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Abstract1

Knowledge of plant species distributions is essential for various application fields, such2

as nature conservation, agriculture, and forestry. Remote sensing data, especially high-3

resolution orthoimages from Unoccupied Aerial Vehicles (UAVs), paired with novel pattern4

recognition methods, such as Convolutional Neural Networks (CNNs), enable an accurate5

mapping (segmentation) of plant species. Training transferable pattern recognition models6

for species segmentation across diverse landscapes and data characteristics typically re-7

quires extensive training data. Training data are usually derived from labor-intensive field8

surveys or visual interpretation of remote sensing images. Alternatively, pattern recog-9

nition models could be trained more efficiently with plant photos and labels from citizen10

science platforms, which include millions of crowd-sourced smartphone photos and the11

corresponding species labels. However, these pairs of citizen science-based photographs12

and simple species labels (one label for the entire image) cannot be used directly for13

training state-of-the-art segmentation models used for UAV image analysis, which require14

per-pixel labels for training (also called masks). Here, we overcome the limitation of sim-15

ple labels of citizen science plant observations with a two-step approach: In the first step,16

we train CNN-based image classification models using the simple labels and apply them17

in a moving-window approach over UAV orthoimagery to create segmentation masks. In18

the second phase, these segmentation masks are used to train state-of-the-art CNN-based19

image segmentation models with an encoder-decoder structure. We tested the approach20

on UAV orthoimages acquired in summer and autumn on a test site comprising ten tem-21

perate deciduous tree species in varying mixtures. Several tree species could be mapped22

with surprising accuracy (mean F1-score = 0.47). In homogenous species assemblages,23

the accuracy increased considerably (mean F1-score 0.55). The results indicate that sev-24

eral tree species can be mapped without generating new training data, by but only using25

pre-existing knowledge from citizen science. Moreover, our analysis revealed that citizen26
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science photographs’ variability in acquisition data and context facilitates the generation27

of models that are transferable through the vegetation season. Thus, citizen science data28

may greatly advance our capacity to monitor hundreds of plant species and, thus, Earth´s29

biodiversity across space and time.30

Keywords: Remote Sensing, Convolutional Neural Network, Citizen Science Data,31

Plant species, Transfer learning.32

1 Introduction33

Spatially explicit information on plant species is crucial for various domains and application,34

including nature conservation, agriculture, and forestry. For instance, species information35

is required for the identification of threatened or invasive species, the location of weeds or36

crops in precision farming, or tree species classification for forest inventories. Remote sensing37

emerged as a promising tool for mapping plant species (Müllerová et al., 2023; Bouguettaya38

et al., 2022; Fassnacht et al., 2016). Thereby, supervised machine learning algorithms are39

commonly used to identify species-specific features in spatial, temporal, or spectral patterns40

of remotely sensed signals (Sun et al., 2021; Maes and Steppe, 2019; Lopatin et al., 2019;41

Curnick et al., 2021; Wagner, 2021). In recent years, remote sensing imagery from drones,42

also known as Unoccupied Air Vehicles (UAVs), has emerged as an effective source of infor-43

mation for mapping plant species (Kattenborn et al., 2021; Fassnacht et al., 2016; Schiefer44

et al., 2020). By means of mosaicing a series of individual image frames, UAVs enable the45

creation of georeferenced orthoimagery of relatively large areas with extremely high spatial46

resolution, e.g., in the mili- or centimeter range. The fine spatial grain of such imagery can47

reveal distinctive morphological plant features to identify specific plant species. Such plant48

features include the leaf shape, flowers, branching patterns, or crown structures (Sun et al.,49

2021; Kattenborn et al., 2019a). An effective way to harness this spatial detail is provided50

by deep learning-based pattern-recognition techniques, in particular by Convolutional Neural51

Networks (CNN). A series of studies have demonstrated that CNN allows to precisely seg-52

ment plant species’ canopies in high-resolution UAV imagery (Kattenborn et al., 2021; Hoeser53

and Kuenzer, 2020; Brodrick et al., 2019). Such CNN models learn the characteristic spatial54

features of the target (here, plant species) through a cascade of filter operations (convolu-55

tions). Given these high-dimensional computations, efficiently adopting these models to UAV56

orthoimagery, which often have large spatial extents and high resolution, requires training57

and applying them sequentially using smaller sub-regions of an orthoimage (e.g., image tiles58

of 512 by 512 pixels, Fig. 1c).59

However, generating models that are transferable across various landscapes and remote60

sensing data characteristics requires large amounts of training data (Kattenborn et al., 2021;61

Galuszynski et al., 2022). In particular, when neighboring plant species bear a resemblance, a62

wealth of training data becomes essential, allowing the model to discern the subtle distinctions63

between these species (Kattenborn et al., 2021; Schiefer et al., 2020). Commonly, the genera-64

tion of training data is costly, as training data are usually derived from field surveys or visual65

interpretation of remote sensing images, also known as annotation or labelling. Both methods66
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have limitations: Field surveys are often logistically challenged by site accessibility or travel67

costs. Moreover, field surveys commonly only enable the acquisition of point observations or68

relative cover fractions of the target species (Leitão et al., 2018). Visual image interpretation69

is often much more effective (Kattenborn et al., 2019b; Schiefer et al., 2023) but for some70

species, precise visual identification of species can be challenging due to subtle indicative71

morphological features, the variability of these features in the landscape, or the complexity of72

vegetation communities (e.g., smooth transitions of canopies of different species). Moreover,73

the representativeness of data derived from field surveys and visual interpretation is often74

limited to the location where and when the data were acquired. This can reduce a model´s75

generalization to new regions or time periods (Cloutier et al., 2023; Kattenborn et al., 2022).76

