overall, the variability of the 𝑆𝑊𝐸𝑔𝑎𝑚 was much more muted than the 𝑆𝑊𝐸𝑟𝑒𝑓 . 
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Figure 6: Snow water equivalent maps at 22.5 m resolution from UAV-gamma technique (top), 22.5 m resampled UAV-

lidar and snow density survey reference, 𝑺𝑾𝑬𝒓𝒆𝒇 (middle) and 0.25 m 𝑺𝑾𝑬𝒓𝒆𝒇. 285 
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3.4 Statistical Properties of 𝑺𝑾𝑬 Distributions 

Statistical properties of the 𝑆𝑊𝐸 distributions, specifically the mean and CV of 𝑆𝑊𝐸 for the respective survey areas 

were computed from the 22.5-m resolution 𝑆𝑊𝐸𝑔𝑎𝑚 and 𝑆𝑊𝐸𝑟𝑒𝑓 , as well as the 0.25-m resolution 𝑆𝑊𝐸𝑟𝑒𝑓  (Table 

3). The mean 𝑆𝑊𝐸𝑟𝑒𝑓  was similar for the 22.5 and 0.25 m resampling as a common survey area was used. The mean 

𝑆𝑊𝐸’s provide coarse scale metrics analogous to traditional airborne gamma survey metrics. The mean 𝑆𝑊𝐸𝑔𝑎𝑚 for 290 

grassland was within the uncertainty bound of the 𝑆𝑊𝐸𝑟𝑒𝑓  (from Eq. 3) at 22.5-m and 0.25-m resolutions. For fall 

and spring stubble the mean 𝑆𝑊𝐸𝑔𝑎𝑚 , except for fall 22.5 m resolution 𝑆𝑊𝐸𝑟𝑒𝑓 , was outside of the uncertainty range. 

The smaller magnitude of 𝑆𝑊𝐸, and larger uncertainty, for stubble surveys reduces confidence in these surveys. The 

CV of the 0.25-m resolution 𝑆𝑊𝐸𝑟𝑒𝑓  was the highest of all the surveys (ranging between 0.3 and 0.43). The resampled 

22.5 m 𝑆𝑊𝐸𝑟𝑒𝑓  the CV drops (between 0.14 and 0.29). Other than Fall stubble, which had a slighter higher CV for 295 

𝑆𝑊𝐸𝑔𝑎𝑚 at 0.15 versus 𝑆𝑊𝐸𝑟𝑒𝑓  at 0.14, the 𝑆𝑊𝐸𝑔𝑎𝑚 was lower than the 22.5 m 𝑆𝑊𝐸𝑟𝑒𝑓 , ranging between 0.10 and 

0.15. 

Table 3. Snow water equivalent site summary statistics for gamma (22.5 m) and lidar based (22.5 m and 0.25 m) resolution 

𝑺𝑾𝑬 

 𝑆𝑊𝐸𝑔𝑎𝑚 (22.5 m) 𝑆𝑊𝐸𝑟𝑒𝑓  (22.5 m) 𝑆𝑊𝐸𝑟𝑒𝑓  (0.25 m) 

Survey Mean 

(mm)  

CV Mean 

(mm)  

CV Uncertainty 

(mm) 

Mean 

(mm) 

CV Uncertainty 

(mm) 

Fall Stubble 38.1 0.15 52.9 0.14 13.9 53.0 0.30 13.9 

Spring Stubble 83.9 0.10 66.6 0.21 16.5 66.7 0.36 16.5 

Grassland 94.3 0.12 81.2 0.23 13.8 81.8 0.43 13.9 

 300 

To compare the statistical distributions of the different SWE representations, density plots are shown in Figure 7. All 

22.5-m resolution data had lower CVs than the 0.25-m resolution and were also lower than the reference distribution. 

Resampling of the 0.25-m resolution observations to coarser scales meant similar mean values but reduced variability. 

