Coccolithophorids precipitate carbonate in clumped isotope equilibrium with seawater

Alexander J. Clark¹, Ismael Torres-Romero¹, Madalina Jaggi¹, Stefano M. Bernasconi¹, and Heather M. Stoll¹

¹Department of Earth Sciences, ETH Zürich, Switzerland

Correspondence to: Alexander J. Clark (aclark@ethz.ch)

Abstract. Numerous recent studies have tested the clumped isotope (Δ₄₇) thermometer on a variety of biogenic carbonates such as foraminifera and bivalves and showed that all follow a common calibration. While the sample size requirements for a reliable Δ₄₇ measurement have decreased over the years, the availability and preservation of many biogenic carbonates is still limited and/or require substantial time to be extracted from sediments in sufficient amounts. We thus determined the Δ₄₇-temperature relationship for coccolith carbonate, which is abundant and often well-preserved in sediments. The carbon and oxygen isotopic compositions of coccolith calcite have limited use in palaeoenvironmental reconstructions due to physiological effects that cause variability in the carbon and oxygen isotopic values. However, the relatively limited data available suggest that clumped isotopes may not be influenced by these effects. We cultured three species of coccolithophores in well-constrained carbonate system conditions with a CO₂(aq) between 5 and 45 μM and temperatures between 6°C and 27°C. Our results agree with a previous culture study that there are no species- or genus-specific effects on the Δ₄₇-temperature relationship in coccolithophores and find that varying environmental parameters other than temperature also do not have a significant effect. Our coccolith-specific Δ₄₇-temperature calibration agrees within ±1°C of other biogenic carbonate calibrations yet all biogenic carbonate calibrations show a consistent offset of ≥2°C relative to the inorganic carbonate calibrations. Thus, all biogenic specific calibrations can be used interchangeably and must be used for the reconstruction of calcification temperatures in biogenic carbonates.

1 Introduction

Clumped isotope thermometry is a relatively new and increasingly used methodology for the reconstruction of paleotemperatures, palaeohydrology, diagenetic regimes, and as an isotopic tracer (see Huntington and Petersen, 2023 for a recent review). In a carbonate molecule, bonds between the rare isotopes ¹³C and ¹⁸O are thermodynamically preferred, leading to an increase in their abundance – denominated as “clumping” – with decreasing temperature. To measure this clumping, the carbonate is converted to CO₂ by reaction with phosphoric acid, and the excess abundance of ¹³C and ¹⁸O atoms (cardinal mass 47) in the released CO₂ relative to stochastic distribution is measured and reported as Δ₄₇ (Schauble et al., 2006; Eiler, 2007). In early studies, before the introduction of carbonate standardisation (Bernasconi et al. 2021), Δ₄₇ in different calibration
studies had widely variable relationships with temperature. However, more recent studies have shown that these discrepancies were caused by poor interlaboratory comparability (Bernasconi et al. 2018, 2021; Anderson et al. 2021). Based on these recent studies, Δ47 has a consistent relationship with temperature, independent from the origin of the carbonate, and its temperature dependence is well established empirically at a large range of temperatures (e.g., Anderson et al., 2021; Fiebig et al., 2021). The Δ47-temperature relationship is independent of the carbon and oxygen isotope composition of the fluid from which carbonates precipitate (Ghosh et al., 2006). Empirical calibrations between temperature and Δ47 have been established for temperatures between 0°C and 1100°C for inorganic carbonates (Kele et al., 2015; Bonifacie et al., 2017; Kelson et al., 2017; Müller et al., 2019; Anderson et al., 2021). Further empirical studies on biogenic carbonates, such as for foraminifera, coccoliths, gastropods, and bivalves, have found similar relationships between Δ47 and calcification temperature (Katz et al., 2017; Peral et al., 2018; Leutert et al., 2019; Piasecki et al., 2019; de Winter et al., 2022; Huyghe et al., 2022).

Apart from specific types of biogenic carbonates such as shallow-water corals (Spooner et al., 2016), juvenile bivalves (Huyghe et al., 2022), and brachiopods (Letulle et al., 2023), these biogenic calibrations all fall within the same confidence interval (Meinicke et al., 2020, Jautzy et al. 2020, Anderson et al. 2021; Daëron and Gray, 2023).

While most calibrations are consistent for inorganic and biogenic calcite, other methodological problems limit the overall use of clumped isotopes. The relative abundance of Δ47 to all isotopologues of CO2 is only ~45 ppm, which requires a sample in the range of 80 to 120 μg with Thermo-Fischer Kiel IV devices coupled to Thermo-Fischer 253 Plus mass spectrometers (Müller et al., 2017) to 2-10 mg for a single measurement with common acid bath systems (e.g. Ghosh et al., 2006; Kelson et al., 2017; Peral et al., 2018; Fiebig et al., 2021). As the analytical error in clumped isotope measurements is large compared to the natural variability, many replicates are needed to achieve an analytical uncertainty allowing meaningful interpretations in palaeoceanography (Bernasconi et al., 2021; Fernandez et al., 2017; Daëron, 2021). Sample size requirements are a major limiting factor for biogenic calcite with limited sample availability such as foraminifera from cores and core-tops or slow-growing molluscs (Leutert et al., 2019; de Winter et al., 2022; Huyghe et al., 2022). Coccoliths are a promising alternative as they are often found in greater abundance and have a better preservation potential than foraminifera (Berger, 1973; Subhas et al., 2019). The abundance of coccolith-associated-polysaccharides (CAP) both around and within the coccolith aid in protecting the coccolith calcite from dissolution and overgrowth, and remain in place for millions of years (Henriksen et al., 2004; Sand et al., 2014; Lee et al., 2016). Few anion substitutions and a lack of lattice defects on the coccolith surface further aid in a better preservation relative to foraminifera (Berman et al., 1993; Stoll et al., 2001; Frühlich et al., 2015; Walker et al., 2019).

Kinetic and disequilibrium effects due to the biological origin of the calcite, collectively known as vital effects, are known to affect the carbon and oxygen isotopic composition of coccolith calcite (Ziveri et al., 2003; Rickaby et al., 2010; Ziveri et al., 2012; Candelier et al., 2013; Hermoso et al., 2014; Stevenson et al., 2014; Hermoso et al., 2016, Katz et al., 2017). Initial studies find that multiple coccolithophore species with different carbon and oxygen vital effects do follow previous Δ47-temperature calibrations (Drury and John, 2016; Katz et al., 2017). However, these calibrations were performed before carbonate standardisation (Bernasconi et al., 2021) and have a limited number of replicate analyses, limiting their robustness.
and interpretation. Other aspects such as the dissolved inorganic carbon chemistry in the cultures and growth conditions as possible influences on Δ_{47} also still need to be examined.

To this end, three species of calcifying coccolithophores were cultured under controlled temperature and carbonate chemistry conditions. A temperature range of 21°C and CO$_{2(aq)}$ range of 40 μM was covered. Coccolithophores from the *Gephyrocapsa* genus were cultured between 6°C and 27°C, using the warm-adapted *G. oceanica* and the cold-adapted *G. muellerae*. Inter-genus vital effects were tested through comparison with *Calcidiscus leptoporus*. Finally, through comparison with a previous coccolith culture (Katz et al., 2017), inorganic (Anderson et al., 2021), biogenic (Peral et al., 2018; Meinicke et al., 2020; de Winter et al., 2022), and recalculated (Daëron and Gray, 2023) Δ_{47}-temperature calibrations, the potential need for a coccolith-specific calibration is assessed.