Therefore, the obtained amount and quality of training data can be a critical factor for the77

performance and transferability of CNN models (Bayraktar et al., 2020; Rzanny et al., 2019;78

Brandt et al., 2020).79

The challenge of limited training data for UAV-based plant species identification may80

be alleviated by the collective power of scientists and citizens openly sharing their plant81

observations on the web (Ivanova and Shashkov, 2021; Fraisl et al., 2022; Di Cecco et al.,82

2021). A particular data treasure in this regard is generated by citizen science projects83

for plant species identification. Examples are the iNaturalist and Pl@ntNet projects, which84

encourage ten-thousands of individuals to capture, share, and annotate photographs of the85

World´s plant life (Boone and Basille, 2019; Di Cecco et al., 2021). The quantity of such86

citizen science observations is rapidly growing due to the increasing number of volunteers87

participating in such projects (Boone and Basille, 2019; Di Cecco et al., 2021).88

Currently, the iNaturalist project contains over 26 mil globally distributed and annotated89

photographs of vascular plant species. The iNaturalist platform allows users to identify plant90

species manually or using a computer vision model integrated into the platform. The sub-91

mitted observations are then evaluated by the community, and a research-grade classification92

is assigned if over two-thirds of the community agrees on the species identification. The93

Pl@ntNet project includes over 20 Mio observations of globally distributed vascular plants.94

Pl@ntNet requires users to photograph their observations and select an organ tag (e.g., leaf,95

flower, fruit, or stem). Pl@ntNet features an image recognition algorithm to analyze the96

tagged photograph and suggest a plant species. Pl@ntNet’s validation process uses a dy-97

namic approach, combining automated algorithm confidence with community consensus (Joly98

et al., 2016). The validated observations of iNaturalist and Pl@ntNet are shared via the99

Global Biodiversity Information Facility (GBIF), a global network that provides open access100

to biodiversity data (GBIF, 2019).101

Citizen science-based plant photographs with species annotations provide a valuable, large,102

and continuously growing data source for training pattern recognition models, such as CNNs103

(Van Horn et al., 2018; Joly et al., 2016). However, such citizen science data has a cardinal104

limitation: It only provides simple species annotation for a plant photograph (the imagei105

shows speciesj). Hence, these labels only enable to train image classification models that106

predict the likelihood of a species being present in an image but not where in the image.107
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Ideally, for species mapping applications, the species labels would delineate the regions or108

pixels belonging to a species (The pixels in the right corner of imagei represents speciesj).109

Such labels (known as masks) could be used to train CNN-based segmentation models, which110

can predict a species probability for each individual pixel of an image (or tile of an orthoimage)111

(Galuszynski et al., 2022; Schiefer et al., 2020).112

In a pioneering study by Soltani et al. (2022), the limitation of the simple labels that come113

with citizen science photographs was overcome by a workaround. At first, image classification114

models were trained with citizen science data and simple labels to predict a species per image.115

The trained image classification models were then applied sequentially on tiles of UAV-based116

orthomosaics in a moving-window-like fashion with very high overlap (Fig. 1a). Lastly, the117

individual predictions derived from the moving-window steps were rasterized to a seamless118

segmentation map (Fig. 1b). However, this workaround is computationally intense and in-119

efficient for large or multiple UAV orthomosaics, as segmentation maps can only be derived120

from many overlapping prediction steps. In contrast, state-of-the-art CNN-based segmenta-121

tion methods (typically an encoder-decoder structure) used in remote sensing applications are122

trained with reference data in the form of masks with dimensions (pixels) corresponding to123

the extent of the input imagery, where each pixel of the mask defines the absence or presence124

of a class (here plant species) in the imagery (Kattenborn et al., 2021). Respective segmen-125

tation models are more efficient as they segment multiple classes in a single prediction step.126

Moreover, they enable more detailed class representations in situations where multiple classes127

are arranged in complex patterns.128
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Figure 1: 1-column figure: Schematic representation of the proposed workflow, including the
moving window approach by Soltani et al. (2022) (a,b) and the use of state-of-the-art encoder-
decoder segmentation algorithms (c).

Here, we propose a solution to overcome the limitation of simple annotations of citizen129

science plant observations with a two-step approach: In the first step, we apply the procedure130

of Soltani et al. (2022), involving CNN-based image classification models trained on citizen131

science photographs and simple species labels to predict plant species in UAV orthoimages132

using the moving-window approach described above (Fig. 1a, b). Although computationally133

demanding, this serves to create segmentation masks for UAV orthoimages. In the second step,134

these segmentation masks are used to train more efficient CNN-based image segmentation135

models with an encoder-decoder structure (Fig. 1c). These more efficient models could then136

be applied to larger spatial extents or to new UAV orthomosaics (e.g. of different sites or137

time steps).138

The present study, hence, addresses the following research questions:139
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• Can we harness weak labels from citizen science plant observations to train efficient140

state-of-the-art semantic segmentation models?141

• Do those segmentation models also increase the accuracy compared to the simple moving142

window approach?143

These questions are evaluated on a tree species dataset acquired on an experimental site144