From Table 3, the CV of 22.5 m 𝑆𝑊𝐸𝑟𝑒𝑓  is 53% of the 0.25 m 𝑆𝑊𝐸𝑟𝑒𝑓 . The 𝑆𝑊𝐸𝑔𝑎𝑚 means are higher (Grassland 

+12.5 mm and Spring Stubble +17.2 mm) or lower (Fall Stubble -14.9 mm) than the 0.25m 𝑆𝑊𝐸𝑟𝑒𝑓  with the greatest 305 

departures for the stubble sites. Only the Grassland 𝑆𝑊𝐸𝑔𝑎𝑚 was within the uncertainty bounds of the corresponding 

0.25 m 𝑆𝑊𝐸𝑟𝑒𝑓 . Variability of 𝑆𝑊𝐸𝑔𝑎𝑚was also lower with the mean CV 34% of the corresponding 0.25 m 𝑆𝑊𝐸𝑟𝑒𝑓  

areas. The grassland 𝑆𝑊𝐸𝑔𝑎𝑚  demonstrates greater variability than the stubble surveys. The grassland 𝑆𝑊𝐸 

distribution shows a bimodal distribution that was evident for all resolutions and observation techniques. Regardless 

of technique utilized it was apparent that the 22.5-m resolution data struggles to accurately capture the 310 

statistical/spatial variability of the 0.25 m 𝑆𝑊𝐸𝑟𝑒𝑓  data. 
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Figure 7: Probability density plots of snow water equivalent for the different surveys (rows) and estimation 

method/resolution (colour). 

3.5 Fine resolution 𝑺𝑾𝑬 from Gamma-Lidar Fusion 315 

Combing lidar-derived ℎ𝑠  and 𝑆𝑊𝐸𝑔𝑎𝑚  observations of grassland demonstrates a workflow to estimate 𝑆𝑊𝐸 at a 

0.25-m resolution using completely remote sensing methods that require no manual snow survey (Figure 8).The 

average value of 𝑆𝑊𝐸𝑔𝑎𝑚−𝑙𝑖𝑑  was 95 mm while the corresponding 𝑆𝑊𝐸𝑟𝑒𝑓  (Table 3) was 82 mm and the RMSE 

between the two was 14.3 mm. The difference map in Figure 8 between 𝑆𝑊𝐸𝑟𝑒𝑓  and 𝑆𝑊𝐸𝑔𝑎𝑚−𝑙𝑖𝑑  demonstrates that 
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the fusion approach overestimated 𝑆𝑊𝐸 as function of snow depth owing to a constant 𝜌𝑠𝑛𝑜𝑤  being applied. The 320 

probability density plot of the 𝑆𝑊𝐸𝑔𝑎𝑚−𝑙𝑖𝑑 in (Fusion/0.25m in Figure 7) demonstrates a very similar distribution as 

the 𝑆𝑊𝐸𝑟𝑒𝑓( Lidar/0.25m in Figure 7) for the Grassland survey versus the Fall and Spring stubble surveys which 

showed biases with respect to the shifted peaks. 

 

Figure 8: Fine resolution (0.25 m) snow water equivalent (𝑺𝑾𝑬) estimated from UAV-lidar snow depth and UAV-gamma 325 
𝑺𝑾𝑬 fusion (top left) versus reference UAV-lidar and manual snow survey density 𝑺𝑾𝑬 (top right) and their difference 

(𝑺𝑾𝑬𝒈𝒂𝒎−𝒍𝒊𝒅 - 𝑺𝑾𝑬𝒓𝒆𝒇: bottom) for the grassland site. 
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 4 Discussion 

4.1 Accuracy, Spatial resolution, Flight characteristics, and Snowpack Scaling interactions 

Relating the error metrics between spatial resolution and respective flights profiles demonstrates the many challenges 330 

of UAV-borne gamma spectrometry to capture 𝑆𝑊𝐸  spatial variability. Temporally integrating the spectral 

observations is a common approach to stabilise the gamma signal and the minimum integration time was identified as 

an inflection point at 20 seconds in Figure 3. 10 to 100 m length scales are typically needed to capture the spatial 

variability of a prairie snow cover, with a +30 m “fractal cutoff” length scale reported to overcome autocorrelation 

effects on flat open Canadian Prairie fields (Shook and Gray, 1996). For UAV operations, a 20 second integration 335 

time created long and narrow elliptical footprints (i.e., grassland flight footprints were approximately 15 m wide and 

