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Abstract. Many rifts are influenced by pre-existing structures and heterogeneities during their evolution, a process known as 

structural inheritance. During rift evolution, these heterogeneities may aid rift nucleation, growth, and segmentation of faults, 

encourage linkage of various segments, or even inhibit the formation of faults. Understanding how structural inheritance 

influences early rift evolution could be vital for evaluating seismic risk in tectonically active areas. The Shanxi Rift in the 15 

north of China is an active rift system believed to have formed along the trend of the Proterozoic Trans North China Orogen , 

however, the influence of these pre-existing structures on the present-day rift architecture is poorly known. Here we use 

tectonic geomorphological techniques, e.g., hypsometric integral (HI), channel steepness (ksn) and local relief to study the 

evolution of the Shanxi Rift and identify areas of higher tectonic activity. We found that HI was less sensitive to lithology and 

more valuable in evaluating the tectonic signal and found that activity is concentrated in two rift interaction zones (RIZ) formed 20 

between the Xinding, Taiyuan, and Linfen basins. We then evaluated the relationship between the active faults and mapped 

pre-existing structures and found that many faults formed parallel to inherited structures but faults in the RIZs often crosscut 

these structures. Based on these observations we propose a new model for the evolution of the Shanxi Rift where inherited 

structures play an important part in the initial segmentation of the rift which in turn controls the development of the RIZ 

structures.  25 

1 Introduction 

Many continental rifts exploit ancient orogenic belts to accommodate extensional strain. Examples include East African Rift 

(Rosendahl, 1987; Morley, 1988; Ring, 1994), Baikal Rift (Petit et al., 1996), and the Rhine Graben (Schuhmacher, 2002). 

Research has focused on understanding the relationship between old pre-rift structures and how they control the development 

of younger structures. Pre-existing orogenic belts influence the accommodation of subsequent episodes of extensional strain, 30 

due to the presence of discrete and mechanically weak structures, such as shear zones and associated metamorphic fabrics 

(McCaffrey, 1997; Phillips et al., 2016, Fazlikhani et al., 2017; Kolawole et al., 2018; Peace et al., 2018; Heilman et al., 2019), 
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pre-existing fault networks (Holdsworth et al., 2001) or lithological contacts (Wedmore et al., 2020; Phillips and McCaffrey, 

2019). These mechanical strength contrasts are particularly significant where orogenic belts are adjacent to cratons (Dunbar 35 

and Sawyer, 1988; Ziegler and Cloethingh, 2004; Corti et al. 2013) as is the case for the Baikal Rift (Petit et al. 1996), the East 

African Rift (Versfelt and Rosendahl, 1989) and the Circum-Ordos rifts in North China (Xu and Ma, 1992; Su et al., 2021), 

because cratonic lithosphere is more resistant to deformation than younger orogenic belts.  

Studies of the interaction between rift-related normal faults and inherited structures in offshore basins and margins use high 

resolution 2D and 3D seismic reflection data to analyse the influence of inheritance on spatio-temporal patterns of rift evolution 40 

(Morley et al., 2004; Phillips et al., 2016; Peace et al., 2018, Mulaya et al., 2022). Detailed field studies, on the other hand, can 

resolve the kinematic response of faults and infer strainfield directions and interactions (e.g., East Africa, Hodge et al., 2018b; 

Wedmore et al., 2020; Heilman et al., 2019; Kolawole et al., 2018). Inherited structures and heterogeneities can influence the 

location, morphology, segmentation, and orientation of an entire rift zone (Wilson et al., 1966; Tommasi and Vauchez, 2001; 

Şengör et al., 2019; Heron et al., 2019; Schiffer et al., 2020; Kolawole et al. 2022). They can also influence the geometry and 45 

kinematics of individual faults (Wedmore et al., 2020; Samsu et al., 2020; Wilson et al., 2010). Inherited structures can 

influence the development of rifts and their associated basins by controlling linkage of fault segments (Brune et al. , 2017; 

Heilman et al., 2019). Pre-existing structures have also been shown to act as barriers to rift faults if they form structures or 

regions of strengthened crust that is harder to deform than surrounding areas (Krabbendam and Barr, 2000; Phillips and 

McCaffrey, 2019).  50 

Many rifts that show a strong influence of inheritance are very segmented and exhibit numerous faults and basins that vary in 

orientation and morphology (Morley et al., 2004; Reeve et al., 2015; Heron et al., 2019; Osagiede et al., 2020). Between 

individual basins of a rift zone, a complex deformation zone known as Rift Interaction Zone (RIZ) may develop (Nelson et al., 

1992; Koehn et al., 2008; Aanyu and Koehn, 2011; Sachau et al., 2016; Kolawole et al., 2021a). The morphology of these 

zones is principally controlled by the separation distance between fault segments, the polarity of the respective faults and the 55 

amount of overlap between them (Morley et al., 1990; Faulds and Varga, 1998; Zwaan and Schreurs, 2017, Zwaan et al., 2016). 

RIZs are classified on their geometrical organisation (rift segment faults are underlapping or overlapping, parallel, oblique, or 

orthogonal). Commonly, these zones are topographically distinct from the rest of the rift. RIZs may form topographic highs in 

their early evolution, forming as a drainage divide between depocenters (Ebinger et al., 1987; Lambiase and Bosworth, 1995; 

Gawthrope & Hurst, 1993) and therefore acting as a source of sediment (Gawthrope and Hurst, 1993; Scholz, 1995). As RIZs 60 

evolve, they can become breached and eventually link up the rift basins (Kolawole et al. , 2021a). RIZs can also be classified 

on their evolution stage (Kolawole et al., 2021a), i.e. whether the RIZ is unbreached, partially breached, recently breached, or 

breached. This is assessed based on two observations: 1) Presence of a breaching fault that extends from one rift segment to 

the other segment, and 2) Presence of an established physical linkage of depositional environments of both rift segments (i.e., 

drainage connection between both segments). Recently breached and breached RIZs have an established breaching fault and 65 

connect the drainage of two different rift segments, but breached RIZs shows less topography due to increased subsidence 

during the longer time period since the RIZ was breached. Unbreached RIZs show no apparent structural connection and no 
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drainage connection, while partially breached RIZs may have a breaching fault partially connecting the rift basins but the 

drainage integration has not occurred yet. RIZs may also show a perturbated local strain field due to the influence of the 

adjacent, bounding rift faults (Crider and Pollard, 1998; Kattenhorn et al., 2000; Maerten, 2000; Kolawole et al., 2024). 

Development of these zones may be aided by basement fabrics that strike oblique to the main extension direction (Fossen and 

Rotevatn, 2016); however, basement fabrics may also influence linkage across these zones (Morley et al. , 2004; Heilman et 75 

al., 2019; Kolawole et al., 2021a). RIZs are important structural domains along rift systems, and inheritance may be key to 

understanding their geometry and evolution.  

 

Figure 1: Overview map of the North China Craton (NCC) with boundaries of the different blocks and orogenic belts that make up 

the NCC shaded in colour. Boundaries after Zhao et al. 2005. Also indicated are the two major rift systems that formed superimposed 80 
on the NCC: The Paleogene North China Basin (in green, modified from Qi and Yang, 2010) and the Neogene circum-Ordos Rifts 

(in red, modified from Zhang et al., 2003; Deng et al., 2007). Bold black lines indicate the major strike-slip fault zones that effect 

present-day deformation. 
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The Shanxi Rift is part of a Cenozoic rift system which is known as the Circum-Ordos rifts, which surrounds the Western 

Block of the North China Craton (NCC) (Fig.1). Due to the strong lithosphere of the cratonic western block of the NCC, 

deformation was localised in two rift system along it: The Weihe-Shanxi Rift system in the southeast and the Yinchuan-Hetao 90 

rift system in the northwest (Zhang et al., 2003). Timing of the initiation of these rifts is debated with some authors arguing 

for Oligocene-Eocene initiation of the Weihe, Hetao and Yinchuan rifts, with the Shanxi Rift being younger (Zhang et al., 

2003; Shi et al., 2020), while other authors argue for a late Miocene initiation for all rifts (Yin, 2000). The Shanxi Rift in North 

China contains faults with a variety of trends which formed in the Late Miocene to present day (Su et al., 2023) (Fig.1). The 

origin of these trends is unclear but the currently accepted model postulates multiple changes in stress axes orientation during 95 

transtensional evolution of the Shanxi Rift since the late Miocene, with strain being partitioned into dip-slip and strike-slip 

fault systems during transtension (Shi et al., 2015a). There has been little focus on the influence of structural inheritance on 

the wider evolution of North China, with a few exceptions that show active normal faults often following the trends of inherited 

structures (Su et al., 2021) and possibly detaching into low angle shear zones at depth (Pavlides et al., 1999). Major faults in 

the Shanxi Rift commonly expose basement massifs of the Trans North China Orogen (TNCO) in their footwalls. The TNCO 100 

formed during the collision of the Eastern and Western Block of the NCC in the Paleoproterozoic. While these basement 

massifs have been intensively studied to unravel the exact timing and kinematics of the Proterozoic collision  (Kusky and Li,  

2003; Zhao et al., 2005; Trap et al., 2007, Trap et al., 2008; Faure et al., 2007; Trap et al., 2009a; Trap et al., 2009b; Zhai et 

al., 2010; Zhai and Santosh, 2011), their impact on the late Cenozoic rifting in the Shanxi Rift has not been considered in 

detail.   105 

There is limited seismic reflection data available for the Shanxi Rift (Xu et al., 1993; Ai et al., 2019). However, the degree of 

tectonic activity and subaerial exposure makes it possible to use geomorphology to study the structural evolution. In active 

rifts geomorphology and surface expression of faults have been commonly used to study the tectonic evolution of a rift and 

successfully employed in regions such as the Basin and Range (Jackson and Leeder, 1994; Densmore et al., 2003; Densmore 

et al., 2004), the Apennines (Whittaker et al., 2008; Geurts et al., 2020; Fisher et al., 2022), the Gulf of Corinth (Leeder and 110 

Jackson, 1993; Goldsworthy and Jackson, 2000; Gallen et al., 2021) or the East African Rift (Erbello et al., 2022; Dulanya et 

al., 2022). These geomorphic approaches are varied and include studying the drainage evolution, the topographic response to 

faulting or using rivers to track the transient uplift rate. Landscapes are primarily formed by two competing forces: tectonics 

and erosion (Whittaker, 2012). Geomorphic indices have been used to quantify landscape response to tectonics (Bull and 

McFadden, 1980; Cox et al., 1994; Hamdouni et al., 2008; Gao et al., 2016; Markrai et al., 2022). This study uses three indices, 115 

hypsometric integral, channel steepness and local relief, to evaluate the landscape response to faulting in the Shanxi Rift. 