2 Materials and methods

2.1 Batch and continuous culture setup

Three monoclonal coccolithophore strains, *Gephyrocapsa oceanica* (RCC 1303), *Gephyrocapsa muellerae* (RCC 3370), and *Calcidiscus leptoporus* (RCC 1130) obtained from the Roscoff Culture Collection were cultured at ETH Zürich. *G. oceanica* is an abundant cosmopolitan coccolithophore species that has been found at temperatures between 12-27°C but favours temperatures above 20°C (Sett et al., 2014; von Dassow et al., 2021). *G. muellerae* is from the same genus as *G. oceanica*, favours colder and less saline conditions, and can grow at 6°C (von Dassow et al., 2021). *C. leptoporus* is a large coccolithophore, is especially abundant in low latitude upwelling settings, is resistant to dissolution and thus a major contributor to coccolith carbonate, and is known to have large isotopic vital effects (Thierstein and Young, 2004; Ziveri et al., 2007; Langer et al., 2012; Hermoso, 2014). Thus, the three strains were cultured to provide a temperature range of 21°C while also highlighting potential isotopic vital effects. *G. oceanica* was cultured in a turbidostat or continuous culture setup as seen in Fig. 1a, between a CO$_{2(aq)}$ of 5 and 45 μM for at least two temperatures (Table 1). All three strains were grown in at least two temperatures in batch culture setup as seen in Fig. 1b, and provide a wide range of temperatures (Table 1).

All cultures were carried out in Artificial Seawater (ASW), following Kester et al. (1967), as the basis of a K/2 medium (Keller et al., 1987). The final pH and DIC were adjusted through addition of HCl and Na$_2$CO$_3$ and covered a range of 40 μM of CO$_{2(aq)}$ values. A Tris buffer was not included for all experiments as this would interfere with the carbonate chemistry control. Prior to inoculation, the K/2 media was sterilized through an 0.2 μm Millipore Stericup filter.

Before starting the experiments, the strains were maintained at a constant temperature of 18°C and slowly acclimatized to the experimental temperature for at least 4-6 generations. Cultures were inoculated at cell densities of ~5000 cells mL$^{-1}$ for *G. oceanica* and *G. muellerae* and ~2000 cells mL$^{-1}$ for *C. leptoporus*.

Batch cultures were carried out in 1 or 2 L Nalgene polycarbonate sterile flasks with 50- and 100-mL headspace respectively and kept in a lit incubator set to the experimental temperature (± 0.1°C). For the duration of the experiments, the flasks were
rotated on a roller set at 10 rpm to reduce settling and allow for uniform light exposure, see Fig. 1b. *C. leptoporus* did not grow under turbulent conditions and was manually shaken every day (Houdan et al., 2006). The cultures were illuminated by LED lights on a sinusoidal 14/10-hour light/dark cycle and a maximum luminosity of 120 μmol photons m$^{-2}$ s$^{-1}$. Harvesting took place in a semi-continuous manner, where 80-90% of the total volume was harvested and then refreshed when the culture reached a set cell density (100-150 x 103 cells mL$^{-1}$). In general, we used a higher cell density compared to previous culturing studies due to the larger sample material requirement for clumped isotope measurements. Yet each strain was maintained in their early- to mid-exponential phase to prevent a reservoir effect and an enriching of the δ13C of the media (δ13C$_{DIC}$) relative to the initial conditions (Barry et al., 2012; Hermoso, 2014). Certain batch and continuous cultures had a higher cell density and significant drift in the DIC, pH, or CO$_2$(aq) over the course of the experiment and serve to test the sensitivity of vital effects to a varying carbon system.

Continuous cultures were performed in 1L (FMT 150/1000) or 3L (FMT 150/3000) photobioreactor (PBR) connected to a PP600 peristaltic pump and a GMS 150 gas mixing system (Photon Systems Instruments, Drásov, Czech Republic), see Fig. 1a. For a more detailed description of the experimental setup see Zhang et al. (2022). The strains were illuminated with LEDs on a 16/8-hour light/dark cycle with a maximum luminosity of 200 μmol photons m$^{-2}$s$^{-1}$. The optical density (OD), which is proportional to the cell density, was calibrated to a zero point before inoculation. With continuous OD monitoring and (sub-)daily measurements of the cell density, the OD could be set to a cell density threshold between 100 and 200 x 103 cells mL$^{-1}$.

If the OD exceeded this threshold, the peristaltic pump pumped fresh media into the PBR equivalent to 10% of the culture volume, and media from inside the PBR was pushed into the outflow bottle. Ambient air was first scrubbed of CO$_2$ and then passed through a gas mixing system with a set amount of CO$_2$ with a constant composition (δ13C = -14.36 ± 0.06‰ VPDB; δ18O = 19.85 ± 0.14‰ VSMOW). Thus, the pCO$_2$ was controlled and maintained at a constant level, which was checked at the beginning and end of each experiment. Temperatures were continuously controlled with a pH-temperature probe in the vessel, which kept a constant temperature with <0.1°C deviation through Peltier-elements at the bottom of the vessel.

Cell density and size were measured using a Z2 Coulter Particle Counter and Size Analyzer with an aperture size of 100 μm (Beckman Coulter, Inc., Brea, California, United States), which were used to determine growth rates. Cell counts were taken systematically every 24 hours with an extra measurement taken before and after harvest.

The net growth rate for batch cultures were calculated as:

$$\mu = \frac{\ln(N_t) - \ln(N_0)}{t-t_0}$$ \hspace{1cm} (1)

where N_t is the cell count at time t (in days) and N_0 is the initial cell count.

For continuous cultures, the dilution rate, which equates to the volume of the output (V_{out}) over the volume of the PBR over time t also needs to be considered:

$$\mu = \frac{\ln(N_t) - \ln(N_0) + \frac{V_{out}}{V_{PBR}}}{t-t_0}$$ \hspace{1cm} (2)
Cells were harvested by centrifugation at 4000 rpm for 5 minutes. The pellet containing coccoliths was rinsed with deionized water to remove traces of salts by 4 cycles of centrifugation and removal of the supernatant. Subsequently, the wet pellet of organic matter and coccoliths was transferred to a 2 mL vial, which was then stored at -20°C for later analysis.

At the beginning, at each harvest, and at the end of an experiment, 12 mL of water were sampled for pH and cell density measurement. Each aliquot was centrifuged once at 4000 rpm for 5 minutes, and the supernatant was used for DIC, δ¹³C_DIC, and δ¹⁸O_SW measurements. Some batch and continuous cultures were kept until higher cell densities were reached. In these cases, pH, DIC, and δ¹³C_DIC were measured more often to track the evolutions from initial conditions as a result of cell growth and cell density increase.

2.2 Sample cleaning

Contaminants from organic matter or sulphur compounds contained within carbonates are known to interfere with the clumped isotopic measurements for carbonates (Eiler and Schauble, 2004; Dennis and Schrag, 2010). In this study we used three methodologies for the removal of possible contaminants from the coccolith pellet. Initially the aliquots were dried in a 60°C oven for at least 4 hours to remove any remaining water that could dilute the cleaning reagents. Then one of three cleaning methodologies was performed.

One method used oxidation of the organic matter through reaction with a 18% H₂O₂ solution neutralized with NaOH to pH 8-9 following the protocol of Falster et al. (2018). The second methodology used a solution of 10% H₂O₂ neutralized with NH₃ to pH 8-9. For both solutions the pellets were reacted overnight at room temperature and then rinsed 4-5 times with milli-Q until a neutral pH of 7 was obtained. The third method used Total Lipid Extraction (TLE), following Matyash et al. (2008). The pellets were first reacted with 1 mL of isopropanol and homogenized through vortexing and sonication until there were no visible clumps. 3 mL of methyl-tert-butyl ether (MTBE) were added and the total solution was again vortexed. 1 mL of DI water was added and the sample was centrifuged at 4000 rpm for 5 minutes. This method removes the polar and apolar organic compounds from the pellet into the upper 4 mL of the solution. This supernatant is subsequently discarded, while maintaining a 1 mL of aqueous phase with the cleaned coccolith pellet at the bottom. When abundant organic matter was still visible after one cycle of cleaning, the procedure was repeated. After all three cleaning methodologies, the samples were dried at 60°C for at least 4 hours.