95 m long) that exceeded the 30 m fractal cutoff reported for analogous snowfields (Shook and Gray, 1996). To avoid 

elliptical footprints, a DIB approach to meet the integration threshold was applied that resulted in similar areal extents 

but circular shapes (grassland flights give approximate footprints with a radius of 21.6 m). The stabilisation of the 

relation between error metrics and resolution occurred at 22.5 m and 35 m resolutions for grassland and stubble surveys 340 

respectively, which aligns with the integration time threshold. Error stabilisation for grassland at 22.5 m was associated 

with a 16.0 mm RMSE, -0.14 mm bias and 0.87 r2. For the 35 m interval stubble surveys, the RMSE’s were similar 

(15.9 mm and 19.0 mm for fall and spring stubble, respectively) but the larger biases (0.36 mm and -0.24 mm for fall 

and spring stubble, respectively) and lower r2 (0.17 and 0.47 for fall and spring stubble respectively) imply that 

variability was not being captured as well. While there was a difference in GPS navigation accuracy between the 345 

grassland and stubble flights (Sec 2.2.2) the much larger signal footprint and its high sensitivity to flight altitude 

negates this as a significant source of error. These interactions demonstrate the scaling challenges of trying to extract 

spatial information on 𝑆𝑊𝐸 from UAV-gamma. The slower, lower and denser flights lines over the grassland reduced 

the footprints enough to begin to converge on the underlying 𝑆𝑊𝐸 variability while stubble flight footprints and 𝑆𝑊𝐸 

variability did not align. The flight characteristics required to meet specific resolution objectives will be sensor specific 350 

and a proposed approach to guide flight planning best practices is articulated in the appendix B. 

4.2 Non-contact fine resolution 𝑺𝑾𝑬 with sensor fusion 

An ongoing need for snow hydrology is to be able to remotely sense wind-redistributed snowpack 𝑆𝑊𝐸  at fine 

resolutions without resorting to supplementary surface observations. The large gamma footprints relative to snowpack 

scale variability, as discussed, challenge the use of gamma techniques alone to directly measure 𝑆𝑊𝐸  spatial 355 

variability. Notwithstanding, UAV-borne gamma spectrometry does have value in fusion with fine resolution snow 

depth estimates from lidar, or possibly other approaches such as UAV-based structure from motion, providing 

opportunities for this tool to advance remote snowpack measurement and mapping.  

The overestimation of 𝑆𝑊𝐸 can be partly explained by a melt event earlier in the winter. Shallow snow, with less 

cold content to buffer a positive energy balance and lower liquid water holding capacity to absorb snowmelt, 360 

experience relatively greater melt and snowpack outflow than the deeper drifts (Gray and Landine, 1988; Fernández, 

1998; Pomeroy et al., 1998). The 𝑆𝑊𝐸𝑟𝑒𝑓  was based upon a snow depth derived from a surface difference, and so will 
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not reliably measure snowpack density changes due to meltwater redistribution and refreezing. In contrast the 

𝑆𝑊𝐸𝑔𝑎𝑚 will still be influenced by the presence of this refrozen water. The complexity of snow mid-winter melt snow 

processes, and the inability to map the accumulation, redistribution, and refreezing of the meltwater non-destructively 365 

and independently at the snow-soil interface, complicates validation of 𝑆𝑊𝐸𝑔𝑎𝑚−𝑙𝑖𝑑  with respect to the depth based 

𝑆𝑊𝐸𝑟𝑒𝑓 .  