(MyDiv experiment, Bad Lauchstädt, Germany), where ten temperate deciduous tree species145

were planted in stratified and complex mixtures. The selection of this location is attributed146

to its harmonious coexistence of various plant species within a compact area.147

2 Methods148

2.1 Data acquisition and pre-processing149

2.1.1 Study site and drone data acquisition150

The MyDiv experimental site is located in Bad Lauchstädt, Saxony-Anhalt, Germany (lati-151

tude, 51°23’ N, longitude, 11°53’ E). The site comprises 80 plots with different configurations152

of ten deciduous tree species, including Acer pseudoplatanus, Aesculus hippocastanum, Betula153

pendula, Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Prunus avium, Quercus petraea,154

Sorbus aucuparia, and Tilia platyphyllos (Ferlian et al., 2018). Each plot measures 12 m by155

12 m and contains 140 trees planted at distances of 1 m (Fig 2). In total, all plots together156

accommodate 11,200 individual trees. Each plot contains varying tree species compositions,157

including one, two, and four tree species. This variety in species, their balanced composition,158

and plots of different canopy complexity (species mixtures) provide an ideal setting to test159

the proposed species segmentation approach.160

We collected UAV-based RGB aerial imagery over the MyDiv experimental site using a161

DJI Mavic 2 Pro and the flight planning software DroneDeploy (vers. 5.0, USA). Two flights162

were conducted in 2022 in July and September, where July corresponds to the peak of the163

growing season and September to the senescence stage (Fig 2). The flight plan was setup164

with a forward overlap of 90%, side overlap of 70% at an altitude of 16 m (ground sampling165

distance of approximately 0.22 cm per pixel). We used the generated images and Metashape166

(vers. 1.7.6, Agisoft LLC) to generate orthoimages for both flight campaigns. The orthoimage167

for July and September are onward called OrthoJuly and OrthoSeptember, respectively.168
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Figure 2: Overview of the MyDiv experimental site with close-ups for three plots of different
species composition. The MyDiv site is located at Lat. 51.3916 N, Long. 11.8857 E.

To evaluate the performance of the CNN models for tree species mapping, we created169

reference data by manually delineating the tree species in the UAV orthoimages in QGIS170

(vers. 3.32.3). To reduce the workload, we did not delineate the species for the entire plot171

but for diagonal transects with 20 m length and 2 m width.172

2.1.2 Citizen science training data173

We queried citizen science plant observations of the iNaturalist and Pl@ntNet datasets via174

the GBIF database for our target tree species using scientific names. For the iNaturalist data,175

we used the R package rinat (vers. 0.1.8), an API to iNaturalist. The Pl@ntNet data for the176

selected tree species were acquired using the tabulated observation data from GBIF and the177

integrated URLs to the images. The number of photographs available from iNaturalist and178

Pl@ntNet varied for the different tree species. Per species, we were able to acquire between179

582 to 10000 photographs (mean 7696) from the iNaturalist dataset and 221 to 3304 images180

(mean 2238) from the Pl@ntNet dataset (details see Appendix Table A1).181

In addition to the tree species, we added a background class to consider canopy gaps182

between trees. Training data for this background class was obtained using the Google Image183

API and queries of different keywords, e.g.grass, forest floor, forest ground. After cleaning the184

obtained images for non-meaningful results, the background class included 1100 photographs.185

We converted all photographs to a rectangular shape by cropping them to the shorter side186

and resampled them to a common size of 512×512 pixels (the tile size used later for the CNN187

model generation). Figure 3 shows examples of the downloaded photographs for the different188

tree species and a comparison to their appearance in OrthoJuly.189
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Figure 3: Example citizen science-based photographs derived from iNaturalist and tiles of
UAV orthoimages (512 * 512 pixels) for the ten tree species in the MyDiv experiment.

The acquisition settings of citizen science plant photographs are heterogeneous and differ190

considerably from the typical bird perspective of UAV orthoimages (Fig. 3). For instance, from191

the UAV perspective, canopies are mostly viewed from a relatively homogeneous distance, and192

the photographs represent mostly leaves and other crown components. In contrast, the citi-193

zen science data includes a lot of close-ups, landscape imagery, or horizontal photographs of194
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trunks. Soltani et al. (2022) has demonstrated that species recognition in UAV images can be195

improved by excluding crowd-sourced photographs that are exceptionally close (e.g., showing196

individual leaf veins) or too far away from the plant (e.g., landscape images). Therefore,197

we filtered the citizen science-based training photos according to the camera-plant-distance.198

Moreover, we filtered photos that exclusively contained tree stems. Because such information199

is unavailable in the citizen science datasets, we trained CNN-based regression and classifi-200

cation models to predict acquisition distance and tree trunk presence for each downloaded201

photograph. To train these CNN-based models, we visually estimated the acquisition distance202

(4,500 photographs) and labeled tree trunk presence (1,000 photographs). To ease the label-203

ing process, we used previously labeled training data from (Soltani et al., 2022) and added204

150 additional tree photographs from the tree species present in the MyDiv experimental site.205