In order to confirm the effectiveness of the different cleaning methodologies and their effect on the coccolith carbonate, high resolution scanning electron images were taken using a JSM-7100F JEOL Scanning electron Microscope (SEM) at ScopeM, ETH Zürich, see Fig. S1.
2.3 Isotope measurements

2.3.1 Coccolith carbon, oxygen, and clumped isotopes

Carbon, oxygen, and clumped isotopes from the cultured coccoliths were measured on two ThermoFisher Scientific mass spectrometers, a MAT253 and a 253Plus, coupled to Kiel IV preparation devices as described in Müller et al. (2017). Aliquots of 110-180 μg of sample and carbonate standards (ETH-1, 2, 3, and IAEA C2) were measured with a Kiel device at 70°C. The samples were reacted for 300 seconds with three drops of 104% phosphoric acid, and the released CO₂ was immediately frozen in a liquid nitrogen (LN₂) trap kept at -190°C. After the sample was reacted fully, the first LN₂ trap is heated to -100°C, and the CO₂ gas was transferred through a 10 mm PorapakQ (50-80 mesh) to a second LN₂ trap kept at -190°C. The PorapakQ tubing was coated with Sulfinert 2000, stuffed with silver wool, and kept at -40°C to capture and eliminate possible organic contaminants. The second LN₂ trap was then heated to room temperature and measured using the Long Integration Dual Inlet (LIDI) protocol (Hu et al., 2014, Müller et al., 2017). The initial gas intensity of the sample gas is recorded and then immediately measured for 400 seconds, 40 cycles of 10 seconds. Subsequently, the reference gas is measured for the same duration starting at the same initial gas intensity. Before measuring, background scans at different beam intensities were carried out to determine the pressure dependent background on all beams (Bernasconi et al., 2013; Meckler et al., 2014). Using the Easotope software (John and Bowen, 2016) a pressure-sensitive baseline (PBL) correction was applied, and raw carbon and oxygen values were converted to VPDB using the Brand parameters as suggested by Daëron et al. (2016). Further, the raw vs accepted Δ⁴⁷ values for the carbonate standards and an empirical transfer function (ETF) were used to convert and normalize the sample Δ⁴⁷ data to the Intercarb carbon dioxide equilibrium scale (I-CDES; Bernasconi et al., 2021).

Each individual reported clumped isotope value consists of at least 10 replicates. Long-term accuracy and reproducibility of the Δ⁴⁷ measurements were evaluated based on monitoring of the IAEA-C2 international carbonate standard (MAT253: Δ⁴⁷ = 0.6385 ± 0.034, MAT253 Plus: Δ⁴⁷ = 0.6411 ± 0.026‰; 1σ) and fit within the accepted values (0.6409‰ ± 0.003‰; Bernasconi et al., 2021). Analytical errors are reported at the 95% confidence interval (Fernandez et al., 2017).

2.3.2 DIC and seawater carbon and oxygen isotopes

DIC and pCO₂ were measured on a Picarro G-2131-i Cavity Ringdown Spectrometer (CRDS; Picarro Inc, USA) coupled to a AS-D1 DIC-δ¹³C Analyzer (Apollo Scitech, USA). For DIC measurements, 3 mL of centrifuged media were taken and reacted within the AS-D1 analyser with 0.9 mL of a 3% H₂PO₄ and 7% NaCl solution. The absolute DIC concentration was found through quantification of the extracted CO₂ concentration as described in Deng et al. (2022). A threshold of ≤20 ppm pCO₂ for background synthetic air (80% N₂, 20% O₂; PanGas) was first defined. After at least 10 measurements of background air below this threshold, the stable baseline was reached and the sample is injected into the measuring chamber. As the extracted CO₂ flows into the measuring chamber, measurements of pCO₂ were taken every 3-5 seconds until all of the extracted CO₂ had passed through the measuring chamber, and the stable baseline was reached again. For the absolute DIC concentration, the integrated area of pCO₂ between the two baselines is plotted against the total DIC content. The latter is defined as the...
volume multiplied by the measured DIC. A Certified Reference Material (CRM), NOAA batch 186 with a known absolute DIC concentration of 2012 μM, is used for calibration. Through variation of the CRM volume, a range of integration areas and total DIC content was obtained and internally defined. Two secondary standards with calibrated DIC concentrations were also used. Each measurement was repeated twice with the same centrifuged media in quick succession to reduce CO₂ exchange with the atmosphere, which gave an average DIC and uncertainty for each measured sample.

For δ¹³C_DIC measurements, 1 mL of centrifuged media was acidified with 150μL of 104% H₃PO₄ in a He-flushed vial. Subsequently the δ¹³C_DIC was measured on a Gasbench II coupled to a Delta V Plus mass spectrometer (Thermo Fischer Scientific, USA). Two in-house NaHCO₃ standards dissolved in deionized water with δ¹³C_DIC values of -4.66‰ and -7.94‰ were used.

The oxygen isotopic composition of the seawater (δ¹⁸O_sw) was measured on a Picarro L2130-i Isotope Wavelength-Scanned Cavity Ring-Down Spectrometer (WS-CRDS) following Gupta et al. (2009). The water sample is first passed through a salt catchment trap, vaporized, and injected at a uniform concentration and flow rate into the WS-CRDS. This delivers a pulse with a constant concentration profile, during which the δ²H and δ¹⁸O are measured. Three in-house standards calibrated to three IAEA and USGS standards (SLAP2, GRESP, and VSMOW2) were run every 20 samples. Another in-house standard is run as an unknown sample. All standards fell within 1 standard deviation of their accepted value. Measurement precision was affected by the residual salt from the seawater. At least two seawater measurements were taken for each experiment. Subsequently an average δ¹⁸O_sw and uncertainty for each condition was obtained, see Table S1. This uncertainty is used for the uncertainty of the oxygen isotope offset from seawater, δ¹⁸O_c – δ¹⁸O_sw (Δ¹⁸O_c-sw) as reported in Table 1, and will be used in subsequent figures.

pH measurements were made using a Mettler Toledo LE410 pH-probe (Mettler Toledo, Greifensee, Switzerland) and were calibrated with three NBS standards (pH=4.00, 7.01, 9.03 at 21°C), with a standard deviation of ±0.01. All pH measurements are given in the NBS scale. Seawater carbon chemistry was calculated through CO₂SYS (Lewis and Wallace, 1998), with input of measured pH and DIC, and using the K1, K2 constants of Leuker et al. (2000), KHSO₄ of Dickson (1990), KHF of Perez and Fraga (1987), and [B] value of Lee et al. (2010).

DIC and pH measurements are compared and normalized to the initial measured values to detect potential drift and stability of the carbon chemistry of each culture. These are reported as initial DIC – measured DIC (ΔDIC) and initial pH – measured pH (ΔpH) in Table S1. We report the uncertainty of the fractionation between coccolith calcite and DIC (Δ¹³C_C-DIC) as the standard deviation of all measured δ¹³C_DIC over the course of the sampled culture, to take into account the potential effect of DIC evolution and drift, and will be used in subsequent figures.

The same media was used for both batch and continuous cultures and thus the same δ¹³C_DIC would be expected for both. However, through the continuous bubbling and gas-exchange in the continuous cultures, there is a potential for different δ¹³C_DIC values than the batch culture setup. Indeed, there is a non-systematic enrichment of 0-1‰ for the batch culture δ¹³C_DIC. However, the fractionation between coccolith calcite and DIC i.e. Δ¹³C_C-DIC, is not affected by these differences.
An often-used index in coccolithophore geochemistry studies (McClelland et al., 2017; Phelps et al., 2021) for the relative usage of carbon supply and demand is the dimensionless τ:

$$\tau = \frac{r \rho \mu}{3 \times C_{O_2(aq)} \times P_c}$$ \hspace{1cm} (3)

It reflects the degree of carbon utilization by the coccolithophore as measured through growth rate (μ), defined in Eqs. 1 and 2 for batch and continuous culture setup respectively, the cell radius (r), and cellular carbon density (ρ) against the DIC supply into the cell ($C_{O_2(aq)}$) and the permeability to CO_2 (P_c). We use a P_c of $1.4 \times 10^{-3} \mu m day^{-1}$ (Blanco-Ameijeiras et al., 2020) and ρ of $2 \times 10^{-3} \mu M$ (McClelland et al., 2017). It is assumed that there is only a diffusive supply of CO_2 into the cell. Our cell size measurements assume a perfect coccosphere for each counted cell, which results in a coccosphere radius that is slightly different than the cell radius. This is taken into account, together with uncertainties in μ and $C_{O_2(aq)}$, into the uncertainty of the final τ value.