By using geomorphic analysis to evaluate the tectonic evolution of the Shanxi Rift, highlighting areas of increased tectonic 

activity, and comparing these with the distribution of inherited structures, we provide new insights on the influence of 

inheritance on the evolution of the Shanxi Rift. Specifically, our results question the need for rapid changes in the Neogene 

strain field orientation to explain the varying fault orientations and fault evolution in the Shanxi Rift. Instead, we show a novel, 120 

simpler model whereby inheritance under a constant strain field creates a segmented rift system and creates RIZs where strain 
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and earthquake activity are focused. More generally, our work shows how geomorphic indicators can be used to identify the 135 

most active (and potentially hazardous) faults in an active extensional system. 

 

Deleted: ¶



 

6 

 

Figure 2: Detailed map of the circum-Ordos Rifts and the main rivers. Extension directions shown are from:  I - Zhang et al. (1998) 

II - Shen et al. (2000) III - Middleton et al. (2017). Rose plot shows the mean orientation of major rift faults in the Shanxi Rift (defined 140 
here as the regions that lie within the purple bounding line). Faults were split into individual segments according to their orientation. 

Purple dots represent earthquakes from the ISC catalogue (Storchak et al., 2013; 2015; Di Giacomo et al., 2018) and are weighted 

by magnitude. (Abbreviations: HGS-Hengshan; WT-Wutai; XZS-Xizhoushan; SLG-Shilingguan; JC-Jiaocheng; TG-Taigu; HUS-

Huoshan; LYS-Luosyunshan; ZTS-Zhongtiaoshan) 

2 Geological Setting 145 

The Shanxi Rift system in North China is an active continental rift system that is superimposed on the 1.8 Ga TNCO (Fig. 1) 

when collision of the Eastern and Western Blocks formed the NCC. Exact timing and kinematics of this collision remain 

uncertain (Zhao et al., 2005; Kusky et al., 2007; Zhai and Santosh, 2011). Since the Proterozoic, the NCC has been a stable 

cratonic block with a lithospheric thickness of 200 km, evidenced by Palaeozoic kimberlites (Menzies et al. 1993; Griffin et 

al., 1998; Menzies et al., 2007). The Paleoproterozoic and Archean basement rocks are unconformably overlain by the 150 

greenschist facies metasedimentary rocks (Faure et al., 2007) of the Paleoproterozoic Hutuo Group, which was deposited in a 

foreland basin during the TNCO Orogeny (Li et al., 2010). The lower Palaeozoic cover consists of Cambrian continental 

siliclastic successions, followed by shallow marine carbonates and Ordovician platform carbonates. Carboniferous and 

Permian rocks were deposited in changing shallow marine to fluvio-deltaic conditions and contain coal measures. These are 

topped by Mesozoic continental clastics, grading into cross-bedded aeolian sequences in the Jurassic (SBGMR, 1989). This 155 

evolution led to a clear division of lithologies in the Shanxi Rift, the Paleoproterozoic rocks, which include all the rocks that 

made up the TNCO, including Archean Tonalite-trondhjemite-granodiorite complexes, high-grade metamorphic rocks such as 

greenstone belts and orthogneisses as well as post-orogenic granites. These rocks are referred to as Paleoproterozoic crystalline 

rocks in this study (dark brown in Fig.3) and are very resistant to erosion. The second group comprises the cover sequence of 

these rocks and is principally composed of low-grade metamorphic rocks such as clastic metasediments and carbonates of 160 

Mesozoic and Palaeozoic age, which are referred to as low-grade metasediments in this study (blues and greens in Fig.3).  
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Figure 3: Simplified geological map of the Shanxi Rift (modified from SBGMR, 1989 and Clinkscales et al., 2021) showing the main 

structures (Faure et al., 2007, Trap et al., 2007, Trap et al., 2009, Zhang et al., 2011; Clinkscales and Kapp, 2019). Main metamorphic 

fabrics are indicated in grey lines which are predominantly orientated NE-SW. 170 

Since the Mesozoic, parts of the NCC have been removed by thermal erosion (Griffin et al., 1998; Menzies and Xu, 1998) 

and/or partial delamination (Gao et al., 2002; Gao et al., 2004), which is likely to be connected to the subduction of the palaeo-

Pacific underneath East Asia (Menzies et al., 2007; Zhu et al., 2012). The eastern and western part of the NCC underwent a 

different evolution during the Mesozoic. The eastern part experienced compressive deformation from the Jurassic to Early 

Cretaceous (Davis et al., 2001), also regionally known as the Yanshanian Movement (Wong, 1927, Dong et al., 2015), which 175 

was less pronounced within the Western Block. However, Paleoproterozoic orogenic belts like the TNCO also recorded this 

widespread compressional event (Zhang et al., 2008; Zhang et al., 2011; Clinkscales and Kapp, 2019). Since the Early 

Cretaceous, the eastern NCC experienced extension, resulting in structures such as pull-apart basins, core complexes and 

associated voluminous magmatism (Zhu et al., 2012). Destruction of the cratonic lithosphere was limited to the eastern NCC, 

which resulted in Mesozoic magmatism almost exclusively affecting the eastern NCC (Zhu et al., 2012). Here, the North China 180 

Basin formed in the Eocene-Oligocene (Allen et al., 1997). This basin shows transtensional kinematics, which give it a 

resemblance to a giant pull-apart (Chen and Nabelek, 1988; Farangitakis et al., 2020). During the Paleogene, the western NCC 

experienced limited extension. The Shanxi Rift is one of a series of Neogene, narrow rifts which follow the trend of 

Precambrian orogenic belts within the NCC, developing around the Ordos Block (Shi et al., 2020).  

The Shanxi Rift is a NE-SW trending rift system that consists of a series of left-stepping en-echelon basins (Zhang et al., 2003) 185 

(Fig. 2). The system is ~1000 km long and ~300 km wide and is bound to the north by the Yinshan-Yanshan Range and to the 

south by the Qinling Range (Fig.1). It is commonly believed to have initiated in the Late Miocene based on the oldest sediments 

found in the rift grabens - the Kouzhai Formation (Xu et al., 1993). The crust beneath the Shanxi Rift is ~32-39 km thick and 

is thinner in the basinal regions than adjacent to the Lüliang and Taihangshan highlands, which flank the rift to the west and 

east (Chen, 1987, Tang et al., 2010). The Shanxi Rift is characterized by a series of distinct rift basins that have either half-190 

graben or graben geometries, separated by two topographically higher elevated areas, which have previously been called push-

up swells but are referred to here as RIZs (Fig. 2) (Xu and Ma, 1992; Xu et al., 1993). The Linfen Basin to the south is separated 

by the Lingshi RIZ from the Taiyuan Basin, which is in turn separated from the Xinding Basin in the North by the Shilingguan 

RIZ. There are two main rivers that drain the Linfen-Taiyuan-Xinding basin system of the Shanxi Rift: The Hutuo River 

towards the east across the Xizhoushan Fault into the North China plain while the Fen River is diverted to the South where it 195 

drains into the Yellow River (Fig. 2), while the main drainage divide between the Fen and Hutuo River, is represented by the 

Shilingguan RIZ. The synrift thickness across the Shanxi Rift varies; While the Taiyuan basins has the thickest synrift sediment 

thickness of up to 3800m (Xu et al. 1993), the Xinding only contains up to a 1800m (Xu et al. 1993) and the Linfen basin 

contains up to 2200m of synrift fill (Su et al., 2023). The Shanxi Rift shows a widespread seismicity of Mw = 3-5 events on 

USGS and ISC records (Fig. 2), but the rift has produced infrequent but devastating earthquakes in historical time. The AD 200 

1303 Hongdong Earthquake is believed to have been an MW ~7.5 event (Xu et al., 2018) and is well-documented in Chinese 
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historical writings. Shanxi Province itself is densely populated with 36.5 million inhabitants. Large cities like Taiyuan (5 

million inhabitants), Linfen (4 million inhabitants) and Datong (3 million inhabitants) are close to active faults (Fig. 2) 225 

Constraining the exact extension direction and rate along extensional faults is difficult due to the Shanxi Rift’s low extensional 

strain rate. Conducted research has been based on field-based fault slip measurements, GPS derived velocities and/or 

earthquake focal mechanisms to constrain the extension direction. Studies by Shen et al. (2000), He et al. (2003) and Middleton 

et al. (2017) constrain the extension direction in the Shanxi Rift to ~105°-165° and extension rate to ~ 0 - 6mm/year (Fig. 2). 

