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Abstract1

Knowledge of plant species distributions is essential for various applications, such2

as nature conservation, agriculture, and forestry. Remote sensing data, especially high-3

resolution orthoimages from Unoccupied Aerial Vehicles (UAVs), were demonstrated to be4

an effective data source for plant species mapping. Particularly, in concert with novel pat-5

tern recognition methods, such as Convolutional Neural Networks (CNNs), plant species6

can be accurately segmented in such high-resolution UAV images. Training such pattern7

recognition models for species segmentation that are transferable across various landscapes8

and remote sensing data characteristics often requires excessive training data. Training9

data are usually derived in the form of segmentation masks from field surveys or visual10

interpretation of the target species in remote sensing images. Still, both methods are11

laborious and constrain the training of transferable pattern recognition models. Alterna-12

tively, pattern recognition models could be trained on the open knowledge of how plants13

look as available from smartphone-based species identification apps, that is, millions of14

citizen science-based smartphone photographs and the corresponding species label. How-15

ever, these pairs of citizen science-based photographs and simple species labels (one label16

for the entire image) cannot be used directly for training state-of-the-art segmentation17

models used for UAV image analysis, which require per-pixel labels for training (also18

called masks). Here, we overcome the limitation of simple labels of citizen science plant19

observations with a two-step approach: In the first step, we train CNN-based image classi-20

fication models using the simple labels and apply them in a moving-window approach over21

UAV orthoimagery to create segmentation masks. In the second phase, these segmenta-22

tion masks are used to train state-of-the-art CNN-based image segmentation models with23

an encoder-decoder structure. We tested the approach on UAV orthoimages acquired in24

summer and autumn on a test site comprising ten temperate deciduous tree species in25

varying mixtures. Several tree species could be mapped with surprising accuracy (mean26
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F1-score = 0.47). In homogenous species assemblages, the accuracy increased considerably27

(mean F1-score 0.55). The results indicate that many tree species can be mapped without28

generating training data and by integrating pre-existing knowledge from citizen science.29

Moreover, our analysis revealed that citizen science photographs’ variability in acquisition30

data and context facilitates the generation of models that are transferable through the31

vegetation season. Thus, citizen science data may greatly advance our capacity to monitor32

hundreds of plant species and, thus, Earth´s biodiversity across space and time.33

Keywords: Remote Sensing, Convolutional Neural Network, Citizen Science Data,34

Plant species, Transfer learning.35

1 Introduction36

Spatially explicit information on plant species is crucial for various applications, including na-37

ture conservation, agriculture, and forestry. Remote sensing emerged as a promising tool to38

create spatially continuous maps of plant species (Müllerová et al., 2023; Bouguettaya et al.,39

2022; Fassnacht et al., 2016). Thereby, supervised machine learning algorithms are commonly40

used to identify species-specific features in spatial, temporal, or spectral patterns of remotely41

sensed signals (Sun et al., 2021; Maes and Steppe, 2019; Lopatin et al., 2019; Curnick et al.,42

2021; Wagner, 2021). In recent years, remote sensing imagery from drones, also known as43

Unoccupied Air Vehicles (UAVs), has emerged as an effective source of information for map-44

ping plant species (Kattenborn et al., 2021; Fassnacht et al., 2016; Schiefer et al., 2020). By45

means of mosaicing a series of individual image frames, UAVs enable the creation of georef-46

erenced orthoimagery of relatively large areas with extremely high spatial resolution, e.g., in47

the mili- or centimeter range. The fine spatial grain of such imagery can reveal distinctive48

morphological plant features to identify specific plant species. Such plant features include49

the leaf shape, flowers, branching patterns, or crown structures (Sun et al., 2021; Kattenborn50

et al., 2019a). An effective way to unleash the potential of these fine spatial features is given51

by deep learning-based pattern-recognition techniques, in particular by Convolutional Neural52

Networks (CNN). A series of studies have demonstrated that CNN can precisely segment plant53

species’ crowns in high-resolution UAV imagery (Kattenborn et al., 2021; Hoeser and Kuen-54

zer, 2020; Brodrick et al., 2019). Such CNN models learn the characteristic spatial features55

of the target (here, plant species) through a cascade of filter operations (convolutions). Given56

these high-dimensional computations, efficiently adopting these models to UAV orthoimagery,57

with their large spatial extents but also high resolution, requires training and applying them58

sequentially using smaller sub-regions of an orthoimage (e.g., image tiles of 512 by 512 pixels,59

Fig. 1a).60

However, generating models that are transferable across various landscapes and remote61

sensing data characteristics requires large amounts of training data (Kattenborn et al., 2021;62

Galuszynski et al., 2022). In particular, when neighboring plant species bear a similar resem-63

blance, a wealth of training data becomes essential, allowing the model to discern the subtle64

distinctions between these species (Kattenborn et al., 2021; Schiefer et al., 2020). Commonly,65

the generation of training data is costly. Training data are usually derived from field surveys66
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or visual interpretation of remote sensing images, also known as annotation or labelling. Both67

methods have limitations: Field surveys are often logistically challenged by site accessibility68

or travel costs. Moreover, field surveys commonly only enable the acquisition of point ob-69

servations or relative cover fractions of the target species (Leitão et al., 2018). Visual image70

interpretation is often much more effective (Kattenborn et al., 2019b; Schiefer et al., 2023)71

but for some species, precise visual identification of species can be challenging due to sub-72

tle indicative morphological features, the variability of these features in the landscape, or73

the complexity of vegetation communities (e.g., smooth transitions of canopies of different74

species). Moreover, the representativeness of data derived from field surveys and visual in-75

terpretation is often limited to the location where and when the data were acquired, which76

may reduce a model´s generalization to new regions or time periods (Kattenborn et al., 2022).77