3 Results

3.1 Carbon chemistry

3.1.1 DIC, pH, and $C_{O_2(aq)}$

The stability of the carbon chemistry was monitored with at least three DIC and pH measurements for each culture. Drift from the initial conditions was less than $\pm 20\%$ and ± 0.20 for Δ_{DIC} and Δ_{pH} respectively for 40 culture experiments (Fig. S2 and Table S1). To ensure only well-constrained culture conditions are considered, fifteen experiments with $\Delta_{DIC} \geq 20\%$ or $\Delta_{pH} \geq 0.20$ are excluded from our main analysis in Figs. 2 through 5, but are evaluated in a subsequent comparison (see Sect. 4.3).

3.1.2 Carbon isotopes

The carbon isotope composition of the DIC ($\delta^{13}C_{DIC}$) varies between -5.10‰ and 0.80‰, with a similar large range of -5.52‰ and -0.07‰ for all species’ coccolith carbon isotopes ($\delta^{13}C_c$; Table S1). This is mostly due to the large variability in $\delta^{13}C_c$ for *G. oceanica*, which can be attributed to the range of different experimental conditions. The $\delta^{13}C_c$ in *G. muellerae* varies between -4.68‰ and -3.66‰, while the $\delta^{13}C_c$ in *C. leptoporus* varies between -5.15‰ and -5.04‰.

The fractionation $\Delta^{13}C_{c-DIC}$ ranges between -1.41‰ and 1.22‰ for *G. oceanica*, -0.88‰ and 0.21‰ for *G. muellerae* and -2.86‰ and -2.22‰ for *C. leptoporus*. Pearson correlation coefficients (ρ) are used to determine whether two parameters are linearly correlated. If the ρ value is near 1 or -1, there is a strong correlation and one parameter has an effect on the other. Weak correlations are here defined as $\rho \leq \pm 0.40$ and significance is given by a p-value < 0.05. No significant linear correlations were identified between *Gephyrocapsa* $\Delta^{13}C_{c-DIC}$ and carbonate system parameters (DIC, pH, $C_{O_2(aq)}$) or culture parameters (cell density and Δ_{DIC}) (Table S2). *Gephyrocapsa* culture data is also not significantly correlated with τ, the index of carbon demand vs supply (Fig. 2; $\rho = 0.06$, p-value = 0.74). Including *Calcidiscus* does not improve the correlation or significance with any parameter apart from Δ_{DIC}.

https://doi.org/10.5194/egusphere-2023-2581

Preprint. Discussion started: 9 November 2023
© Author(s) 2023. CC BY 4.0 License.
3.2 Oxygen isotopes

The $\delta^{18}O_{\text{sw}}$ are given in Table S1 for all cultures and vary by ~1.6‰ across with no systematic differences between batch and continuous cultures. For a given temperature, C. leptoporus has systematically lower $\delta^{18}O_{c}$ values by ~3‰ while G. oceanica and G. muellerae have similar $\delta^{18}O_{c}$ values at the same temperature. The interspecies variations are independent of culture setup and experimental condition.

The oxygen isotope offset from seawater, $\Delta^{18}O_{c,csw} = \delta^{18}O_{c} - \delta^{18}O_{\text{sw}}$, varies systematically for all experimental conditions as seen in Fig. 3 and Table 1. Calcidiscus has a systematic offset of ~3‰ relative to Gephyrocapsa at the cultured growth temperatures, which agrees with previous culturing studies (Ziveri et al., 2003; Candelier et al., 2013; Stevenson et al., 2014; Hermoso et al., 2016; Katz et al., 2017). For G. oceanica, there is a significant negative correlation between $\Delta^{18}O_{c,csw}$ and temperature ($\rho = -0.94$, p-value <0.05), which remains when including G. muellerae ($\rho = -0.97$, p-value <0.05). The $\Delta^{18}O_{c,csw}$-temperature relationship is consistent between setups and experimental conditions and is not influenced by the variability in $\delta^{18}O_{sw}$ values. The $\Delta^{18}O_{c,csw}$ is thus genus- but not species-specific.

3.3 Clumped isotopes

The Δ_{47} values are shown in Table 1 and Fig. 4, and range from 0.589‰ – 0.640‰ for temperatures between 12-27°C for G. oceanica, 0.618‰ – 0.659‰ between 6-18°C for G. muellerae, and 0.636‰ – 0.652‰ at 12°C for C. leptoporus. There is variation of ~25 ppm at given experimental conditions, in particular at 21°C and 24°C, although all datapoints fall within the long-term standard deviation of the standards used for correction of 0.020‰. There is no difference between species or genus at given temperatures.

4 Discussion

Disequilibrium in the carbon, oxygen, and clumped isotopic systems is driven by different mechanisms within the DIC-H$_2$O system and coccolithophore cells. Thus, in order to fully evaluate potential vital effects in the Δ_{47}-temperature relationship in coccolith calcite, we first characterize and discuss the vital effects in carbon and oxygen isotopes and compare them to previous culture studies.

4.1 Carbon isotope vital effects in coccolith calcite

In this study (Fig. 5), all continuous (and most batch) cultures for G. oceanica fall within the expected range of 0 ± 1.5‰ for $\Delta^{13}C_{C,DIC}$ as found in other studies (see Fig. S3; Rickaby et al., 2010; Moolna and Rickaby, 2012; Hermoso, 2014; Katz et al., 2017). There are no comparable culture studies for G. muellerae. The $\Delta^{13}C_{C,DIC}$ values fall within the range of G. oceanica. Both species will be combined in any inter-genera analyses for Sect. 4. C. leptoporus has a $\Delta^{13}C_{C,DIC}$ of -2.0 ± 1.0‰ comparable to previous culturing studies (Fig. 5; Ziveri et al., 2003; Hermoso et al., 2014; Katz et al., 2017).
Models of the vital effect in coccolith carbon universally consider two fundamental controls on $\Delta^{13}\text{C}_{\text{DIC}}$ (Bolton and Stoll, 2013; Holtz et al., 2017; McClelland et al., 2017). For a given cell size and growth rate, all available models simulate a decrease in $\Delta^{13}\text{C}_{\text{DIC}}$ with increasing concentrations of $\text{CO}_2(aq)$. An increase in $\text{CO}_2(aq)$ relative to the cellular carbon demand will result in a decrease in $\Delta^{13}\text{C}_{\text{DIC}}$. The carbon supply versus demand index τ is often used to describe this behaviour (Eq. 3, Fig. 2). However, we cannot discern whether our Gephyrocapsa experiments show such a decrease in $\Delta^{13}\text{C}_{\text{DIC}}$. One contributing factor may be the positive correlation of $\text{CO}_2(aq)$ with DIC in our experiments, due to our strategy of manipulating the carbon system through bubbling CO_2 into the system. Previous models simulate an increase in $\Delta^{13}\text{C}_{\text{DIC}}$ when there is an increase in the proportion of HCO$_3^-$ relative to CO$_2$ entering the cell as the greater proportion of HCO$_3^-$ will cause an enrichment in the $\delta^{13}\text{C}$ of the intracellular reservoir. Although carbon limitation at low $\text{CO}_2(aq)$ levels is observed to increase HCO$_3^-$ uptake into the cell (Rost et al., 2003; Bach et al., 2013), it is also possible that higher media DIC can also lead to an increased HCO$_3^-$ uptake and compensate the expected effect of higher $\text{CO}_2(aq)$. Interspecific variations in $\Delta^{13}\text{C}_{\text{DIC}}$ are strongly conditioned by the PIC:POC ratio. The high PIC:POC ratio of Calcidiscus contributes to a lowering of the $\delta^{13}\text{C}_c$ and $\Delta^{13}\text{C}_{\text{DIC}}$ (Fig. 5; Bolton and Stoll, 2013; McClelland et al., 2017). While vital effects are present with clear differences between Gephyrocapsa and Calcidiscus, further physiological explanations are outside the scope of this study.