Other studies using field-based measurements (Shi et al., 2015a; Assie et al., 2022) propose a complex evolving strain field 230 

that has changed throughout the Cenozoic. According to these studies, NW-SE extension in the Mio-Pliocene initiated the 

rifting in Shanxi and was followed by NE-SW extension in the early Quaternary, leading to further subsidence. Theses authors 

suggest that the onset of the current NNW-SSE extension strain field started at 0.11 Ma and marked a shift from NW-SE 

extension to right lateral deformation in the Shanxi Rift, dated using faulted basalts in the Datong Basin (Shi et al., 2015a). 

Shi et al. (2015b) and Shi et al. (2015a) relate these changes in the strain field to growth of the Tibetan Plateau. 235 

3 Methods 

3.1 Pre-Rift Architecture and Structural Mapping 

We compiled a map of the structures in the Shanxi Rift (Fig. 3) by digitising Precambrian basement fabrics, Mesozoic and 

Precambrian thrust faults as well as Cenozoic active faults from published maps in ArcGIS Pro™. Additionally, we compiled 

published structural data from the Paleoproterozoic basement complexes to plot on stereonets (Fig. 4). In this study, we 240 

primarily focus on the influence of inherited structures in the Palaeoproterozoic basement on the evolution of the Shanxi Rift, 

therefore, if not specified otherwise, we refer to Palaeoproterozoic structures when discussing basement or inherited fabrics. 

To map the active fault structures, we identified linear breaks in the landscape on SRTM topographic data with 90 m resolution 

(https://lpdaac.usgs.gov/products/srtmgl3v003/) aided by slope and curvature attributes. This resolution is appropriate for the 

larger regional scale of this study and helped keep computing power demands manageable. We define active faults as linear, 245 

steep scarps (>20-30°) that offset Quaternary sediments, similar to the approach by Wedmore et al. (2022). Furthermore, we 

used topographic profiles across faults and geomorphological features such as steepened river channels and triangular facets 

along the fault scarp as features guiding our identification of active normal faults.   

Deleted: . 

Deleted: A variety of researchers have used250 

Deleted: between 

Deleted: ° and 

Deleted: as being between

Deleted: and

Deleted: developed255 

Deleted: of that age 

Deleted: , shear zones and

Deleted: .

Deleted: Figure 2 shows a topographic map and location map of 
the study area.…260 

Formatted: Font: Not Bold



 

10 

 

 

Figure 4: Schematic fault map of the Shanxi Rift with faults colour coded according to their geomorphic signal – compare with 

Table 1. Exposed basement of the TNCO in brown with the main structural trends highlighted in light grey. Stereonets of poles to 

planes (data from Trap et al., 2007; Trap et al., 2009a) show the structural grain of the main basement complexes. Most basement 

complexes show a NE-SW orientated grain, but it is more E-W in the North.  265 
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3.2 Geomorphic Indices 

We used geomorphic indices to quantify the landscape response of the Shanxi Rift to tectonic drivers. We analysed the 

morphometric indices from 10873 1st order drainage basins located in the Shanxi Rift, extracted from the SRTM dataset using 

Topotoolbox2 Matlab scripts (Schwanghart and Scherler, 2014). We focused in this study on three geomorphic indices, 1) 270 

local relief (Rl) (Fig.5a), 2) the normalised channel steepness (ksn) (Fig.5b) 3) the Hypsometric Integral (HI) (Figs. 5c, 6) and, 

as these proved to be the most helpful and discerning when evaluating the tectonic signals (Pérez-Peña et al., 2009; Gao et al., 

2016; Obaid and Allen, 2019; Groves et al., 2020; Erbello et al., 2022). Using R, we also generated violin plots that visualise 

the distribution of values for each geomorphic index (Fig.7). The shape of the “violins” represents the distribution of values 

as the violin will be thicker the more data points sit at that range. Using these violin plots, we can also assess the impact of 275 

lithology on the geomorphic indices that enable us to compare the distribution of values per fault to the dominant footwall 

geology of the fault and assess if lithology is the principal factor determining the distribution.  

 

Figure 5: Geomorphic indices map of the Shanxi Rift. Major extensional faults shown in red, boundary of the Loess plateau indicated 

by dashed line a) Local relief map. Darker colours indicate higher relief regions. Local relief was calculated within a 1km circular 280 
radius. High relief is found especially in the northern Shanxi Rift in the footwalls of the Wutai and Xizhoushan faults as well as 

further south along the Huoshan and Zhongtiaoshan faults. Noticeably lower local relief values occur along the central Jiaocheng 

and Taigu faults. b) Mean normalised channel steepness (ksn) calculated for 1st Strahler order basins. High values are commonly 

located in the footwalls of active faults, especially the Wutai, Xizhoushan and Huoshan faults. Low values are found in the lower 

lying basin regions. Central faults (Taigu and Jiaocheng) show noticeably less high ksn basins than other faults. c) Hypsometric 285 
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Integral (HI) calculated for 1st Strahler order basins. High values are commonly located in the footwalls of active faults, especially 

the Wutai, Linfen, Shilingguan and Huoshan faults. Low values are found in the lower lying basin regions.  

(Abbreviations: HGS-Hengshan; WT-Wutai; XZS-Xizhoushan; SLG-Shilingguan; JC-Jiaocheng; TG-Taigu; HUS-Huoshan; LYS-

Luoyunshan; ZTS-Zhongtiaoshan) 

3.2.1 Local Relief (Rl) 295 

Local relief is a commonly used measurement of the variation of topography over an area to analyse spatio-temporal tectonic 

trends (Ahnert, 1970; Schmidt and Montgomery, 1995; DiBiase et al., 2010). The relief Rl was calculated as the maximum 

difference in elevation E over; 1) a delineated drainage basin (S1) or 2) within a circular moving window with a 1 km radius:  

𝑅𝑙 = 𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛            (1) 

where 𝑅𝑙 is the local relief and 𝐸 refers to elevation. High relief landscapes therefore show a higher variation of elevation over 300 

an area, which may indicate faster uplift rates. However, local relief is also influenced by lithology, high relief landscapes can 

also be the result of resistant lithologies with low erodibility.  

3.2.2 Normalised Channel Steepness (ksn) 

Normalised channel steepness (ksn) is a frequently used topographic metric in tectonic geomorphology (DiBiase et al., 2010; 

Whittaker and Walker, 2015). For steady-state landscapes, meaning that rock uplift rates and river incision rates are at 305 

equilibrium, the channel slope S is defined as a power law function (Hack, 1957; Flint, 1974): 

𝑆 = 𝑘𝑠𝐴
−𝜃            (2) 

where A is the drainage area. The parameter ks is the channel steepness index, and θ denotes the channel concavity index. 

(Snyder et al. 2000). In natural landscapes, its well known that variations in the best-fit for concavity index (θ) has a significant 

impact on estimates of ks. To circumnavigate the problem, we used a reference concavity index of 0.45 (Wobus et al. 2006). 310 

This reference concavity index results in a dimensionless “normalised” channel steepness ksn. Variations in ksn along channel 

segments may be related to changes of the uplift rate of that region (Snyder et al., 2000; Whipple, 2004) with higher ksn values 

often indicating higher uplift rates. 

We used the TopoToolbox2 Matlab scripts (Schwanghart and Scherler, 2014) to extract the river profiles and calculate the 

normalised channel steepness from smoothed river profiles. This approach is built upon the method developed by Perron and 315 

Royden (2013) to analyse river profiles. We extracted streams with a drainage area of above 1 km2 to avoid hillslope areas. 

Normalised channel steepness (ksn) is commonly applied to stream networks to visualise knickpoints (variations in the slope 

of river channels) in rivers. In this study, we used Topotoolbox2 to calculate the basin averaged ksn values. This is achieved by 

calculating the mean of all ksn values in each drainage basins. This makes it easier to compare the ksn values to those for local 

relief and HI. The ksn stream network map is available in the supplementary material (S2).  320 
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3.2.3 Hypsometric Integral (HI) 

The Hypsometric Integral (HI) was first used as a geomorphic index by Strahler (1952, 1957). It is a measurement of the 

distribution of elevation within an area. HI is derived as the integral of the hypsometric curve, which plots normalised elevation 325 

over normalised drainage area for each drainage basin. Fig.6 illustrates the theory behind HI. The interpretation of the 

hypsometric curve assumes that topographically more youthful basins will have a convex-up shaped curve while more mature 

ones will have a more concave-up shape. If uplift outpaces erosion, there will be a greater range of elevation over an area, 

which results in a convex-up shaped curve and a high HI. Therefore, high HI values should coincide with rapidly uplifting 

areas (e.g., footwalls of active normal faults) (Hamdouni et al., 2008; Perez-Pena et al., 2009; Obaid and Allen, 2019; Groves 330 

et al., 2020; Erbello et al., 2022). HI may be influenced by other factors than tectonic uplift such as climate, lithology and basin 

shape and area. Lifton and Chase (1992) propose that at larger scale analysis (>1000km), tectonics will play have a larger 

effect than lithology, while at smaller scales, lithology can have a considerable impact. Masek et al. (1994) propose that climate 

can influence the hypsometry of an area. Several studies propose that basin shape and area influence the HI of a basin (Lifton 

and Chase, 1992; Masek et al. 1994; Hurtrez et al., 1999; Chen et al., 2003). However, Walcott and Summerfield (2008) 335 

analysed the basins of southern Africa and could find no impact of basin scale on HI. High HI regions may often be indicative 

of fast uplift rates but could also be related to other factors. Therefore, when analysing the tectonic implications of HI, it is 

important to be aware of these limitations. To mitigate the effect of lithology on our tectonic analysis, we also compare the HI 

distribution per fault with the predominant lithology of the fault’s footwall using violin plots generated with R (Fig. 7c).  