Therefore, the obtained amount and quality of training data can be a critical factor for the78

performance and transferability of CNN models (Bayraktar et al., 2020; Rzanny et al., 2019;79

Brandt et al., 2020).80

The challenge of limited training data for UAV-based plant species identification may81

be alleviated by the collective power of scientists and citizens openly sharing their plant82

observations on the web (Ivanova and Shashkov, 2021; Fraisl et al., 2022; Di Cecco et al.,83

2021). A particular data treasure in this regard is generated by citizen science projects84

for plant species identification. Examples are the iNaturalist and Pl@ntNet projects, which85

encourage ten-thousands of individuals to capture, share, and annotate photographs of the86

World´s plant life (Boone and Basille, 2019; Di Cecco et al., 2021). The quantity of such87

citizen science observations is rapidly growing due to the increasing number of volunteers88

participating in the platform (Boone and Basille, 2019; Di Cecco et al., 2021).89

Currently, the iNaturalist project contains over 26 Mio of globally distributed and anno-90

tated photographs of vascular plant species. The iNaturalist platform allows users to identify91

plant species manually or using a computer vision model integrated into the platform. The92

submitted observations are then evaluated by the community, and a research-grade classifica-93

tion is assigned if over two-thirds of the community agrees on the species identification. The94

Pl@ntNet project includes over 20 Mio observations of globally distributed vascular plants.95

Pl@ntNet requires users to photograph their observations and select an organ tag (e.g., leaf,96

flower, fruit, or stem). The Pl@ntNet features an image recognition algorithm to analyze97

the tagged photograph and suggest a plant species. Pl@ntNet’s validation process uses a98

dynamic approach, combining automated algorithm confidence with community consensus99

(Joly et al., 2016). The validated observations of iNaturalist and Pl@ntNet are shared via the100

Global Biodiversity Information Facility (GBIF), a global network that provides open access101

to biodiversity data (GBIF, 2019).102

Citizen science-based plant photographs with species annotations provide a valuable, large,103

and continuously growing data source for training pattern recognition models, such as CNNs104

(Van Horn et al., 2018; Joly et al., 2016). However, such citizen science data has a cardinal105

limitation: It only provides simple species annotation for a plant photograph (the imagei106

shows speciesj). Hence, these labels only enable to train image classification models that107
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predict the likelihood of a species being present in an image but not where in the image.108

In an ideal setting for species mapping applications, the species labels would delineate the109

regions or pixels belonging to a species (The pixels in the right corner of imagei represents110

speciesj). Such labels (known as masks) could be used to train CNN-based segmentation111

models, which can predict a species probability for each individual pixel of an image (or tile112

of an orthoimage) (Galuszynski et al., 2022; Schiefer et al., 2020).113

In a pioneering study by Soltani et al. (2022), the limitation of the simple labels that114

come with citizen science photographs was overcome by a workaround. At first, image classi-115

fication models were trained with citizen science data and simple labels to predict a species116

per image. The trained image classification models were then applied sequentially on tiles117

of 512 × 512 pixels of UAV-based orthomosaics in a moving-window-like fashion with very118

high overlap (Fig. 1a). Lastly, the individual predictions derived from the moving-window119

steps were rasterized to a seamless segmentation map (Fig. 1b). However, this workaround120

is computationally intense and inefficient for large or multiple UAV orthomosaics, as seg-121

mentation maps can only be derived from many overlapping prediction steps. In contrast,122

state-of-the-art CNN-based segmentation methods (typically an encoder-decoder structure)123

used in remote sensing applications are trained with reference data in the form of masks with124

dimensions (pixels) corresponding to the extent of the imagery, where each pixel of the mask125

defines the absence or presence of a class (here plant species) in the imagery (Kattenborn126

et al., 2021). Respective segmentation models are more efficient as they segment multiple127

classes in a single prediction step. Moreover, they enable more detailed class representations128

in situations where multiple classes are arranged in complex patterns.129
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Figure 1: 1-column figure: Schematic representation of the proposed workflow, including the
moving window approach by Soltani et al. (2022) (a,b) and the use of state-of-the-art encoder-
decoder segmentation algorithms (c).