4.2 Oxygen isotope vital effects in coccolith calcite

At a given temperature, equilibrium oxygen isotope fractionation between calcite and water is inferred to be represented by natural precipitation featuring very slow growth rates (Coplen, 2007; Daëron et al., 2019) or laboratory experiments using carbonic anhydrase (CA) to maintain oxygen isotopic exchange between DIC and H$_2$O (Watkins et al., 2013; 2014). This fractionation is illustrated as the ‘equilibrium limit’ in Fig. 3. Non-equilibrium fractionation effects that manifest at faster growth rates in experiments both with and without CA include lower $\Delta^{18}\text{O}_{\text{c-w}}$, and a pH-dependence. This effect presumably occurs because calcite forms from both bicarbonate and carbonate ions in proportion to their abundance in solution. At a higher pH the proportion of calcite carbon derived from the carbonate ion increases (McConnaughey, 1989; Clark et al., 1992; Dietzel et al., 1992; Zeebe and Wolf-Gladrow, 2001; Watkins et al., 2014; Devriendt et al., 2017). This process is illustrated by the ‘kinetic limit’ in Fig. 3. Additionally, numerous experiments and potentially many natural biogenic and abiogenic systems may precipitate calcite from a solution in which equilibrium between DIC and H$_2$O is not maintained due to a lack of CA or fast calcification rates (Devriendt et al., 2017; Daëron et al. 2019). Rayleigh fractionation of oxygen isotopes in the internal DIC pool occurs as a result, which is transferred to the isotopic composition of the calcite and leads to lower $\Delta^{18}\text{O}_{\text{c-w}}$ values. Recent studies suggest that in certain systems such as synthetically precipitated calcite, oxygen isotope disequilibrium does not affect Δ_{e}, even for systems with intermediate oxygen isotope fractionations that fall between the kinetic and equilibrium limits, as seen in Fig. 3 (Kelson et al., 2017; Levitt et al., 2018; Jautzy et al., 2020; Fiebig et al., 2021). Models also suggest this for biogenic carbonates such as foraminifera and bivalves, as the magnitude of potential Δ_{e} disequilibrium is below the current analytical resolution for Δ_{e} measurements (Defliese and Lohmann, 2015; Watkins and Hunt, 2015; Devriendt et al., 2017).
However, this does not hold for corals, brachiopods, and speleothems, where systematic δ^{18}O and Δ_{47} disequilibria are present (Watkins and Hunt, 2015; Guo and Zhou, 2019, Guo, 2020).

Offsets from the equilibrium limit (ΔΔ^{18}O_{off}) were calculated to quantify the vital effect in oxygen isotopes. Offsets may potentially arise from pH variability, growth rate, calcification rate, or disequilibrium within the DIC-H_2O system. *Calcidiscus* is significantly different from equilibrium (t-test; t(4) = -58.68, p-value <0.05) and falls outside the equilibrium and kinetic limits as seen in Fig. 3. Although for *Gephyrocapsa* the mean ΔΔ^{18}O_{off} value is around zero and there is no significant difference from the abiogenically defined equilibrium (t-test; t(72) = -0.47, p-value = 0.64), there is a range of ~1.5‰ in ΔΔ^{18}O_{off} among different experiments. Previously published *Gephyrocapsa* data has a positive ΔΔ^{18}O_{off} of 0-1‰ (Fig. 5; Ziveri et al., 2003; Hermoso et al., 2016).

CA has been suggested as a potential equilibration mechanism for both oxygen isotopes and Δ_{47} within the DIC-H_2O system. Even at an elevated pH, the equilibration time is shortened considerably for abiogenic carbonates precipitated in the presence of CA (Uchikawa and Zeebe, 2012; Kelson et al., 2017). A lack or low activity of CA can potentially cause the variable Δ^{18}O_{off} seen in our data. While the pH of the intracellular calcification site for coccoliths is not well constrained, there is experimental evidence for CA in the biomineralization pathway of *Emiliania huxleyi* (Zhang et al., 2021). Although CA has not been explicitly found in *Gephyrocapsa*, it is associated with the cytosol, chloroplast, or extracellularly in other coccolithophores (Nimer et al., 1994; Elzenga et al., 2000; Herfort et al., 2002; Rost et al., 2003). Furthermore, genes have been found associated with biomineralization and CA expression in *E. huxleyi* (Quinn et al., 2006; Soto et al., 2006; Richier et al., 2011). Models show a requirement of CA activity in the calcification pathway of coccolithophores, either in the cytosol or coccolith vesicle itself, as a purely uncatalyzed exchange would have too enriched carbon isotope values in the coccolith calcite (Holtz et al., 2015; McClelland et al., 2017). Thus, it is probable that CA is present in coccolithophores. However, the activity of CA is not well constrained so it remains uncertain whether it is sufficient to ensure full equilibration of the DIC-H_2O system for both oxygen isotopes and Δ_{47}.

For *Gephyrocapsa*, the 1.5‰ range in ΔΔ^{18}O_{off} also did not correlate with pH, growth rate, DIC, CO_2(aq), or τ (Figs. S4, S5; Table S2). The 1.5‰ range in ΔΔ^{18}O_{off} may be explained by varying degrees of isotopic equilibration between the DIC pool and intracellular water in different experiments. Non-systematic disequilibria effects could be present for our continuous culture setup as the equilibration time for oxygen isotopic exchange between our bubbled CO_2 gas and the seawater media is in the order of hours (Zeebe and Wolf-Gladrow, 2001; Uchikawa and Zeebe, 2012). In support of this interpretation, there is a difference of ~0.5‰ between all continuous and batch culture ΔΔ^{18}O_{off} (t-test; t(38) = 1.76, p-value = 0.09, Fig. 5, Table S1). Further variability in ΔΔ^{18}O_{off} could be a result of variable intracellular pH and/or varying calcification rates as well as the presence and activity of CA. However, these physiological variations do not exhibit systematic relationships with the individual environmental parameters such as growth rate, external pH, or carbonate system. This suggests a potential for complex co-regulation of the physiological factors and/or multiple environmental controls, which are best evaluated by cellular models.
4.3 Calibration of coccolith clumped isotopes and temperature

Despite the significant vital effects in carbon and oxygen isotopes, our coccolith \(\Delta_{47} \) values show a consistent relationship with temperature (Fig. 6), and is similar to previous calibration studies (see Sect. 4.4). In order to calculate a reliable coccolith \(\Delta_{47} \)-temperature regression, we used a bivariate least-squares fitting following Williamson (1968) and York et al. (2004), using the Excel spreadsheet by Cantrell (2008). This methodology considers the uncertainties from both the \(\Delta_{47} \) and temperature measurements. However, as pointed out in a number of studies (Bonifacie et al., 2017; Fernandez et al., 2017; Katz et al., 2017; Kelson et al., 2017), the bias from a low number of analytical replicates and the small temperature range can lead to significant differences in calibration slope and intercepts. Thus, as \(G. \) oceanica contains the most diverse and largest range of datapoints, the other two species’ datasets will be successively included and evaluated for significance. Further, each \(\Delta_{47} \) measurement and uncertainty is taken individually as to have an equal contribution of each datapoint to the final calibration. The initial uncertainty of 0.1°C for temperature is 0.018 K\(^{-2}\) after conversion to 1/T\(^2\). The resulting slopes and intercepts of the \(\Delta_{47} \)-temperature regressions are seen in Table 2. With the successive inclusion of the two other species, there is no significant change or offset in slope or intercept. All regression lines fall within error of each other, which shows there is no species- or genus-specific vital effect on the \(\Delta_{47} \)-temperature relationship.

Secondly, we tested the potential influence of variable carbonate chemistry on the \(\Delta_{47} \)-temperature relationship. To this end, we normalized our \(\Delta_{47} \) data against the Meinicke et al. (2020) \(\Delta_{47} \)-temperature calibration at each temperature to generate residual values (\(\Delta\Delta_{47,\text{off}} \)). Pearson correlation tests were then performed for the normalized \(\Delta\Delta_{47,\text{off}} \) residual values against the different carbonate chemistry parameters. The resulting Pearson correlation coefficients are shown in Table 3. Apart from a weak positive and negative correlation for the batch and continuous culture setup and pH respectively, there are no conclusive or significant correlations for all measurements and experimental setups. Any difference in \(\Delta_{47} \) as a result of the two culture setups; continuous and batch, must also be established. There is no significant difference in the normalized \(\Delta\Delta_{47,\text{off}} \) values between batch and continuous culture setups (t-test; \(t(38) = 0.35, \) p-value = 0.73), further indicating that carbonate chemistry does not have an effect on the measured \(\Delta_{47} \) value.