 340 

 

Figure 6: Schematic diagram explaining the concept of the Hypsometric Integral (after Strahler, 1952). Every drainage basin is 

dissected into elevation bands to determine a ratio of relative height over relative area. Concave curves indicate more youthful 

topography while convex shaped ones indicate more mature topography. 

In this study, we calculated the HI per drainage basin (Obaid and Allen, 2019; Groves et al., 2020). The shape and size of 345 

drainage basins is controlled by tectonic and geological features. Therefore, drainage basins are more natural boundaries for 
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comparing areas of variable uplift and erosion rates than calculating HI with an arbitrary moving window. We calculated the 

hypsometric curves using QGIS 3.16 and derived the integral for each curve through an R script (Supplementary material X1).   

 

Table 1: Summarising the Fault and their geomorphological response as well as their lithology and the orientation of the inherited 360 
fabrics in vicinity of the fault.  

4 Results 

4.1 Pre-rift structural architecture  

The northern part of the Shanxi Rift is dominated by uplifted Paleoproterozoic basement massifs. The Hengshan, Lüliang, 

Wutai and Fuping massifs are exposed in the footwalls of major basin bounding faults (Figs. 3, 4). In the south, the footwalls 365 

are more commonly dominated by Mesozoic and Palaeozoic sedimentary rocks, with notable exceptions being the Huoshan 

and Zhongtiaoshan faults, which also expose Paleoproterozoic metamorphic basement at surface.  

 

The general trend of most Paleoproterozoic structures is broadly NE-SW, which is sub-parallel to the active rift faults. In the 

northern basement massifs (Hengshan and Wutai), there is a subtle change to WNW-ESE-trends (Figs. 3, 4). The dip of these 370 

structures is variable due to folded nature of these rocks (Trap et al., 2007; Trap et al., 2009a; Clinkscales and Kapp, 2019). 

The dip of the fabric’s changes from dipping towards and away from the faults along strike and the dip of the fabrics ranges 

from 25-85° (Trap et al., 2007; Trap et al., 2009a). The orientations also show plunging fold geometries in the basement 

massifs of the Hengshan and the Lüliangshan mountains (Stereonets Hengshan and Lüliang, Fig.4). The Fuping Massif 

displays a considerable spread of basement fabric trends that can be split into two groups: fabrics trending NE-SW in the NW 375 

and fabrics with an NNW-SSE trend in the SE (Stereonets Fuping-West and Fuping-East, Fig.4). These two regions are 

separated by the NE-SW trending Longguangquan thrust fault (marked as a blue thrust fault on Figs. 3 and 4), which most 

Shanxi Rift Fault characteristics 
     

Fault Trend (in 

degrees) 

Footwall lithology Mean 

Rl 

Mean 

HI 

Mean 

ksn 

Geomorphic response Orientation of inherited 

structures 

Hengshan 57 Crystalline Basement 234 0.33 68 medium E-W 

Wutai 65 Crystalline Basement 367 0.37 79 high NNE-SSW 

Xizhoushan 50 Crystalline Basement 320 0.36 72 high NE-SW 

Shilingguan 5 Low-grade metasediments 217 0.4 57 high NE-SW 

Jiaocheng 48 Low-grade metasediments 193 0.32 39 low NE-SW 

Taigu 49 Low-grade metasediments 168 0.29 33 low NE-SW 

Huoshan 12 Crystalline Basement 301 0.36 68 high NE-SW 

Luoyunshan 38 Low-grade metasediments + 

Crystalline basement 

219 0.38 47 medium E-W 

Zhongtiaoshan 72 Crystalline Basement 208 0.31 43 medium NNE-SSW 
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likely originated as a shallow-dipping thrust fault in the Paleoproterozoic (Trap et al., 2008). The basement fabrics in the NW-

part and the Longguangquan thrust fault are parallel to the Xizhoushan Fault (Fig. 4 – stereonet Fuping-West). Further north, 

the Paleoproterozoic basement fabrics of the Wutai complex are orientated ENE-WSW, which is mirrored by the active normal 

Wutai Fault. 

4.2 Relief  430 

The local relief of the region (Fig. 5a) closely follows the overall topography of the region but emphasises certain features to 

make them easier to identify. Two areas of high local relief can be identified in the north and south of the Shanxi Rift.  

In the northern region around the Wutai and the Xizhoushan faults, the footwalls of the prominent bounding faults are highly 

elevated (2500-3000 m) and show local relief values exceeding 1000 m. In the southern part of the Shanxi Rift, the Huoshan 

Fault to the south also shows high local relief (>1000 m) in the footwall close to the bounding fault. These high relief faults in 435 

Shanxi show consistently high local relief values along their fault traces whereas the Zhongtiaoshan Fault has high local relief 

(>1000 m) along the western end of the fault but lower values towards the east.   

The Shilingguan RIZ is characterised by shorter faults segments, and this region shows an elevated local relief of around 500 

m. In some examples, in footwalls close to the main fault, the local relief exceeds 1000 m. This is seen where a broadly N-S 

trending fault and a broadly NE-SW trending fault intersect and link up. Further into the footwall of this fault, there are pockets 440 

of high (>1000 m) local relief, which are along the sides of the narrow gorge of the Fen River. Compared to faults in the Nor th 

and South of the Shanxi Rift such as Huoshan, Zhongtiaoshan or Wutaishan, the elevation in this area is lower (~1500 m) but 

the local relief remains comparatively high (up to 1000 m). The two longest faults in the central region of the Shanxi Rift, 

which bound the Taiyuan Basin (Taigu and Jiaocheng faults), show a lower local relief response rarely exceeding 450 m, with 

elevation lying between 1500 and 2000 m. There are regions of medium-high values of local relief (450-750 m) away from 445 

active structures, for example in the Taihangshan mountains or to the west of the Lingshi RIZ.  

 

The per fault distribution of relief values (Fig. 7a) shows a clear divide between faults. The faults which have Proterozoic 

basement rocks in the footwall (Huoshan, Xizhoushan, Zhongtiaoshan, Hengshan and Wutai) have a greater range of values 

often exceeding 400 m. This is especially pronounced for the Wutai and Xizhoushan faults. The Hengshan Fault is slightly 450 

different as its distribution of relief values is closer to the faults with Palaeozoic-Mesozoic sedimentary rocks in the footwall, 

having most of its values between 200-300m. The Zhongtiaoshan has a maximum at around 200m and therefore lower relief 

than the other faults but still has some values in the higher ranges, with maximum values of 600m. The faults with Palaeozoic 

and Mesozoic sedimentary rocks in the footwall (Shilingguan, Taigu, Jiaocheng and Linfen) have overall lower values and a 

smaller range of values. Most of their values lie between 200-300 m but their minimum values are below 100m. Shilingguan 455 

as the RIZ fault shows a similar maximum at 200-300m but is missing the low minimum values, resulting in a more compact 

distribution. 
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4.3 Normalised channel steepness (ksn)  

Four regions show high basin averaged ksn values (Fig. 5b): The Huoshan Fault, the Xizhoushan Fault (especially its 510 

northeastern part), the Wutai Fault and the Zhongtiaoshan Fault. These are the same regions that show high local relief (Fig. 

5a and Section 4.2). Low values of < 50 are rarely associated with obvious faults with a surface trace. The Jiaocheng and the 

Taigu faults footwalls have drainage basins with ksn values between 50-85, which reflects the local relief response of these 

faults (Fig. 5a). The footwall of the fault bounding the Shilingguan RIZ shows elevated values. Notably the area where the 

broadly N-S and NE-SW trending faults link up show basins with ksn > 100. The ksn value distribution (Fig. 7b) of the different 515 

faults shows a similar trend to the Relief as there is a separation between faults with different basement lithology. The faults 

with Proterozoic basement show much higher values reaching values of 200 while the faults with Palaeozoic-Mesozoic 

basement show narrower distributions rarely > 100 and most values lying < 50. The notable outliers here are the Hengshan 

Fault whose distribution again is more similar to the Palaeozoic-Mesozoic basement faults. Here the Shilingguan RIZ records 

higher values (> 100) than the other faults with Palaeozoic-Mesozoic basement footwalls and has a distribution more similar 520 

to the faults with Proterozoic basement footwalls like Wutai or Xizhoushan. 

4.4 HI 

While the local relief and the channel steepness show broadly similar distributions, the HI differs slightly and shows a more 

distributed pattern of high (>0.5) HI basins (Fig. 5c). The footwall blocks to the Wutai, Xizhoushan and Zhongtiaoshan faults 

show elevated responses but in contrast to the previously described geomorphic parameters they do not show the highest 525 

values. In the footwalls of these faults, HI values mostly range between 0.3-0.5 and only isolated regions show values > 0.5. 