Here, we propose a solution to overcome the limitation of simple annotations of citizen130

science plant observations with a two-step approach: In the first step, we apply the procedure131

of Soltani et al. (2022), involving CNN-based image classification models trained on citizen132

science photographs and simple species labels to predict plant species in UAV orthoimages133

using the moving-window approach described above (Fig. 1a, b). Although computationally134

demanding, this serves to create segmentation masks for UAV orthoimages. In the second step,135

these segmentation masks are used to train more efficient CNN-based image segmentation136

models with an encoder-decoder structure (Fig. 1c). These more efficient models could then137

be applied to larger spatial extents or due new UAV orthomosaics (e.g. of different sites or138

5

https://doi.org/10.5194/egusphere-2023-2576
Preprint. Discussion started: 5 December 2023
c© Author(s) 2023. CC BY 4.0 License.



time steps).139

The present study, hence, addresses the following research questions:140

• Can we harness weak labels from citizen science plant observations to train efficient141

state-of-the-art semantic segmentation models?142

• Do those segmentation models also increase the accuracy compared to the simple moving143

window approach?144

These questions are evaluated on a tree species dataset acquired on an experimental site145

(MyDiv experiment, Bad Lauchstädt, Germany), where ten temperate deciduous tree species146

were planted in stratified and complex mixtures. The selection of this location is attributed147

to its harmonious coexistence of various plant species within a compact area.148

2 Methods149

2.1 Data acquisition and pre-processing150

2.1.1 Study site and drone data acquisition151

The MyDiv experimental site is located in Bad Lauchstädt, Saxony-Anhalt, Germany (lati-152

tude, 51°23’ N, longitude, 11°53’ E). The site comprises 80 plots composed in different configu-153

rations of ten deciduous tree species, including Acer pseudoplatanus, Aesculus hippocastanum,154

Betula pendula, Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Prunus avium, Quercus155

petraea, Sorbus aucuparia, and Tilia platyphyllos (Ferlian et al., 2018). Each plot measures156

12 m by 12 m and contains 140 trees planted at distances of 1 m (Fig 2). In total, all plots157

together accommodate 11,200 individual trees. Each plot contains varying tree species com-158

positions, including one, two, and four tree species. This variety in species, their balanced159

composition, and plots of different canopy complexity (species mixtures) provide an ideal160

setting to test the proposed species segmentation approach.161

We collected UAV-based RGB aerial imagery over the MyDiv experimental site using a162

DJI Mavic 2 Pro and the flight planning software DroneDeploy (DroneDeploy vers. 5.0, USA).163

Two flights were conducted in 2022 in July and September, where July corresponds to the peak164

of the growing season and September to senescence stage (Fig 2). The flight plan was setup165

with a forward overlap of 90%, side overlap of 70% at an altitude of 16 m (ground sampling166

distance of approximately 0.22 cm per pixel). We used the generated images and Metashape167

(vers. 1.7.6, Agisoft LLC) to generate orthoimages for both flight campaigns. The orthoimage168

for July and September are onward called OrthoJuly and OrthoSeptember, respectively.169
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Figure 2: Overview of the MyDiv experimental site with close-ups for three plots of different
species composition. The MyDiv site is located at Lat. 51.3916 N, Long. 11.8857 E.

To evaluate the performance of the CNN models for tree species mapping, we created170

reference data by manually delineating the tree species in the UAV orthoimages in QGIS171

(vers. 3.32.3). To reduce the workload, we did not delineate the species for the entire plot172

but for diagonal transects with 20 m length and 2 m width.173

2.1.2 Citizen science training data174

We queried plant observations of the iNaturalist and Pl@ntNet projects via the GBIF database175

for our target tree species using scientific names. For the iNaturalist data, we used the176

R package rinat (vers. 0.1.8), an API to iNaturalist. The Pl@ntNet data were acquired177

by submitting a download request for the selected tree species via GBIF. The number of178

photographs available from iNaturalist and Pl@ntNet varied for the different tree species.179

Per species, we were able to acquire between 582 to 10000 photographs (mean 7696) from180

the iNaturalist platform and 221 to 3304 images (mean 2238) from the Pl@ntNet platform181

(details see Appendix Table A1).182

In addition to the tree species, we added a background class to consider canopy gaps183

between trees. For training data, we used the Google Image API to query different keywords,184

e.g.grass, forest floor, forest ground. After cleaning the obtained images for non-meaningful185

results, the background class included 1100 photographs.186

We converted all photographs to a rectangular shape by cropping them to the shorter side187

and resampled them to a common size of 512×512 pixels (the tile size used later for the CNN188

model generation). Figure 3 shows examples of the downloaded photographs for the different189

tree species and a comparison to their appearance in OrthoJuly.190
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Figure 3: Example citizen science-based photographs derived from iNaturalist and tiles of
UAV orthoimages (512 * 512 pixels) for the ten tree species in the MyDiv experiment.

The acquisition settings of citizen science plant photographs are heterogeneous and differ191

considerably from the typical bird perspective of UAV orthoimages. For instance, from the192

UAV perspective, canopies are mostly viewed from a relatively homogeneous distance, and193

the photographs represent mostly leaves and other crown components. In contrast, the citi-194

zen science data includes a lot of close-ups, landscape imagery, or horizontal photographs of195
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trunks. Soltani et al. (2022) has demonstrated that species recognition in UAV images can be196

improved by excluding crowd-sourced photographs that are exceptionally close (e.g., showing197

individual leaf veins) or too far away from the plant (e.g., landscape images). Accordingly,198

we filtered the citizen science-based training photos according to the camera-plant-distance.199