Thirdly, average \(\Delta_{47} \) values were calculated for each species at every growth temperature. These temperature-weighted averages can highlight bias from a low number of measurement replicates at certain growth temperatures, such as at 6°C and 27°C. The resulting \(\Delta_{47} \)-temperature regression is indistinguishable from regressions using individual datapoints (Table 2). Lastly, if there are no species-specific nor carbonate chemistry related vital effects in the \(\Delta_{47} \)-temperature relationship, the data that were initially excluded due to the poorly characterized carbonate system (see Sect. 3.1.1) and poor constraining of the stable carbon and oxygen isotope fractionations (i.e. datapoints with \(\Delta_{\text{DIC}} \geq 20\% \) or \(\Delta_{\text{pH}} \geq 0.20 \)) can also be included. If the \(\Delta_{47} \)-temperature relationship in coccoliths is purely related to temperature, this will not interfere with the resulting calibration. Indeed, the slope and intercept fall within error of the other regressions, albeit with a slightly higher slope and lower intercept, seen in Table 2 and Fig. 6.
Based on the above analysis we conclude that all 55 datapoints can be considered for a coccolith Δ_{47}-temperature calibration (T in K, ±1σ):

\[\Delta_{47}(I - \text{CDES}) = 0.0375 \pm 0.004 * 10^6 / T^2 + 0.181 \pm 0.048 \]

(4)

4.4 A unified coccolith Δ_{47}-temperature calibration?

The similar culturing study of three coccolithophore species by Katz et al. (2017) also found no species-specific vital effects affecting the Δ_{47} values and a consistent Δ_{47}-temperature correlation. Furthermore, two common coccolithophore species (E. huxleyi and C. braarudii) were cultured that were not included in our study. Comparable and overlapping Δ_{47} values were obtained for all temperatures. If we combine the clumped isotope data from this study and Katz et al. (2017) (Fig. 7) we obtain a coccolith Δ_{47}-temperature calibration that falls within the 95% confidence interval of Eq. 4:

\[\Delta_{47}(I - \text{CDES}) = 0.0381 \pm 0.003 * 10^6 / T^2 + 0.176 \pm 0.037 \]

(5)

However, the study was conducted before the introduction of the I-CDES standardisation methodology using carbonates and used gas-based standardization, consequently the data could have a systematic difference that cannot be resolved with certainty. Thus, when comparing to other calibration studies we will not include Katz et al. (2017) in the dataset and use Eq. 4 as a coccolith Δ_{47}-temperature calibration, which is only based on our culture data in the I-CDES frame.

4.5 Comparison with other calibrations

In Fig. 8 we compare our data with the individual data of previous Δ_{47}-temperature calibration studies. The slopes and the intercepts of the equations with a limited number of replicates and a limited range of temperatures have larger uncertainties (Bonifacie et al., 2017; Fernandez et al., 2017; Kelson et al., 2017) and all datasets have a significant scatter due to their small variability. We focus on three biogenic and one inorganic carbonate calibration studies (Peral et al., 2018; Meinicke et al., 2020; Anderson et al., 2021; de Winter et al., 2022). We also include the ‘MIT calibration’ equation of Daëron and Gray (2023), however as no new data was generated in that study only the recalculated calibration curve is shown. All datasets are converted to I-CDES using the methodology described in Bernasconi et al. (2021) and seen in Fig. 8.

While overall the Δ_{47} values for coccolith calcite fall within the scatter of the Peral et al. (2018) and Meinicke et al. (2020) calibrations, our coccolith Δ_{47}-temperature calibration plots slightly above previous calibrations, but generally below Katz et al. (2017). To identify and evaluate how this would impact temperature reconstructions, a similar exercise to Sect. 4.3 was performed. At all growth temperatures, a Δ_{47} value was calculated from each calibration. ΔΔ_{47,off} residuals were then generated through comparison with our study’s calibration at each temperature.

Katz et al. (2017) yield positive residuals whereas the non-coccolith calibrations yield negative residuals (ΔΔ_{47,off}) relative to our coccolith Δ_{47}-temperature calibration (Fig. 9). This results in lower calculated Δ_{47} temperatures compared to our calibration. Similar results were found for aragonite and brachiopods by de Winter et al. (2022) and Letulle et al. (2023) respectively, when compared to the Anderson et al. (2021) calibration. de Winter et al. (2022) argued that the Δ_{47}-temperature
relationship is non-linear and calibrations are substantially biased by data with a large temperature range such as Anderson et al. (2021). Indeed, applying the Anderson et al. (2021) calibration yields lower and non-overlapping $\Delta\Delta_{47,\text{off}}$ residuals relative to our calibration, see Table 4 and Fig. 9. Using only the data $<$30°C from Anderson et al. (2021) to calculate a temperature regression does yield overlapping $\Delta\Delta_{47,\text{off}}$ residuals, however it is strongly temperature dependent (see Table S1). Yet, Letulle et al. (2023) argues against this bias from warmer temperatures and shows that their offsets are similar for calibrations derived from the marine temperature realm ($<$30°C). Offsets are instead most likely due to the uncertainty related to imprecise calcification temperatures in previous calibrations. Often indirectly inferred or estimated from other proxies, these uncertainties in the calcification temperatures can result in large variabilities, obscure potential effects related to temperature, and can result in small absolute differences between calibrations (see Daëron and Gray, 2023 for discussion). Both the variability and absolute $\Delta\Delta_{47,\text{off}}$ residuals differ for all compared calibrations. Katz et al. (2017), Anderson et al. (2021), and Daëron and Gray (2023) yield $\Delta\Delta_{47,\text{off}}$ residuals that do not overlap with our dataset. Peral et al. (2018), Meinicke et al. (2020), and de Winter et al. (2022) yield $\Delta\Delta_{47,\text{off}}$ residuals within the uncertainty of our dataset, see Table 4 and Fig. 9. Temperature offsets at the average growth temperature of our dataset, 18.7°C, are between -3°C and 3°C for the different calibrations, although vary in magnitude at different temperatures, see Table 4 and Fig. 9.

Our tightly-controlled growth temperatures of the culture data eliminate the problem of uncertain calcification temperatures as in the case of foraminifera calibrations (Meinicke et al., 2020; Daëron and Gray, 2023). It also allows the exclusion of effects from environmental variabilities, such as pCO$_2$, pH, growth rate, and vital effects on measured Δ_{47} values as discussed in Sect. 4.3. It is important to note that the vital effects in the coccolith carbon and oxygen isotopes have no impact on their Δ_{47}. Furthermore, modelling studies for inorganic calcite, grown in the presence of CA and at growth rates and pH ranges relevant for coccolithophores, also show clear vital effects for carbon and oxygen but find no distinction between equilibrium and modelled Δ_{47} (Watkins and Hunt, 2015; Hill et al., 2020; Uchikawa et al., 2021; Watkins and Devriendt, 2022). While all compared biogenic calibrations fall within ±1°C of these studies’ calibration, the inorganic carbonate calibrations yield systematically colder temperatures by at least 2°C (Fig. 9a, c). As our study was performed with strict temperature regulation, any related uncertainty can be eliminated as a source of inter-calibration variability. As all compared biogenic carbonates are within uncertainty of our study, we suggest that a constant biological mechanism is causing the offset of biogenic relative to inorganic carbonates. A combination of all data from Peral et al. (2018), Meinicke et al. (2020), de Winter et al. (2022), and this study yields a general biogenic Δ_{47}-temperature calibration (Eq. 6; Fig. 9b).

\[
\Delta_{47}(1 - \text{CDES}) = 0.0371 \pm 0.001 \times 10^{-6} + 0.184 \pm 0.016
\]

(6)

All previous biogenic calibrations fall within ±1°C and the 95% confidence interval of the general biogenic calibration (Fig. 9b). Thus, when reconstructing calcification temperatures from biogenic carbonates, we suggest the use of a well-constrained and biogenic specific calibration such as Eq. 4.
5 Conclusions

In this study we cultured three species of coccolithophores (*Gephyrocapsa oceanica*, *G. muellerae*, and *Calcidiscus leptopus*) in continuous and batch culture setups for temperatures between 6 and 27°C and CO$_2$(aq) between 5 and 45 μM. Vital effects in carbon and oxygen isotopes in coccoliths were observed and their magnitude is consistent with previous culturing studies. We show that for our well-constrained continuous culture setup there are no systematic external environmental influences from pH, DIC, or CO$_2$(aq) on the carbon and oxygen isotopic values for both *G. oceanica* and *G. muellerae*. Both species precipitate coccolith calcite close to isotopic equilibrium with the water. *C. leptopus* shows pronounced vital effects in both carbon and oxygen isotopes, although no clear physiological conclusions can be drawn on the source of these vital effects.