The bounding fault of the Shilingguan RIZ has among the highest HI responses, with values often > 0.5 and rarely < 0.4. The 

Lingshi RIZ that is bounded by the Huoshan Fault also shows elevated values compared to the surrounding basins, due to its 

overall higher elevation and dissected topography. These high HI values match spatially with the high local relief and ksn 

values. Therefore, the Shilingguan RIZ and Huoshan Fault have consistently higher values compared to the Wutai, 530 

Zhongtiaoshan or Xizhoushan footwalls. The Luoyunshan fault adjacent to the Lingshi RIZ also shows elevated HI basins 

(>0.5), especially towards the southern end where it shows a distinct fault bend, however these high HI values are not matched 

to the same degree by local relief and ksn (Section 4.2/3). The Taigu fault has lower HI values (< 0.4), matching the low values 

for channel steepness and local relief. While the Jiaocheng fault has a greater spread with low values basins (0.2 – 0.4) but 

also higher HI value basins (0.5 – 0.85), especially towards the northeast of the fault as it approaches the Shilingguan RIZ. 535 

 

High value HI basins (> 0.5) are also found in regions away from the active normal faults that showed no recent tectonic 

activity. High values are observed to the west of the Shanxi Rift in the Loess Plateau on the western edge of the HI map. (Fig. 

5c). Similar to the relief and the channel steepness, high values are also observed in high elevation regions further away from 
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mapped active faults. These commonly correspond to known thrust faults or other contractional structures (Fig. 3) (SBRGM, 

1989) which were last active in the Mesozoic and created relict topography.  

 560 

The HI value distribution (Fig. 7c) differs from the previous two geomorphic indices significantly as a clear separation based 

on lithology/footwall age is not obvious anymore and the patterns are more dispersed. The general trend still appears that faults 

with Proterozoic basements have slightly higher values (~0.5), however the Zhongtiaoshan Fault while reaching very high HI 

values has most values sitting at 0.4, which is below the other faults with Proterozoic footwalls and closer to faults with 

Palaeozoic-Mesozoic sedimentary rocks in the footwall. Amongst these faults, the Luoyunshan and Shilingguan faults show 565 

higher values than Taigu and Jiaocheng faults. Overall, the Shilingguan and Huoshan faults within the RIZs record the highest 

values but they are not significantly elevated over for example the Wutai or Luoyunshan faults. 

 

Deleted: fault

Deleted: Within570 

Deleted: Linfen

Deleted: fault

Deleted: the other two faults (

Deleted: ).

Deleted: :575 

Deleted: Linfen



 

18 

 

 

Deleted: ¶



 

19 

 

 

Figure 7: Violin plots showing the distribution of geomorphic values for each fault. Background shows the dominant footwall 580 
composition of the faults with RIZ faults plotted in the middle. a) Local Relief. Clear separation of faults with high values all having 

Proterozoic basement-dominated footwalls. b) ksn values showing a similar separation to the mean relief. c) HI values show more 

distributed values. RIZ tend to have high geomorphic values (see main text for more discussion on this) 

5 Discussion 

The quantitative analysis of the geomorphic response of the main rift faults has shown that the Wutai, Xizhoushan, Shilingguan 585 

and Huoshan faults show the highest geomorphic response (Fig.7; Table 1), they are classified by high HI (mean HI > 0.35), 

ksn (mean ksn >60) and Rl values (mean Rl > 250). Of those the Shilingguan and Huoshan faults are located within the RIZs and 

exhibit N-S as well as NE-SW trending fault segments. The Taigu and Jiaocheng faults that have the lowest geomorphic 

responses and show low values for all three geomorphic indices (mean HI < 0.3; mean ksn < 40; mean Rl  < 200). In between 

these two groups are the Hengshan, Zhongtiaoshan and Luoyunshan faults, described as medium geomorphic response in Table 590 

1. In the following we will discuss the significance of these results and discuss the possible influence of the pre-existing 

structures described in section 4.1. 

5.1 Lithology dependence of geomorphic indices 

The distribution of geomorphic indices for each fault shows significant differences (Fig. 7). Geomorphic response may be 

influenced by climate, lithology, and tectonics. The climate across Shanxi is continental and shows broadly little variation in 595 

precipitation (supplementary material S3; Fick and Hijmans, 2017) across the study region, which makes the differences in 

geomorphology between faults unlikely to be controlled by the climate. The lithology in Shanxi is more variable, as seen in 

Figure 3. The various lithologies can be divided into two main groups that differ in rock strength and erodibility. There are 

Precambrian crystalline rocks, which include Archean Tonalite–trondhjemite–granodiorite complexes, high-grade 

metamorphic rocks, and post-orogenic granites, which are all part of the TNCO (Trap et al., 2012), and the low-grade 600 

metasediments units, which include low grade clastic metasediments and carbonates from the Palaeozoic-Mesozoic (SBRGM, 

1989). Here, we evaluate how these differences in lithology may have impacted the geomorphic response.  

 

Local relief and ksn (Figs. 5a, b) show the highest values where crystalline basement lithologies are exposed in the fault 

footwall. Faults with high mean local relief values (>300m) have “strong” crystalline basement in their footwalls (e.g., 605 

Huoshan, Wutai, and Zhongtiaoshan faults) or are directly adjacent to these (e.g., Xizhoushan Fault), while low values (~<200 

m) are found in the faults with Palaeozoic-Mesozoic rocks in their footwalls (e.g., Taigu and Jiaocheng faults). HI (Fig. 5c) 

does not show the same bimodal distribution between faults with different footwall lithologies. The highest HI values 

correspond to faults with both Proterozoic basement footwall rocks (e.g., Huoshan, Wutai, and Xizhoushan faults) and 

Palaeozoic-Mesozoic footwall rocks (e.g., Shilingguan, Luoyunshan faults). Meanwhile, low HI values are also found for 610 

footwalls of both lithologies (e.g., Hengshan, Taigu, Jiaocheng, and Zhongtiaoshan faults). We can infer that the differences 
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in HI values between these fault blocks are not likely to be caused by lithology but rather by their tectonic history. This suggests 

that HI may be a more robust geomorphic index for analysing tectonic activity than relief or ksn because it is less influenced 

by lithology. Our finding that HI is not primarily influenced by lithology agrees with previous studies (Obaid and Allen, 2019; 

Groves et al. 2020). High HI values are often correlated with high uplift rates, especially in regions with variable uplift rates, 625 

higher HI values are found in regions of higher uplift (Hurtrez et al. 1999). Therefore, the high HI values found in the footwalls 

of the Huoshan, Wutai, Xizhoushan and Shilingguan faults indicate that these footwalls have been uplifted the most rapidly. 

 

To the western edge of the Shanxi Rift is a region of medium-high HI basins that do not correlate with mapped active faults. 

This is likely due to the landscape that typifies the Loess Plateau west of the Shanxi Rift. The Loess Plateau is unconsolidated 630 

wind-blown sediment that is prone to dramatic erosion, creating deep gullies and ridges, which can lead to high HI values. The 

Loess Plateau formed in the Pleistocene and its linear ridges and gullies have been carved out by aeolian and fluvial forces 

(Kapp et al. 2015), therefore the high response of the Loess Plateau is related to young landscapes sculpted by surface processes 

rather than tectonic forces. This does not detract from the main statement that HI is less influenced by lithology, as the Loess 

Plateau is an extreme case of unconsolidated sediment, as opposed to the main groups of low-grade metasediments and 635 

Palaeoproterozoic crystalline rocks. However, it does highlight that the HI response is sensitive to the presence of Loess. When 

using HI to evaluate the tectonic response of an area partially covered by Loess, it must be considered that Loess covered areas 

may show anomalously high HI values.  

 

The dependence of some geomorphic indices on lithology is observed in many other areas worldwide and highlights the 640 

importance of considering the local geology for interpreting the relevance of geomorphic indices (Wobus et al. 2006; Kirby 

and Whipple, 2012). However, by comparing different faults with similar basement geology, the lithological impact can be 

reduced as theoretically they should have a similar rock strength and erodibility. This enables us to compare the landscape 

response of these footwall uplifts to tectonics. In the Shanxi Rift, the footwall of the Huoshan Fault on average has higher 

values for geomorphic indices than other faults with Paleoproterozoic crystalline rocks in the footwall (Fig. 7). Comparing the 645 

response of faults with footwall exposures of low-grade metasediments rocks, it becomes evident that the main bounding fault 

of the Shilingguan fault has a higher geomorphic response than the Jiaocheng, Luoyunshan and Taigu faults. The difference 

in geomorphic response between the Shilingguan fault and the other faults with low-grade metasediments in their footwalls is 

even more pronounced than among faults with Paleoproterozoic crystalline rocks in the basement. For example, the difference 

between the Huoshan and Hengshan faults is less stark than the difference between the Shilingguan Fault and the Jiaocheng 650 

Fault. It must also be noted that the Shilingguan fault shows higher HI and ksn values than faults with “stronger” 

Paleoproterozoic crystalline rocks in their footwalls (Hengshan and Zhongtiaoshan). By comparing faults with similar footwall 

lithology, we can show that the difference in geomorphic response is not solely down to lithology and most likely has a tectonic 

origin. 
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5.2 Implications for rift evolution, linkage and seismic hazard 680 

Two significant zones in the evolution of the Shanxi Rift are the Shilingguan and Lingshi, that form between the major basins. 