Moreover, we filtered photos that exclusively contained tree stems. Because such information200

is unavailable in the citizen science datasets, we trained CNN-based regression and classifi-201

cation models to predict acquisition distance and tree trunk presence for each downloaded202

photograph. To train these CNN-based models, we visually estimated the acquisition distance203

(4,500 photographs) and labeled tree trunk presence (1,000 photographs). To ease the label-204

ing process, we used previously labeled training data from (Soltani et al., 2022) and added205

150 additional tree photographs from the tree species present in the MyDiv experimental site.206

To predict acquisition distance and trunk presence, We randomly split the citizen science-207

based plant photographs into training and validation sets, with 80% for training and 20% for208

validation.209

For the distance regression and the trunk classification, we used the EfficientNetB7 back-210

bone (Tan and Le, 2019). For the distance regression, we used the following top-layer settings:211

global average pooling, batch normalization, drop out (rate 0.1), and a final dense layer with212

1 unit and linear activation function. We used the Adam optimizer (learning rate of 0.0001)213

and a mean squared error (MSE) loss function. For the trunk classification, we used the214

following top-layer settings: global max-pooling, a final dense layer with two units, and a215

softmax activation function. We used the Adam optimizer (learning rate of 0.0001) and the216

categorical cross-entropy loss function. Both models were trained using a batch size of 20 and217

50 epochs.218

We used the model with the lowest loss from these epochs (details on the model perfor-219

mance are given in Appendix A1.3) to predict the acquisition distance and tree trunk presence220

in all downloaded photographs for our target species. We filtered training photographs prior221

to training CNN-based species classification (see section 2.2) with acquisition distances less222

than 0.2 m and greater than 15 m and photographs classified as trunk (probability threshold223

of 0.5). Thereby, 82,628 of the 101,574 downloaded citizen science photographs remained.224

2.2 CNN-based creation of plant species segmentation masks using a mov-225

ing window approach226

The segmentation masks were obtained using a CNN image classification model trained on227

crowd-sourced plant photographs and simple species labels using a moving window method228

(hereafter CNNwindow, Fig. 1). Based on the results of previous studies, we choose a generic229

image size of 512× 512 pixels for the CNN classification model (Schiefer et al., 2020; Soltani230

et al., 2022). During the moving window approach, the orthoimage is sequentially cropped231

into tiles of 512× 512 pixels on which the image classification is applied to predict the species232

for each location. This procedure is applied with a dense overlap between tiles defined by233

a step size, resulting in a dense regular grid of species predictions. We chose a vertical and234

horizontal distance of 51 pixels as step size. The resulting predictions are afterward rasterized235
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to a continuous species distribution grid with a spatial resolution of 8.31 cm/pixel (see Soltani236

et al., 2022, for details). The CNNwindow model was implemented as a classification task with237

eleven classes, including the ten tree species and the background class.238

The number of available photographs varied widely across tree species (see 2.1.2), poten-239

tially biasing the model towards classes with more photographs. To address this imbalance,240

we equally sampled 4,000 photographs for each class with replacement. We applied a data241

augmentation to increase the variance of the duplicated images. The augmentation consisted242

of random vertical and horizontal flips, random brightness maximum delta of 10% (±0.1), and243

contrast alteration within a range of 90% to 110% (0.9 to 1.1) of training photographs. We244

randomly partitioned the training data into validation and training sets to ensure unbiased245

evaluation. We allocated a holdout of 20% of the training data for model selection, while the246

remaining 80% was used for model training. Subsequently, we assessed the accuracy of the247

selected model using independent reference data.248

After testing different architectures as model backbones, including ResNet-50V2, Effi-249

cientNetB07, and EfficientNetV2L, we selected EfficientNetV2L. The following layers were250

added on top of the EfficientNetV2L backbone: Dropout with a ratio of 0.5, average pooling,251

dropout with a ratio of 0.5, dense layer with 128 units, L2 kernel regularizer (0.001), a ReLu252

activation function, and a final dense layer with a softmax activation function and 11 units.253

We used Root Mean Squared Propagation (RMSprop) as the optimizer with a learning rate254

of 0.0001 and categorical cross-entropy as a loss function. We trained the configured model255

with a batch size of 15 over 150 epochs. The model with the lowest validation loss (based256

on the 20% holdout) was selected as the final model. The latter was used to predict the tree257

species (probabilities) in the UAV orthoimages using the abovementioned CNNwindow method.258

To filter uncertain predictions (predominantly in canopy gaps or at crown shadows), we only259

considered a tree species as predicted above a threshold higher than 0.6. Otherwise, it was260

assigned to NA (not available). To smooth the predictions and remove noise, we applied261

a sieve operation on the output of the CNNwindow (threshold = 50, considering horizontal,262

vertical, and diagonal neighbors, R-package terra, vers. 1.7).263

2.3 CNN-based plant species segmentation using an encoder-decoder ar-264

chitecture265

As encoder-decoder segmentation architecture (onwards CNNsegment), we chose U-Net (Ron-266

neberger et al., 2015), which is the most widely applied segmentation method in remote sensing267

image segmentation (Kattenborn et al., 2021). The U-Net architecture is a CNN-based algo-268

rithm that performs semantic segmentation by predicting a class for each pixel of the input269

image. The architecture consists of an encoder-decoder structure with skip connections. The270

configured architecture has four levels of convolutional blocks. Each convolutional block con-271

sists of two convolutional layers and is followed by batch normalization and ReLU activation.272