The ability to discriminate between water or ice stored in the snowpack and that which infiltrated or runoff, can 

be important depending upon the research question or application. In shallow snowpacks such as found in the Canadian 

Prairies, midwinter melts can be responsible for hydrologically significant changes in the snow and snow-soil 370 

interface, UAV-gamma is not likely to not observe changes in SWE plus near surface soil water/ice mass. This creates 

challenges in situations where SWE estimates are important but also creates opportunities. For instance, quantifying 

the total water change in the snow and near surface water/ice is incredibly valuable for estimating end of winter 

changes in water stored in soil and snowpack. The total water input available from midwinter melts and snow 

accumulation for soil moisture recharge and runoff is critical to inform agricultural production potential (Harder et 375 

al., 2019) and spring freshet (He et al., 2023) in this sub-humid environment. Thus, a method that quantifies the net 

input of water to soil water balance and runoff potential, that an end of winter snow specific observation would miss, 

has great value. Application of this 𝑆𝑊𝐸𝑔𝑎𝑚−𝑙𝑖𝑑  approach elsewhere will need to be cognizant of the saturation limits 

of gamma methods for changes in water present in both the snowpack and near surface and should not be applied to 

deep snow environments without further testing. 380 

4.3 Spatial variability of snow 

The spatial variability of SWE can be described statistically (Steppuhn and Dyck, 1974) which permits calculation of 

snow cover depletion curves (Pomeroy et al., 1998). Specifically, a two-parameter log-normal distribution is often 

observed in shallow snow situations (DeBeer and Pomeroy, 2010; Essery and Pomeroy, 2004a; Faria et al. 1999; 

Janowicz et al., 2003; Shook and Gray, 1996), and provides a theoretical basis to predict snow cover depletion. 385 

Development of tools that can reliably estimate these distribution parameters from remote sensing, such as with the 

UAV-based sensors assessed herein, would greatly improve the capacity to understand and model prairie snowmelt 

dynamics. The large differences between the 𝑆𝑊𝐸 distribution in response to resolution and lidar or gamma-based 

techniques (Figure 7) complicate the ability to parametrise statistical representation of SWE directly from gamma 

observations. The log-normal approaches were originally developed from snow survey datasets in uniform landscape 390 

units (Steppuhn, 1975). DeBeer and Pomeroy (2010) needed to consider landscape classes, based on topographic 

position and shallow versus deep snow classes, in order to fit observations, in a small mountain basin, to a log-normal 

distribution. Faria et al., (2000) found deviations from the log-normal distribution due to inhomogeneous melt in a 

boreal forest. The more detailed and spatially distributed information now available from UAV-based sensors, which 

capture a wide range of landscape features equally well, provide more information than simple statistical approaches 395 

within landscape units can summarise. This work highlights the need to consider how fine resolution distributed snow 

information in the prairies may need to be discretized to meet the assumptions of log-normal statistical approaches or 

if different statistical approaches are needed to estimate snow cover depletion over field scales. 
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4.4 Limitations 

A key advantage of UAV versus airborne deployments is that the low and slow operations with precise positioning 400 

will allow precise spatial co-registration of gamma emission observations from different observation intervals. 

Challenges in the data processing of the observations were due to gaps and low precision in the available positioning 

data. Both the uncertainty of GPS positioning for survey data <3 m in addition to the unquantified difference between 

flight lines associated with the snow-free and snow-covered flights contribute differences that complicate absolute 

positioning and consequently the collocation of observations between flights, and how they relate to the absolute 405 

position of surface features. The footprints of individual observations with these flight profiles are greater than the 

uncertainties associated with standalone GPS observations and are not expected to have a significant influence on 

results presented herein. Conducting UAV operations at lower altitudes or from ground based mobile operations will 

require more precise absolute spatial positioning to take advantage of smaller footprints. 

The airborne, radon, and cosmic corrections often implemented with passive gamma spectrometry were not 410 

implemented here. The near surface deployment of the sensor meant corrections would have a minimal influence on 

count rates. Identical flight profiles and relative altitudes imply that airborne corrections should provide the same 

magnitude of correction between surveys and as the 𝑆𝑊𝐸 estimation is based on a ratio between snow-covered and 

bare surface emissions differences that would be removed through this normalisation. Radon concentrations in the 

atmosphere vary over time and may be a source of uncertainty. Future work will need to evaluate this assumption and 415 

test the influence of airborne and radon corrections.  