Both zones are generally more elevated than the surrounding basins, making them potential sediment sources (Gawthorpe and 

Leeder, 2000), also shown by their patchy thin sediment fill compared to the major basins (Xu and Ma, 1992). The two RIZs 

differ in this geometrical organisation. The Shilingguan RIZ can be described as underlapping parallel divergent RIZ, while 

the Lingshi RIZ is an underlapping oblique convergent RIZ (compare with Fig.3 in Kolawole et al., 2021a). A potential third 685 

RIZ, the Hengshan RIZ, which separates the Datong and Xinding basins can be proposed (Fig. 2). As an overlapping divergent 

RIZ is completely unbreached and therefore it will not be discussed at length in the following. The different RIZ stages come 

with distinct morphological responses and have relevance to the seismic hazard so in the following we classify the two RIZs 

in the Shanxi Rift based on the Kolawole et al. (2021a) classification scheme and assess the response of the geomorphic indices.  
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Figure 8: a) Topographic map with drainage (weighted by stream order) showing the drainage divide and reorganisation happening 

at the Lingshi RIZ. b) HI map of the Lingshi RIZ, showing high values in the footwall of the Huoshan Fault but also in the 720 
hangingwall. c) Longitudinal river profile of the Upper Fen River showing the characteristic “down stepping” shape of river profiles 

across recently breached RIZs. d) Swath profile of the Lingshi RIZ, shaded area indicates maximum and minimum elevation in a 

5km corridor along the line of section– line of section shown on 7a). e) Slope map of the Lingshi RIZ that shows very high values 

along the main border fault (Huoshan) but also clear distinct breaks in the SW. 
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The Lingshi RIZ (Fig. 8) is the uplifted region between the Taiyuan and Linfen basins. The breaching fault, which in this case 

is the Huoshan Fault, is well developed and has established a physical connection between the Taiyuan and Linfen basins. The 

Huoshan Fault and other small-scale faults within the Lingshi RIZ are shorter, more segmented, and variably orientated 

compared to the faults of the major subbasins. These small-scale faults are more visible in the slope map (Fig. 8c), as sharp 730 

linear breaks. The footwall of the Huoshan fault shows high values of HI > 0.5 (Fig. 8b). However, the whole RIZ shows high 

values of HI, which are sometimes connected to smaller scale faults, highlighting the complexity and distribution of faulting 

in the RIZ. As noted in 5.1., the Loess Plateau can have a significant impact on the HI response of a region, therefore the high 

HI response in the Lingshi RIZ may in part be related to the degree of Loess coverage. However, the Loess is constrained to 

the hanging wall of the Huoshan Fault and therefore the high HI response in the Huoshan fault footwall is not influenced by 735 

Loess. The drainage of the Taiyuan and Linfen basins is connected across the Lingshi RIZ as the Fen River is flowing across 

it. The drainage was previously not connected as there are possible palaeo-drainage divides (in purple – Fig.8a), where 

tributaries of streams flow in separate directions. Li et al. (1998) proposed that during the early evolution of the Shanxi Rift in 

the Miocene and Pliocene, the basins were filled by isolated lakes and later, during the mid-Pleistocene, a fluvial connection 

was established. Hu et al. (2005) identified three lake terraces in the Taiyuan and Linfen basins, with the latest regression 740 

occurring at 0.13 Ma. Based on this, the integration and breaching across the Lingshi RIZ likely occurred in the Middle - Late 

Pleistocene. The swath profile of the RIZ and the longitudinal river profile (Figs. 8d, e) show the down stepping morphology 

that is commonly associated with recently breached RIZs may be a relic of the lake terraces prior to the fluvial connection 

being established. The Huoshan breaching fault (Huoshan) is well developed and has established a physical connection 

between the depositional systems of both basins, as the characteristic morphology of the Lingshi RIZ, we classify it as a 745 

recently breached RIZ. 

 

The Shilingguan RIZ (Fig. 9) separates the Xinding Basin to the north and the Taiyuan Basin to the south. The breaching fault 

(Shilingguan Fault) is physically connected to the Jiaocheng fault but not to the Xizhoushan fault. The Shilingguan Fault itself 

appears to be segmented as seen by the various orientations of the fault segments (Fig. 9c). The topographic swath profile of 750 

the RIZ shows an outstanding topographic high (Fig. 9d). The footwall of the Shilingguan fault exhibits very high (>0.5) HI 

values and the Fen River in its footwall is highly sinuous but has high topography, relief, and steep slopes on either side, also 

known as an entrenched meander (Gardner, 1975; Harden, 1990). Combining all these observations indicates that this area of 

the Shanxi Rift has experienced recent uplift. The Shilingguan RIZ represents a drainage divide, with the Hutuo River, north 

of the RIZ is being deflected eastwards and draining across the Xizhoushan fault through the Taihang mountains into the North 755 

China Plain (Fig.2). In contrast, the Fen River flows from the NW and crosses the main breaching fault before draining towards 

the south into the Taiyuan basin. Windgaps (Fig. 9a) in the footwall of the Xizhoushan fault to the east show that possibly the 

drainage of the Upper Fen River once occurred across this RIZ from west to east before the initiation of the Shilingguan Fault 

and uplift of its footwall caused the diversion of the river to the south. As the depositional systems of the Xinding and Taiyuan 
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basins are not connected across the RIZ, and the breaching fault has not established a full physical link, this RIZ represents a 780 

partially breached RIZ.  

 

The different breaching stage of the Lingshi and Shilingguan RIZ may be related to their previously mentioned geometrical 

arrangement (Lingshi RIZ = underlapping oblique convergent RIZ; Shilingguan RIZ = underlapping parallel divergent RIZ), 

which led to earlier breaching of the Lingshi RIZ. The influence of initial geometry was shown by Kolawole et al. (2024) in a 785 

numerical model of the southern Malawi Rift, where the tip-to-tip arrangement of the Nsanje RIZ favoured rift coalescence 

compared to the overlapping divergent geometry of the Middle Shire RIZ. The convergent RIZ geometry of the Lingshi RIZ 

was beneficial for strain localisation and stress concentration at the fault tips of the surrounding basin bounding faults 

(Jiaocheng and Linfen), while the divergent geometry of the Shilingguan RIZ stalled rift coalescence. This in turn may also 

explain why the Hengshan RIZ is unbreached as it has an overlapping divergent geometry, which is unfavourable to stress 790 

concentration and rift coalescence. Breaching status of the RIZs increases towards the south, which may be controlled by the 

different RIZ geometries.  
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Figure 9: a) Topographic map with streams (weighted by stream order) showing the drainage divide and reorganisation happening 

at the Shilingguan RIZ. b) HI map of the Shilingguan RIZ, showing the high values in the footwall of the main faults, especially in 

the Shilingguan fault footwall where the high slope values are found. c) Slope map of the Shilingguan RIZ. High slope values are 

closely associated with the main faults but can also be seen along the steep sides of the meandering rivers in both the footwall of the 800 
Xizhoushan Fault and the Shilingguan Fault. d) Swath profile of the Shilingguan RIZ, shaded area indicates maximum and 

minimum elevation in a 5km corridor along the line of section – line of section shown in 8a) 

 

Geomorphic evidence shows that the RIZ are currently the most active regions of faulting and reorganisation, as breaching 

faults of the RIZs (Huoshan and Shilingguan faults) show consistently high geomorphic values (Table 1; Fig. 7). They also 805 

show major changes in fault strike compared to the NE-SW trending basins (Figs. 8 and 9). Most faults in the RIZs do not 

strike NE-SW but show more distributed patterns of N-S and NE-SW striking faults. Commonly an overall “zig-zag pattern” 

forms, with fault segments of variable direction. Faults oblique to the general extension direction commonly form at the 

intersection points between major faults (Figs. 2, 8 and 9). Hodge et al. (2018a) show in models that Coulomb stress changes 

along the tips of established faults lead to the formation of new off-axis trending faults, with the geometry of these dependent 810 

on the lateral separation and amount of under- or overlap of the interacting faults. This process is common in other rift basins 

across the world (Maerten, 2000; Morley, 2010) and is similar to observations of faults in the RIZs of Shanxi. The N-S striking 

fault segments in the RIZs show overall higher geomorphic index values compared to the NE-SW trending faults of the sub-

basins, suggesting they are more tectonically active as the active deformation is focused along zones of active linkage. The 

morphology of the N-S faults in the RIZs suggest that they are younger faults, which are still early in the reorganisation phase, 815 

as they are shorter, more segmented, and often show lower topographic offset (Fig.8, 9). Morphologically more mature NE-

SW striking basin bounding faults have lower geomorphic index values than the faults in the RIZs, but can also show high 

values, especially in the case of the Wutai and Xizhoushan faults (Figs. 5 and 7). In the Shanxi Rift, faults of all orientations 

may show high activity levels, however faults in the RIZs show the highest activity. This activity pattern is consistent with an 

overall stable extension direction (Middleton et al. 2017), where all faults remain possibly active, but activity is concentrated 820 

in the linkage zones.  