The encoder gradually compresses feature maps and reduces their spatial dimensions via max273

pooling operations, while the decoder increases the feature map resolution by transposed con-274

volution. The encoder and decoder blocks are connected through skip connections, which275
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transfer the spatial context of the encoder feature maps to the decoder, enabling a segmen-276

tation at high-resolution in the last layer. The final layer has eleven units (corresponding to277

the ten tree species and a background class). A corresponding softmax activation function278

maps the features to class probabilities. Using a max function, the pixels of the segmentation279

output are assigned to the class with the highest probability (Fig. A12).280

The segmentation masks for training CNNsegment were obtained from the predictions of the281

CNNwindow method applied on both UAV orthoimages (section 2.2, OrthoJuly, OrthoSeptember).282

At first, we resampled the CNNwindow prediction maps to the original spatial resolution of the283

orthoimages (0.22 cm pixel size). Afterward, we cropped the orthoimages and the prediction284

maps into non-overlapping tiles, each with a size of 512 × 512 pixels, resulting in a total of285

44,980 and 37,113 tiles from OrthoJuly and OrthoSeptember, respectively.286

The training data obtained from the CNNwindow approach were filtered to avoid training287

the CNNsegment with uncertain predictions. Thereby, we assumed that higher model uncer-288

tainty are present in areas where the model predicts multiple classes with low relative cover.289

Thus, after initial tests, we included only those tiles where the cover of at least one class290

exceeded 30%. The number of training tiles per class after filtering varied between 1257 and291

16894 samples; Acer pseudoplatanus (6581), Aesculus hippocastanum (2054), Betula pendula292

(4955), Carpinus betulus (1535), Fagus sylvatica (16894), Fraxinus excelsior (7901), Prunus293

avium (1257), Quercus petraea (1302), Sorbus aucuparia (5473), Tilia platyphyllos (1982),294

Background (5408).295

Similar to the previous CNNwindow classification task, the availability of training tiles296

varied greatly across the tree species. This class imbalance may have partially stemmed from297

the more systematic misclassification of certain classes during the CNNwindow prediction. To298

reduce the unfavorable effects of a class imbalance on model training, we sampled 4,000 tiles299

per class with replacements (similar to the CNNwindow procedure). We applied the same300

data augmentation strategy as CNNwindow to increase variance among duplicates. 20% of the301

training data were withheld for model selection.302

We trained the U-Net architecture using Root Mean Squared Propagation (RMSprop) as303

the optimizer with a learning rate of 0.0001 and an adapted Dice loss function. We adapted304

the Dice loss to ignore the weights coming from pixels with NA mask values. The models305

were trained with a batch size of 20 over 150 epochs.306

The CNNsegment was then applied to OrthoJuly and OrthoSeptember. To reduce uncertain307

predictions of CNNsegment, we assigned the pixels where predicted probabilities did not exceed308

0.3 to the background class. Thereby, we assumed that uncertain predictions predominantly309

occur in canopy gaps. As image segmentations typically suffer from increased uncertainty at310

tile edges, we repeated the predictions with horizontal and vertical shifts of 256 pixels, which311

were subsequently aggregated using a majority vote.312

The final model performance of CNNsegment was assessed and compared to CNNwindow313

using the independent reference data (transects) obtained from the visual interpretation of314

the UAV orthoimages.315
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3 Results316

For the CNNwindow method, F1-scores differed considerably across the tree species, while317

these differences were relatively consistent across the two orthoimages, i.e. OrthoJuly and318

OrthoSeptember(Fig. 4a, b). On a plot level, comparably high model performance (mean F1 >319

0.6) was found for Acer pseudoplatanus and Fraxinus exlcesior, followed by the intermediate320

performance (mean F1-score 0.35-0.55) for Aesculus hippocastanum, Sorbus aucuparia, Tilia321

platyphyllos, Betula pendula, and Carpinus betulus. Low performance (mean F1-score < 0.35)322

was found for Quercus petraea , Fagus sylvatica, and Prunus avium. Averaged across species,323

there was a slight decrease in model performance from OrthoJuly with a mean F1-score of 0.44324

to OrthoSeptember with a mean F1-score of 0.4 (Fig. 4a, b). Note that OrthoJuly corresponded325

to the peak of the season, where leaves and canopies were still fully developed.326

The CNNsegment model performance across species was similar but generally higher com-327

pared to the CNNwindow method. For OrthoJuly F1-scores increased from 0.44 to 0.48 (Fig. 4a328

vs. c) and for OrthoSeptember, F1-scores increased from 0.40 to 0.46 (Fig. 4b vs. d).329

We observed notable differences in model performance (mean F1) across different species330

mixtures, which are plots having one, two, or four species per plot (Fig. 5). For both331

CNNwindow and CNNsegment, the model performance strongly increased with lower number332

of species per plot (results for CNNwindow are given in the Appendix; Fig. A13).333

The model performance of CNNsegment exceeded the model performance of CNNwindow334

particularly in plots with increased number of species: For monocultures the relative increase335

in model performance (F1-score) amounted to 2.5%, in two species plots to 6.9%, and in336

plots with four species to 20.9% (averaged for OrthoJuly and OrthoSeptember). This increased337

performance can be attributed to the advantages of the encoder-decoder principle of the338