We establish a coccolith-specific Δ$_{47}$-temperature calibration and find no distinguishable vital effects in coccolith Δ$_{47}$ for all three coccolithophore species. There are also no effects due to differences in environmental parameters. Our coccolith Δ$_{47}$ data is largely consistent with a previous coccolith culture study (Katz et al., 2017), and indicates that coccolithophores precipitate coccolith calcite in clumped isotope equilibrium with their environment. Our well-constrained coccolith Δ$_{47}$-temperature calibration (Eq. 4) shows no consistent offset from previous biogenic calibration studies (≤2°C). Combining the previous biogenic calibrations into a general Δ$_{47}$-temperature calibration (Eq. 6) yields better constraints and no consistent offsets between calibrations (±2°C). However, there is a systematic offset of ≥2°C from previous inorganic calibrations. Thus, while all previous biogenic calibrations can be used interchangeably, we suggest the use of our well-constrained Δ$_{47}$-temperature calibration to reconstruct temperatures from well screened/preserved coccolith calcite.

Author contributions.

AJC: cell culture, analyses, and writing, ITR: cell culture and analyses, MJ: analyses, SMB: supervision, analyses, funding acquisition, and writing, HMS: supervision, funding acquisition, and writing.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgements

The authors thank Anne-Greet Bittermann of ScopeM for their support and assistance in this work. This work was supported by ETH core funding.
References

Dickson, A.: Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4- in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn, 22, 113-127, 10.1016/0021-9614(90)90074-Z, 1990.

Tables

<table>
<thead>
<tr>
<th>Species</th>
<th>Temperature (°C)</th>
<th>Final CO₂(aq) (μM)</th>
<th>Culture type</th>
<th>Δ³¹Cvc,dic (% V-PDB ± 1σ)</th>
<th>Δ¹⁸Osw,c-sw (% V-SMOW ± 1σ)</th>
<th>Δα (‰ ICDES ± 1SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. oceanica</td>
<td>12</td>
<td>14.66</td>
<td>Batch</td>
<td>-0.40 ± 0.47</td>
<td>32.95 ± 0.34</td>
<td>0.640 ± 0.009</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>21.56</td>
<td>Continuous</td>
<td>-0.87 ± 1.12</td>
<td>31.29 ± 0.26</td>
<td>0.621 ± 0.009</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>33.01</td>
<td>Continuous</td>
<td>0.03 ± 0.18</td>
<td>31.57 ± 0.25</td>
<td>0.634 ± 0.008</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>40.18</td>
<td>Continuous</td>
<td>-0.24 ± 0.13</td>
<td>31.68 ± 0.26</td>
<td>0.637 ± 0.013</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>6.94</td>
<td>Continuous</td>
<td>-1.15 ± 0.69</td>
<td>31.37 ± 0.13</td>
<td>0.628 ± 0.009</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>7.95</td>
<td>Continuous</td>
<td>-1.41 ± 0.70</td>
<td>31.03 ± 0.26</td>
<td>0.629 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>18.41</td>
<td>Continuous</td>
<td>0.54 ± 1.00</td>
<td>30.65 ± 0.15</td>
<td>0.620 ± 0.010</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>24.12</td>
<td>Continuous</td>
<td>-0.95 ± 1.00</td>
<td>30.74 ± 0.13</td>
<td>0.620 ± 0.010</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>27.73</td>
<td>Continuous</td>
<td>0.51 ± 1.00</td>
<td>30.63 ± 0.12</td>
<td>0.629 ± 0.008</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>42.58</td>
<td>Continuous</td>
<td>-0.24 ± 0.35</td>
<td>31.48 ± 0.11</td>
<td>0.633 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5.62</td>
<td>Continuous</td>
<td>-0.24 ± 0.25</td>
<td>30.45 ± 0.14</td>
<td>0.624 ± 0.007</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>6.18</td>
<td>Continuous</td>
<td>0.75 ± 0.25</td>
<td>30.47 ± 0.17</td>
<td>0.611 ± 0.008</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>6.18</td>
<td>Continuous</td>
<td>0.69 ± 0.27</td>
<td>30.37 ± 0.22</td>
<td>0.626 ± 0.004</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>7.63</td>
<td>Continuous</td>
<td>-0.61 ± 0.25</td>
<td>30.44 ± 0.35</td>
<td>0.621 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>11.68</td>
<td>Continuous</td>
<td>-0.39 ± 0.15</td>
<td>30.17 ± 0.11</td>
<td>0.618 ± 0.012</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>12.83</td>
<td>Continuous</td>
<td>-0.43 ± 0.13</td>
<td>30.26 ± 0.07</td>
<td>0.608 ± 0.012</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>21.23</td>
<td>Continuous</td>
<td>1.22 ± 1.05</td>
<td>30.77 ± 0.33</td>
<td>0.620 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>21.23</td>
<td>Continuous</td>
<td>1.22 ± 1.05</td>
<td>30.76 ± 0.33</td>
<td>0.604 ± 0.008</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>29.48</td>
<td>Continuous</td>
<td>-0.49 ± 0.32</td>
<td>30.74 ± 0.86</td>
<td>0.630 ± 0.007</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>30.76</td>
<td>Continuous</td>
<td>-0.66 ± 0.32</td>
<td>30.92 ± 0.86</td>
<td>0.625 ± 0.011</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>43.22</td>
<td>Continuous</td>
<td>-1.21 ± 1.05</td>
<td>30.57 ± 0.34</td>
<td>0.603 ± 0.004</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>43.22</td>
<td>Continuous</td>
<td>-1.25 ± 1.05</td>
<td>30.56 ± 0.33</td>
<td>0.607 ± 0.006</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>43.76</td>
<td>Continuous</td>
<td>-0.98 ± 1.05</td>
<td>30.45 ± 0.33</td>
<td>0.611 ± 0.010</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>13.05</td>
<td>Continuous</td>
<td>0.83 ± 0.34</td>
<td>29.41 ± 0.09</td>
<td>0.599 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>13.05</td>
<td>Continuous</td>
<td>0.85 ± 0.34</td>
<td>29.44 ± 0.10</td>
<td>0.598 ± 0.008</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>13.73</td>
<td>Batch</td>
<td>-0.80 ± 0.28</td>
<td>29.09 ± 0.41</td>
<td>0.605 ± 0.007</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>14.07</td>
<td>Batch</td>
<td>-0.21 ± 0.28</td>
<td>29.70 ± 0.37</td>
<td>0.611 ± 0.008</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>16.95</td>
<td>Continuous</td>
<td>0.65 ± 0.34</td>
<td>29.72 ± 0.10</td>
<td>0.607 ± 0.010</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>19.18</td>
<td>Continuous</td>
<td>-0.87 ± 0.39</td>
<td>29.38 ± 0.14</td>
<td>0.589 ± 0.006</td>
</tr>
<tr>
<td>G. muellerae</td>
<td>6</td>
<td>14.40</td>
<td>Batch</td>
<td>-0.88 ± 0.03</td>
<td>33.90 ± 0.28</td>
<td>0.659 ± 0.006</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>14.57</td>
<td>Batch</td>
<td>-0.57 ± 0.03</td>
<td>34.00 ± 0.28</td>
<td>0.655 ± 0.005</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>16.34</td>
<td>Batch</td>
<td>0.03 ± 0.21</td>
<td>32.48 ± 0.71</td>
<td>0.648 ± 0.005</td>
</tr>
</tbody>
</table>
Table 1. Overview table for all included data points for Sect. 3, 4.1, 4.2. including temperature (°C), culture setup type, \(\text{CO}_2\text{(aq)}\) (μM), \(\Delta^{13}\text{C}_\text{DIC}\) (% VPDB), \(\Delta^{18}\text{O}_{\text{sw}}\) (% VSMOW), and \(\Delta_{47}\) values (% I-CDES). 1 standard deviation (σ) is included for the \(\Delta^{13}\text{C}_\text{DIC}\) and \(\Delta^{18}\text{O}_{\text{sw}}\), which take the evolution of the media over time into account, and 1 standard error (SE) for \(\Delta_{47}\).