 

RIZs often experience high seismic activity due to increased strain along the tips of established basin bounding faults that 

progressively link across the RIZs. This was observed at the tips of the Rukwa Rift and the Rukwa-Tanganyika RIZ by 

Kolawole et al. (2021) and Kolawole et al. (2024), as well as for the Turkana Rift (Musila et al., 2023). The breaching faults 825 

in the RIZ could have a buffering effect on the NE-SW trending faults of the main sub-basins, as the overall strain 

accommodated across the Shanxi Rift is concentrated on the breaching faults in the RIZs, therefore the longer NE-SW trending 

faults accommodate overall less strain. Increased strain rate on faults post linkage has been shown to occur both in a theoretical 

framework (Cowie et al., 2005) and in natural examples such as the Whakatne Graben, NZ (Taylor, 2004). The heightened 

activity at these RIZs is not only shown by geomorphology but also by seismicity: Chen et al. (2021) processed receiver 830 

function data that show cluster of earthquakes at or near the Lingshi and Shilingguan RIZs, while events in the individual 

subbasins are more distributed. The ISC catalogue (Storchak et al., 2013; 2015; Di Giacomo et al., 2018) covering earthquakes 
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occurring between 1907 and 2022 (Fig.2) show similar clusters around the RIZs, although the cluster around the Shilingguan 

RIZ is more pronounced. The faults in the Shilingguan RIZ are comparatively short and segmented (10-20km), this might limit 

the occurrence of large magnitude earthquakes along their trace. However, the Huoshan Fault, the breaching fault of the Lingshi 

RIZ, is equally segmented (Fig. 7a) with segments 20-30km in length and has shown to be the site of major historic 850 

earthquakes. The historic Hongdong Earthquake (Mw 7.2-7.6) in 1303 CE was caused by slip on the Huoshan Fault (Xu et al. 

2018) and had an estimated rupture length of 98 km, which shows that multiple segments can link up during seismic slip to 

generate larger magnitude events. The Shanxi Rift is a low strain rate region, meaning major earthquakes are infrequent but 

potentially devastating as evidenced by the Hongdong 1303 event (Xu et al. 2018). Overall, the NE-SW trending faults, which 

are longer but potentially less active might be capable of generating larger but less frequent events (Scholz et al. 1982; Leonard, 855 

2010), while the more segmented faults in the RIZs could produce more frequent yet smaller magnitude earthquakes. 

5.3 The role of inheritance in the Shanxi Rift – crust or mantle control? 

Most continental rifts are influenced by inherited structures that are either reactivated (Daly et al., 1989; Wheeler and Karson 

et al., 1989; Holdsworth et al., 2001; Kinabo et al., 2008; Phillips et al., 2016; Wedmore et al., 2020; Kolawole et al., 2021b) 

or reorientate the rift scale strain field in local areas (Morley, 2010; Philippon et al. 2015; Kolawole et al., 2018; Samsu et al., 860 

2023). The Shanxi Rift exploited rheological weaknesses during its formation at the rift scale (TNCO) and on smaller 

individual fault scales. At first order, the spatial relationship between the Shanxi Rift and the TNCO is obvious (Fig. 1). The 

Shanxi Rift is directly superimposed on the Paleoproterozoic orogen (Xu et al., 1993). The TNCO acted as a rheological 

weakness in comparison to the adjacent stronger Western Block of the NCC and therefore the TNCO was exploited by the 

Shanxi Rift. Orogenic belts behaving as weak zones for nucleating rifts is a common feature (i.e. East Africa (Rosendahl, 865 

1987; Morley, 1988; Daly et al., 1989; Ring, 1994), and Baikal (Petit et al., 1996)). In the Shanxi Rift, faults often define the 

edges of Paleoproterozoic basement complexes and expose these at the surface by footwall uplift (e.g., Wutai, Hengshan, 

Xizhoushan, Zhongtiaoshan). Some of the rift faults do not contain Precambrian crystalline rocks in the footwall, but for 

example the Jiaocheng and Taigu faults in the direct vicinity of the crystalline Lüliangshan and Taihangshan massifs (~ 50 km 

distance). Basement complexes, such as the Huoshan, Fuping or Lüliangshan, are also cored by Precambrian granitic plutons, 870 

which formed as late orogenic intrusions during the TNCO development. These stronger more buoyant granitic blocks may 

have been more resistant to deformation hence the rift faults preferentially formed along the pluton margins and are uplifted 

within the fault footwall. This is similar to observations from offshore New Zealand (Phillips and McCaffrey, 2019; Phillips 

et al. 2023) or Carboniferous rift systems of the United Kingdom (Fraser and Gawthorpe, 1990; Howell et al., 2020).  

 875 

The similar trends of ancient pre-existing structures and active extensional faults show that the Paleoproterozoic fabrics of the 

TNCO potentially influence the orientation of the active faults of the Shanxi Graben. Major NE-SW trending basin bounding 

faults in the Shanxi Rift (Wutai, Xizhoushan, Taigu, Jiaocheng, and Zhongtiaoshan faults) are generally parallel to inherited 

NE-SW (45-55°) trending Paleoproterozoic basement fabrics (Fig. 4). The Wutai and Zhongtiaoshan faults all strike ENE-
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WSW (60-70°), matching the trend of the inherited structures in the footwall (Fig. 4). Therefore, it is likely that crustal 

structures influenced the orientation of these faults. The Hengshan fault locally trends parallel to the basement fabrics but often 

strikes obliquely and cuts across some of the shallow basement fabrics observed at surface (Fig. 4). It is possible that it locally 

exploits the shallow basement fabrics while following the trend of a deeper-seated weakness that is oblique to the shallow 

basement fabrics observed at surface, similar to the Bilila-Mtakataka Fault (Hodge et al. 2018b) in Malawi. The Xizhoushan 900 

fault follows the trend of the fabrics in the western part of the Fuping complex. There is a major crustal boundary running 

through the Fuping complex, which is known as the Longquanguang thrust (LGQT), a gently dipping thrust fault, according 

to Trap et al. (2012). To the southeast of the LGQT, there is a major change in trend of the Palaeoproterozoic fabrics to a 

generally NW-SE/E-W direction (compare stereonets of Fuping-West and Fuping-East on Fig. 4). The crustal structures of the 

eastern Fuping Block have no influence on the Xizhoushan fault (or any other fault in the Shanxi Rift), possibly because the 905 

LGQT represents a mechanical barrier. Based on their proximity and matching orientation, we speculate that the Xizhoushan 

fault may merge with the LQGT at depth. Merging of faults on shallower dipping structures has been observed by Phillips et 

al. (2016) in the North Sea. The >50 km long basin bounding faults of the Shanxi Rift nucleated along preferentially orientated 

inherited fabrics of the Palaeoproterozoic basement complexes, which may have aided with early fault nucleation similar to 

observations in other global rift systems (Phillips et al., 2016; Rotevatn et al., 2018; Heilman et al. 2019; Collanega et al., 910 

2019; Vasconcelos et al., 2019; Ramos et al., 2022) 

 

Faults in the RIZs show a more disconnected pattern (Figs. 8, 9), vary more in orientation (N-S and NE-SW), and are shorter 

(10-30km) than the large NE-SW trending basin bounding faults (up to 100km). Individual fault segments in the RIZs follow 

the broadly NE-SW trending crustal inherited fabric or cut across the fabric and strike N-S or NNE-SSW. As RIZ faults mature, 915 

segments link up and grow into one throughgoing “zig-zag” structure that cuts across pre-existing fabrics. This is especially 

visible on plan-view of the Huoshan Fault (Fig. 8). These “zig-zag” patterns in faults have been observed in offshore West 

Greenland (Peace et al., 2018, Schiffer et al., 2020), the North Sea (Henza et al. 2011; Henstra et al., 2015) and the main 

Ethiopian Rift (Moore and Davidson, 1978; Vetel and Le Gall, 2006; Corti et al., 2022; Lezzar et al., 2002; Corti, 2009; Hodge 

et al., 2018b). In the case of Greenland and Ethiopia, rifting was oblique to major basement shear zones, which lead to the 920 

formation of two sets of faults with some of them parallel to the extension direction and others parallel to the inherited 

structures. In the Shanxi Rift, the regional NW-SE extensional vector (Middleton et al. 2017) is likely perturbed around the 

RIZs due to interactions of the fault tips of the adjacent basin-bounding faults. Resulting into a strain field that would be 

oblique to the inherited structures.  This leads to the formation of N-S trending faults that are perpendicular to the perturbed 

strain field and cut across the inherited basement fabrics, as well as NE-SW trending faults that follow the trend of pre-existing 925 

Proterozoic structures. Therefore, as the faults grow and coalesce across the RIZs, they will both cut across or locally exploit 

the inherited fabrics (Heilman et al., 2019; Kolawole et al. 2021b), resulting in the observed zig-zag fault pattern. Fault 

geometry may also be controlled by multiple levels of inheritance as observed by Wedmore et al. (2020) for the Thyolo Fault 

in Malawi and Hodge et al. (2018b) for the Bilila-Mtakataka Fault, where shallow level structures control the surface geometry 
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of the fault, but a deeper-seated weakness guides the overall orientation, which is oblique to the overall strain field. We consider 

that the NE-SW trending faults in the RIZs formed parallel to inherited fabrics at early stages and were linked up by N-S 

trending segments later. This behaviour is observed on the Norwegian Margin of the North Sea by Henstra et al. (2015) where 

rift faults from an early phase of rifting influenced the location and morphology of younger rift faults during a subsequent 

oblique phase of rifting. However, we did not find major morphological or geomorphological value differences between the 960 

N-S and NE-SW trending faults that would suggest a polyphase fault development, therefore it is possible that they are co-

eval.   

 

Figure 10: Schematic 3D diagram of the Shanxi Rift showing the proposed obliquity between mantle anisotropy and crustal inherited 

fabrics. Mantle anisotropy is defined by the suggested crystal preferred orientation (evidenced by shear wave splitting data (Zhao 965 
and Zheng, 2005)) in the upper mantle, that broadly trends N-S, while the crustal fabrics trend NE-SW. The Shanxi Rift basins are 

collated with a zone of aligned mantle fabric which is oblique to the principal extension direction (indicated as purple arrows). 