CNNsegment method, enabling a pixel-wise and contextual prediction at the original resolution339

of the orthomosaics. These advantages are also visible in Fig. 6, where CNNsegment resulted340

in more detailed and accurate tree species segmentations (particularly for plot 26 and 29).341

The highest model performance for CNNsegment was found in monoculture plots, where342

F1-scores > 0.5 was found for eight out ten species for both OrthoJuly and OrthoSeptember. A343

considerably lower performance for the July and September acquisition was found for Prunus344

avium, which may correspond to similarities in leaf and canopy structure with Fagus sylvatica345

and Fraxinus excelsior (a confusion matrix is given in the Appendix, Fig. A11). The decreased346

performance for Carpinus betulus and Prunus avium in OrthoSeptember can be attributed to347

the very advanced senescence and leaf loss.348

In addition to the increase in model performance, our analysis revealed that the prediction349

on orthoimagery using CNNsegment only required 10% of the computation time compared to350

CNNwindow. The duration of applying the models to the whole MyDiv orthomosaics covering351

an area of (3.02 hectare; 0.22 cm ground sampling distance) took approximately 27.05 hours352

with CNNsegment and 264.88 hours with CNNwindow (NVIDIA A6000 with 48 GB RAM).353
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(a) F1-scores for CNNwindow on OrthoJuly

(mean 0.44).
(b) F1-scores ofCNNwindow on OrthoSeptember

(mean 0.42).

(c) F1-scores of CNNsegment on OrthoJuly

(mean 0.48).
(d) F1-scores of CNNsegment on
OrthoSeptember (mean 0.46).

Figure 4: F1-scores by tree species and background class for OrthoJuly and OrthoSeptember

derived from CNNwindow and CNNsegment.
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(a) Performance across species mixtures (F1-scores) on OrthoJuly. Mean F1-scores: 1 species (0.51), 2
species (0.44), 4 species (0.41)

.

(b) Performance across species mixtures (F1-scores) on OrthoSeptember. Mean F1-scores: 1 species
(0.58), 2 species (0.51), 4 species (0.42)

Figure 5: The model performance (F1-score) of the CNNsegment model across a gradient of
canopy complexity in OrthoJuly and OrthoSeptember. F1-scores decrease with increasing canopy
complexity in plots

.
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Plot 25

Plot 26

Plot 27

Plot 28

Plot 29

Plot 33

Plot 34

Plot 35

Figure 6: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions. Visualizations for the remaining plots
are given in the Appendix (Section A1.1).
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4 Discussion354

4.1 Filtering of citizen science data for drone-related applications355

To achieve better correspondence between plant features visible in the citizen science pho-356

tographs and the UAV images, we filtered the crowd-sourced photographs based on their357

acquisition distance (less than 0.3 m or greater than 15 m) to exclude macro and landscape358

photographs. Moreover, we excluded photographs that predominantly display tree trunks,359

facilitating a foliage-centric perspective as intrinsic to high-resolution UAV images (Fig. 3).360

In the future, more criteria may be used for filtering citizen science imagery, including meta-361

data (labels) on the presence of specific plant organs within an image (e.g., fruits, flowers) as362

provided as a by-product by some citizen science plant identification apps (e.g., Pl@ntNet).363

4.2 The creation of segmentation masks from simple image labels364

One of the challenges of generating segmentation masks for the encoder-decoder method365

(CNNsegment) with the proposed workflow may be error propagation between the different366

steps. Firstly, the CNN image classification trained on the citizen science data has variyin367

uncertainty for the different species, resulting from noisy citizen science observations or lim-368

itations to identify some species solely by photographs (Van Horn et al., 2018). Secondly,369

the moving window approach (CNNwindow), which predicts one species for an entire tile, may370

be too coarse to resemble very complex canopies (e.g., in highly diverse plant communities).371

However, although the fact that the segmentation labels created with the CNNwindow approach372

are partially relatively inaccurate (Fig 4a, 6), we found that the CNNsegment procedure in-373

deed resulted in higher performance than the CNNwindow procedure. This is in line with374

other studies (Kattenborn et al., 2021; Cloutier et al., 2023; Schiller et al., 2021) reporting375

that deep learning-based pattern recognition can partially overcome noise labels, whereas the376

intentional use of noisy reference data, also known as weakly-supervised learning, is gener-377

ally very promising in the absence of high-quality labels (Zhou, 2018). Here, we filtered the378

training data (masks) for regions where we expect extreme noise levels, that is, for tiles where379

none of the classes exceeded a relative cover of 30%. These regions were, according to our380

observation, often canopy gaps and shadowed areas, where one naturally expects lower model381

performance due to less distinct species-specific textures (Lopatin et al., 2019; Milas et al.,382