To evaluate the models for predicting the acquisition distance and trunk presence, We206

randomly split the citizen science-based plant photographs into training and validation sets,207

with 80% for training and 20% for validation.208

For the distance regression and the trunk classification, we used the EfficientNetB7 back-209

bone (Tan and Le, 2019). For the distance regression, we used the following top-layer settings:210

global average pooling, batch normalization, drop out (rate 0.1), and a final dense layer with211

1 unit and linear activation function. We used the Adam optimizer (learning rate of 0.0001)212

and a mean squared error (MSE) loss function. For the trunk classification, we used the213

following top-layer settings: global max-pooling, a final dense layer with two units, and a214

softmax activation function. We used the Adam optimizer (learning rate of 0.0001) and the215

categorical cross-entropy loss function. Both models were trained using a batch size of 20 and216

50 epochs.217

We used the model with the lowest loss from these epochs (details on the model perfor-218

mance are given in Appendix A1.3) to predict the acquisition distance and tree trunk presence219

in all downloaded photographs for our target species. We filtered training photographs prior220

to training CNN-based species classification (see section 2.2) with acquisition distances less221

than 0.2 m and greater than 15 m and photographs classified as trunk (probability threshold222

of 0.5). Thereby, 82,628 of the 101,574 downloaded citizen science photographs remained.223

2.2 CNN-based creation of plant species segmentation masks using a mov-224

ing window approach225

The segmentation masks were obtained using a CNN image classification model trained on226

crowd-sourced plant photographs and simple species labels using a moving window method227

(hereafter CNNwindow, Fig. 1)b. Based on the results of previous studies, we choose a generic228

image size of 512× 512 pixels for the CNN classification model (Schiefer et al., 2020; Soltani229

et al., 2022). During the moving window approach, the orthoimage is sequentially cropped into230

tiles of 512× 512 pixels on which the image classification is applied to predict the species for231

each location. This procedure is applied with a dense overlap between tiles defined by a step232

size, resulting in a dense regular grid of species predictions. We chose a vertical and horizontal233

distance of 51 pixels as the step size. The resulting predictions were afterwards rasterized to234
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a continuous species distribution grid with a spatial resolution of 8.31 cm/pixel (see Soltani235

et al., 2022, for details). The CNNwindow model was implemented as a classification task with236

eleven classes, including the ten tree species and the background class.237

The number of available photographs varied widely across tree species (see 2.1.2), poten-238

tially biasing the model towards classes with more photographs. To address this imbalance,239

we equally sampled 4,000 photographs for each class with replacements. Sampling with re-240

placement randomly duplicates the existing photographs for under-represented classes, in this241

case, classes with fewer than 4,000 photographs. We applied a data augmentation to increase242

the variance of the duplicated images. The augmentation consisted of random vertical and243

horizontal flips, random brightness with a maximum delta of 10% (±0.1), and contrast al-244

teration within a range of 90% to 110% (0.9 to 1.1) of training photographs. We randomly245

partitioned the training data into validation and training sets to ensure unbiased evaluation.246

From the training set, we allocated a holdout of 20% for model selection, while the remaining247

80% was used for model training. Subsequently, we assessed the accuracy of the selected248

model using the validation set.249

After testing different architectures as model backbones, including ResNet-50V2, Effi-250

cientNetB07, and EfficientNetV2L, we selected EfficientNetV2L as it resulted in the highest251

classification accuracies. The following layers were added on top of the EfficientNetV2L back-252

bone: Dropout with a ratio of 0.5, average pooling, dropout with a ratio of 0.5, a dense layer253

with 128 units, L2 kernel regularizer (0.001), a ReLu activation function, and a final dense254

layer with a softmax activation function and 11 units (corresponding to the ten tree species255

and the background class). We used Root Mean Squared Propagation (RMSprop) as the256

optimizer with a learning rate of 0.0001 and categorical cross-entropy as a loss function. We257

trained the configured model with a batch size of 15 over 150 epochs. The model with the258

lowest loss (based on the 20% holdout) was selected as the final model. The latter was used259

to predict the tree species (probabilities) in the UAV orthoimages using the above-mentioned260

CNNwindow method(Fig. 1b). To filter uncertain predictions (predominantly in canopy gaps261

or at crown shadows), we only considered a tree species as predicted above a threshold higher262

than 0.6. Otherwise, it was assigned to NA (not available) which accounts for approximately263

7.8% of the image. To smooth the predictions and remove noise, we applied a sieve opera-264

tion on the output of the CNNwindow (threshold = 50, considering horizontal, vertical, and265

diagonal neighbors, R-package terra, vers. 1.7).266

2.3 CNN-based plant species segmentation using an encoder-decoder ar-267

chitecture268

As encoder-decoder segmentation architecture (onwards CNNsegment), we chose U-Net (Ron-269

neberger et al., 2015), which is the most widely applied segmentation method in remote270

sensing image segmentation (Kattenborn et al., 2021). The U-Net architecture is a CNN-271

based algorithm that performs semantic segmentation by predicting a class for each pixel of272

the input image. The architecture consists of an encoder-decoder structure with skip connec-273

tions. The configured architecture has four levels of convolutional blocks. Each convolutional274
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block consists of two convolutional layers and is followed by batch normalization and ReLU275

activation. The encoder gradually compresses feature maps and reduces their spatial dimen-276

sions via max pooling operations, while the decoder increases the feature map resolution by277

transposed convolution. The encoder and decoder blocks are connected through skip connec-278

tions, which transfer the spatial context of the encoder feature maps to the decoder, enabling279

a segmentation at resolution of the input imagery in the last layer. The final layer has eleven280

units (corresponding to the ten tree species and a background class). A corresponding softmax281

activation function maps the features to class probabilities. Using a max function, the pixels282

of the segmentation output are assigned to the class with the highest probability (Fig. A12).283