Individual basins and their bounding faults formed parallel to inherited crustal fabrics. This creates the characteristic en-echelon 

pattern of the Shanxi Rift. 
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The N-S and NE-SW trending faults in the RIZs can also be observed at the scale of the entire Shanxi Rift. The Shanxi Rift is 980 

an S-shaped en-echelon rift that follows a broad N-S trend with individual basins and their bounding-faults orientated NE-SW. 

While the TNCO broadly trends N-S/NNE-SSW (Fig. 1; Zhao et al., 2005), the individual crustal structures, such as major 

shear zones, thrust faults or fabrics, broadly trend NE-SW (Fig. 10). A broadly NNE-SSW to N-S trending anisotropy (0-15°) 

in the upper mantle of the Central Zone of the North China Craton is shown by shear wave splitting data from the upper mantle 

(Chen, 2010, Zhao and Zheng, 2005). The apparent obliquity between the trend of crustal structures and the upper mantle 985 

fabric shows that crustal inheritance and lithospheric inheritance may not share a common orientation, which is a common 

feature of many rift zones (Vauchez et al., 1997; Tomassi and Vauchez, 2001). Recent analogue modelling of oblique crustal 

and mantle fabrics by Zwaan et al. (2022) show similar patterns to those observed in the Shanxi Rift. Analogue models by 

Molnar et al. (2020) show that lithospheric weaknesses influence the rift trend, while oblique crustal structures segment the 

rift at a local scale. The difference in lithospheric and crustal structural trends could have either occurred during transpressional 990 

accretion of the TNCO, as proposed by Li et al. (2010) where subduction initially occurred along a N-S trend with later 

collision forming NE-SW trending structures. Alternatively, the polyorogenic event that formed the TNCO may have formed 

the obliquity between crustal and mantle structures, as the initial N-S trending TNCO was partially reworked by a collision of 

the Columbia supercontinent in the Palaeoproterozoic (Kusky & Li, 2003; Kusky et al. 2007; Santosh, 2010). However, the 

evolutionary history of the TNCO is debated and resolution of the exact timing of events is beyond the scope of this paper. 995 

Mesozoic compression across North China, commonly known as the Yanshanian orogeny (Zhang et al. , 2008; Zhang et al., 

2011; Clinkscales and Kapp, 2019) has also affected the Shanxi region and may have also caused further reworking of the 

TNCO and rotated the crustal fabrics to the present-day orientation. Solving the apparent obliquity between crustal and 

lithospheric trends of the TNCO is not resolvable in this study and would require further work on the kinematic evolution of 

the TNCO. The principal extension direction determined by Middleton et al. (2017) of 151° for the Shanxi Rift is roughly 1000 

perpendicular to the inherited crustal structures but oblique to the proposed broad upper mantle anisotropy, which resulted in 

the early rift basins exploiting the favourably orientated crustal fabrics, while the general trend of the rift is oblique to the 

extension direction along an upper mantle fabric that created a rheological weakness. This en-echelon arrangement of rift 

basins above a broad oblique deep seated weak zone has been shown in analogue models by Agostini et al., (2009), showing 

similar geometries as exhibited by the Shanxi Rift. However, we acknowledge that the observed mantle anisotropy may not 1005 

be an inherited mantle fabric and could have formed during rifting (Gao et al., 1997; Kendall et al. 2006) and is aligned oblique 

to the rift (Tepp et al., 2018; Ebinger et al., 2024). Thus, the mantle fabric underlying Shanxi may be Cenozoic in age and has 

been formed during extensional deformation of North China as has been proposed previously (Chang et al., 2012). We 

emphasise that our interpretation that architecture of the Shanxi Rift is influenced by a crustal and mantle fabrics of the TNCO 

that are oblique to each other is speculative as the origin of the mantle anisotropy beneath the Shanxi Rift is unresolved. Yet, 1010 

the apparent N-S trend of the TNCO, a roughly N-S trending mantle anisotropy and the NE-SW trending crustal fabrics may 

support the hypothesis that crust and mantle fabrics beneath the Shanxi Rift are oblique.   
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Based on our geomorphic results, we propose a new model for the evolution of the Shanxi Rift that incorporates an 

heterogenous basement with inherited structures (Fig. 11), that can explain the evolution of the Shanxi Rift under a constant 

and simpler strain field, than a more variable strain field (Shi et al., 2015a; Shi et al., 2020; Assie et al., 2022). In our model, 1035 

the extensional strain field trends NW-SE, which is consistent with previous estimations of the present-day extensional strain 

field using GPS or seismicity data (Middleton et al., 2017; Shen et al., 2000). However, locally the strain is reorientated either 

by inherited structures (i.e., Wutai and Zhongtiaoshan (Figs. 5, 8)) or interactions between basin-bounding faults that rotate 

the local strain field in the RIZs between them (Shilingguan and Lingshi) (Fig.11). This means that there is no specific set of 

faults that is favoured by changes of strain fields. Therefore, potentially all faults remain active, yet there are certain faults that 1040 

are more active due to ongoing reorganisation and linkage in the RIZs. Faults established during early evolutionary stages 

along preferentially aligned NE-SW trending inherited structures and formed the major en-echelon Taiyuan, Xinding and 

Linfen basins along a N-S trending upper mantle structure (Fig. 10 and 11). As the faults and basins grew, they interacted and 

linked across almost unfaulted topographical high stands - the RIZs. These RIZs had a more complex faulting pattern as the 

interacting faults created a locally rotated strain field, which is oblique to the crustal structures and the regional strain field. 1045 

This creates a “zig-zag geometry” as the shorter fault segments grow and coalesce. As linkage progresses, these RIZs link 

basins and establish physical and sedimentary system links. This linkage is currently ongoing, as represented by the only 

partially breached RIZ of Shilingguan.  

 

Fig. 11. The new proposed evolutionary model under a constant strain field that shows linkage of rift basins influenced by two levels 1050 
of inheritance – crustal and mantle inheritance which result in oblique rifting and the creation of en-echelon array of basins. 1. 
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Proposed pre-rift framework of NNE-SSW trending mantle fabric and NE-SW trending crustal fabrics. 2. Major basins form en-

echelon along the NNE-SSW trending mantle fabric but form perpendicular to the extension direction (large green arrows) and 

along inherited crustal structures that locally reorientate the strain (smaller orange arrows). RIZs are created and major basin 1150 
bounding faults start to reorientate the local strain field. 3. The RIZs are being breached and form smaller more segmented fault 

segments that are influenced by the locally reorientated strain field (red arrows) and inherited crustal structures.  

6 Conclusions 

We applied three different geomorphic indices (Rl, ksn and HI) to analyse the fault distribution and the geometry and occurrence 

of rift interaction zones (RIZs) along the Shanxi Rift to discuss the distribution of tectonic activity and understand the role 1155 

structural inheritance has played in its evolution and the seismic hazard posed by active faults within it. Based on our results 

we conclude the following: 

 

1. Geomorphic indices are a powerful tool to evaluate the fault evolution and activity and the segmentation of the Shanxi 

Rift.  1160 

2. Our study shows that lithology has a strong influence on the overall geomorphic signal of faults, as those with 

Paleoproterozoic crystalline basement in their footwalls have overall higher geomorphic values compared to faults 

with Palaeozoic-Mesozoic metasediments in the footwalls. However, comparing faults with similar basement geology 

can circumvent this problem. We found that overall HI is less sensitive to these variations of lithology compared to 

Relief and ksn. Therefore, HI may be more suited to evaluating the tectonic influence on landscapes.  1165 

3. Within the Shanxi Rift, the RIZs that link the well-developed large Xinding, Linfen and Taiyuan basins, are the most 

active zones and show most signs of active drainage reorganisation. This has major implications for seismic hazard 

assessments as it hints towards zones which show more complex and more active patterns of faulting due to the strain 

concentration in the RIZs, experiencing increased seismicity. Linkage of the basins seems to be progressing towards 

the north, as shown by the increasing breaching status of the RIZs towards the south, which is possibly controlled by 1170 

their initial geometry.  

4. Structural inheritance has played a key role in the evolution and segmentation of the Shanxi Rift. The collision of the 

two component blocks of the NCC created a lithospheric scale weak zone, the Trans-North China Orogen (TNCO), 

which preferentially accommodates strain. The individual sub-basins of the Shanxi Rift form en-echelon aligned 

along a broad N-S trend which coincides with an upper mantle anisotropy fabric – a lithospheric manifestation of the 1175 

TNCO. The mantle anisotropy is oblique to the NW-SE extension direction, while the NE-SW trending crustal fabrics 

are perpendicular to the extension direction. Early rift faults nucleated along NE-SW orientated basement fabrics, 

establishing basins arranged along the inherited N-S trend. As the boundary faults grew, they began to interact and 

form RIZs. Within these RIZs, the crustal basement inheritance further influenced and segmented the breaching faults 

and aided linkage across the basins. The faults within the RIZs both follow and crosscut pre-existing fabrics in the 1180 

crust, creating a “zig-zag pattern” of small, segmented faults that eventually link up into singular throughgoing fault 
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zones. Therefore, structural inheritance of pre-existing Precambrian basement fabrics and a locally rotated stress field 

resulted in the complex pattern of faulting observed in the RIZs.  

5. Our geomorphic study supports a constant strain field during the formation of the Shanxi Rift with minor changes of 

the extensional vector. We propose that the Shanxi Rift is a type-example of an oblique rift, with an observed pattern 1205 

of faulting influenced by a postulated upper mantle anisotropy, crustal basement fabrics, as well as pre-existing faults.  
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