2017; De Sa et al., 2018).383

The enhanced segmentation performance of the CNNsegment approach compared to CNNwindow384

can be attributed to the spatially explicit and finer-resolved predictions of the U-Net segmen-385

tation algorithm (encoder-decoder principle), enabling to segment the tree species at the386

native resolution of the orthoimagery. Particularly, for plots with more species (two or four)387

the encoder-decoder segmentation approach resulted in improved prediction results compared388

to the CNNwindow method in plots with more species (two or four) and hence, more complex389

canopies. Thus, the presented two-step approach of creating segmentation masks from sim-390

ple class labels CNNwindow, as provided by iNaturalist and Pl@ntNet platforms, can indeed391

be used to create segmentation masks required for state-of-the-art image analysis methods392
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(CNNsegment) and thereby result in higher value for remote sensing applications. The in-393

creased value of these segmentation masks enables the training of algorithms with higher394

performance in species recognition. It greatly enhances the efficiency of applying the models395

on orthoimagery (factor of approximately ten). Especially for recurrent applications, such396

as monitoring or large-scale undertakings, the two-step approach involving the creation of397

segmentation masks and encoder-decoder architectures is recommended.398

4.3 The role of canopy complexity399

Overall, the segmentation performance declined with increasing species richness per plot.400

We expect that this can mainly be attributed to the small size of individual trees at the401

MyDiv site, where in high species mixtures, there is a lower chance that a 512 × 512 pixel402

tile includes clearly visible species-specific leaf and branching patterns. This also explains403

why, in particular, trees with lower relative canopy height (e.g., Quercus petrea and Fagus404

sylvatica were less likely to be accurately segmented in species mixtures. The observed effect405

of canopy complexity is in line with previous findings from Soltani et al. (2022); Lopatin406

et al. (2017); Fassnacht et al. (2016); Fricker et al. (2019), where smaller patches of individual407

species were less likely to be accurately detected. Visual inspection also confirmed that408

false predictions were more likely at canopy edges between different tree species (Fig. 6).409

However, it should be noted that the small-scaled canopy complexity of the plots used here410

is exceptionally high (Fig. 3). Most tree crowns in the MyDiv experiment do not exceed a411

diameter of 1.5 m, and the transition among tree crowns of multiple species is often very412

fuzzy. Thus, we expect reduced performance in canopy transitions to be less relevant in413

real-world settings, where tree species appear in more extensive, homogeneous patches and414

where individual crowns are commonly larger. Thus, the model performance in these species415

mixtures can be interpreted as a rather conservative estimate. The results obtained for the416

monocultures might be more representative in terms of real-world applications, as mature417

trees in temperate forests typically have crown diameters 5 to 20 times larger. Application418

tests of the presented approach in real forests are desirable. However, acquiring such a dataset419

is a logistical challenge since temperate forest stands commonly do not feature a comparably420

high and balanced occurrence of that many tree species.421

4.4 Spatial resolution of the UAV imagery is key422

According to the results obtained in the monocultures, The CNNsegment model successfully423

classified seven out of ten tree species (F1 > 0.7). The lower F1-scores for Quercus petrea424

(mean F1 0.57), Prunus avium(mean F1 0.2), Tilia platyphyllos(mean F1 0.53) may result425

from the spectral and morphological similarity at the current spatial resolution of the UAV426

imagery (0.22 cm)(Fig. 3). Hence, there was a tendency that these species were often confused427

with each other (see confusion matrices in Appendix A1.2). Such confusion among plants428

with a similar appearance was confirmed by other studies (Cloutier et al., 2023; Schiefer429

et al., 2020, e.g.) and matches our experience from the generation of reference data via visual430
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interpretation, where a separation between these species was sometimes challenging. Initial431

CNN-based segmentation attempts (results not shown) in the preparation of this study were432

based on an orthoimage of 0.3 cm instead of 0.22 cm resolution, resulting in clearly lower433

model performances. This aligns with the reported importance of spatial resolution of UAV434

imagery for CNN segmentation of earlier studies (Schiefer et al., 2020; Schmitt et al., 2020;435

Ma et al., 2019; G. Braga et al., 2020). Thus, while the current orthoimages with 0.22 cm436

resolution delivered promising results, further increasing the spatial resolution might be very437

promising for species where characteristic leaf forms can only be visualized at fine spatial438

resolutions.439

4.5 Model transferability across seasons and orthoimage acquisition prop-440

erties441

The diversity of human behavior and electronic devices makes citizen science-based plant442

photographs very heterogeneous. This can be a challenge for deep learning applications, such443

as species recognition or plant trait characterization (Schiller et al., 2021; Van Horn et al.,444

2021; van Der Velde et al., 2023; Affouard et al., 2017), where models have to identify features445

that hold across various viewing angles, distances, or illumination conditions. However, this446

heterogeneity might also be of great value, given that citizens depict the appearance of plants447

under various site, environmental, and phenological conditions. This, in turn, offers a unique448

setting for training models that are generic and transferable across these conditions. Here, we449

evaluated the transferability of our models across different data sets by applying them to two450

orthoimages acquired in different seasons (peak of growing season and autumn). Both the451

CNNwindow and CNNsegment models could identify deciduous tree species in the orthoimages452

with surprising accuracies, suggesting that the models are transferable to different conditions.453