The segmentation masks for training CNNsegment were obtained from the predictions of the284

CNNwindow method applied on both UAV orthoimages (section 2.2, OrthoJuly, OrthoSeptember).285

At first, we resampled the CNNwindow prediction maps to the original spatial resolution of the286

orthoimages (0.22 cm pixel size). Afterward, we cropped the orthoimages and the prediction287

maps into non-overlapping tiles, each with a size of 512 × 512 pixels, resulting in a total of288

44,980 and 37,113 tiles from OrthoJuly and OrthoSeptember, respectively.289

The training data obtained from the CNNwindow approach were filtered to avoid training290

the CNNsegment model with uncertain predictions. Thereby, we assumed that predictions291

for a tile are uncertain when the model predicts multiple classes with low relative cover.292

Thus, after initial tests, we included only those tiles where the cover of at least one class293

exceeded 30%. The number of training tiles per class after filtering varied between 1257 and294

16894 samples; Acer pseudoplatanus (6581), Aesculus hippocastanum (2054), Betula pendula295

(4955), Carpinus betulus (1535), Fagus sylvatica (16894), Fraxinus excelsior (7901), Prunus296

avium (1257), Quercus petraea (1302), Sorbus aucuparia (5473), Tilia platyphyllos (1982),297

Background (5408).298

Similar to the previous CNNwindow classification task, the availability of training tiles299

varied greatly across the tree species. This class imbalance may have partially stemmed from300

the more systematic misclassification of certain classes during the CNNwindow prediction. To301

reduce the unfavorable effects of a class imbalance on model training, we sampled 4,000 tiles302

per class with replacement (similar to the CNNwindow procedure). We applied the same data303

augmentation strategy as for the CNNwindow workflow to increase variance among duplicates.304

20% of the training data were withheld for model selection.305

We trained the U-Net architecture (CNNsegment) using Root Mean Squared Propagation306

(RMSprop) as the optimizer with a learning rate of 0.0001 and an adapted Dice loss function.307

We adapted the Dice loss to ignore the weights coming from pixels with NA mask values. The308

models were trained with a batch size of 20 over 150 epochs.309

The CNNsegment was then applied to OrthoJuly and OrthoSeptember. To reduce uncertain310

predictions of CNNsegment, we assigned the pixels where predicted probabilities for any of311

the tree species did not exceed 30 % to the background class. Thereby, we assumed that312

uncertain predictions predominantly occur in canopy gaps. As image segmentation typically313

suffers from increased uncertainty at tile edges, we repeated the predictions with horizontal314

and vertical shifts of 256 pixels, which were subsequently aggregated using a majority vote.315
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The final model performance of CNNsegment was assessed and compared to CNNwindow316

using the independent reference data (transects) obtained from the visual interpretation of317

the UAV orthoimages.318

3 Results319

For the CNNwindow method, F1-scores differed considerably across the tree species, although320

these differences were relatively consistent across the two orthoimages, i.e. OrthoJuly and321

OrthoSeptember(Fig. 4a, b). On a plot level, comparably high model performance (mean F1 >322

0.6) was found for Acer pseudoplatanus and Fraxinus exlcesior, followed by the intermediate323

performance (mean F1-score 0.35-0.55) for Aesculus hippocastanum, Sorbus aucuparia, Tilia324

platyphyllos, Betula pendula, and Carpinus betulus. Low performance (mean F1-score < 0.35)325

was found for Quercus petraea , Fagus sylvatica, and Prunus avium. Averaged across species,326

there was a slight decrease in model performance from OrthoJuly with a mean F1-score of 0.44327

to OrthoSeptember with a mean F1-score of 0.4 (Fig. 4a, b). Note that OrthoJuly corresponded328

to the peak of the season, where leaves and canopies were still fully developed.329

The CNNsegment model performance across species was similar but generally higher com-330

pared to the CNNwindow method. For OrthoJuly F1-scores increased from 0.44 to 0.48 (Fig. 4a331

vs. c) and for OrthoSeptember, F1-scores increased from 0.40 to 0.46 (Fig. 4b vs. d).332

We observed notable differences in model performance (mean F1) across different species333

mixtures, which are plots having one, two, or four species per plot (Fig. 5). For both334

CNNwindow and CNNsegment, the model performance strongly increased with lower number335

of species per plot (Fig. A13; results for CNNwindow are given in the Appendix).336

The model performance of CNNsegment exceeded the model performance of CNNwindow337

, particularly in plots with an increased number of species: For monocultures, the relative338

increase in model performance (F1-score) amounted to 2.5%, in two species plots to 6.9%,339

and in plots with four species to 20.9% (averaged for OrthoJuly and OrthoSeptember). This340

increased performance can be attributed to the advantages of the encoder-decoder principle341

of the CNNsegment method, enabling a pixel-wise and contextual prediction at the original342

resolution of the orthomosaics. These advantages are also visible in Fig. 6, where CNNsegment343

resulted in more detailed and accurate tree species segmentation (particularly for plots 26 and344