The attenuation relationship to relate 𝑆𝑊𝐸 to emissions used here was based on total gamma count rates. This 

differs from the equation used in the NOAA program which takes advantage of spectral information to compute a 

𝑆𝑊𝐸 from total counts as well as radioisotope specific emissions that differ in their response to water attenuation in 

an empirical approach (Tuttle et al., 2018).  An attempt was made to use a similar radionuclide-specific approach. 420 

This proved unsuccessful as the noise increase associated with isolating specific radionuclide concentrations at one 

second integration intervals drowned out the relatively subtle 𝑆𝑊𝐸 signal. To avoid the empirical aspects of these 

derived constants and increase the signal to noise ratio, the generic total count rate attenuation proved to be much 

more appropriate. Further work may benefit from revisiting the 𝑆𝑊𝐸 attenuation with respect to specific radioisotopes 

in a UAV-gamma spectrometry application. 425 

A challenge of this approach was capturing the variability of 𝑆𝑊𝐸  which may be a consequence of gamma 

emission mixing within the footprint. The 𝑆𝑊𝐸𝑟𝑒𝑓  quantifies isolated drifts that do exceed the 300 mm 𝑆𝑊𝐸 that is 

the upper limit of 𝑆𝑊𝐸 detection in airborne applications. Aggregation to 22.5 m resolution in which portions of the 

snowpack can have 𝑆𝑊𝐸 > 300 mm implies integrating observations across a large footprint that will under-sample 

the high 𝑆𝑊𝐸 locations. Further refinements of the footprint with nearer surface flight altitudes are needed to test this 430 

feedback.  

Geo-statistical interpolation techniques are the typical approach to translate irregular point observations to 

regularised grids. Such methods were avoided in this analysis as the interplay between integration intervals and spatial 

resolutions, a defining feature of passive radiometric signal to noise challenges, needed direct consideration. 

Interpolation techniques all have respective strengths and weaknesses, and here statistical artefacts were avoided. 435 
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Opportunities to address the signal-to-noise challenges may reside in applying interpolation techniques to further 

refine these results. 

To the authors knowledge there have been no other UAV-borne gamma spectrometer observations of 𝑆𝑊𝐸 and this 

work is the first to articulate the challenges associated with using differential gamma emissions to try and resolve the 

spatial variability of 𝑆𝑊𝐸. Many future research opportunities exist to refine 𝑆𝑊𝐸𝑔𝑎𝑚  estimates from improving 440 

spatial resolution and precision, evaluating airborne corrections, assessing value of gamma spectral information versus 

bulk count rates, testing the upper limit of 𝑆𝑊𝐸 detection, and exploiting interpolation techniques.  

5 Conclusions 

Remotely sensing 𝑆𝑊𝐸  at fine resolution is an ongoing need to advance snow hydrology. Large-scale 𝑆𝑊𝐸 

monitoring with airborne gamma methods has a long history whilst UAV-deployable passive gamma spectrometer 445 

systems are only recently coming to market. The ability to remotely sense the spatial variability of 𝑆𝑊𝐸 with an UAV-

based passive gamma spectrometer was assessed over two snow seasons.  The UAV-gamma system was able to 

estimate areal average of 𝑆𝑊𝐸 (94.3 mm) for a 2.5-hectare Grassland study site within the uncertainty of a reference 

dataset based upon UAV-lidar and snow survey observations (81.8 ±13.9 mm). With a drop in the bucket aggregation 

method to assess spatial resolution versus errors it became evident that flight profile characteristics exert significant 450 

controls on the ability to resolve the spatial variability of 𝑆𝑊𝐸. Flight profiles in the first season of observation (5 m 

s-1 velocity, 15 m altitude and 15 m line spacing) struggled to capture the underlying 𝑆𝑊𝐸 variability within the 

uncertainty of the refence 𝑆𝑊𝐸 dataset.  Updated flight profiles in the second season of observation (4 m s-1, 8 m 

altitude and 8 m line spacing) demonstrated an improved ability to quantify the spatially variability of 𝑆𝑊𝐸 down to 

22.5 m spatial resolution (RMSE: ±16 mm, r2: 0.87). Clear challenges remain in capturing 𝑆𝑊𝐸 variability with the 455 

flight profiles tested, but they do have value in informing best practices moving forward. A fusion of gamma-based 

𝑆𝑊𝐸 and independent datasets of UAV-lidar derived snow height has been identified as an approach to remotely 

sense 𝑆𝑊𝐸 at a fine (0.25 m) spatial resolution with an RMSE of ±14.3mm with respect to the reference 𝑆𝑊𝐸 dataset. 