<table>
<thead>
<tr>
<th>Data type</th>
<th>Slope</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. oceanica</td>
<td>0.0377 ± 0.009</td>
<td>0.179 ± 0.104</td>
</tr>
<tr>
<td>G. oceanica + G. muellerae</td>
<td>0.0360 ± 0.005</td>
<td>0.198 ± 0.063</td>
</tr>
<tr>
<td>G. oceanica + C. leptoporus</td>
<td>0.0387 ± 0.007</td>
<td>0.168 ± 0.083</td>
</tr>
<tr>
<td>Temperature-weighted averages</td>
<td>0.0358 ± 0.006</td>
<td>0.202 ± 0.073</td>
</tr>
<tr>
<td>All species</td>
<td>0.0367 ± 0.005</td>
<td>0.190 ± 0.059</td>
</tr>
<tr>
<td>Including excluded data</td>
<td>0.0375 ± 0.004</td>
<td>0.181 ± 0.048</td>
</tr>
</tbody>
</table>

Table 2. Slope and intercepts with 1σ for the \(\Delta_{47}\)-temperature regression using the Williamson-York bivariate least-squares method.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Slope</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>All measured (\Delta_{47,\text{off}})</td>
<td>0.17</td>
<td>-0.01</td>
</tr>
<tr>
<td>Continuous setup (\Delta_{47,\text{off}})</td>
<td>0.27</td>
<td>-0.04</td>
</tr>
<tr>
<td>Batch setup (\Delta_{47,\text{off}})</td>
<td>-0.32</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table 3. Pearson correlation coefficients (\(\rho\)) between \(\Delta_{47,\text{off}}\) and pH, DIC, and \(\text{CO}_2\text{(aq)}\) for all measurements, continuous culture, and batch culture setup. For all \(\rho\), p-values > 0.05.

<table>
<thead>
<tr>
<th>Data type</th>
<th>Slope</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta_{47,\text{off}}) residuals (ppm ± 1σ)</td>
<td>-0.6 ± 3.4</td>
<td>8.2 ± 2.7</td>
</tr>
<tr>
<td>Temperature offset (°C ± 1σ)</td>
<td>0.19 ± 1.12</td>
<td>-2.67 ± 0.88</td>
</tr>
</tbody>
</table>

Table 4. Average \(\Delta_{47,\text{off}}\) residuals relative to our dataset comparing our coccolith calibration equations and those from Katz et al. (2017), Peral et al. (2018), Meinicke et al. (2020), Anderson et al. (2021), de Winter et al. (2022), and Daëron and Gray (2023). Equivalent temperature offset is based on the equivalent Meinicke et al. (2020) \(\Delta_{47}\) value at the average growth temperature (18.7°C).
Figure 1. Photobioreactor and incubator systems. (a) Photobioreactor with controlled CO₂ gas input, adjusted from Zhang et al. (2022), (b) Incubator with roller containing 2 2L and 1 1L bottle and LED strip for batch cultures.
Figure 2. Coccolith carbon isotope fractionation relative to external DIC ($\Delta^{13}C_{c-DIC}$) against the carbon demand vs supply (τ). Blue circles are *G. oceanica*, orange triangles are *G. muellerae*, and green squares are *C. leptoporus*. Open and filled symbols are batch and continuous cultures respectively. Error bars are as described in methods.

Figure 3. The fractionation of oxygen isotopes in coccolith calcite from seawater ($\Delta^{18}O_{\text{c-seaw}}$), both in VSMOW, in relation to the growth temperature in °C. Blue circles are *G. oceanica*, orange triangles are *G. muellerae*, and green squares are *C. leptoporus*. Open and filled symbols are batch and continuous cultures respectively. Linear regression fits are calculated for *G. oceanica* and *G. muellerae* separately, as well as for the whole *Gephyrocapsa* genus, with equivalent formulae. Error bars are as described in methods, temperature error bars are smaller than symbols. The kinetic and equilibrium limits are from Watkins et al. (2014) and defined as $(\frac{17747}{T+273.15}) - 29.77$ and $(\frac{17747}{T+273.15}) - 31.77$ respectively.
Figure 4. Δ47 values from coccolith calcite versus $10^6/T^2$ for all data points and averages. Averages are full symbols, while individual datapoints are empty symbols. Blue circles are *G. oceanica*, orange triangles are *G. muellerae*, and green squares are *C. leptoporus* data. Error bars are as described in methods, temperature error bars are smaller than symbols.

Figure 5. The oxygen isotope offset from the equilibrium limit in Watkins et al., (2014) (ΔΔδ^{18}Ooff) against the coccolith carbon isotope fractionation relative to external DIC (Δδ^{13}C$_{\text{c-DIC}}$). Blue circles are *G. oceanica*, orange triangles are *G. muellerae*, and green squares are *C. leptoporus* data. Open and filled symbols are batch and continuous cultures respectively. The Δδ^{13}C$_{\text{c-DIC}}$ and ΔΔδ^{18}Ooff range of previous *G. oceanica* and *C. leptoporus* studies are given as a blue and green background respectively. Error bars are as described in methods.

Figure 6. Δ47 values compared to temperature (in K) for cultured coccoliths. York regression and its 95% confidence interval are shown as a blue line and light grey envelope. The species are colour and symbol coded following Fig. 2. Blue circles are *G. oceanica*,
orange triangles are *G. muellerae*, and green triangles are *C. leptoporus*. Empty symbols are excluded data but still included for illustration and the coccolith Δ*η*-temperature calibration.

![Figure 7](https://doi.org/10.5194/egusphere-2023-2581)

Figure 7. Δ*η* values compared to temperature (in K) for cultured coccoliths including a previous culturing study by Katz et al. (2017). York regression and its 95% confidence interval are shown as a blue line and light grey envelope. The species and data are colour and symbol coded following Fig. 2. The data from Katz et al. 2017 is in pink. Blue circles are *G. oceanica*, orange triangles are *G. muellerae*, green triangles are *C. leptoporus*, pink diamonds are *E. huxleyi*, pink squares are *C. leptoporus*, and pink cones are *C. braarudii*. Empty symbols are excluded data but still included for illustration and the coccolith Δ*η*-temperature calibration.
Figure 8. $\Delta \varphi$ versus temperature for coccolith calcite and previous biogenic and inorganic calibrations. The York linear fit and 95% confidence interval for the unified coccolith calcite $\Delta \varphi$-temperature is shown as a blue line with grey shading. Katz et al. (2017; pink diamonds), Peral et al. (2018; green X’s), Meinicke et al. (2020; brown crosses), Anderson et al. (2021; orange triangles), and de Winter et al. (2022 purple stars). The calibration curves are also shown as dashed lines, with the same colour scheme, Daëron and Gray (2023) is shown as a grey dashed-dot line.
Figure 9. Temperature offset of different Δ47-temperature calibrations relative to (a) our study’s equivalent temperature, (b) the general biogenic Δ47-temperature calibration, (c) our study’s equivalent at the average growth temperature (18.7°C), with average ΔΔ47,off residuals of different Δ47-temperature calibrations relative to this study’s dataset. The other studies’ calibration data are colour coded following Fig. 8. The general biogenic Δ47-temperature calibration is given as light blue. The 95% confidence interval is given as light grey shading in (a), (b). This study’s average ΔΔ47,off and range is given as a dotted line and light grey shading in (c).