29).345

The highest model performance for CNNsegment was found in monoculture plots, where F1-346

scores > 0.5 were found for eight out of ten species for both OrthoJuly and OrthoSeptember. A347

considerably lower performance for the July and September acquisition was found for Prunus348

avium, which may correspond to similarities in leaf and canopy structure with Fagus sylvatica349

and Fraxinus excelsior (a confusion matrix is given in the Appendix, Fig. A11). The decreased350

performance for Carpinus betulus and Prunus avium in OrthoSeptember can be attributed to351

the very advanced senescence and leaf loss.352

In addition to the increase in model performance, our analysis revealed that the prediction353

on orthoimagery using CNNsegment only required 10% of the computation time compared to354
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CNNwindow. The duration of applying the models to the whole MyDiv orthomosaics covering355

an area of (3.02 hectares; 0.22 cm ground sampling distance) took approximately 27.05 hours356

with CNNsegment and 264.88 hours with CNNwindow (NVIDIA A6000 with 48 GB RAM).357

(a) Performance across species mixtures (F1-scores) on OrthoJuly. Mean F1-scores: 1 species (0.51), 2
species (0.44), 4 species (0.41)

.

(b) Performance across species mixtures (F1-scores) on OrthoSeptember. Mean F1-scores: 1 species
(0.58), 2 species (0.51), 4 species (0.42)

Figure 5: The model performance (F1-score) of the CNNsegment model across a gradient of
canopy complexity in OrthoJuly and OrthoSeptember. F1-scores decrease with increasing canopy
complexity in plots

.
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(a) F1-scores for CNNwindow on OrthoJuly
(mean 0.44).

(b) F1-scores ofCNNwindow on OrthoSeptember

(mean 0.42).

(c) F1-scores of CNNsegment on OrthoJuly
(mean 0.48).

(d) F1-scores of CNNsegment on
OrthoSeptember (mean 0.46).

Figure 4: F1-scores by tree species and background class for OrthoJuly and OrthoSeptember

derived from CNNwindow and CNNsegment.
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Plot 25

Plot 26

Plot 27

Plot 28

Plot 29

Plot 33

Plot 35

Plot 78 

Figure 6: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions. Visualizations for the remaining plots
are given in the Appendix (Section A1.1).
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4 Discussion358

4.1 Filtering of citizen science data for drone-related applications359

To achieve better correspondence between plant features visible in the citizen science pho-360

tographs and the UAV images, we filtered the crowd-sourced photographs based on their361

acquisition distance (less than 0.3 m or greater than 15 m) to exclude macro and landscape362

photographs. Moreover, we excluded photographs that predominantly display tree stems,363

facilitating a foliage-centric perspective as intrinsic to high-resolution UAV images (Fig. 3).364

In the future, more criteria may be considered for filtering citizen science imagery, includ-365

ing metadata (labels) on the presence of specific plant organs within an image (e.g., fruits,366

flowers) as provided as a by-product by some citizen science plant identification apps (e.g.,367

Pl@ntNet).368

4.2 The creation of segmentation masks from simple image labels369

One of the challenges of generating segmentation masks for the encoder-decoder method370

(CNNsegment) with the proposed workflow may be error propagation between the different371

steps. Firstly, the CNN image classification trained on the citizen science data has varying372

uncertainty for the different species, resulting from noisy citizen science observations or lim-373

itations to identify some species solely by photographs (Van Horn et al., 2018). Secondly,374

the moving window approach (CNNwindow), which predicts one species for an entire tile, may375

be too coarse to resemble very complex canopies (e.g., in highly diverse plant communities).376

However, although the fact that the segmentation labels created with the CNNwindow ap-377

proach are partially inaccurate (Fig. 4a, 6), we found that the CNNsegment procedure indeed378

resulted in higher performance than the CNNwindow procedure. This is in line with other379

studies (Kattenborn et al., 2021; Cloutier et al., 2023; Schiller et al., 2021) reporting that380

deep learning-based pattern recognition can partially overcome noisy labels, whereas the in-381

tentional use of noisy reference data, also known as weakly-supervised learning, is generally382

very promising in the absence of high-quality labels (Cherif et al., 2023; Zhou, 2018; Schiller383

et al., 2021). Here, we filtered the training data (masks) for regions where we expect extreme384

noise levels, that is, for tiles where none of the classes exceeded a relative cover of 30%. These385

regions were, according to our observation, often canopy gaps and shadowed areas, where one386

naturally expects lower model performance as species-specific textures are less visible (Lopatin387

et al., 2019; Milas et al., 2017; De Sa et al., 2018).388

The enhanced segmentation performance of the CNNsegment approach compared to CNNwindow389

can be attributed to the spatially explicit and finer-resolved predictions of the U-Net segmen-390

tation algorithm (encoder-decoder principle), enabling a segmentation of the tree species at391

the native resolution of the orthoimagery. The CNNsegmentn approach resulted in improved392

prediction results compared to the CNNwindow method in plots with more species and, hence,393

more complex canopies. Thus, the presented two-step approach of creating segmentation394

masks from simple class labels CNNwindow, as provided by iNaturalist and Pl@ntNet plat-395

forms, can indeed be used to create segmentation masks required for state-of-the-art image396
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analysis methods (CNNsegment) and thereby result in high value for remote sensing applica-397

tions. The increased value of these segmentation masks enables the training of algorithms398

with higher performance in species recognition. It greatly enhances the computational effi-399

ciency of applying the models on orthoimagery (approximately ten times faster). Especially400

for recurrent applications, such as monitoring or large-scale undertakings, the two-step ap-401

proach involving the creation of segmentation masks and encoder-decoder architectures is402

recommended.403

4.3 The role of canopy complexity404

Overall, the segmentation performance declined with increasing species richness per plot.405