Ongoing work is still needed to evaluate the ability to resolve 𝑆𝑊𝐸 at even lower and slower flight profiles which 

will introduce higher navigation precision demands. This work demonstrates some of the challenges of UAV-based 460 

gamma 𝑆𝑊𝐸 but also articulates the opportunities available to improve remote sensing of the spatial variability of 

𝑆𝑊𝐸 for research and operational data collection applications. 

Appendix A: Raw Count Rates 

Figure A1 shows an example of the raw count rates for the grassland surveys. The count positioning reveals the flight 

paths and the irregularity in point positioning. The reduction of count rates by the snow cover is clearly visible from 465 

the much higher count rates related to the bare soil surface before snow accumulation versus the snow covered 

situation at the maximum of snow accumulation before snowmelt. 



21 

 

 

Figure A1: Raw count rates (color) and positioning for the grassland study site before snow accumulation (top) and at peak 

accumulation (bottom). 470 

Appendix B: Flight Planning Best Practices for UAV-based gamma SWE Observations 

Balancing 𝑆𝑊𝐸 observation resolution and UAV platform limitations is the main challenge to employing UAV-based 

gamma methods to quantify the spatial variability of 𝑆𝑊𝐸. Variations in flight line spacing, altitude, and velocity 

influence the scale of resolvable features and flight planning best practises to inform future operations can be gleaned 

from this experience. Generally, two thirds of gamma counts originate from a footprint area twice the altitude in width, 475 

and twice the altitude plus distance travelled in length (Ward, 1981). Based on flight profiles this means the 

approximate footprints for stubble profiles are 1050 m2 (30m resolution) and for grassland profiles are 320 m2 (16m 

resolution). The relationship between flight altitude, line spacing, and velocity and resolution associated with a 20 

second integration time is simulated applying the (Ward, 1981) footprint approximation in a drop in the bucket (𝐷𝐼𝐵) 

approach (Figure B1). The simulated resolutions range from 4.5 m with a flight profile with a 1 m s-1 velocity, 1 m 480 

altitude, and 1 m altitude to a 65 m resolution with a flight profile with a 10 m s-1 velocity, altitude of 15 m and line 

spacing of 15 m. The stubble flight profile aligns with a 53 m footprint resolution which demonstrates the challenges 

the error versus resolution patterns demonstrated in Sec 4.3 which had high errors up to the maximum 50m resolution 

tested. In contrast the grassland profile aligns with a 30 m footprint resolution which aligns with the plateauing of 
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errors in the 20-30 m resolution range (Figure 4). The relative implications of flight profiles on resolvable features 485 

can be estimated from the interaction visualised in Figure B1. In uniform landscape classes on the Canadian Prairies, 

sampling needs to span lengths scales between 30 to 100 metres to capture the spatial variability of 𝑆𝑊𝐸 (Shook and 

Gray, 1996), it is apparent that the grassland flight profile employed is on the edge of capturing 𝑆𝑊𝐸 variability 

appropriately. Further tests of lower, slower and closer flight lines are needed. At altitudes approaching 1 m hardware 

demands increase as real-time terrain following guidance systems, and RTK precision is needed for navigation and 490 

position logging. The system employed in this study did not have these features and so these profiles could not be 

tested. The influence of atmospheric attenuation will vary with altitude and is not considered in this conceptual flight-

profile versus resolution simulation. 

 

Figure B1: Relationship between flight altitude (vertical axis), line spacing (horizontal axis), and platform velocity (panels) 495 
versus estimated resolution (fill color) for a 20 second integration time. Contour lines of 5, 10, 20 and 40m resolutions and 

the points corresponding to the stubble and grassland flight profiles are plotted. 
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