4.6 Outlook454

Overall, our results indeed highlight the value of citizen science photographs with simple455

class labels to create training data for state-of-the-art segmentation approaches. A great456

advantage of this citizen science-based approach is that it does not require commonly costly457

training data obtained from visual interpretation or field surveys (here, we only acquired458

reference data for validating the procedure). This particularly highlights the potential of459

citizen science data for applications where many species are of interest, such as biodiversity-460

related monitoring applications (Chandler et al., 2017; Johnston et al., 2023). In this regard,461

data or models of species-recognition platforms that incorporate excessive amounts of plant462

species and respective imagery are very promising, including iNaturalist (Boone and Basille,463

2019), Pl@ntNet (Affouard et al., 2017), ObsIdentify (Molls, 2021) or FloraIncognita (Mäder464

et al., 2021). Yet, based on the current and the precursor study (Soltani et al., 2022), we465

expect that a pre-selection of citizen science photograph databases considering images more466

representative of the common UAV-based perspective is required to unleash the potential of467

this heterogeneous data.468
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5 Conclusion469

The transfer learning approach presented here demonstrates the value of freely available470

crowd-sourced plant photographs for remote sensing studies. This heterogeneous dataset471

can provide valuable training data for transferable CNN-based segmentation models. Here,472

this potential was highlighted in a very complex task, i.e., the differentiation of multiple tem-473

perate deciduous tree species in mixed vegetation stands with a complex structutre. The474

presented two-step approach demonstrated how we can transfer and harness generic knowl-475

edge gathered by citizens on how plants ’look’ to the bird perspective of high-resolution drone476

imagery. The presented moving window approach overcomes the limitation of citizen science-477

based photographs having only simple species labels. The segmentation maps derived from478

an image classification model applied in a moving window setting can be harnessed to create479

segmentation masks for encoder-decoder-type segmentation models. The latter does not only480

enable higher accuracies in species segmentation but is also considerably more efficient. By481

building on the effort of thousands of citizens, this framework enables the mapping of plant482

species without any training data obtained from visual interpretation or ground-based field483

surveys. Due to the excessive amounts of plant photographs acquired in different conditions,484

such models can be assumed to have a large transferability.485
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The flora incognita app–interactive plant species identification. Methods in Ecology and594

Evolution, 2021.595

W. H. Maes and K. Steppe. Perspectives for remote sensing with unmanned aerial vehicles596

in precision agriculture. Trends in plant science, 24(2):152–164, 2019.597

A. S. Milas, K. Arend, C. Mayer, M. A. Simonson, and S. Mackey. Different colours of598

shadows: Classification of uav images. International Journal of Remote Sensing, 38(8-10):599

3084–3100, 2017.600

C. Molls. The obs-services and their potentials for biodiversity data assessments with a test601

of the current reliability of photo-identification of coleoptera in the field. Tijdschrift voor602

Entomologie, 164(1-3):143–153, 2021.603

22

https://doi.org/10.5194/egusphere-2023-2576
Preprint. Discussion started: 5 December 2023
c© Author(s) 2023. CC BY 4.0 License.
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A Appendix648

A1.1 Prediction maps649

Plot 1

Plot 2

Plot 3

Plot 4

Plot 5

Plot 6

Plot 11

Plot 12

Figure A1: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A2: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A3: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A4: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A5: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A6: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A7: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A8: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A9: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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A1.2 Confusion Matrix650

Figure A10: Normalized Confusion Matrix of the CNNsegment model applied to
OrthoSeptember
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Figure A11: Normalized Confusion Matrix of the CNNsegment model applied to the
OrthoSeptember

A1.3 Data pre-processing651

To reduce the heterogeneity of crowd-sourced photographs and match them with the UAV652

perspective, we filtered the photographs based on their acquisition distance and plant leaf653

visibility. The model achieved an R2= 0.7 and F1 = 0.8 on independent test data for both654

variables. Using predicted acquisition distance and tree trunk presence information for each655

photograph, we tested different filtering thresholds and combinations prior to training the656

CNNwindow model for plant species classification. The best result was achieved by filtering657

photographs with acquisition distances outside the range of 0.3 to 15 m and excluding pho-658

tographs that showed tree trunks, with a probability of being a trunk > 0.5.659
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A1.4 Citizen science data availability660

Table A1: Number of downloaded photographs for selected tree species from the iNaturalist
and Pl@ntNet datasets.

No. Species iNaturalist Pl@ntNet

1 Acer pseudoplatanus 9999 3205
2 Aesculus hippocastanum 9998 1444
3 Betula pendula 9998 1308
4 Carpinus betulus 7165 2633
5 Fagus sylvatica 9981 3304
6 Fraxinus excelsior 7745 3130
7 Prunus avium 9999 3022
8 Quercus petraea 1491 221
9 Sorbus aucuparia 10000 2730
10 Tilia platyphyllos 582 1449

A1.5 Segmentation model architecture661

Figure A12: A modified version of the U-Net CNN-architecture for segmenting plant species
from UAV orthoimages (Ronneberger et al., 2015).
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A1.6 CNN window species mixture box plot662

(a) Performance on OrthoJuly: The model performance (F1) of the CNNwindow model on Performance
on OrthoJuly.

(b) Performance on OrthoSeptember: The model performance (F1) of the CNNwindow model on Perfor-
mance on OrthoJuly.

Figure A13: The model performance (F1) of the CNNsegment model across a gradient of canopy
complexity in two orthoimages.
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