We expect that this can mainly be attributed to the small size of individual trees at the406

MyDiv site, where in high species mixtures, there is a lower chance that a 512 × 512 pixel407

tile includes clearly visible species-specific leaf and branching patterns. This also explains408

why, in particular, trees with lower relative canopy height (e.g., Quercus petrea and Fagus409

sylvatica were less likely to be accurately segmented in species mixtures. The observed effect410

of canopy complexity is in line with previous findings from Soltani et al. (2022); Lopatin411

et al. (2017); Fassnacht et al. (2016); Fricker et al. (2019), where smaller patches of individual412

species were less likely to be accurately detected. Visual inspection also confirmed that413

false predictions were more likely at canopy edges between different tree species (Fig. 6).414

However, it should be noted that the small-scaled canopy complexity of the plots used here415

is exceptionally high (Fig. 3). Most tree crowns in the MyDiv experiment do not exceed a416

diameter of 1.5 m, and the transition among tree crowns of multiple species is often very417

fuzzy. Thus, we expect reduced performance in canopy transitions to be less relevant in418

real-world settings, where tree species appear in more extensive, homogeneous patches and419

where individual crowns are commonly larger. Thus, the model performance in these species420

mixtures can be interpreted as a rather conservative estimate. The results obtained for the421

monocultures might be more representative in terms of real-world applications, as mature422

trees in temperate forests typically have crown diameters 5 to 20 times larger. Application423

tests of the presented approach in real forests are desirable. However, acquiring such a dataset424

is a logistical challenge since temperate forest stands commonly do not feature a comparably425

high and balanced occurrence of that many tree species.426

4.4 Spatial resolution of the UAV imagery is key427

According to the results obtained in the monocultures, The CNNsegment model successfully428

classified seven out of ten tree species (F1 > 0.7). The lower F1-scores for Quercus petrea429

(mean F1 0.57), Prunus avium(mean F1 0.2), Tilia platyphyllos(mean F1 0.53) may result430

from the spectral and morphological similarity at the current spatial resolution of the UAV431

imagery (0.22 cm)(Fig. 3). Hence, there was a tendency that these species were often confused432

with each other (see confusion matrices in Appendix A1.2). Such confusion among plants433

with a similar appearance was confirmed by other studies (Cloutier et al., 2023; Schiefer434
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et al., 2020, e.g.) and matches our experience from the generation of reference data via visual435

interpretation, where a separation between these species was sometimes challenging. Initial436

CNN-based segmentation attempts (results not shown) in the preparation of this study were437

based on an orthoimage of 0.3 cm instead of 0.22 cm resolution, resulting in clearly lower438

model performances. This aligns with the reported importance of spatial resolution of UAV439

imagery for CNN segmentation of earlier studies (Schiefer et al., 2020; Schmitt et al., 2020;440

Ma et al., 2019; G. Braga et al., 2020). Thus, while the current orthoimages with 0.22 cm441

resolution delivered promising results, further increasing the spatial resolution might be very442

promising for species where characteristic leaf forms are only visible at fine spatial resolutions.443

4.5 Model transferability across seasons and orthoimage acquisition prop-444

erties445

The variability of human behavior and electronic devices makes citizen science-based plant446

photographs very heterogeneous. This can be a challenge for deep learning applications, such447

as species recognition or plant trait characterization (Schiller et al., 2021; Van Horn et al.,448

2021; van Der Velde et al., 2023; Affouard et al., 2017), where models have to identify features449

that hold across various viewing angles, distances, or illumination conditions. However, this450

heterogeneity might also be of great value, given that citizens depict the appearance of plants451

under various site, environmental, and phenological conditions. This, in turn, offers a unique452

setting for training models that are generic and transferable across these conditions. Here, we453

evaluated the transferability of our models across different data sets by applying them to two454

orthoimages acquired in different seasons (peak of growing season and autumn). Both the455

CNNwindow and CNNsegment models could identify deciduous tree species in the orthoimages456

with surprising accuracies, suggesting that the models are transferable to different conditions.457

4.6 Outlook458

Overall, our results indeed highlight the value of citizen science photographs with simple class459

labels to create training data for state-of-the-art segmentation approaches. A great advan-460

tage of this citizen science-based approach is that it does not require often costly training461

data obtained from visual interpretation or field surveys (here, reference data was only used462

for validating the models). This particularly highlights the potential of citizen science data463

for applications where many species are of interest, such as biodiversity-related monitoring464

applications (Chandler et al., 2017; Johnston et al., 2023). In this regard, data or models of465

species-recognition platforms that incorporate excessive amounts of plant species and respec-466

tive imagery are very promising, including iNaturalist (Boone and Basille, 2019), Pl@ntNet467

(Affouard et al., 2017), ObsIdentify (Molls, 2021) or FloraIncognita (Mäder et al., 2021). Yet,468

based on the current and the precursor study (Soltani et al., 2022), we expect that a pre-469

selection of citizen science photograph databases considering images more representative of470

the common UAV-based perspective is required to unleash the potential of this heterogeneous471

data.472
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5 Conclusion473

The transfer learning approach presented here demonstrates the value of freely available474

crowd-sourced plant photographs for remote sensing studies. This heterogeneous dataset475

can provide valuable training data for transferable CNN-based segmentation models. Here,476

this potential was highlighted in a very complex task, i.e., the differentiation of 10 temperate477

deciduous tree species in mixed vegetation stands with a complex structure. The presented478

two-step approach demonstrated how we can transfer and harness generic knowledge gathered479

by citizens on how plants ’look’ to the bird perspective of high-resolution drone imagery. The480

presented moving window approach overcomes the limitation of citizen science-based pho-481

tographs having only simple species labels. The segmentation maps derived from an image482

classification model applied in a moving window setting can be harnessed to create segmen-483

tation masks for encoder-decoder-type segmentation models. The latter does not only enable484

higher accuracies in species segmentation but is also considerably more efficient. By building485

on the effort of thousands of citizens, this framework enables the mapping of plant species486

without any training data obtained from visual interpretation or ground-based field surveys.487

Due to the large amounts of plant photographs acquired in different conditions, such models488

can be assumed to have good transferability.489
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A. Affouard, H. Goëau, P. Bonnet, J.-C. Lombardo, and A. Joly. Pl@ ntnet app in the era of510

deep learning. In ICLR: International Conference on Learning Representations, 2017.511

E. Bayraktar, M. E. Basarkan, and N. Celebi. A low-cost uav framework towards ornamental512

plant detection and counting in the wild. ISPRS Journal of Photogrammetry and Remote513

Sensing, 167:1–11, 2020.514

M. E. Boone and M. Basille. Using inaturalist to contribute your nature observations to515

science. EDIS, 2019(4):5–5, 2019.516

A. Bouguettaya, H. Zarzour, A. Kechida, and A. M. Taberkit. Deep learning techniques to517

classify agricultural crops through uav imagery: A review. Neural Computing and Applica-518

tions, 34(12):9511–9536, 2022.519

M. Brandt, C. J. Tucker, A. Kariryaa, K. Rasmussen, C. Abel, J. Small, J. Chave, L. V.520

Rasmussen, P. Hiernaux, A. A. Diouf, et al. An unexpectedly large count of trees in the521

west african sahara and sahel. Nature, 587(7832):78–82, 2020.522

P. G. Brodrick, A. B. Davies, and G. P. Asner. Uncovering ecological patterns with convolu-523

tional neural networks. Trends in ecology & evolution, 34(8):734–745, 2019.524

M. Chandler, L. See, K. Copas, A. M. Bonde, B. C. López, F. Danielsen, J. K. Legind,525
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A Appendix656

A1.1 Prediction maps657
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Figure A1: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A2: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A3: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A4: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.

28



Plot 62

Plot 66

Plot 80

Plot 79

Plot 77

Plot 76

Plot 78

Plot 75

Figure A5: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A6: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A7: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A8: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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Figure A9: Transects of 2 m by 20 m of selected plots, including the orthoimage, the reference,
CNNwindow predictions, and CNNsegment predictions.
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A1.2 Confusion Matrix658

Figure A10: Normalized Confusion Matrix of the CNNsegment model applied to
OrthoSeptember
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Figure A11: Normalized Confusion Matrix of the CNNsegment model applied to the
OrthoSeptember

A1.3 Data pre-processing659

To reduce the heterogeneity of crowd-sourced photographs and match them with the UAV660

perspective, we filtered the photographs based on their acquisition distance and plant leaf661

visibility. The model achieved an R2= 0.7 and F1 = 0.8 on independent test data for both662

variables. Using predicted acquisition distance and tree trunk presence information for each663

photograph, we tested different filtering thresholds and combinations prior to training the664

CNNwindow model for plant species classification. The best result was achieved by filtering665

photographs with acquisition distances outside the range of 0.3 to 15 m and excluding pho-666

tographs that showed tree trunks, with a probability of being a trunk > 0.5.667
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A1.4 Citizen science data availability668

Table A1: Number of downloaded photographs for selected tree species from the iNaturalist
and Pl@ntNet datasets.

No. Species iNaturalist Pl@ntNet

1 Acer pseudoplatanus 9999 3205
2 Aesculus hippocastanum 9998 1444
3 Betula pendula 9998 1308
4 Carpinus betulus 7165 2633
5 Fagus sylvatica 9981 3304
6 Fraxinus excelsior 7745 3130
7 Prunus avium 9999 3022
8 Quercus petraea 1491 221
9 Sorbus aucuparia 10000 2730
10 Tilia platyphyllos 582 1449

A1.5 Segmentation model architecture669

Figure A12: A modified version of the U-Net CNN-architecture for segmenting plant species
from UAV orthoimages (Ronneberger et al., 2015).
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A1.6 CNN window species mixture box plot670

(a) Performance on OrthoJuly: The model performance (F1) of the CNNwindow model on Performance
on OrthoJuly.

(b) Performance on OrthoSeptember: The model performance (F1) of the CNNwindow model on Perfor-
mance on OrthoJuly.

Figure A13: The model performance (F1) of the CNNsegment model across a gradient of canopy
complexity in two orthoimages.
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